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Abstract 

Traditionally, genetic algorithms have relied upon I 

and 2-point crossover operators. Many recent empir­

ical studies, however, have shown the benefits of 

higher numbers of crossover points. Some of the 

most intriguing recent work has focused on uniform 

crossover, which involves on the average Ll2 cross­

over points for strings of length L. Theoretical 

results suggest that, from the view of hyperplane 

sampling disruption, uniform crossover has few 

redeeming features. However, a growing body of 

experimental evidence suggests otherwise. In this 

paper, we attempt to reconcile these opposing views 

of uniform crosSover and present a framework for 

understanding its virtues. 


1 Introduction 
One of the unique aspects of the work involving genetic 
algorithms (GAs) is the important role that recombination 
plays. In most GAs, recombination is implemented by 
means of a crossover operator which operates on pairs of 
individuals (parents) to produce new offspring by 
exchanging segments from the parents' genetic material. 
Traditionally, the number of crossover points (which 
detennines how many segments are exchanged) has been 
fixed at a very low constant value of 1 or 2. Support for 
this decision came from early work of both a theoretical 
and empirical nature [Holland, 1975; DeJong, 1975]. 
However, there continue to be indications that there are 
situations in which having a higher number of crossover 
points is beneficial [Syswerda. 1989; Eschelman, 1989]. 
Perhaps the most surprising result (from a traditional pet­
spective) is the effectiveness on some problems of uni­
form crossover, an operator which produces on the aver­
age LI2 crossings on strings of length L [Syswerda. 
1989]. 

Recent work by [Spears and De long, 1990] has extended 
the theoretical analysis of n-point and uniform crossover 
with respect to disruption of sampling distributions. 

Kenneth A. De Jong 

George Mason University 

Fairfax, VA 22030 USA 

kdejong@aic.gmu.edu 

However, they pointed out that disruption analysis alone 
is not sufficient in general to predict and/or select optimal 
forms of crossover. In particular, they have shown that 
the population size must also be taken into a<xount 
[Dejong and Spears, 1990]. This paper extends that work: 
by looking at the properties of a parameterized uniform 
crossover operator and by considering two other aspects 
of crossover operators, namely, their recombination 
potential and their exploratory power. In this context, a 
surprisingly positive view of uniform crossover emerges. 

2 Disruption Analysis 
Holland provided the initial formal analysis of the 
behavior of GAs by showing how they allocate trials in a 
near optimal way to competing low order hyperplanes if 
the disruptive effects of the genetic operators used is not 
too severe [Holland, 1975]. Since mutation is typically 
run at a very low rate, it is generally ignored as a 
significant source of disruption. However, crossover is 
usually applied at a very high rate. So, considerable 
attention has been given to estimating Pd, the probability 
that a particular application of crossover will be disrup­
tive. 

Holland's initial analysis of the sampling disruption of 
I-point crossover [Holland, 1975] has been extended to 
n-point and uniform crossover [DeJong, 1975; Spears and 
DeJong, 1990]. These results are in the form of estimates 
of the likelihood that the sampling of a kth order hyper­
plane (HI:) will be disrupted by a particular form of cross­
over. It turns out to be easier mathematically to estimate 
the complement of disruption: the likelihood of a sample 
surviving crossover (which we denote as P,), As one 
might expect. the results are a function of both the order k 
of the hyperplane and its defining length (see the Appen­
dix and [Spears and DeJong, 1990] for more precise 
details). 

We provide in Figure 1 a graphical summary of a typical 
instance of these results for the case of 3rd order hyper­
planes. The non-horizontal curves represent the survival 

1 

mailto:kdejong@aic.gmu.edu
mailto:spears@aic.nrl.navy.mil


of 3rd order hyperplanes under n-point crossover 
(n =1 ... 6). The horizontal line represents the probability 
of survival under uniform crossover. Figure 1 highlights 
two import:lIlt points. First., if we interpret the area above 
a particular curve as a measure of the cumula.tive disrup­
tion potential of its associated crossover operator. then 
these curves suggest that 2-point crossover is the least 
disruptive of the n-poim crossover family, and less dis· 
ruptive than uniform crossover. Finally, unlike /l·point 
crossover, uniform crossover disrupts all hyperplanes of 
order k with equal probability. regardless of how long or 
short their defining lengths are. 

3 A Positive View of Crossover Disruption 
A recurring theme in HoUand's work is the importance of 
a proper balance between exploration and exploitation 
when adapuvely searching an unknown space for high 
performance solutions [HoUand, 1915]. The disruption 
analysis of the previous section implicitly assumes that 
disruption of the sampling distributions is a bad thing and 
to be avoided (e.g., a high disruption may stress explora· 
tion at the expense of exploitation). However. this is not 
always the case. There are important situations in which 
minimizing disruption hinders the adaptive search pro­
cess by overemphasizing exploitation at the expense of 
needed exploration. One of the clearest examples of this 
is when the population size is too small to provide the 
necessary sampling accuracy for complex search spaces 
[DeJong and Spears, 19901. 

To illustrate this we have selected a 30 bit problem with 6 
peaks from [DeJong and Spears, 1990). The measure of 
performance is simply the best individual found by the 
genetic algorithm. This is plotted every 100 evaluations. 
Since we are maximizing, higher curves represent better 
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Figure 1. Survival of 3rd Order Hyperplanes 

performance. Figures 2 and 3 Illustrate !.he cfffXt of 
population size on GA performance. Notice how uniform 
crossover dominaleS 2-point crossover on !.he 6--Pcak 
problem .....ith a small population, but just the opposite is 
true with a large population. 

One conclusion of these results might be that we should 
maintain a portfolio of crossover operators and study !.he 
effects of various combinations. We have been examin­
ing another approach: achieving a better balance of 
exploration and exploitation using only uniform cross­
over. We are intrigued by this possibility for two reasons: 
its simplicity (only one crossover form) and its potential 
for increased robustness because the disruptive effect of 
uniform crossover is not influenced by hyperplane 
defining length. 
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Figure 2: 6-Peak (30 bits) - Population 20 
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Figure 3: 6-Peak (30 bits) - Population 1000 
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'" A Closer Look at Uniform CrossO\;er 
rt is c\car that the Ievc\ of disruption provided by unifC1nn 
crossover is too high in many cases (e,g., when largc 
p<.Jpuiations are used), This sta.ndard fonn of unifonn 
cros:;oyer swaps two parcnts' allelcs with a prorobility of 
0.5. Suppose, however, that we pararncr.::rize unifonn 
crossovcr, whcre Po denotcs the prorobility of swapping. 
We can now consider the effcct of decreasing PO.I Figure 
4 illustrates this for 3rd order hyperplanes. Notice how 
the disruption of uniform crossover can be controlled by 
lowering Po, wiJhoUl affecting the property that the disr­
uption has no defining length bias. In particular, note that 
by simply lowering Po to .1, uniform crossover is less 
disruptive (overall) than 2-point crossover and has no 
defining length bias! This suggests a much more positive 
view of the potential of uniform crossover, namely. an 
unbiased recombination operator whose disruption poten­
tial can be easily controlled by a single parameter Po. 

To test this hypothesis. we have run a number of experi. 
menrs in which Po varied. As expected, we can increase 
and decrease performance on a given problem with a 
fixed population size simply by varying Po. Figure 5 
illustrates this on the 6-Peak problem. Note that in rhls 
particular case, a value of Po:::: 0.2 produced the best 
results. Referring back to Figures 3 and 4, we can now 
see why. For the 6-Peak problem, a population size of 
lOCK> has suffi:ient sampling capacity to require only the 
disruption level provided by 2.point crossover. Uniform 
crossover with Po =0.2 provides approximately the same 
level of disruption but without the length bias. 
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Figure 4. Survival of 3rd Order Hyperplanes 

NOIC that we do II« need to consider the possibility of 
increasing Po, due to the symmetry of unifonn crossover. 
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Figure 5: 6-Peak (30 birs) - PopuJation 1(XX) 

Is this lacle of length bias really important? Intuitively, it 
should help overcome representation problems in which 
important hyperplanes happen to have defining lengths 
which are adversely affected by the particular n-point 
crossover operalOr in use. S yswerda illustrated this 
clearly with his ftsparse l_maxft problem in which 270 
fake birs were appended 10 a 3D-bit problem [Syswerda, 
1989]. One can show similar results with almost any 
problem. Figure 6 illustrates this on our 6-Peak problem 
appended with 270 fake birs and the same evaluation 
function. Notice that.. in comparison 10 the original 30-bit 
problem shown in Figure 5, the performance of 2-point 
crossover is worse, while the performance of uniform 
crossover (Po = .2) remains essentially unchanged. 

How do we explain the drop in performance of 2-point 
crossover? In this case, the 30 important birs are aJl 
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wilhin a distance oi LilO of each olher (where L is the 
Icnglh of the string). If we examine Figure 4, we note Lh.:lt 
2.~int crossover is less disruptive wilhin that range (0 to 

Li 10) of defining lengths. In other words, the addition of 
270 additional biLS effectively decreases the disruption of 
the importam hyperplanes under 2·point crossover. This 
eff,:cl is most obYious towards the end of the runs (see 
Figure 6), where disruption is increasingly useful (due to 

the increasing homogeneity of the population). Uniform 
crossover is not influenced by the added 270 biLS, since it 
is insensitive to defining length. 

In summary, we see two important virtues of uniform 
crossover. The first is the ease with which the disruptive 
effect of uniform crossover can be controlled by varying 
Po. This is useful in achieving the proper balance 
between exploration and exploitation. The second virtue 
is that the disruptive potential of uniform crossover does 
not depend on the defining length of hyperplanes. This 
allows uniform crossover to perform equally weU, regard­
less of the distribution of important alleles. 

5 Recombination Potential 
Another possible virtue of uniform crossover that has 
been discussed in the literature is its recombination 
potential. In comparing uniform, 1 and 2-~int ~ro~er. 
Syswerda felt that uniform crossover gamed sigruficant 
advantage from its ability to combine small building 
blocks into larger ones [Syswerda., 1989]. He defined 
recombination potential as the ability of crossover to 
create higher order hyperplanes when the parents contain 
the necessary lower order hyperplanes. He provided an 
analysis showing uniform crossover (Po = .5) to have a 
higher recombination potential than 1 and 2-point cross­
over. 

Syswerda pointed out that recombination can be con­
sidered to be a specialized form of survival, in which two 
lower order hyperplanes survive onto the same string, 
resulting in a higher order hyperplane. This observation 
allowed Syswerda to construct a recombination analysis 
from his survival analysis. However, since his survival 
analysis was limited to I and 2..point crossover. and to 
uniform ClOSSOVCI' with a Po of .5, his recombination 
analysis was similarly limited. This motivated us to 
create a new recombination analysis in a similar vein, 
since our survival analysis includes all of n-point cross­
over and a parameterized uniform crossover. 

In [Spears and DeJong, 19901. we developed a survival 
analysis for n-point crossover and a parameterized (Po) 
unifonn crossover. Details of this analysis, and our 
recombination analysis, are presented in the Appendix. 
Figure 7 illustrates the relationships of the crossover 
operators in terms of their recombination potential (we 
denote P as the probability of recombination). Note 
specifically that there is evidence to support the claim 
that unifonn crossover (Po = .5) has a higher 
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Figure 7: 3rd Order Hyperplane Recombination 

recombination potential than the other crossover opera­
tors. However. it is even more interesting to note that 
these relationships are qualitatively identical to those 
shown in Figure 4. In other words, if one operator is 
better than another for survival, it is worse for recombina­
tion (and vice versa). This observation appears to hold for 
all k, and suggests very suangly that the recombination 
analysis tells us nothing new about crossover. 

6 Exploration Power 
It has also been pointed out that disruption does. not 
necessarily mean useful exploration. Crossover disrup­
tion simply implies that a hyperplane sample has been 
modified by crossover in some way so as to no longer be 
a member of that hyperplane. without any indication as to 
the possible forms that change might take. The potential 
number of ways in which a crossover operator can effect 
a chan~ has been called its exploralCl"y power. It ~ 
been pointed out that uniform crossover has the addi­
tional property that it has more exploratory power than 
n-point crossover [Eschelman, 1989]. 

To see that this is true, consider the extteme case in 
which one parent is a string of all Os and the other all Is. 
Clearly unifonn crossover can produce ofiSpring any· 
where in the space while I and 2-point crossover are res­
uicted to rather small subsets. In general, unifonn cross­
over is much more likely to disuibute its disruptive trials 
in an unbiased manner over larger portions of the space. 

The d.i.fkulty comes in analyzing whether this explora­
tory power is a virtue. If we think of exploitation as ~ 
biased component of the adaptive search process: It 
makes sense to balance this with unbiased exploration. 
Clearly, this exploralCl"y power can help in ~ ear:ly gen­
erations, particularly with smaller populatiOD SIZeS, to 
make sure the whole space is weU sampled. At the same 
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IJmc, some of this exploratory power can be achic"'ed 
over several generations via repc~led applications of 1 
and 2-point crossover. 'lJnfonunately, our current 
amlysis tools do not allow us to make comparisons of 
properties which span generations and are strongly 
affected by selection. Hopefully we will develop such 
tools and resolve questions of this type in the n~ fUlUIC, 

7 Conclusions and Further Work 
The extensions to the analysis of n-point and uniform 
crossover presented in this paper open up an interesting 
and positive view of the usefulness of uniform crossover. 
There appear to be three potentially important virtues of 

, uniform crossover. First, the disruption of hyperplane 
sampling under uniform crossover does not depend on the 
defining length of the hyperplanes. This reduces the pos­
sibility of representation effects, since there is no defining 
length bias. Second, the disruption potential is easily 
controlled via a single parameter Po. This suggests the 
need for only one crossover form (uniform crossover), 
which is adapted to different situations by adjusting Po. 
Finally, when a disruption does occur, uniform crossover 
results in a minimally biased exploration of the space 
being searched. 

The first two virtues have been confinned both theoreti­
cally and experimentally. At the same time, it should be 
emphasized that the empirical studies presented are lim­
ited to a carefully controlled experimental setting. The 
authors are currently working on expanding these experi­
ments and on developing an exploration theory for 
recombination operators. Our goal is to understand these 
interactions weU enough so that GAs can be designed to 
be self-selecting with respect to such decisions as optimal 
population size and level of disruption. 
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Appendix 
Summary ortbe Survival Analysis 

For n-point crossover, P, is expressed in the order depen­
dent form (P~): 

P2.I(n.L,L 1 )= 

and 

Note that the survival of a kth order hyperplane under n­
point crossover is recursively defined in tenus of the sur­
vival of lower order hyperplanes. L refers to the length of 
the individuals. The L I ••• Lt-I refer to the defining 
lengths between the defining positions of the kth order 
hyperplane. The effect of the recursion and summation is 
to consider every possible placement of n crossover 
points within the kth order hyperplane. The correction 
factor C, computes the probability that the hyperplane 
will survive, based on that placement of crossover points. 
Suppose that crossover results in x of the k. defining posi­
tions being exchanged. Then the hyperplane will survive 
if: 1) the parents match on all x positions being 
exchanged, or 2) if they match on all k. - .r poSitions not 
being exchanged, or 3) they match on alllc defining posi­
tions. Hence. the general form of the correction is: 

C, = PIUf & + PIUft.-& - PIUft. 

where PIi is the probability of two parents sharing an 
allele at each locus, and the PIUf t reflects an overlap 
within the 3 possibilities (and hence must be subtracted). 
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As an example. consider Figure 8. The two parents are 
denoted by PI and n. In this figure, we represent the sur­
vival of a 4th order hyperplane. The hyperplane defining 
positions are depicted with circles. Since I of the defining 
positions will be exchanged (under the 2·point cro-ssovcr 
ShOV.l1). the probability of survival is: 

C, = P I + P 3 .. P,q 
4 

oq oq 

-------, r-------­
I 

PI: 0 0:0 0 
I 

I 

P2: ' , 
, I 
I.. .. __ .J 

Figure 8: 4th Order Hyperplane Survival 

For parameterized unifonn crossover, P, is also expressed 
in an order dependent form (Pk,I): 

Pk,I(H,,) = 

where Po is the probability of swapping two parents' 
alleles at each locus. A graphical representation of these 
equations has been shown previously in Fi~ 4. 

Recombination Analysis for N-Point Crossover 

In our definition of survival, it is possible for a hyper· 
plane to survive in either child. Recombination can be 
coosidered a restricted form of survival. in which two 
lower order hyperplanes survive to form a higher order 
hyperplane. The diflerence is that the two lower order 
hyperplanes (each of which exists in one parent) must 
survive in the same individual. in order for recombination 
to occur. 

In the remaining discussion we wiD consider the creation 
of a .tth order hyperplane from two hyperplanes of order 
m and II. We wiD restrict the situation such that the two 
lower order hyperplanes are non-overiapping. and 
k = m + II. Each lower order hyperplane is in a different 
parenL We denote the probability that the .tth order 
hyperplane wiD be recombined from the two hyperplanes 
asp...,. 

An analysis of recombination under /I·point crossover is 
simple if one considers the correction factor C, definOO 
earlier for the survival analysis. Recall that recombina· 
tion will occur if both lower order hyperplanes survive in 
the same individual. If an /I.point crossover results in .t 

of the k defining positions surviving in the same mdivi· 
dual (Le.• .I is a subset of the m + 11 defining positions). 
then recombination will occur if: 1) the parents match on 
all of the .I positions. or 2) if they match on all k .. .I posi· 
lions, or 3) they match on all k defining positions. Hc~e. 
the general fonn of the recombination corr~tion C, is: 

• P t-. P 1Cr = Poq +.q ".q 

l'iOLe the similarity in description with the survival 
correction factor C, (the only difference is in how .I is 
defined). In other words, given a kth order hyperplane. 
and two hyperplanes of order 11 and m, Pt., is simply Pt..z 
with the correction factor redefined as above. 

As an example, consider Figure 9. In this figure, we 
represent the recombination of 2 2nd order hyperplanes. 
One hyperplane is depicted with circles, and the other 
with rectangles. Since 3 of the defining positions will sur· 
vive onto the same individual (under the 2o point cross­
over shown), the probability ofsurvival is: 

C, = p,,3+p./_pcq4 
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Figure 9: 2nd Order Hyperplane Recombination 

RecombinatioD Analysis 'or Uniform Crossover 

The analysis of recombination under uniform crossover 
also involves the analysis of the original survival equa­
tion. Note that, due to the independence of the operator 
(each allele is swapped with probability Po). the survival 
equation caD be divided into t.hn:e partS. The first part 
expresses the probability that a hyperplane wiD survive in 
the original string: 

t . "'.Pt.s.on,(Ht) = "'[k]'(Poy (1- Po)"'.~ (P.., ~) 
;.0 ' 

The second part expresses the probability that a hyper. 
plane wiD survive in the other string: 

"'[k]' t··Pt.s.or/ou(Ht ) =1: . (Po>' (1- Po) ~ (P..,') 
i- 0 ' 

The final part expresses the probability that a hyperplane 
wiU exist in both strings: 
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PI:,$,Mu.(III:! (Po)' (I-pol'" (P.q'I:)=P./±[1] 
'* a 

Then: 

NOle. however. that lhis fonnulation allows us to express 
recombination under unifonn crossover. Again. assuming 
the recombination of two non-overlapping hyperplanes of 
order II and m into a hyperplane of order Ie: 

This equation reflects the decomposition of recombina­
tion into two independent survival events. The first tenn 

is the probability that Hili will survive on the original 
string. while H" switches (i.e .• both hyperplanes survive 
on one parent). The second term is the probability that 
both hyperplanes survive on the other parenL The third 
term reflects the joint probability that both hyperplanes 
survive on both strings, and must be subtracted. Finally, it 
is interesting to nole that the last tenn is equivalent to 
P .p "-p 1.. ",-",. 
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