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Abstract 
This paper presents a learning-based approach to the automation of knowledge acquisition for 
expert systems. An expert system is viewed as an explicit mooel of a human expert's competence 
and perfonnance. We distinguish three phases in the development of such a model. The fIrst one 
consists of defIning a framework for the mooel, in terms of a knowledge representation formalism 
and an associated problem solving methoo. The second phase consists of defIning a preliminary 
mooel that describes the basic concepts of the expertise domain. The last phase consists of 
incrementally extending and improving the domain model through learning from the human 
expert. The paper describes the learning system NeoDISCIPLE which illustrates the usefulness of 
six principles for automating the knowledge acquisition process: expert system building as a three­
phase mooeling of human expertise, understanding-based knowledge extension, knowledge 
acquisition through multistrategy learning, consistency-driven concept fonnation and refInement, 
closed-loop learning, and cooperation between the human expert and the learning system. 

, 1 Introduction 

Recently there was a growing interest in devising methods, techniques and systems for 
automating knowledge acquisition for expert systems. On one side, the knowledge acquisition 
community tries to automate the existing techniques for knowledge elicitation and domain 
mooeling (Marcus, 1988; Boose et al., 1989). On the other side, the machine learning community 
tries to apply the learning methoos and techniques to the knowledge acquisition task (Wilkins et 
aI., 1986; Morik, 1989; Bareiss et al., 1990). 

One approach to the automation of knowledge acquisition is to build tools that make a strong 
assumption about the problem solving methoo used by the expert systems they create (Marcus, 
1988; Klinker, 1988). In this paper we present a complementary approach that exploits several 
general principles emerging from the fIeld of machine learning. These principles form the basis of 
a general learning system shell called NeoDISCIPLE, which is an extension and a generalization 
of the DISCIPLE system (fecuci, 1988; Tecuci and Kodratoff, 1990). We present these principles 
and their implementation into NeoDISCIPLE. 

2 Principles for automating the knowledge acquisition process 

2.1 Expert system building as a three-phase modeling of human expertise 
An expert system may be viewed as an explicit mooe1 of a human expert's competence and 

performance (Morik, 1989). We distinguish three phases in the development of such a model. The 
fIrst one consists of defIning a suitable framework for the model, in terms of a knowledge 
representation formalism and an associated problem solving methoo. The second phase consists of 
defIning a preliminary mooel that describes the basic concepts of the expertise domain. The last 
phase consists of incrementally extending and improving the domain mooel through learning. 
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A domain model to be built with the help of NeoDISCIPLE consists of two basic kinds of 
knowledge. The first one is a hierarchical semantic network, describing explicitly the object 
concepts in the world, together with their properties and relationships. These object concepts are 
hierarchically organized according to the "more-general-than" (or "isa") relationship which states 
that all the instances of a concept C are also instances of any concept that is more general than C. 
The second kind of knowledge consists of general rules. The meaning of these rules depends of 
the application domain. They may be inference rules for inferring new properties and relations of 
objects from other properties and relations, general problem solving rules as, for instance, rules 
that indicate the decomposition of complex problems into simpler subproblems, or even action 
models that describe the actions that could be performed by an agent (for instance, a robot), in 
terms of their preconditions, effects and involved objects. The important feature of these rules is 
that they refer to the objects and relations from the hierarchical semantic network, and their 
generality depends of the generality of the involved object concepts. 

To build a model of an application domain one has ftrst to deftne the problem solving method 
and the corresponding types of the problem solving rules. These. together with the hierarchical 
semantic network of object concepts, will represent the framework of the domain model. 

Next one has to defme a preliminary domain model. The goal of this phase is to extract from a 
human expert whatever knowledge he/she may describe easily and correctly. In general, this 
knowledge will consist of incomplete descriptions of some basic object concepts from the 
expertise domain, object concepts that deftne the initial hierarchical semantic network. 

The third phase, which is actually supported by NeoDISCIPLE, consists of incrementally 
extending and improving the domain model through learning from examples provided by the 
human expert. During this phase, the expert shows NeoDISCIPLE new facts or speciftc problem 
solving episodes (represented by problems and their solutions). From each such input, 
NeoDISCIPLE may leam an inference rule or a problem solving rule that is a generalization of the 
input. As a side effect of this leaming process, NeoDISCIPLE may develop the hierarchical 
semantic network by defming new properties, new relationships or even new object concepts. 

new domain model 
domain model 

refmement of the 
previous domain model NeoDISCIPLB 

+
general rule 

problem solving episode 
new factor 

Figure 1: Incremental development of the domain model 

2.2 Understanding-based knowledge extension 
The initial model provided by the human expert allows NeoDISCIPLE to react to new inputs 

with the goal of developing and updating the model so as to consistently integrate them. The 
general strategy is to try to "understand" (explain to itself) the input in terms of the current domain 
model. By this we mean that NeoDISCIPLE will try to build a plausible proof which demonstrates 
that the input is a consequence of the knowledge it already has. For instance, if the input is a new 
fact then the system will try to prove that this fact derives from other facts which are explicitly 
represented into the domain model. Or, if the input is an example of a problem solving episode, 
then the system will try to prove that the episode is correct, by using the facts from the domain 
model. If successful, the understanding process will determine the facts from the domain model 
from which the input can be derived. These facts represent the explanation of the input (Mitchell et 
al., 1986; Tecuci and Kodratoff, 1990), 

This "understanding" process depends of the inferential capabilities of the system with respect 
to the input. We distinguish between three types of such capabilities: 
• Poor knowledge about the input 
The system has no knowledge to build any plausible proof of the input. In such a case, 
NeoDISCIPLE uses heuristics to propose facts as plausible pieces of explanations, to be validated 



by the user who may himself indicate additional pieces of explanation or even the entire 
explanation (which becomes new knowledge to be included into the domain model). 
• Incomplete knowledge about the input 
The system has knowledge allowing it to build a plausible (incomplete) proof of the input In this 
case, the building of the proof tree requires the abduction of explanatory facts or inference steps 
which represent new knowledge to be added to the domain model. 
• Complete knowledge about the input 
The system has lalowledge allowing it to build a complete deductive proof of the input. 

Ifan explanation of the input is found, then the system will learn from it a general rule (see next 
section). This rule will allow it to directly derive, not only the input from which it was learned, but 
also similar knowledge. However, if no explanation is found, then the input is considered to 
represent entirely new knowledge that is added as such into the current domain model. 

As a result of the understanding process, the input will become (explicit or implicit) part of the 
domain model. Moreover, as a result of rule learning, other similar knowledge (facts or problem 
solving episodes) will become implicit part of the domain model. 

It is hoped that, through successive learning steps, the domain model of the system will evolve 
from poor (Le. without inferential capabilities) to incomplete (i.e. with incomplete inferential 
capabilities), and from incomplete to complete (i.e. with complete inferential capabilities). 

2.3 Knowledge acquisition through multistrategy learning 
From each received input NeoDISCIPLE is trying to learn a general rule. This may be a general 

inference rule, if the input is a specific fact, or it may be a general problem solving rule, if the 
input is a specific problem solving episode. The learning method of the system integrates 
synergistically a whole range of learning strategies (explanation-based learning, learning by 
analogy, empirical inductive learning, learning by asking questions and by being told, abduction 
and conceptual clustering) and consists of the following steps: 

• Understand the input and find an explanation ofit 
NeoDISCIPLE starts learning by trying to understand the input. This process depends of the 
inferential capabilities of the system with respect to the input and may involve induction, deduction 
and/or analogy. If successful, the understanding process will determine the facts from the domain 
model from which the input can be derived. These facts represents the explanation of the input. 
• Generalize the found explanation to an analogy criterion 
Next the system generalizes the explanation to an analogy criterion that would allow the 
recognition of similar explanation structures in the domain model, and the generation of new 
knowledge pieces analogous with the input. Depending of the system knowledge, the analogy 
criterion is obtained by an inductive and/or deductive generalization of the explanation. 
• Apply the analogy criterion to the domain model to generate examples analogous with the input 
The instances of the analogy criterion in the current domain model represent explanations similar 
with the explanation of the input. From each such explanation the system may generate a fact (or 
problem solving episode) analogous with the input. The generated knowledge is shown to the 
human expert which has to characterize it as true or false (see Figure 2). 

analogy criterion 

~-.-----...... similar explanations 
expIan!ltion explanation-j expIanation-k explanatIon-q from the current 

domain model 
of +j:~es tjUStifieS ? tjUStifies ? ~UStifies ? 

new pieces ofinput fact fact-j fact-k fact-q knowledge(or pb.sol.episode) (or pb.sol.ep.j) (or PbO.SOl.ep.k) (or pb.sol.ep.q) generated by0-0 the system 

Figure 2: Generation of examples analogous with the input 



• Learnfrom the generated examples 
The generated facts (or problem solving episodes) that have been characterized as true by the 
human expert represent positive examples of the rule to be learned. The others represent negative 
examples. From these examples, NeoDISCIPLE learns a geneml rule that covers as many of the 
positive examples as possible and as few of the negative examples as possible. 
• Improve the CUlTent domain model as a by product ofrule learning 
During rule learning, the current domain model may be improved by adding new properties, 
relationships or concepts into the hierarchical semantic network and/or by improving some of the 
inference rules used in the learning process. 

2.4 Consistency-driven concept formation and refinement 
NeoDISCIPLE starts learning with a preliminary model which usually consists of incomplete 

descriptions of some basic object concepts that define an initial language for representing and 
learning new object concepts, facts, rules etc. Because of this incompleteness, the general 
knowledge pieces learned by NeoDISCIPLE may have exceptions. For instance, a learned rule 
may cover invalid problem solving episodes. In order to eliminate these exceptions, new concepts 
have to be defined, or the definitions of the existing concepts have to be refined. For instance, one 
may eliminate the negative exceptions of a rule by defming a new concept discriminating between 
the positive examples and the negative exceptions, and by introducing it into the applicability 
condition of the rule (Wrobel, 1989; Tecuci, 1991). Alternatively, one may refme the defmition of 
a concept with a new feature or relationship shared only by the positive examples of the rule 
(Tecuci, 1991). In this way, the hierarchical semantic network of object concepts is iteratively 
developed with the goal of improving the consistency of the learned rules. 

2.5 Closed-loop learning 
As shown in Figure 1, the knowledge learned from an input become background knowledge 

which is used in the subsequent learning process, increasing the quality of learning. Therefore, 
NeoDISCIPLE illustmtes a geneml case of closed-loop learning (Michalski, 1990a). 

2.6 Cooperation between the human expert and the learning system 
The knowledge acquisition method of NeoDISCIPLE is based on a cooperation between the 

human expert and the learner which exploits their complementary abilities. That is, each part 
contributes to the knowledge acquisition process with what he (it) can do better than the other. 

The human expert, for instance, provides an initial'imperfect elementary description of his 
domain. He is particularly good at providing suitable solutions to problems. He may judge if a 
solution to a problem is good or not, or if a fact is true or false. He is less good at providing an 
explanation of why a particular solution to a problem is good or not, but can easily accept or reject 
tentative explanations proposed by the system. What is particularly difficult for the human expert 
is to provide geneml pieces of information and to maintain the consistency of the domain modeL 

On the other hand, NeoDISCIPLE suggests justifications of the observed facts or examples of 
problem solving episodes, generalizes them, and iteratively develops and updates the model of the 
expertise domain, so that to consistently integmte the learned knowledge. 

3 Intuitive illustration of the knowledge acquisition methodology 
3.1 Question-answering in geography 

We shall illustmte our approach to the automation of knowledge acquisition by considering the 
building an expert system able to answer questions about geogmphy. A possible framework for 
the domain model consists of an expert system shell that implements a backward chaining theorem 
prover. The knowledge base consists of a hierarchical semantic network (describing explicitly 
properties and relations of the geographical objects) and of inference rules (for inferring new 
properties and relations). To answer a question of the form "Does (corn GROWS-IN Romania) ?", the 
system will first look into the semantic network. If the above fact is not explicitly represented, 
then the system will try to infer it from the explicitly represented facts. 



Once the framework has been defmed. the human expert has to provide whatever domain 
knowledge he may easily express. In general. this will consist of incomplete descriptions of some 
basic geographical objects. represented in the form of a hierarchical semantic network like the one 
from the top of Figure 3. These object concepts constitute a preliminary domain model used to 
learn new geographical concepts and inference rules. Although we plan to investigate the 
automation of definition of this preliminary domain model. the current version of NeoDISCIPLE 
does not support the human expert more than accepting any model, as incomplete as it may be. 

Rl: IF 
(y HAS-METEO-COND-FOR x)&(y HAS-TERRAIN-COND-FOR x) ; if y bas meteorological 

TIIEN ; and terrain conditions for x 
(x GROWS-IN y) ; then x grows in y 

R2: IF 
upper bound 
(x IS-A something)&(y IS-A something)& ; the water supply of y 
(t IS-A something)&(u IS-A something)& ; is that needed by x, 
(y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& ; and the climate of y 
(y CLIMATE u)&(x NEEDS-CLIMATE u) ; is that needed by x 

lower-bound 
(x IS-A fruit)&(y IS-A place)& ; the water supply of the place y 
(t IS-A liUle)&(u IS-A temperate)& ; is little, as needed by the fruit x, 
(y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& ; and the climate of y is temperate, 
(y CLIMATE u)&(x NEEDS-CLIMATE u) ; as needed by x 

TIIEN 
(y HAS-METEO-CONO-FOR x) ; y bas meteorological cond for x 

with lhe positive examples 
(x<-plum, y<-Romania, t<-little, u<-temperate)&(x<-grape, y<-France. t<-little. u<-temperate) 

R3: IF 
upper bound 
(x IS-A something)&(y IS-A something)&(z IS-A something)& ; the terrain of y 
(y TERRAIN z)&(x NEEDS-TERRAIN z) ; is that needed by x 

lower-bound 
(x IS-A fruit)&(y IS-A place)&(z IS-A hill)& ; the terrain of a place y is hill, 
(y TERRAIN z)&(x NEEDS-TERRAIN z) ; as needed by the fruit y 

TIIEN 
(y HAS-TERRAIN-COND-FOR x) ; y has terrain conditions for x 

with the positive examples 
(x<-plum, y<-Romania, z<-hill)&(x<-grape,y<-France,z<-hill) 

Fi Ie domain model 



· The J:!re~ary domain model is exten?ed and in;tproved. by NeoDISaPLE through successive 
lflteracno.ns with the human expen. Dunng these mteracnons, the human expen provides new 
geographical facts, and the system learns inference rules and develops the hierarchical semantic 
network. Some of the rules may be incompletely learned as, for instance, the rules R2 and R3 in 
Figure 3. Instead of an exact condition they specify a version space (Mitchell, 1978) for the 
condition, represented by a conjunctive expression that is more general than the exact condition 
(the upper bound), and a conjunctive expression that is less general than the exact condition (the 
lower bound). 

For instance, from the input fact 
(rice GROWS-IN Cambodia) (1) 

the system learned the following inference rule: 

IF (2) 
(x IS-A plant)&(y IS-A place)&(z IS-A terrain-type)& ;H 
(t IS-A quantity)&(n IS-A climate-type)&(v IS-A soil-type)& ; the water supply of the place y 
(y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& ; is that needed by the plant x, and 
(y CLIMATE n)&(x NEEDS-CLIMATE n)& ; the climate of y is that needed by x, and 
(y TERRAIN z)&(x NEEDS-TERRAIN z)& ; the terrain of y is that needed by x, and 
(y SOIL v)&(x NEEDS-SOIL v) ; the soil of y is that needed by y 

THEN ; then 
(x GROWS-IN y) ; x grows in y 

Such a rule allows the system to derive the original input fact, but also other related facts as, for 
instance, "(rice GROWS-IN Tunisia)" or "(com GROWS-IN Romania)". 

As a by product of rule learning, the system has also learned new relevant geographical 
relationships, like "SOIL" and "NEEDS-SOIL", as well as new basic geographical facts like 
"(Cambodia SOIL fertile)" and "(rice NEEDS-SOIL fertile)". 

It has also improved the rule R3 in Figure 3 by adding necessary predicates to both bounds of 
the condition: 

R3': IF (3) 
upper bound 
(x IS-A sometbing)&(y IS-A something)&(z IS-A something)& ; the terrain of y 
(y TERRAIN z)&(x NEEDS-TERRAIN z)& ; is that needed by x and 
(v IS-A something)&(y SOIL v)&(x NEEDS-SOIL v) ; the soil of y is that needed by x 

lower-bound 
(x IS-A plant)&(y IS-A place)&(z IS-A terrain-type)& ; the terrain of a place y is the terrain­
(y TERRAIN z)&(x NEEDS-TERRAIN z)& ; type needed by the plant y, and the 
(v IS-A soil-type)&(y SOIL v)&(x NEEDS-SOIL v) ; soil of y is the soil-type needed by x 

THEN 
(y HAS-TERRAIN-CONO-FOR x) ; y has terrain conditions for x 

with the positive examples 
(x<-plnm, y<-Romania, z<-hill, v<-normal)&(x<-grape,y<-France,z<-hiU, v<-normal)& 
(x<-rice, y<-Cambodia, z<-flat, v<-fertile) 

with the negative example 
(x<-rice, y<-Florida, z<-fla1, v<-normal) 

The next section illustrates how this learning process took place. 

3.2 D1ustration of the rule learning method 

Once the system has received the input fact "(rice GROWS-IN Cambodia)" it tried to understand it by 
showing that it is. a consequence of the know~edge e~plicitly t:=p~sented into the do.main model. 
This "understanding" process depends of the mferennal capabllines of the system WIth respect to 
the input fact: poor, incomplete, or complete. We shall illustrate all these three cases. 

Let us first suppose that the current domain model is the one from Figure 3. In this case the 
system has incomplete knowledge about the input "(rice GROWS-IN Cambodia)" because it is able to 
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high 
~-CLIMATE (~

subtro . cal) flat 

build ~e plausi.ble proof tree from the top.of Figure 4. We called this tree "plausible" because it 
was bUllt by usmg the upper bound condinons of the rules R2 and R3. Therefore, the inferences 
made are only plausible and should be validated by the expert. In general, to build a plausible 
proof trec:, the system may need to abduce new facts or even new inference steps. The leaves of 
the plau~lble tree .represent the facts .from the ~owledge base that imply the input, i.e. the 
eX'plananon of the mput. The ne~t step IS to g~neralize the explanation to an analogy criterion. To 
thIS purpose, the system generalizes the plaUSIble proof tree as much as allowed by the inference 
rules used. The generalization technique is similar to that of (Mooney and Benett, 1986). 
NeoDISCIPLE first replaces each instantiated inference rule with its general pattern (by using the 
upper bound of the rule's condition if the rule has not an exact condition), and then unifies these 
patterns. In this way the system builds the generalized tree from the bottom of Figure 4, the leaves 
of which represent the analogy criterion. 

(Cambodia
WATER-SUPPLY 

(x GROWS-IN Y) 

\rATER-SUPPLY 

(y HAS- """"'.lUI.' 

~-WATER-SUPPLY (YCUMATE 
t t u 

x) 

Figure 4: Finding an explanation of the input and 
it to an analo criterion, in the case of incom lete knowled e 

Let us now suppose that the current domain model consists of only the semantic network from 
the top of Figure 3. This represents an example of poor knowledge about the input "(rice GROWS-IN 
Cambodia)" because this knowledge is not enough for inferring anything about the validity of the 
input. However, the system makes the hypothesis that the input fact is a direct consequence of 
other facts that are explicitly represented into the semantic network. It therefore uses heuristics to 
select such facts, and to propose them as partial explanations to be validated by the user, who may 
himself indicate other pieces of explanations. One used heuristic is to propose as plausible 
explanations the relations between the objects from the input (rice and Cambodia): 

Are the/ol/owing relations explanations/or '(rice GROWS-IN Cambodia)': 
(rice NEEDS-TERRAIN flat) & (Cambodia 1ERRAIN flat) ?Yes 
(rice IS-A food) & (Cambodia NEEDS food) ? No 
(rice NEEDS-WA1ER-SUPPLY high) & (Cambodia WA1ER-SUPPLY high)? Yes 
(rice NEEDS -CLIMA1E subtropical) & (Cambodia CLIMA 1E SUbtropical) ?Yes 

All the pieces of explanations marked by a user's yes form the explanation of the input. In the 
case of poor knowledge, this explanation is inductively generalized to an analogy criterion by 
simply transforming the objects into variables. As one may notice, the system has found the same 
explanation and the same analogy criterion as in the case of incomplete knowledge. 

Let us finally suppose that the semantic network in Figure 3 has been augmented with the 
relations "(rice NEEDS-SOIL fertile)" and "(Cambodia SOIL fertile)", and that the rules R2 and R3 have 
been completely learned. The resulting domain model is "complete" with respect to the input fact 
"(rice GROWS-IN Cambodia)" because it allows the system to build a deductive proof of the input. In 



such a case, the learning method reduces to pure explanation-based learning (Mitchell et al., 1986; 
Dejong and Mooney, 1986). Indeed. NeoDISCIPLE builds a tree similar to the one from the top 
of Figure 4, except that each inference step is a deduction, and the tree is a logical proof. Then, by 
using the general form of the inference rules R1, R2, and R3, it builds a generalized proof tree, 
similar to the one from the bottom of Figure 4. Because this generalized tree is a logical proof, its 
leaves imply the input and represent the exact condition of the rule to be learned. Therefore 
NeoDISCIPLE learned at once the rule shown in (2). The other steps of the method are no longer 
necessary. 

In the following, we shall show how learning proceeds when the system does not have 
"complete" knowledge about the input fact "(rice GROWS-IN Cambodia)". NeoDISCIPLE has found 
an explanation of the input and has generalized it to an analogy criterion (see Figure 5). The 
instances of the analogy criterion in the domain model represent explanations similar with the 
explanation of the input. Each such explanation may account for a fact analogous with the input 
one. Because analogy is a weak inference, these facts could be, however, true or false. The goal 
of the system is to learn a general rule that covers the true facts and rejects the false ones. 
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facts ~com GROWS-IN Romania) Grice GROWS-IN ROrida)) generated 
by the 

input fact systemo o 
Fi 5: Generation of facts analo ous with the in ut one 

instances 
of the 
analogy 
criterion 
from the 
semantic 
network in 
Figure 3 

First of all, from the input fact, its explanation and the analogy criterion, the system builds an 
initial version space for the rule to be learned. This version space is shown in Figure 6. Its lower 
bound covers only the input fact and its upper bound covers all the facts that may be generated 
(Tecuci and Kodratoff, 1990). 

Then, the system applies the analogy criterion to the semantic network in Figure 3 and 
generates, one after the other, the facts from Figure 5, asking the expert to validate them: 

Does (corn GROWS-IN Romania)? yg 
The validated facts represent positive examples of the rule to be learned and the rejected ones 

represent negative examples. 



IF 
upper-fxJund(analogy criterkm) 
(x IS-A something)&(y IS-A something)&(z IS-A something)&(t IS-A something)&(u IS-A something)& 
(y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLlMA1E u)&(x NEEDS-CUMA1E u)& 
(y 1ERRAIN z)&(x NEEDS-1ERRAIN z) 

lower-fxJund(explanation) 
(x IS-A rice)&(y IS-A Cambodia)&(z IS-A flat)&(t IS-A high)&(u IS-A subtropical)& 
(y WATER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(yCLIMA1E u)&(xNEEDS-CLIMA1E u)& 
(y 1ERRAIN z)&(x NEEDS-1ERRAIN z) 

TIffiN 
(x GROWS-IN y) 

with the positive example 
(x<-rice, y<-Cambodia, z<-flat. t<-high. u<-subtropical) 

Figure 6: The initial version space for the rule to be learned 

The generated facts from Figure 5 are used to shrink. the version space from Figure 6, by using 
the method presented in (Tecuci and Kodratoff, 1990). 

For each positive example as, for instance, "(com GROWS-IN Romania)", the system generalizes 
the lower bound of the version space (see Figure 6) to the most specific generalization that covers 
the explanation of the example (see (4) below), and is less general then the upper bound. 

Explanation i (4 ) 
(x IS-A com)&(y IS-A Romania)&(z IS-A flat)&(t IS-A litue)&(u IS-A temperate) 

(y W A 1ER-SUPPLY t)&(x NEEDS-WA1ER-SUPPLY t)&(y CLIMA1E u)&(x NEEDS-CLIMA 1E u)& 

(y 1ERRAIN z)&(x NEEDS-1ERRAIN z) 


For each negative example as, for instance, "(rice GROWS-IN Florida)", the system and the expert 
detennines the explanation of the failure: 

Failure explanation j 
Not(rice GROWS-IN Florida) because (Florida SOIL nonnal)&(rice NEEDS-SOIL fertile) (5) 

and the corresponding piece of explanation of the initial input: 

Explanation j 
(rice GROWS-IN Cambodia) because (Cambodia SOIL fertile)&(rice NEEDS-SOIL fertile) (6) 

This last explanation is added to both bounds of the version space of the rule to be learned as if 
it were found during the initial understanding of the input fact 

As a consequence of the above two examples, the version space in Figure 6 becomes: 

IF 
~~~ . 
(x IS-A something)&(y IS-A something)&(z IS-A something)&(t IS-A something)&(u IS-A something)& 
(y W A 1ER-SUPPLY t)&(x NEEDS-WATER-SUPPLY t)&(y CLIMA1E u)&(x NEEDS-CLIMA 1E u)& 
(y 1ERRAIN z)&(x NEEDS-1ERRAIN z)&(v IS-A something)&(y SOIL v)&(x NEEDS-SOIL v) 

Iower-fxJ~ 
(x IS-A cereal)&(y IS-A place)&(z IS-A flat)&(t IS-A quantity)&(u IS-A climate-type)& 
(y WA1ER-SUPPLY t)&(x NEEDS-WATER-SUPPL Y t)&(y CUMA1E u)&(x NEEDS-CLIMA1E u)& 
(y 1ERRAIN z)&(x NEEDS-1ERRAIN z)&(v IS-A soil-type)&(y SOIL v)&(x NEEDS-SOIL v) 

TIffiN 
(x GROWS-IN y) 

with the positive examples 
(x<-rice. y<-Cambodia. z<-flat, t<-high, u<-subtropical v<- fertile) 
(x<-com.y<-Romania,z<-flat,t<-little.u<-temperate.v<-normal) 

with the negative example 
(x<-rice, y<-Florida, z<-flat,t<-high. u<-subtropical, v<-normal) 

Figure 7: The new version space ofthe rule to be learned 



The learning process decreases the distance between the two bounds of the version space. It 
continues until the bounds become identical or all the generated examples have been used. 

3.3 Improving the current domain model 

As a result of learning from the input "(rice GROWS-IN Cambodia)", the domain model is 
developed in several respects by: 

- the addition of the learned rule; 
- the addition of new facts or even of new concepts, in the semantic network; 
- the improvement of the rules used in the "understanding" of the input 
The important outcome of this learning process is that it may change the nature of the system's 

knowledge, with respect to other inputs, from poor to incomplete, or even to complete. 
For instance, Failure explanation j and Explanation j (see (5) and (6) above), are added 

to the semantic network as new basic geographical knowledge. 
Also, forcing the new lower bound of the rule in Figure 7 (which now includes Explanation 

j) to cover the previously encountered positive example "(corn GROWS-IN Romania)", the system 
acquired new basic knowledge about the soil of Romania and the soil needed by corn: 

(Romania SOIL normal) & (corn NEEDS-SOIL normal) 

When the system had incomplete knowledge about the input it also improved the rules used in 
the understanding process. The guidance for such an improvement is provided by the generalized 
plausible proof from the bottom of Figure 4. Indeed, to each new fact generated by the system 
corresponds an instance of this tree, as shown in Figure 8. 

~______~~L____________~~~~~~~~____~su~b~tr~~~k~al~~____ 

WATER·SUPPLY 
little 

(com GROWS-IN Romania) 

(R 
. ~,. . TERRArn )

omarua HAS-METEO-COND-FOR corn) (Romarua HAS- -COND-FOR com 

(Romania com ~omania 
NEEDS..a.JMATE TERRAIN 

temperate) flat 

~ (riee GROWS- Florida) 

rice) 

nee ~orida 
NEEDS..a.JMATE TERRAIN 

ntt~JL.-________~ 

Figure 8: Instances of the generalized tree in Figure 4, corresponding 

to the true fact "(corn GROWS-IN Romania)" and to the false fact "(rice GROWS-IN Florida)" 


The tree corresponding to the true fact "(corn GROWS-IN Romania)" is a correct proof tree that 
shows new positive instances of the rules R2 and R3 in Figure 3. Therefore, the lower bounds of 
these rules are generalized to cover the corresponding instances. 

The tree corresponding to the false fact "(riee GROWS-IN Florida)" is a wrong proof tree (the leaf 
predicates are true but the top predicate is not). This means that some of the inferences made are 
incorrect. To detect them, the system and the user follow the proof tree from bottom up. If the 
user states that the consequent of a certain inference step is not true, then the corresponding 
inference rule may be the faulty one. In this case, the wrong inference step is: 

(Florida TERRAIN ntt)&(rice NEEDS-TERRAIN flat) _A> (Florida HAS-TERRAIN-COND-FOR rice) 

The detection of this wrong inference step allowed the user and the system to discover the 



failure explanation in (5) above. It has also provided a negative example for the rule R3 in Figure 
3. As a consequence, the system transformed the rule R3 from Figure 3 into the rule R3' (see (3». 
It is important to notice that the positive examples and the negative examples of the rules R2 and 
R3 are used to improve these rules in the same way as the positive and the negative examples of 
the rule to be learned. 

4 Discussion and conclusions 

NeoDISClPLE is implemented in Common Lisp and runs on Macintosh. Until now it was used 
to build small knowledge bases for the following types of expertise domains: planning (in 
robotics), planning combined with design (in manufacturing), prediction (in chemistry), and 
question-answering (in geography). From these experiments, we have concluded that it is not very 
difficult to build a small knowledge base with NeoDISCIPLE. 

The dialogue with the user is based on "intelligent", specific, and easy to answer questions. 
Also, NeoDISCIPLE minimizes the number of questions asked by carefully generating only those 
facts or problem solving episodes that are most likely to advance the learning process. In the 
experiments performed, NeoDISCIPLE usually needed to generate less than 10 examples (see 
Figure 2) for learning a rule. However, the knowledge base may sometimes allow the generation 
of thousands of such examples. If, in a certain critical application, all these examples need to be 
tested, then this may require a lot of time from the human expert. Therefore, new methods have to 
be devised to test the examples independently of the expert (for instance, by comparing them with 
a database of cases), or to select for testing only the examples that have the highest likelihood of 
contradicting the rule being learned. 

A basic source of knowledge for learning is the hierarchical semantic network which provides 
the generalization language. Therefore, an application domain for which one cannot define a "rich 
enough" semantic network is not suitable for NeoDISCIPLE. 

The integrated learning method of NeoDISClPLE outperforms any of the constituent single­
. strategy methods in that it is able to learn in situations in which they were insufficient. However, 
NeoDISCIPLE still suffers from the basic limitation of the learning systems: if the bias built into 
the system is incorrect, the system will fail to learn properly. In the current version of 
NeoDISClPLE, the initial semantic network (which contributes significantly to the system's 
learning bias) is supposed to be incomplete but correct. During learning, the definition of the 
object concepts may be refined and even new concepts may be defined (Tecuci, 1991). While this 
may improve the initial bias, it will not modify it drastically. A better way to surmount this 
limitation is to perform not only additions to the semantic network, but also deletions. We 
therefore plan to develop the learning method of NeoDISClPLE so that to start with an imperfect 
domain model (which is not only incomplete, but also partially incorrect), and to gradually 
improve it. 

The presented methodology divides the process of building an expert system (viewed as a 
model of an expertise domain) into three phases: defining a framework for the domain model, 
providing a preliminary domain model, and incrementally improving the domain model. Only the 
third phase is automated by the present version of NeoDISCIPLE. In the future, we plan to evolve 
NeoDISCIPLE into a system that will assist an expert user during all the three phases. 

For the automation of the first phase, we plan to identify suitable expert system shells (i.e. 
systems the knowledge base of which could be learned by NeoDISClPLE) and to couple each of 
them with a customized version of NeoDISCIPLE. 

The definition of the preliminary domain model could be automated by using an approach 
similar to that of the BLIP and MOBAL systems (Morik, 1989; Wrobel, 1989). These systems are 
able to build such an initial model from user provided facts. 

NeoDISClPLE itself could be further improved by improving the existent learning strategies 
and by adding new ones, in order to increase the learning capabilities of the system. This research 
direction is closely related to an on going effort at the Center for Artificial Intelligence to define a 
unifying theory of machine learning and a general multistrategy task-adaptive learning 
methodology based on this theory (Michalski, 1990a,b; Tecuci and Michalski, 1991). 
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