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Abstract: This paper presents an approach to the texture 
recognition problem that deals with noisy learning and 
testing data. The method incorporates symbolic machine 
learning to acquire texture descriptions. Then, these 
descriptions are optimized in order to remove some 
nOisylimperfect components. We present methodology and 
experimental results showing the increase in system 
recognition effectiveness when optimization of texture 
descriptions is proceeded continuously. Such a matching of 
partial concept prototypes with test data gives a recognition 
characteristics obtained for different concept optimization 
degrees. Then. the dynamics of this characteristics is used 
to make recognition decision. 

1. Introduction 

Since our environment contains textured objects and the 
texture data contains noise and other irregularities. the 
acquisition and robust recognition of such noisy and 
imperfect concepts is crucial for many vision tasks; e.g .• 
inspection, object recognition, navigation, remote tracking 
and surveillance. The success of these tasks depends both 
on the effectiveness of image understanding processes and 
the quality of data a system has to deal with during both the 
learning phase and tasIc execution phase. Once the system 
is trained and tuned to a given type of data, it is difficult to 
assume without testing that the system will be working 
with the same data but affected by a different noise. The 
problem is very difficult when training data contains noise 
and when one considers the development of autonomous 
systems working without human supervision. 

The traditional approach to the texture recognition is focused 
on !.he following three phases; i.e. (i) designing and 
selection of a set of most representative features that 
preserve as muGh the discriminatory power of applied 
methodology as possible, (ii) acquiring descriptions of 
texture classes from teacher- or system-provided training 
data, and (iii) matching test data with derived class 
deSCriptions. The overall texture recognition effectiveness 
depends on the quality of all above presented phases. 

The traditional approach applies classifiers in such a way 
that they are adapted on the feature set to take optimal 
advantage of the extracted information. Such a method 
belongs to the class of feature extraction oriented methods, 
where an extraction of relevant features plays a very 
important role [41. The main problem with traditional 
approaches is that we do not have a universal feature 
extraction method that works effectively with noisy and 
imperfect data. Wben one considers that the training data 

can be noisy and imperfect, one has to agree that the dtriyed 
descriptions of texture classes consequently contain noisy 
components. Therefore, the recognition based on the direct 
matching of such noisy/imperfect description of texture 
classes with testing data follows all above mentioned 
disadvantages; Le.• the recognition results are affected by the 
noise and imperfectness of leaming and testing data. This is 
one of the reasons why most efforts to the solution of the 
texture recognition problem (and other recognition 
problems) focus on the improvement of the feature 
extraction phase to reduce the influence of noise and data 
imperfectness on the system performance. 

Contrary to the improvement of recognition effectiveness by 
designing more sophisticated feature extraction methods. we 
develop a methodology that improves the recognition 
effectiveness under the assumption that the training data 
provided during the leaming phase is noisyrunperfect Our 
methodology is based on: (1) the application of learning­
based acquisition of texture class description, (2) the 
manipulation of acquired descriptions in order to optimize 
them, and (3) the recognition of test data by a dynamic 
tracking of classification decisions computed for the matched 
optimized descriptions. 

In Section 2, we justify our approach to the problem of 
texture concept acquisition and recognition by, the example 
of introductory experiments provided for the symbolic 
machine learning methodology. Modified system 
architecture and applied learning methodology to new 
experiments is discussed in Section 3. Section 4 presents 
the principle of an iterative manipuJation of acquired texture 
concept descriptions in order to optimize them and apply to 
recognize test data. Selected experiment is presented in 
Section 5, while Section 6 summarizes our wort:. 

2. Motivation and Justification 

Considering the application of leaming-based concept 
acquisition in texture domain, we have already shown the 
methodology and benefits of such an approach [10]. In one 
of our experiments, the system was able to improve the 
average recognition rate (for six classes of texture acquired 
from very poor image data) from 70% of correct 
recognitions obtained for the lc-NN pattern recognition 
method [5J, to 80% for the symbolic machine learning 
approach, and to 91 % for the symbolic machine learning 
approach incorporating optimization of texture class 
descriptions and a single matching. 



description improves the recognition effectiveness and 
smooths recognition rates. 

In the experiment summarized above. !.he optimiz3.tion of 
texture class description is controlled by parametric 
coefficients. If we request the higher optimization degree. 
we increase these coefficients. The increase or decrease of 
the optimization coefficients is based on the noise 
evaluation. While the noise is propagated from !.he input 
image data into the teaching examples. it is built into the 
components of texture description. Based on it. we tried to 
set up an optimization degree (coefficients) to the level of 
approximated. noise in the input training data, for which the 
recognition effectiveness would be maximum. Such 
manipulation with the optimization coefficients has 
provided interesting observations presented in the next 
sections. 

3. Modified System Arcbitecture 

New experiments were applied on the modified system 
architecture presented in Figure 2. The modifications 
included extraction of texture attributes. redesigning of the 
recognition system. implementation of new deciSion 
making methodology. and the creation of a control loop of 
the iterative optimization of rules. 
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Fiore 2: System architecture. 

Presented to the system texture UTlages were used to acquire 
altributionai description of texture classes. Acquired rules 
were applied to !.he recognition phase. where testing texture 
samples have been shown to the system. The recognition 
process has been arranged into the iterative optimization 
loop. This loop consists of !.hree modules: rules 
optimization, inductive assertion. and a module of control 
and decision making. The loop is controlled by an 
optimization parameter and it activates inductive assertion. 
Inductive assertion processes are perfonned each time for 
optimized rule descriptions of texture classes. The system 
increases the optimization degree for each iteration loop. 
The decision making module completes ;:mtial classification 
probabilities computed for each optimization loop. In this 
way. a recognition curve is created versus the optimization 
degree. 

3.1 Extracting Texwre Attributes 

Contrary to the development of more powerful noise 
reducing methods. we have applied the simplest extraction 
of texture features that preserves the negative influence of 
noise. Texture attributes have been extracted from input 
image in the following way. A five by five feature 
extraction window. presented in Figure 3. was applied to 
extract eight local texture attributes as the absolute 
difference of a neighboring pixel and the central petel grey 
values; i.e .• 

at =Ix# - Xk.l1 for k=I •..•8 (1) 

where 1.# is a grey level value of the central pixel. and Xk 
is a grey level value of a neighboring pixel. The event as a 
vector of eight attribute values <al. a2.... ,ag> was 
derived for each randomly selected pixel from the learning or 
testing image data. 
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3.2 Learning Texture Descriptioo from Examples 

The attribulional description of IeXture classes was acquired 
by the learning from examples methodology. We applied 
the AQ1S inductive learning program. The AQ programs 
perform a heuristic search through a space of symbolic 
expressions. and its goal is to find the most preferred 
expression according to a specified criterion [7.8]. The 
input consists of separated sets of learning events labeled by 
a class name and characteristic for each class of texture. 
where each event contains a given number of attributes. 
The set of events characteristic for one class is a set of 
positive examples. The program finds an optimal cover 
over only positive examples. where examples belonging 10 
the other classes arc negative examples. The leaming 
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Fjpre 1; Open-loop architecture far texture concept 
acquisition and recognition. 

The traditional open-loop architecture. presented in Figure 1, 
was used with distinction of learning and recognition 
systems. Image data for the learning phase was composed 
of six preclassified texture images from the Brodatz album 
[1], i.e., pressed cork, lawn, woolen cloth, water, pigskin 
and fur. The images were characterized by irregular lighting 
and several of them had smoothly changed resolution caused 
by the slanted projection. Input grey-level images were 
processed by well-known techniques for texture feat~res 
extraction; i.e., Laws' masks [6] and co-occurrence mal.nces 
[3,13]. A vector of eight attributes was extracted for a 
single pixel. and for each method of feature extraction. The 
scaling module performed the conversion of numeric features 
into their symbolic intervals. The consistency of learning 
data was checked. The AQ inductive learning algori!.hm [9] 
was applied to learn texture attributional descriptions from 
symbolic events. Next. these rules were optimized 
incorporating two-tiered representation of imprecise concepts 
[9]. 

The texture recognition system was composed of feature 
extraction, scaling, and inductive assertion modules. The 
flI'St two modules were similar to the corresponding modules 
of the learning phase. The inductive assertion module 
performed classification oC test data samples using learned 
rule descriptions [11]. 
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Average 
recognition 70% 80% 91% 

Highest 
recognition 99% 93% 98% 

Lowest 
recognition 40% 72% 83% 

Averaged 
deviation 16.3 7.0 4.0 

Table I: Companson of machine leammg and 
pattern recognition approaches to texture 
recognition (& bar represent.s an average 
recognition). 

The best results (Table 1) were obtained for eight Laws' 
masks. The average recognition was equal to 91 % 3J!d the 
system recognized all test textures correctly. The highest 
recognition rate was equal to 98% and the l~w~m 
recognition rate was equal 10 83%. The averaged devtabon 
defined as d =lIN I I&. - xii was the lowest and equal to 
4.0. The experiments that applied texture classes 
description using inferred non-optimized rules show 
relatively worse results. The average, highest and lowest 
recognition rates were equal to 80%, 93% and 72%. 
respectively. The averaged deviation was greater and C9ual 
to 7.0. In comparison. the worse performance was received 
applying k-NN pattern recognition method (applied with 
different k values) that deals with complex distribution of 
feature space. The average, highest and lowest recognition 
rates for the k-NN (k=1O) pattern recognition method were 
equal to 70%. 99% and 40%, respectively. The averaged 
deviation was greateSt and equal to 16.3. 

The analysis of this inlrOductory experiment proved !.hat (i) 
the application of machine learning methodology increases 
the recognition effectiveness, and (ii) optimal rule 
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process is repeated for each class (3 set of positive CXlf11Ph.:~) 
to create rule descripuons of all texture classes. 

A description of a class is a disjunctive normal form \I, hi;;h 
is called a cover. A cover is a disjunction of comple.xes. A 
complex is a conjunction of selectors, and a s~kclOr IS a 
form: 

[L # RJ 	 (2) 

where. L is called the referee which is an attribute, R is 
called the referent which is a set of values in the domain of 
the attribute in L, # is one of the following relational 
symbols: =, <, >, >=, <=, c. In the AQ15 program, each 
generated complex is associated with a pair of weights; i.e. 
total (t-weight) and unique (u-weight). The following is the 
example of a complex: 

[x 1=1..3][x4=O][x6=1..7][x8=1] (total:6, unique:2) (3) 

wheze xi is an atuibute. The t-weight of a complell is 
the number of positive examples covered by the complex. 
and the u-weight is the number of the positive examples 
uniquely covered by the complex. 

3.3 	 Rule Optimization 

The requirement of "noise free domain" cannot be satisfied 
in the real world. especially in such areas like signal 
processing and understanding, autonomous robotics. and 
intelligent systems. The flexibility of a concept. the 
variability of concept occurrences (caused by external 
conditions like resolution. illumination and sensor 
positioning), and the noise in learning datasets prevent most 
learning systems from being applied to many real world 
leaming tasks. On the othez hand, challenging applications 
of machine learning methodologies in the engineering 
domain can give us the possibility of creating more 
intelligent machines. 

Our approach to dealing with the negative influences of 
noise, the impezfection of models and acquired descriptions 
applies the rule optimization in order to remove less 
significant components (complexes). In this way, we 
assume that the lightest complexes can represent noisy 
components of the rule description and at least they 
represent the less typical characteristics oC a texture class. 

To optimize a rule description, we use the truncation 
method [9.14]. In the AQIS program, each generated 
complex is associated with a pair of weights; i.e., the t­
weight (as the total number of positive examples covered by 
a complex) and the u-weight (as the number of positive 
examples uniquely covered by the complex). The 
complexes of a concept description are ordered according to 
the decreasing values of the t-weighL The t-weight may be 
interpreted as the measure of typicality or the 
representativeness of a complex as a concept description. 
The complexes with the highest t-weight may be viewed as 
describing the most typical concept examples, and thus 
serves as its prototypic description. 

Suppose we have a [-weight ordered di))'Jnction of 
complexes. and we remo,'e from il the "lightest" complex; 
i.e. the complex wi!h the lowest t-weight. Such a truncated 
description will not strictly match events that do not 
uniquely sausfy the removed complell. However, by 
appl) ing a flexible match (see next section). these events 
may still be closely related to the correct concept, and thus 
be correctly recognized. 

We can proceed further and remove the second "lightest" 
complex from !he cover. and observe the performance. Each 
such step produces a different trade-off between the 
complexity of the description on the one hand, and the risk 
factor along with the evaluation complexity on the other. 
At some step the best overall result may be achieved for a 
given application domain. 

3.4 Flexible Matching and Inductive Assertion 

There are two methods for classifying the concept 
membership of an instance; i.e. the strict match and the 
flexible match. In the strict match. one tests whether an 
instance strictly satisfies the condition part of a rule (i.e .• 
one of rule complexes). Such matching gives the response 
of two possible logical values; i.e., true or false. In the 
flexible match. one determines the degree of closeness 
between the instance and the condition part. Such closeness 
is represented by acoefficient that can vary in range from O. 
(does not match) to 1.0 (matches). In the suict matching, 
one recognizes a concept if it overlaps with the concept 
description. In the flexible matching, one determines the 
most closely relaled. concept description. 

The truncated description is the one that has some of its 
complexes with the lowest u-weight removed. Such 
truncated description will not strictly matcb events that 
uniquely satisfy the IrUncated complex. So, to evaluate the 
membership of an event to a texture class, one has to apply 
a flexible match. Such flexible matching can improve the 
classification decision when less significant components 
(i.e., possibly noisy components) are truncated from the 
class description. 

In the recognition phase, we incorporated a special tool, 
A TEST program [12], that had been developed to test the 
performance of a rule base. Rule pedonnance is measured 
by the degree of agreement between the system's and expert's 
classifications. A TEST views rules as the expressions 
when applying them on a vector of attribute values. The 
resull of this evaluation is a real number which is the degree 
of consonance between the conditional pan of the rule and 
the evenL 

4. 	Concepts Recognition via Iterative 
Optimization of Their Descriptions 

4.1. Reversing Classification Decision 

Existing approaches to the recognition problem assume that 
to recognize a concept one needs to match the observed data 
with a stored description of concepts. When the properties 
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and CPX4 (i.e .• truncation degree is equal 2) complexes classified to the class A and only 2 events to the 
class B. 

of the observed object match the stored description of a 
concept, then the name of the concept is returned. An 
approximate match is computed and used as a measure of 
confidence in recognizing particular concept among others. 
A major problem with such a method is that in order to 
recognize an object one always needs to measure the same 
properties of it. Yet, people can recognize the same concept 
using many different subsets of properties. Le., with 
tnulCated concept descriptions. 

In our method, we recognize textures by matching unknown 
texture samples with learned descriptions on the different 
truncation levels. The description on a given level is 
obtained by truncating a given number of less significant 
complexes from the lower part (i.e., less significant part) of 
the description. At each level, we match testing samples 
with given descriptions of texture classes and complete 
recognition rates. 

Let us demonsttate how such a ttuncation method (as the 
optimization of concept description) can reverse the 
classification decision. Figure 4 presents a graphical 
representation of two class descriptions, i.e. class A and 
class B, where the domain of· events consists of two 
attributes. Class A is described by four complexes. and 
class B by six complexes. The black dots represent sample 
vectors to be recognized. For the initial description of these 
two classes (Figure 4a), four events (i.e., 1'6, P7, P8 and 
P9) are assigned to class A and six events (Le., PI, n, P3. 
P4, PS and P9) are assigned to class B. By truncating 
CPX2 complex from class B. PS event is assigned to class 
A by closeness with CPX5 complex, and the recognition 
membership (the number of samples classified to class A 
versus the number of samples classified to class B) is 
changed from 4-6 to 5-5. Further ttuncation of complex 
CPXl of class B (see Figure 4b) changes the recognition 
membership to 8-2 and class A yields the recognition. 

Notice that complexes are also simultaneously truncated 
from class A for the consecutive truncation degrees; Le.• 
complexes CPX3 and CPX4. 

Theoretically. such reduction of rule description should lead 
to the extraction of main clusters of learning dala. Applied 
flexible matching, then should classify test data to the 
nearest cluster. However, there is the question of what is 
the best optimization degree? It is rather impossible to 
answer to this question because the best optimization degree 
depends on characteristics of the feature distribution in the 
attribute space. If this distribution is complicated, for 
example, there are several local clusters in the description of 
one class, the optimization cannot be executed for relatively 
higher optimization degree. 

4.2. Recognition Algorithm 

If we accept that the truncation of less significant 
components from the concept description eliminates some 
noise. then the dynamic increase of the ttuncation degree 
(but performed in the lowest range of optimization values) 
should slightly increase the recognition effectiveness in this 
range. Sucb effect was observed in our fll'St experiments 
[10]. We concluded then that a recognition curve created for 
each class description and for different values of the 
truncation degree could be a useful classification feature for 
the ftnal decision making process. 

Experiments with the learning and recognition of noisy and 
imperfect concepts provided for the texture domain have 
shown the behavior of such recognition curve. Generally. 
two patterns of the recognition curve are observed regarding 
the fll'St phase of the increase of me truncation degree: (I) 
curves of the recognition uptrend, and (2) curves of the 
recognition downtrend. Based on the behavior of these 
curves, we define the following recognition algorithm that 



incorporates iterative oplirniution of concept description 
and fle)lible matching with test data: 

Step 1: Label the first section of each recognition curve as 

uptrend or downtrend recognitioo pattern, 


Slep 2: Select these recognition curves that have the 

uptrend recognition pattern only. and 

Step 3: 	 Make the final decision indicating this class for 
which the uptrend pattern runs through the highest 
recognition rates. 

5. Recognition Results and Their Interpretation 

The experiment presented in this paper was carried out with 
four texture classes (Figure S) taken from the Brodau album 
[I]; i.e.• reptile skin (class A). cotton canvas (class B). fur 
(class C). and beach sand (cl.as1; D). 

c 
Fiwe 5; 	 Samples of texture classes used for 

experimenL 

A set of small sections of images was shown to the system 
duling the teaching phase. while the other set of image 
sections was shown during the recognition phase. Before 
the feature extraction was executed (for learning and 
recognition phases). all textunll images were preprocessed. 
The number of pixel grey levels was changed from 256 to a 
number of levels below SS. Training examples (i.e•• 200 
examples for each class) wae selected randamly fn::rn texture 
images. Then. the system acquiIed texture class descriptions 
inccxporaling learning from examples methadology. 

a) 	 b) 

truncation 1n.mCal1on gree 
Fi&Jll'C 6; Examples fel"' (a) the uptrend pattern and 

(b) the downtrend palfern of the 
recognition curve. 

In the recognition phase, the system selected 100 testing 
events for each texture class but from different s«:tions of 
texture image. The ~ognition process has been performed 
on such four sets of test data as explained in the above 
sections. Reconstr\.JCted recognition curves are presented for 
each testing dataset in Figure 6. All uptrend secuons of the 
~ognition curves are indicated by an arrow. The solid 
curve represents the class that should be ~gnized correcLly 
and it was recognized by our method. Other classes are 
characterized by doued lines. The truncation degree 
corresponds to the consecutive stepS of rules optimization •• 
- all rules were optimized in each step by the ll'1,mcation of a 
given number of less significant complexes. The 
recognition rate was computed as the number of test 
samples recognized to a given class divided by the total 
number of -test samples of a given dataset It should be 
pointed out that a single testing event can be recognized 10 
more that one class when it is covered by complexes of 
difrerent classes or the distance to such complexes is the 
same. 

Figure 7 shows that iC one applies our methodology. all 
four classes are recognized correctly. But if one applies 
traditional single match method. two texture classes (Le.• 
classes B and D) are not recognized. 

:am 
TEST FOR CLASS A TEST FOR ClASS B 


'lion recognition 

rare 

.7 

.7 

A '--""'--+4--+'-'" 
IrUnca1ion degree 

TEST FOR CLASS C TEST FOR CLASS D 

recopition 
 recognition 

rare 

.~ ~D 
~D 

4 .B \;~<~I, B 

..5L.--+_......_-6-_... 
2 ". '..4_ 	 'd2" 	.tnmcabOll _".ee tnmcauon egree 

Fieure 7: Recognition curves. 

Based on these results. let us discuss the major advantages 
of introduced methodology Col1owing the recognition results 
for classes A and C versus the recognition results for 
classes B and 0, Classes A and C are recognized correctly 
by the traditional single match approach without 



consideration of the dynamic behavior of the recognition 
curves. Both of these classes have a typical uptrend p:ltlcm 
of the recognition curve, while o!.her curves have !.he 
downtrend pattern. Gasses A and C are recognized correctly 
by introduced new me!.hod, as well. The decision m:lking 
process, however, performed for the test for c13ss C 
considers two uptrend recognition curves; i.e. classes A and 
C. The final decision points out the class C bc.:causc its 
recognition rates for !.he uptrend section of !.he recognition 
curve are higher than for !.he class A. 

Classes B and 0 are not recognized if one applies traditional 
single match method. However, they are successfully 
recognized applying presented in this paper me!.hodology 
based on the analysis of dynamic behavior of the recognition 
curve. 

7. Conclusions aDd Future Work 

We have presented a novel approach to the recognition of 
objects on the example of texture thal incorporates machlne 
learning methodology and deals with noise/imperfect data. 
This approach was tested on texture recognition problem, 
where features were extracted by a very simple method. 
Some of these results were presented in this paper to 
illustrate introduced methodology, to present its 
effectiveness in such cases where traditional approaches 
failed to recognize objects correctly. 

This work follows our fonner observations and results [10]. 
Developed object recognition methodology is being applied 
to create an intelligent vision system for outdoor navigation 
of autonomous robots and for remote surveillance systems 
[1l]. These systems have to acquire visual concepts both in 
the supervised and the unsupervised mode. While the 
supervised mode guarantee by a teacher a good representation 
of training data, the unsupervised acquisition must be based 
on the collection of training examples provided by the 
system itself. In such case, the influence of imperfectly 
conected data on the fmal decision has a crucial role in the 
later recognition phase. Our future work also includes the 
fonnalization of inrroduced methodology. the modification 
of truncation algorithm, and investigation of its 
effectiveness in various object recognition problems. 
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