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Abstract

Once upon a time, in July 1991, the monks of Corsendonk Priory were faced with a school held in their
priory, namely the 2°¢ European Summer School on Machine Learning. After listening more than one
week to a wide variety of learning algorithms, they felt rather confused: Which algorithm would be
optimal? And which one to avoid? As a consequence of this dilemma, they created a simple task on
which all learning algorithms ought to be be compared: the three MONK'’s problems.

This report summarizes the results.
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Results — a short overview

L [F1 ] #7 ] #3 ]
J. Bala, E. Bloedorn, K. De Jong, K. Kaulman, R.S. Michalski,
P. Pachowicz, H. Vafaie, J. Wnek and J. Zhang
AQ17-DCI 100% | 99.8%

AQIl7-HCI 100% | 93.1% 100%
AQI17-FCLS 92.6% 97.2%
AQIl4-NT 100%
AQ15-GA 100%
B. Cestnik, I. Kononenko and I. Bratko

Assistant Professional [ 100% | 81.25% | 100%

ﬁ. Dzeroski

| mFOIL [ 100% | 69.2% | 100%
W. Van de Velde
ID5R 81.7% | 61.8%

IDL 97.2% | 66.2%

ID5R-hat 90.3% | 65.7%

TDIDT 75.7% | 66.7%

J. Kreuziger, R. Hamann and W. Wenzel

ID3 98.6% | 67.9% 94.4%
ID3, no windowing 83.2% | 69.1% 95.6%
ID5R 79.7% | 69.2% 95.2%
AQR 95.9% | 79.7% 87.0%
CN2 100% | 69.0% 89.1%
CLASSWEB (see page 102)

S. Keller

PRISM [ 86.3% | 72.7% | 90.3%
S. Thrun

Backpropagation [91.7% | 100% | 87.7%
S. Fahlman

Cascade Correlation | 100% | 100% | 97.2%
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2 S.B. Thrun, T. Mitchell, and J. Cheng
1.1 The problem

The MONK'’s problems rely on the an artificial robot domain, in which robots are described by six
different attributes [Wnek, Sarma, Wahab and Michalski, 1991}

z;: headshape € round, square, octagon
z: bodyshape € round, square, octagon
z3: issmiling € yes, no

z4: holding € sword, balloon, flag
z5: jacket_color € red, yellow, green, blue
zs: has_tie € yes, no

The learning task is a binary classification task. Each problem is given by a logical description of a class.
Robots belong either to this class or not, but instead of providing a complete class description to the
learning problem, only a subset of all 432 possible robots with its classification is given. The learning
task is then to generalize over these examples and, if the particular learning technique at hand allows
this, to derive a simple class description.

e Problem M;:
(head shape = body.shape) or (jacket_color = red)

From 432 possible examples, 124 were randomly selected for the training set. There were no
misclassifications.

¢ Problem M,:
exactly two of the six attributes have their first value.

(E.g.: bodyshape = head.shape = round implies that robot is not smiling, holding no sword,
jacket _color is not red and has no tie, since then exactly two (body shape and head shape) attributes
have their first value) From 432 possible examples, 189 were randomly selected. Again, there was
no noise.

¢ Problem Maj:
(jacket_color is green and holding a sword) or (jacket_color is not blue and body._shape
is not octagon)

From 432 examples, 122 were selected randomly, and among them there were 5% misclassifications,
i.e. noise in the training set.

Problem 1 is in standard disjunctive normal form and is supposed to be easy learnable by all symbolic
learning algorithms as AQ and Decision Trees. Conversely, problem 2 is similar to parity problems. It
combines different attributes in a way which makes it compiicated to describe in DNF or CNF using
the given attributes only. Problem 3 is again in DNF and serves to evaluate the algorithms under the
presence of noise.
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1.2 Visualization

All contibutions in this report have two things in common: firstly, they refer to the same problems -~ the
MONK’s problems -, and secondly, most results are visualized by a two-dimensional diagram. Due to the
difficulties in representing a six-dimensional space on a conventional sheet of paper, the plot is unfolded.
as might be found in (Wnek, Sarma, Wahab and Michalski, 1991]. The resulting diagrams of training
and testing sets may be found below.

Acknowledgements

The authors thank Walter Van de Welde for the excellent organization of 2°¢ European School on Machine
Learning, at which this comparison was created. We would also like to thank all participants in this

comparison, including Bruno Roger.

References

J. Wnek, J. Sarma, A. Wahab, and R. Michalski: Comparison learning paradigms via diagrammatic
Visualization: A case study in single concept learning using symbolic, neural net and genetic algorithm
methods, Technical Report, George Mason University, Computer Science Department, 1990



4 S.B. Thrun, T. Mitchell, and J. Cheng

Training set M, (124 examples, no noise):

(head shape = body.shape) or (jacket_color = red)
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In all training set diagrams, positive examples are marked by “#” and negative ones by “-”. Misclas-
sifications, as in the presence of noise, are indicated by boxes. Correspondingly, in all test sets positive
examples are marked by “#”, while empty fields indicate negative examples.

In turn, we will plot the results of all learning algorithms in the same way: # indicates that the learning
algorithm classifies the entity as a positive member, and a blank as a non-member. However, an additional
square will indicate misclassifications, i.e. if the classification obtained by the algorithm is wrong.



Test set M;:
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(head_shape = body_shape) or (jacket_color = red)
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Training set M (189 examples, no noise):

“exactly two of the six attributes have their first value”
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Test set Ma:
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“exactly two of the six attributes have their first value”
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Training set M3 (122 examples, 6 misclassifications due to noise):

(Jacket_color is green and holding a sword)
or
(jacket_color is not blue and body_shape is not octagon)
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Test set Mj:

(jacket_color is green and holding a sword)
or
(jacket_color is not blue and body_shape is not octagon)
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Applying Various AQ Programs to
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Brief Description of the Methods

J. Bala

E. Bloedorn
K. De Jong
K. Kaufman
R.S. Michalski
H. Vafaie

J. Wnek

Center for Artificial Intelligence, George Mason University

11



12 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, H. Vafaie and J. Wnek
2.1 Introduction

This paper describes briefly results from applying various AQ learning programs to the MONKS’ prob-
lems. The MONKS’ problems are concerned with learning concept descriptions from examples. All
examples come from the same event space, which spans 6 multiple-valued attributes (it has the total of
432 possible examples). The sizes of the value sets of the attributes, x1, x2, ..., x6, are 3, 3, 2. 3, 4, and
2, respectively. The problems differ in terms of the type of the target concept to be learned, and in the
amount of noise in the data. Here is a brief summary of the data.

Below is a listing of the rules obtained by the various AQ programs (AQ17-DCI, AQ17-HCI, AQ15-GA,
AQI15-FCLS or AQl4-NR), and the results of testing them on the testing examples. The :sting of
the rules was done using the ATEST program that computes a confusion matrix (Reinke, 1984). The
program computes the so-called consonance degree between an example and the rules for each class. The
output from this program includes numerical evaluations of the the accuracy of the rules based on the
percentage of the testing examples correctly classified (by choosing the rule that best fits the example)
and the percentage precisely matched by the correct decision rule.

The training and testing sets of examples were provided by the creators of the problems.

¢ Problem 1.
There were 124 training examples, which represented 30% of the total event space (62 positive and
62 negative). The testing examples were all possible examples (216 positive and 216 negative).
¢ Problem 2.
There were 189 training examples, which represented 40% of the total event space (105 positive
and 64 negative). The testing examples were all possible examples (190 positive and 142 negative).
e Problem 3.

There were 122 training examples, which represented 30% of the total event space (62 positive and
60 negative). The testing examples were all possible examples (204 positive and 228 negative).

2.2 Results for the 1st problem

2.2.1 Rules obtained by AQ17-DCI (one rule is for positive examples, Class
0, and one for negative examples, Class 1):

Class O
$  cpx
1 [jacket_color > 1] (head_shape <> body_shape] (total:62, unique:62)

Class 1
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t cpx
1 [head_shape=body_shape] (total:41, unique:33)
2 [jacket_color=1] (total:29, unique:21)

where "cpx” means a rule (a "complex” in VL1), "total” means the total number of examples of the
given class covered by the rule, and "unique” means the number of examples covered by that rule only,

and not by any other rules.

The results of applying the rules to the testing examples were:

RESULTS
% FLEX MATCH 100.00
% 100% MATCH 100.00
OVERALL % CORRECT: 100.00

where % FLEX MATCH means the percentage of the correctly classified examples within the total set
of testing examples, using a flexible matching function (see Reinke, 1984), and % 100% MATCH means
that the percentage of correctly classified examples that matched the rules exactly.

Number of testing events satisfying individual rules in the correct class description:

RULES
R1 R2
CLASS 0 218
CLASS 1 144 108

2.2.2 Rules obtained by AQ17-HCI
(one rule is for positive examples, Class 0, and one for negative examples, Class 1)

Class 0
# cpx
1 [Negl7=false] (total:62, unique:62)

Class 1
*  cpx
1 [Posi6=false] (total:62, unique:62)

where Negl7 and Posl6 are attributes constructed from the original ones, or intermediate ones, as defined
below (these rules, as one can check, are logicaily equivalent to the AQ17-DCI generated rules)
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c01 <:: [head_shape=1] g [body_shape=2,3] & [jacket_color>1]
€05 <:: [head_shape=2] & [body_shape=1,3] & [jacket_color>1]
€08 <:: [head_shape=3] & [body_shape=1,2] & [jacket_color>1]
€10 <:: [head_shape=1] & [body_shape=1]

c12 <:: [jacket_color=1]

€13 <:: [head_shape=2] & [body_shape=2]

¢15 <:: [head_shape=3] & [body_shape=3]

Pos16 <:: [c10=false] & [ci2=false] & [c13=false] & [ciSstalse]

Negl17 <:: [cOi=false] & [cOS=false] & [c08=talse]

TEST RESULTS - SUMMARY
OVERALL % CORRECT: 100.00
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH: 100.00

Number of testing events satisfying individual rules in the correct class description:

RULES

R1

CLASS o 218
CLASS 1 216

Other programs either were either not used on this problem, or generated similar results.

2.3 Results for the 2nd problem

2.3.1 Rules obtained by AQ17-FCLS

(one rule is for positive examples, Class 0, and one for negative examples, Class 1) are listed below. The
threshold parameter indicates the minimum percentage of the individual conditions in the rule that must
be satisfied. The discovered rules fully encompass Class 0, but they failed to get a complete grasp of the
concept of Class 1:



o,
O
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Class O
* cpx
1 (Xt =1] & (X2 =1] & [X3 = 1]t (x4a=1]2[x5=1]¢

(x6 = 1]
with THRESHOLD = 50 %

This rule says that three or more variables must be equal to 1.) (Total positive examples covered: 64)

2 [(x1=2,31¢[x2=2,3]2(x3= 27 s [x4=2, 3] 2
[X5 =2, 3, 4] & (X6 = 2]
with THRESHOLD = 83 % (5/6)

This rule says that five or six out of six variables must be greater than 1, or equivalently, that at most
one variable can be equal to 1. Thus the disjunction of these two rules above means that the number of
variables which have value 1 cannot be equal to 2. (Total positive examples covered: 41).

These rules classified 100% all the examples of Class 0.

Class 1.

Since the current program does not have the ability to express the negation of the above two rules, it
generated a disjuction of many small rules to cover the other class, and the overall performance using
the flexible match was not 100% (in some cases when an example matched equally well the rules for both
classes, an incorrect class was chosen.)

s cpx

1 [x3=1] & (X4 =2, 3] & [X5=2] & [X6=2]
vith THRESHOLD = 100 %
(total positive examples covered: 8)

2 [X1=2,3]e(x2=2,3] & (x3=1]¢& [X4=2, 3] &
[xs =2, 3, 4] & [x6=1]
vith THRESHOLD = 100 %
(total positive examples covered: 9)

3 [X1=2,3&(Xx2=2,2] & [x3=2] ¢ [x4=2, 3] &
{xs = 2] & (X6 = 2]
with THRESHOLD = 100 %
(total positive examples covered: 7)

4 (x1=3]e(x2=1]18[X3=1]¢ & [Xx4=11¢%
{xs = 3] & (X6 = 2]
wvith THRESHOLD = 83 %
(total positive examples covered: 5)

S [X1 = 1] & (X3 =1] & (X4 =2, 3] 2 [X5 =3, 4] ¢
[x6 = 2]
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vith THRESHOLD = 100 %
(total positive examples covered: 5)

(Xt=2,3] e (X2=1] e (X3=2] 2 (X4=1, 2] &
(xs = 2]
vith THRESHOLD = 100 %
(total positive examples covered: 4)

(X1 =1] & [X2=2, 3] & [Xx3=2] 2 (x4 =2, 3]
[(Xs =2, 3, 4] 2 [x6 = 1]
with THRESHOLD = 100 %
(total positive examples covered: 5)

(Xt =2, 3] & [x3=2] ¢ [x5 = 11 & [X6 = 2]
vith THRESHOLD = 100 %
(total positive examples covered: 3)

[Xt=2,3] 8 [X2=2,3] e [(x3=2] 2 [X4= 1] &
(x5 =2,3, 4] & [x6 = 1]
vith THRESHOLD = 100 %
(total positive examples covered: 4)

(X1 =1,3] 8 X2=1] 2 {X4=1, 2] & [X5 = 4] 2
(x6 = 2]

vith THRESHOLD = 100 %

(total positive examples covered: 3)

(X1 = 2] £ (X2=2] & [X3=1) & [X4 = 1] &
(x5 =2, 3, 4] 2 [X6 = 2]

vith THRESHOLD = 100 %

(total positive examples covered: 5)

X1 =1,2l2[x2«3]2(X4=2, 3] 2 [xs = 1] &
(x6 = 2]

vith THRESHOLD = 100 %

(total positive examples covered: 2)

(X1 = 1) & [X2=1] £ [X3=2] & [X4 = 3] &
[xs = 2] & [X6 = 2)

vith THRESHOLD = 100 %

(total positive examples covered: 1)

(Xt =1] 2 (X2=3) & [X3=2] & [X4=1]2
[Xs =1, 3] & [X6 = 2]
vith THRESHOLD = 100 %
(total positive examples covered: 1)

(Xt=1) 2 [X2=2] 2 [Xx3=2] 2 [X4=2, 3] 2
[Xx5 = 1] & [X6 = 2]

vith THRESHOLD = 100 %

(total positive examples covered: 1)

‘nek
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16 [X1'=2] &£ (X2 = 1] ¢ (X3 = 1] &£ X4 =3]¢%k
[(xs = 2, 3]
vith THRESHOLD = 100 %
(total positive examples covered: 2)

17 [Xt=3]e([Xx2=2] 2 (Xx3=1]2[X4=2]2
[xs=1, 2]
with THRESHOLD = 100 %
(total positive examples covered: 2)

18 [X1=2,3]eX2=1]2(x3=2]2(X4=2,3]2
(x5 =2 ,3, 4] & (X6 = 1]
vith THRESHOLD = 100 %
(total positive examples covered: 3)

TEST RESULTS - SUMMARY

Result summary of Class
Correctly classified events: 268.00
Total number of events in this class: 290

Result summary of Class 1
Correctly classified events: 132.00
Total number of events in this class: 142

Overall summary of results
The percentage of correctly classified events: 92.6%
The total number of conditions in the descriptions: 110
The total number of rules in the descriptions: 2 for Class 0

and 18 for Class 1.

2.3.2 Rules obtained by AQ17-DCI

(one rule for positive examples, Class 0 and one for negative examples, Class 1):

Class 0
] cpx
1 (#varEQ(1)=3..5]
2 [#varEQ(1)=0,1]

Class 1
] cpx
1 [(#varEQ(1)=2]

#VarEQ(x) is a constructed attribute which counts the number of attributes which have the value x.

The results of applying the rules to the testeing examples were:
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RESULTS
% FLEX MATCH 99.77
% 100% MATCH 99.77

OVERALL % CORRECT: 99.77

The less than 100% correct classification on the testing data was due to a testing event which contained

all (6) 1's. This example was not in the training data. Our program currently generalizes to the |
of the attribute values seen, not the values possible. This however, can be easily changed.

2.3.3 Rules obtained by AQ17-HCI

(one rule is for positive examples, Class 0, and one for negative examples, Class 1):

Class 0

s cpx

1 [Pos73=true] (total:90, unique:49)

2 [ci14=false] & [c26=false] & [cS3=false] & [c67=false] &

[c72=false] & [Neg74=false] (total:38, unique:§6)

3 ([x4=2,3] & [c6=false] & (c20=false]l & [Neg74=false]
(total:22, unique:5)

4 [x1=2] & [x6#2] & [c44=talse] & [cSO=false] & [Neg74=false]
(total:6, unique:2)

Class 1
#  cpx
1 [Neg74=true] (total:43, unique:30)
2 [x5=2,3,4] & [x6=1] & [c60=true] & [Pos73=false] (total:17, unique:4)
3 [x1=2,3]) ¢ [x2=2) & [c28=false] & [Pos73=false] (total:16, unique:7)
4 [x2=3] & [c48=true] & [c66strue] (total:4, unique:2)
5 [x5=3] & [c43=true] & [c52=false] & [cS3=false] & [cSS=false] &
[c69=true] & [Pos73=talse] (total:4, unique:2)
6  [x2=3] & [c9=false] & [c10=truel & [c23=true] & [c32=true]
(total:3, unique:1)

Attributes "ci,” "Pos73,” and "Neg74” were constructed during the learning process.

€2 <:: [x5=1,4)]
c4 <:: [x2=2,3] & [x3=2]

¢S <:: [x1=2,3) & ([x3=2]

imits
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c6 <:: [x1=2,3] & [x2=2,3]

c7 <:: [x4=1,2] & [x5=1,3,4]
c9 <:: [x1=1,3] & [x5=2,3,4)
c10 <:: [x4=1,2] & [x5=2,3,4]
c14 <:: [x5=2,3,4] & [x6=2]
c15 <:: [x3=1] & [x5=2,3,4]
c16 <:: [x4=2,3] & [x6=2]

€17 <:: [x4=2,3] & ([x5=2,3,4]
c18 <:: [x3=2] & [x5=2,3,4]
c20 <:: [x5%2,3,4] & [x6=1]
¢21 <:: [x2=2,3] & [x4=2,3]
€22 <:: [x3=2] & [x4=1,2]

€23 <:: [x4=1,3) & [x5=2,3,4]
€26 <:: [x1=2,3] & [x5=2,3,4]
c28 <:: [x2=1,3] & [x5=2,3,4]
€32 <:: [x1=2,3] & [x5=1,2,3]
€33 <:: [x1=2,3] & [x6=2)

c37 <:: [x3=2] & [x4=2,3]

c38 <:: [c21=false] & [c37=false]
c39 <:: [c6mtrue] & [c17=true]
c40 <:: [c5=true] & [c17=true]
c41 <:: [c15=false] & [c28=false]
c42 <:: [x4=2,3] & [c39=false]
c43 <:: [x2=2,3] & [c39=false]
c44 <:: [x4=2,3]) & (x5=2,3,4]

c46 <:: [c1S=false] & [c39sfalse]
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c47 <:: [c7=false] & [c39=false]

c48 <:: [x5=1,2,4] & [c7=false]

c49 <:: [c17=false] & [c33=true]

c50 <:: [x2=2,3] & [c22=false]

c52 <:: [x5=2,3,4] & [c14=false]

€53 <:: [x5%2,3,4] & [c21=true]

c55 <:: [x4=1,2] & [cl4=false]

c56 <:: [x4=1,3] & [c14=falsel

c59 <:: [x5=2,4]

c60 <:: [c38=false] & [c49=false]

61 <:: [x2%2,3] & [x5=2,3,4]

c65 <:: [c20=talse] & [c39=false]

c66 <:: [xS=1,2,3] & [cd6=true]

c67 <:: [c38=false] & [c49=true]

c68 <:: [c40=false] &t [cS5=false]

c69 <:: [ci6stalse] & [cSS=false]

€70 <:: [x5=2,3,4] & [c18=talse]

c72 <:: [x5=1,2,3] & [c37=true]

Pos73 <:: [c4=talse] & [c16=false] & [c33=false] & [c39=false] & [c40=false]
v [c15=false] & [c43=false] & [c47=false] & [c6B8=false)
v [x2%1,2] & [c21=false] & [c41=true] & [c44=false] & [c6S=truel

& [c67=false]

v [c33=truel & [c60=true]

Neg74 <:: [c4=false] & [c42=true] & (c56=false] & [c65=true] & [c68=true]

v [c2=false] & [c4=false] & [ci16=false]l & ([c17=true] & [c26=truel
v [x3=2] & [x4=2,3] & [c14=falsel & [c41=true] & [c43=true]

& (c59=false] & [c69=false] & [c70=false]
v [x6#2] & [cS=true] & [c44=false] & [c61=false]
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TEST RESULTS - SUMMARY

OVERALL % CORRECT: 100.00
OVERALL % CORRECT FLEX MATCH: 93.06

OVERALL % CORRECT 100% MATCH:  86.57

Number of testing events satisfying individual complexes in the correct class description:

RULES

Rt R2 R3 R4 RS5 RE6
CLASS 0 232 84 54 12
CLASS 1 77 44 32 10 ) 4

2.4 Results for the 3rd problem

2.4.1 Rules obtained by AQ14-NT

AQ14-NT is a program for learning from noisy example sets (one rule is for positive examples, Class 0.
and one for negative examples, Class 1):

After only two loops of concept-driven filtration of training dataset (with truncation parameter equal to
10%) and repeated learning, we received the following set of rules:

Class O:

{jacket_color=4] v

[body_shape=3] & [holding=2..3] v
[body_shape=3] & [jacket_color=i..2]

Class 1:

[body_shapes1..2] & [jacket_color=1..3] v
{holding=1] & [jacket_color=3]

These rules recognized all test data correctly (i.e., on the 100% level).

Since there was supposed to be noise in the data, we are somewhat surprised by such a high degree of
recognition. (Details of the testing runs are available.)
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2.4.2 Rules obtained by AQ17-FCLS

(one rule is for positive examples, Class 0, and one for negative examples, Class 1). The threshold
parameter indicates the minimum percentage of selectors in the rule that must fire. This set of rules
1s intentionally incomplete and inconsistent with the training set; it was generated with a 10% error
tolerance:

Class 0
4 cpx
1 [X1 > 1] & [X2 = 3] & [X5 = 4]
vith THRESHOLD = 67 ¥

(Total positive examples covered: 42)
2 [X1 = 1] & [X2 = 3] & (X5 = 4]
wvith THRESHOLD = 67 %
(Total positive examples covered: 26)
Class 1
* cpx
1 [X2-1.2]&[X5-1,2,3]
vith THRESHOLD = 100 ¥%

(Total positive examples covered: 57)

TEST RESULTS - SUMMARY

Result summary of Class 0
correctly classified events: 204.00
total number of events in this class: 204

Result summary of Class 1
correctly classified events: 216.00
total number of events in this class: 228

Result Summary
The percentage of correctly classified events: 97.2%
The total number of conditions in the descriptions: 8
The total number of rules in the descriptions: 2 for Class 0
and 1 for Class 1

2.4.3 Rules obtained by AQ15-GA

Below are the rules obtained by AQ15-GA (one rule is for positive examples, Class 0, and one for
negative examples, Class 1). A genetic algorithm determined that 3 attributes (body_shape, holding, and
jacket_color) were the most meaningful. Using these, the rules discovered were as follows:
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where Posl and Neg2 are attributes constructed from the original ones (Wnek & Michalski, 1991)
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0

{jacket_color=4]

[body_shape=3] & [jacket_color=i..2]

[body_shape=2..3] & [holding=2..3] & [jacket_color=3]
{body_shape=1] & [holding=1] & [jacket_color=3]
[body_shape=2] & [holding=2] & [jacket_color=2] : 1.00: 0.00

1
[body_shape=1..2] & [jacket_color=i..3]
[body_shape=3] & [holding=1] & [jacket_color=3..4] : 1.00: 0.00

TEST RESULTS - SUMMARY
OVERALL % CORRECT: 100.00
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH:  100.00

Results obtained by AQ17-HCI:

0

cpx

[Posi=true] (total:49, unique:49)

[x2=2,3] & [x4=2,3] & (x5#3] (total:1l, unique:11)
[x2=1] & [x4=1] & [x5=3] (total:1, unique:1)
[x2=2] & [x4=2] & [x5=2] (total:1, unique:1)

1

cpx

[Neg2=true] (total:S7, unique:57)

[x2=3] & [x4=1] & [x5=3,4] (total:3, unique:3)

Pos1 <:: [x5=4]

v [x2=3] & [x5=1,2,4]

Neg2 <:: [x2=1,2] & (x5=1,2,3]

TEST RESULTS - SUMMARY

OVERALL % CORRECT: 100.00
OVERALL % CORRECT FLEX MATCH: 100.00
OVERALL % CORRECT 100% MATCH:  86.11

23
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Number of testing events satisfying individual complexes in the correct class description:

RULES

Ri1 R2 R3 R4
CLASS 0 180 24 o 0
CLASS 1 216 12
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2.5 A brief description of the programs and algorithms

2.5.1 AQ17-DCI (Data-driven constructive induction)

This program is based on the classical AQ algorithm, but it includes procedures for constructive induction
that generates all kinds of derived attributes. The mechanism of constructive induction is done in the
following way (Bloedorn and Michalski, 1991):

1. Identify all linear type attributes.
2. Repeat steps 3 through 5 for each possible attribute combination.

3. Repeat steps 4 and 5 for each constructive induction operator The operators include: addition,
multiplication, logical comparison of attribute values, etc.

4. Calculate the values of this attribute pair for the given constructive induction operator.

5. Evaluate the discriminatory power of this newly constructed attribute using the Quality Function
(QF) described below. If the attribute is above some threshold, then store it, else discard it.

6. Exit.

After selecting the possible candidates, the algorithm generates possible combinations of attributes and
the constructive induction operators applicable to the given attributes. After each new attribute’s values
are calculated, an evaluation function, QF, is used to judge its quality before adding it to the attribute
set.

2.5.2 AQ17-FCLS (Flexible concept learning)

This method (Zhang and Michalski, 1991) combines both symbolic and numeric representations in gener-
ating a concept description. The program is oriented toward learning flexible concepts, i.e, imprecise and
context dependent. To describe such concepts it creates two-tiered descriptions, which consist of a Basic
Concept Representation (BCR) and an Inferential Concept Interpretation (ICI) to handle exceptions. In
the program, the BCR is in the form of rules, and the ICI is in the form of a weighted evaluation function
which sums up the contributions of individual conditions in a rule, and compares it with a THRESHOLD.
The learning program learns both the rules and an appropriate value for the THRESHOLD.

Each rule of a concept description is learned in two steps, the first step is similar to the STAR algorithm in
AQ that generates a general rule, and the second step optimizes the rule by specializing it and adjusting
the accuracy threshold..



-26 J. Bala, E. Bloedorn, K. De Jong, K. Kaufman, R.S. Michalski, H. Vafaie and J. Wnek

2.5.3 AQ17- HCI (Hypothesis-driven constructive induction)

The AQ17-HCI (Hypothesis-Driven Constructive Induction) represents a module (a method) employed
in the AQI7 attribute- based learning system. The module implements a new iterative constructive
induction capability in which new attributes are generated based on the analysis of the hypotheses
produced in the previous iteration (Wnek and Michalski, 1991). Input to the HCI module consists of the
example set and a set of rules (in this case generated by the AQ15 program) The rules are then evaluated
according to a rule quality criterion, and the rules that score the best for each decision class are combined
into new attributes. These attributes are incorporated into the set of training examples, and the learning
process is repeated. The process continues until a stopping criterion is satisfied. The method is a special
implementation of the idea of the ”survival of the fittest,” and therefore can be viewed as a combination
of symbolic learning with a form of genetic algorithm-based learning.

A brief description of the HCI algorithm foliows:

1. Induce rules for each decision class using a subset of the complete set of available training examples.
2. Analyze the rules in order to identify any irrelevant variables.

3. For each decision class, generate a new attribute that corresponds to a subset of the highest quality
rules.

4. Modify the training examples by adding the newly constructed attributes and removing the ones
found to be irrelevant.

5. Induce rules from this modified training set.

6. Test these rules against the remainder of the training set. If the performance is not satisfactory,
return to step 1. Otherwise, use this attribute set to induce rules from the entire training set.

In these examples, the induction in steps 1, 5 and 6 was performed the learning algorithm, implemented
in the AQ15 program.

2.5.4 AQ14 - NT (noise-tolerant learning from engineering data)

The learning method was specially designed to learn from noisy engineering data of complex and unknown
distribution of attributes (Pachowicz and Bala, 1991a and 1991b). The acquisition of concept descriptions
is performed in the following two phases:

e Phase 1:
Concept-driven closed-loop filtration of training data, where a single loop of gradual noise removal

from the training dataset is composed of the following three stages:
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1. Concept acquisition from available training dataset (incorporating the AQ14 learning pro-
gram),

2. Truncation of concept descriptions through the removal of the less significant concept compo-
nents covering a given small proportion of the training data, and

3. Filtration of the training dataset - a new training dataset is created by passing the training
examples that are covered by truncated concept descriptions.

¢ Phase 2:
Acquisition of concept descriptions from filtered training data incorporating the AQ14 learning
program.

2.5.5 AQ15-GA (AQ15 with attribute selection by a genetic algorithm)

In this approach we use genetic algorithms in conjunction with AQ15. Genetic algorithms are used to
explore the space of all subsets of a given attribute set. Each of the selected attribute subsets is evaluated
(its fitness measured) by invoking AQ15 and measuring the recognition rate of the rules produced.

The evaluation procedure as shown is divided into three main steps. After an attribute subset is se-
lected, the initial training data, consisting of the entire set of attribute vectors and class assignments
corresponding to examples from each of the given classes, is reduced. This is done by removing the values
for attributes that were eliminated from the original attribute vector. The second step is to apply a
classification process (AQ15) to the new reduced training data. The decision rules that AQ15 generates
for each of the given classes in the training data are then used for classification. The last step is to use
the rules produced by the AQ algorithm in order to evaluate the classification and hence, recognition
with respect to the test data.

In order to use genetic algorithms as the search procedure, it is necessary to define a fitness function
which properly assesses the decision rules generated by the AQ algorithm. The fitness function takes as
an input a set of attribute or attribute definitions, a set of decision rules created by the AQ algorithm, and
a collection of testing examples defining the attribute values for each example. The fitness function then
views the AQ- generated rules as a form of class description that, when applied to a vector of attribute
or attribute values, will evaluate to a number. It is evaluated for every attribute subset by applying
the following steps: For every testing example a match score is evaluated for all the classification rules
generated by the AQ algorithm, in order to find the rule(s) with the highest or best match. At the end of
this process, if there is more than one rule having the highest match score, one rule will be selected based
on the chosen conflict resolution process. This rule then represents the classification for the given testing
example. If this is the appropriate classification, then the testing example has been recognized correctly.
After all the testing examples have been classified, the overall fitness function will be evaluated by adding
the weighted sum of the match score of all of the correct recognitions and subtracting the weighted sum
of the match score of all of the incorrect recognitions.
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2.6 The AQ Algorithm

All the above programs use AQ as the basic induction algorithm. Here is a brief description of the AQ
algorithm:

1. Select a seed example from the set of training examples for a given decision class.

2. Using the extend against operator, generate a set of alternative most general rules (a star) that
cover the seed examp:=, but do not cover any negative examples of the class.

3. Select the "best” rule from the star, and remove the examples covered by this rule from from the
set of positive examples yet to be covered.

4. If this set is not empty, select a new seed from it and go to step 2. Otherwise, if another decision
class still requires rules to be learned, return to step 1.
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MONK’s Problems

B. Cestnik I. Kononenko 1. Bratko

Jozef Stefan Institute, Jamova 39, 61000 Ljubljana, Slovenia, Yugoslavia, Email: cestnik@ijs.ac.mail.yu

31



32 B. Cestnik, I. Kononenko, and I. Bratko

3.1 Results

I have tested Assistant Professional inductive learning system (Cestnik, Kononenko and Bratko, 1987),
which is a successor of ID3, with the latest modifications described in (Cestnik and Bratko, 1991). The
system generates binary decision tree. The tests were conducted on IBM PS II, model 60.

I have named the domains as follows: FIRST, SECOND and THIRD. Here are the results of the mea-
surements of classification accuracy.

| classification _accuracy on testing sample

FIRST 100.00 % (432 of 432)
SECOND | 81.25% (351 of 432)
THIRD 100.00 % (432 of 432)

On the first and the third domain Assistant Professional was able to find a perfect domain model.
However, in the second domain the constructed tree is very large and its performance is relatively poor.
In an extensive study of the domain (testing sample) we were able to determine (with a help of our
"neural nets”) the correct model which is the following:

A robot is 0.K.
if exactly two attributes (out of 6) are equal to 1.

This concept is extremely complicated for a system that learns decision trees in an attribute-value logic
formalism.
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Constructed decision trees in the three domains:

Decision Tree From Domain: FIRST
Pruned with m= 0.00

Number of Nodes : 15
Number of Leaves: 8
Number of Nulls : 0

| AS:Jacket_color [124]
| [red]
| | Vi-yes [29]
{yellow, green, blue]
| Al:Head_shape [95]
| [round, square] .
| | A2:Body_shape [71]

| [square]
| | Al:Head_shape [27]
| [round]
| | V2-no [15]
| [square]
| | Vi-yes [12]

|
|
|
!
| [round, octagon]
I | A2:Body_shape [44]
| | [round]
i | | Al:Head_shape [22]
I ! | [round]
| | | | Vi-yes (83
{ | | {square]
! | ! | V2-no [14]
| | [octagon]
| | | V2-no [22]
[octagon]
| A2:Body_shape [24]
| [octagon]
| | Vi-yes [13]
| {round, square]

|
|
|
|
I
|
|
|
|
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
| | | V2-no {11]
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Decision Tree From Domain: SECOND
Pruned with m= 1.00

Number of Nodes : 113
Number of Leaves: 57
Number of Nulls : 1

| A4:Holding [169]

| [sword]

| | AS:Jacket_color [54]

| | [red]

| | | A2:Body_shape [15]
| ] | (round, square]

| | | | V2-no [9]

! ! | [octagon]

I ] | | A3:1s_smiling [6]

| | | | [yes]

| | | | | V2-no (4]

! | | | [no)

| | | | | Al:Head_shape [2]

I 1 | | | [round)

I | | | | | NULL LEAF:

| | | | | | Vi-yes [46.0%]
| | | | | | V2-no [54.0%]
I | l | | [square]

! | | 1 | | Vi~yes (1]

! ] I | | Coctagon]
I | | | | | V2-no (1]
| | [yellow, green, blue]

I 1| Al:Head_shape [39]
| | ! [round]

| | ] | AS:Jacket_color [10]

1 | | (green]

| | ] | A6:Has_tie [4]

1 ] | [ne)

| | | | A3:Is_smiling (2]
| I | | [yes]

| I | | | ¥2-no [1]
] | | | [nol

! | | | | Vi-yes (1]
! | | [yes]

! | | | V2-no [2]

| | [yellow, blue]

| | | V2-no (6]

| | (square, octagon]

| | | A6:Has_tie [29]

! ! | [nol

| | | | A3:Is_smiling [16]

l
!
|
|
!
|
|
|
|
I

]
]
I
I
!
I
|
|
|
|
|
|
I
I
|
i
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| (yes]
| | A2:Body_shape (6]
| | [round]
| | | V2-no (1]
| | [square, octagon]
| ] | Vi-yes [s]
| [nol
| | A2:Body_shape [10]
| | (round]
| I | Vi-yes 4]
1 | [aquare, octagon]
| | | V2-no (6l
[yes]
| A3:Is_smiling [13]
| (yes]
| | V2-no (sl
| [nol
| A2:Body_shape (7]
| [square, octagonl

|
|
!
|
I
|
I
|
|
|
|
|
|
|
|
I
|
| [

| |

| | | | Vi-yes 4]
| |

|

| I
| I
! |
! |
| |
| !
! I
| ]
! |
| |
| |
] |
| |
| |
| |
| |
I |
! !
| |
f |
| |

| [round]
| | | | | V2-no (3]
(balloon, flag]
| AS:Jacket_color [115]
| (green, blue]
I | A3:Is_smiling [58]
| [yes]
| | A6:Has_tie (31]
| [yes]
| | Al:Head_shape [17]
| [round]
| | V2-no 9]
[square, octagon]
| A2:Body_shape [8]
| {round]
| | V2-no [2]
| [square, octagon]
| | Vi-yes [6]

[round]
| Vi-yes (s]
[square, octagon]
| A2:Body_shape [9]
| [round]
| | Vi-yes (4]
| [square, octagon]

i
!
|
|
|
|
|
|
| [no
|
|
!
|
|
|
|
I
| | | V2-no s}

|
|
|
|
|
|
]
| Al:Head_shape [14]
|
|
|
|
|
|
|
|

{no]
| Al:Head_shape [27]

|
|
|
|
|
|
|
|
|
|
|
|
|
]
|
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
]
|
|
|
|
|
|
|
|
[
|
|
|
|
| | [round]

|
!
! |
| |
| |
I !
I ]
| |
| |
! |
I !
I !
I !
| 1
| |
I |
| |
| |
| |
| |
| |
| |
| l
! l
| |



36

!
!
|
!
!
!
!
|
l
|
I
!
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
I
I
!
|
|
|
1
!
!
|
!
|
|
|
|
!

!
!
|
I
I
!
|
|
|
!
I
|
!
!
|
|
|
I

|
!
|
|
!
!
!
!
I
|
|
|
!
]
I
I
|
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| A2:Body_shape [11]

!
|

|
|
|
|
!
!
!
I
i
|
|
|
!

|

[round, square]

| A2:Body_shape [3]

| [square]

| | A6:Has_tie [6]
| | [yes]
| I | Vi-yes [4]
I | [nol
| | | V2-no [2]
| [round]
| | A6:Has_tie (3]
| | [yes]
! ] | V2=no 2]
| I [nol

| | | Vi-yes [1]
[octagon]

| V2-no (21

| [square, octagon]
| V2-no [16]

[red, yellow]
| A2:Body_shape [57]
| [round, square]

| A1:Head_shape [43]

| [round]

| A6:Has_tie [13]

|
|
|
|
I
|
!
|
|
l
|
|
]
|
!
|
i
|
|
|
|
|
|
|
!
|
|
|

|
|
|
I
|
|
|
i
i
i
i
|
]
!
!
!
|
|
!
|
|
|
|
|
I
|

[yes]
| V2-no (s]

| A5:Jacket_color [8]
[red]
| A3:Is_smiling [5]
| [yes]
] | V2~no 3]
| [nol
| | A2:Body_shape [2]
| | (round]
| | | V2-no [1]
| | [square]
| | | Vi-yes [1]
[yellow]
| Vi-yes [3]

[square, octagon]
| A4:Holding [30]

[balloon]
| A2:Body_shape [13]
| [round)
| | AS5:Jacket_color [S]
I | [red]
| | | V2-no 1]
| | [yellow]
| | | Vi-yes (4]
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(square]
| A5:Jacket_color [8]
| [red]

[flag]
| Al:Head_shape [17]
| [square]

| AS:Jacket_color [8]

| (red]

|
|
!
|
|
|
|
|
!
|
|
!
|
|
|
|
|
|
I
|
!
|
I
]
!
|
|
|
|

|
|
|
|
|
!
|
|
!
|
|
|
|
|
I
|
l
|

| A3:Is_smiling [4]

| [yes]

| | Al:Head_shape [2]
I | [square]

| | | V2-no [1]
| { {octagon]

| | | Vi-yes (1]
| (nol

| | Vi-yes (2]

[yellow]

| A3:Is_smiling (4]

| (yes]

| | Vi-yes [1]
| [no]

| | V2-no [3]

| A3:1s_smiling [4]
| [yes]
| | V2~no (1]
{no]
| A2:Body_shape [3]
| [round]
] | A6:Has_tie [2]
| | (yes]
| | | V2-no [1]
| | [nol
| | | Vi-yes 1]
| [square]
| | Vi-yes 1]

[yellow]

| A3:Is_smiling (4]

I [yes]

| | Vi-yes [1]
| [nol

| | V2-no [3]

{octagon]
| A3:Is_smiling [9]
| (yes]

|
|
|
|
|

C

| AS:Jacket_color [5]

| [red]

| | V2-no 31
| [yellow]

| | Vi-yes (21

nol
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| A5:Jacket_color [4]
| [yellow]
| | A6:Has_tie [2]
| | [yes]
| | | Vi-yes [1]
| I [nol
| | | V2-no (1]
| [red]
| | Vi-yes [2]
[octagon]
| A6:Has_tie [14]
I [yes]
I | A4:Holding [10]
| [balloon]
| | AS:Jacket_color [6]
| | [yellow]
I | | V2-no [3]
I I [red]
| | | A3:Is_smiling [3)
| | | [yes]
| | | | V2-no 1]
| | | [no]
| ! ! | Vi-yes [21
| [flag]
| | Al:Head_shape [4}
| | {round, square]
| | | Vi~yes [2]
| I Loctagon]
| | | A5:Jacket_color [2]
| | | [yellow]
| | | | V2-no [1]
| | | [red]
| | | | Vieyes [1]
]
|

Vi-yes [4]
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Decision Tree From Domain: THIRD
Pruned with m= 3.00

Number of Nodes : 9
Number of Leaves: 5
Number of Nulls : 0

| A2:Body_shape [122]
| [octagonl
| | A4:Holding [41]
| [sword]
| | AS:Jacket_color [14]
| (green]
! | Vi-yes 21
| [red, yellow, bluel
| | Vi-yes [1]
I ,] V2-no [11]
[balloon, flagl
| V2-no [27]
[round, square]
| A5:Jacket_color [81]

| [bluel

| | V2-no (19]
| [red, yellow, green]

! | Vi-yes (573

| | v2-no [s]

39



40

B. Cestnik, I. Kononenko, and I. Bratko



Chapter 4

mFOIL on the MONK’s Problems

Saso Dzeroski

Al Laboratory, Jozef Stefan Institute, Jamova 39, 61111 Ljubljana, Slovenia, Yugoslavia,Phone: +38 61
159 199 .

41



42 S. Dzeroski

4.0.1 Description

The learning system considered in this summary is named mFOIL and learns prolog clauses. The basic
structure of mFOIL is similar to FOIL (Quinlan 1990), but the search heuristics and stopping criteria
employed are different. They are adapted to learning from imperfect (noisy) data. Instead of the entropy
(information gain) heuristic, error estimates such as Laplacian and m-estimate (Cest- nik 1990) are used
as search heuristics. The system is described in my masters thesis which will be available by the end of
Sept. (Dzeroski 1991) mFOIL is implemented in Quintus Prolog 2.5.1 on Sun SPARC Station 1 (cca.
600 lines of code)

I run the system with different search heuristics (Laplacian or m-estimate with different values of m:
higher values of m direct the search towards and allow only more ’reliable’ clauses, i.e., clauses that
cover more examples). This did not influence the results on the first training set, but had some effect
on the results on the second and the third set. Below are given the rules obtained together with the
corresponding search heuristics

The bad results on the second set are due to the small number of examples for each of the disjuncts and
the bias in mFOIL which favors shorter rules.

References
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4.1 Setl

Heuristics used in mFOIL: Laplace, m=0, 0.01, 0.5, 1, 2, 3, 4, 8, 16, 32, 64

Induction time: cca 1 min
Accuracy: 100 %

robot(A,B,C,D,E,F) :-
true,

A=B.
robot(A,B,C,D,E,F) :-
true,

E=red.

4.2 Set 2

Heuristic used in mFOIL: m=3
Induction time: cca 10 min
Accuracy: 69.21 %

robot(A,B,C,D,E,F) :-
(((true,
E=yellow),
not C=no),
not D=sword),
F=mno.
robot(A,B,C,D,E,F) :-
(((true,
D=tlag),
B=octagon),
C=yes),
not Emgreen.
robot(A,8,C,D,E,F) :-
[€€¢ (tr‘l‘o
C=mo) ,
E=red),
not D=sword),
not B=round),
not A=round.
robot(A,B,C,D,E,F) :-
(((true,
E=yellow),

mFOIL on the MONK'’s Problems
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B=round),
not G=yes),
not D=flag.
robot(4,B,C,D,E,F) :-
((true,
B=square),
C=yes),
E=yellow.
robot(A,B,C,D,E,F)
(((true,
E=green),
B=round),
not F=yes),
not A=square.
robot(A,B,C,D,E,F) :-
((((true,
E=green),
not C=mo),
F=no),
A=round),
not Dmgword.
robot(A,B,C,D,E,F) :-
(((true,
Bmsquare),
E=blue),
Cayes),
not Asround.
robot(A,B,C,D,E,F) :
(((true,
not C=yes),
A=round),
E=yellow),
not D=gword.
robot(A,B,C,D,E,F) :
((((true,
E=green),
D=sword),
Feno),
C=yes),
not A=round.
robot(A,B,C,D,E,F) :
((((true,
E=green),
not Femo),
Bwsquare),
not C=yes),
not Awmgquare.
robot(A,B,C,D,E,F) :~
(((true,
not Cw=yes),
E=red),
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F=no),
not A=round.
robot (A,B,C,D,E,F) :-
((((true,
E=green),
A=gquare),
not C=no),
not D=sword),
not F=no.
robot(A,B,C,D,E,F) :~
((((true,
E=blue),
B=square),
not F=no),
not Cayes),
not D=sword.
robot(A,B,C,D,E,F) :-
(((true,
Ewblue),
F=mo),
not Csmo),
not A=square.
robot(A,B,C,D,E,F) :~
(((true,
F=mo),
E=red),
not C=yes),
not B=round.
robot(4,B,C,D,E,F) :-
((((true,
D=sword),
C=no),
B=octagon),
A=square),
Fayes.
robot(A,B,C,D,E,F) :-
((((true,
Bsround),
F=no),
E=blue),
not D=flag),
not A=square.
robot(A,8,C,D,E,F) :-
((((true,
A=octagon),
D=tlag),
not Fwmo),
not E=red),
not B=octagen.
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4.3 Set 3

Heuristic used in mFOIL: m=64
Induction time: cca | min
Accuracy: 100%

robot(A,B,C,D,E,F) :~
(true,
not B=octagon),
not E=blue.

robot(A,B,C,D,E,F) :-
((true,
E=green),
D=sword),
B=octagon.

S. Dzeroski
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5.1 IDL: A Brief Introduction

5.1.1 Introduction

IDL is an algorithm for the incremental induction of decision trees. Incremental learning methods are
useful when examples become available on a regular basis but good hypotheses are needed anytime,
possibly for a performance task. Incrementality is, however, not the primary motivation for this research.
More importantly, IDL is specifically designed to find small decision trees. There are various reasons to
prefer smaller trees. One reason is efficiency: the fewer decision nodes in a tree, the more efficient an
instance can be classified with it. This is, however, a weak argument since cost and frequency of test
execution should be taken into account, so that the most cost-effective tree is not necessarily also the
smallest one {Nunez 88; Tan and Schlimmer 89]. Another reason to prefer small trees is comprehensibility:
small trees tend to be easier to understand. Comprehensibility, however, also depends on the form of
the tree. For example Arbab and Michy (85) argue that linear trees are easier to understand. Perhaps
the strongest argument for small trees is the relation between tree complexity and classification accuracy
[Breiman, Friedman, Olshen and Stone 84; Quinlan 86; Mingers 89a,b; Utgoff 90]. Pearl [78] showed that
the complexity of a hypothesis for explaining data is related to the likelihood that it actually explains
it. A learning algorithm with a bias towards simplicity is likely to find more accurate hypotheses as
well. This heuristic of Occam’s Razor has been employed and justified by many authors both empirically
[Clark and Niblett 89; Fisher and Schlimmer 88; Iba, Wogulis and Langley 88] and theoretically [Blumer,
Ehrenfeucht, Haussler and Warmuth 87).

Complex trees are sometimes unavoidable. For example, an accurate tree for a concept exhibiting the
parity problemIl has an exponential number of nodes [Seshu 89] and trees for boolean disjunctive normal
form concepts contain duplicated subtrees when only using ground attributes as tests [Pagallo and Haus-
sler 89]. Also, different heuristics in otherwise similar algorithms may lead to significant variations in
tree size [Mingers 89a]. The induced trees may nonetheless be more complex than strictly necessary. For
example, finding the smallest trees for the six-multiplexer concept [Barto 85; Wilson 87] is well known
to be far beyond all classical decision tree induction algorithms [Quinlan 88]. So, even when a small tree
exists, state of the art decision tree algorithms may fail to find, or even come close to it. IDL on the
other hand finds small trees which are often optimal in size. For example, it has no problem inducing
a best tree for the 6-multiplexer while requiring fewer examples and less computation than the other
algorithms. The problem of induding optimal decision trees is, however, NP-hard [Hyafil and Rivest 76;
Hancock 89]. A practical algorithm is necessarily based on strong heuristic guidance and is guaranteed
to fail on at least some induction tasks.

To appreciate the novelty of the approach taken in IDL, it is useful to take a look at the relationship with
its predecessors, non-incremental top-down induction of decision trees like ID3 [Quinlan 83,86] and the
incremental algorithms ID4 Schlimmer and Fisher 86}, ID5 [Utgoff 88a] and IDSR. [Utgoff 90]. Top-down
induction performs a general-to-specific hill-climbing search, guided by statistical heuristics and without
backtracking. The incremental versions, for which a statistics-based best split is always tentative, are
designed to recover with minimal loss of training effort from deviations from the search path which ID3
would follow given the same examples E. More sophisticated representations and search operators allow
these algorithms to simulate a backtracking top-down search in a hill climbing search [Langley, Gennari
and Iba 87; Fisher 87). However, these algorithms do not contribute any new ideas to improve the
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complexity or accuracy of learned decision trees. IDL uses the same search operators to construct a small
and accurate tree which is not necessarily [D3-equivalent but topologically minimal. In a topologically
minimal tree only a minimal number of tests is required to classify objects. IDL is guided by statistics in a
top-down search for an accurate tree. At the same time it looks for smaller trees in a bottom-up fashion.
Here it is guided, not by statistics, but by tree topological considerations. In effect, IDL simulates a
bi-directional search.

5.1.2 Related Work

[D4 [Schlimmer & Fisher 1986}, ID5 [Utgoff 88a] and ID5R [Utgoff 89] are three recently developed
algorithms for incremental induction of decision trees. The relation with IDL was briefly explained in
the introduction. In [Van de Velde 89] it was conjectured that IDL finds a topologically minimal tree
if it exists. Elomaa and Kivinen [90] showed, however, how IDL may fail to find the optimal tree for
the 3-multiplexer. The multi-multiplexer concept also disproves this conjecture. Their algorithm IDL’
nevertheless successfully postprocesses trees and removes irrelevant attributes. Related experiments are
reported on in [Van de Velde 90]. These experiments use a version of IDL which is more eager to apply
the statistical selection criterion. This has the advantage that any consistent tree can be taken as an
initial hypothesis, no matter how it was generated.

Others have explicitly addressed the problem of suboptimality in tree-size. Pruning techniques [Quinlan
87; Fisher and Schlimmer 88; Mingers 89b] avoid overfitting and reduce complexity, often while increasing
accuracy. In a multiplexer-like concept the problem occurs at the top: a TDIDT-like algorithm will choose
a wrong top-level attribute and there is no way to prune this away. Quinlan [88] proposes to transform a
tree into a set of rules which are subsequently simplified. Every possible classification path is interpreted
as a rule. Each of the conditions in the rule is removed in turn and classification accuracy of the rule set
is tested. If this is improved, then the condition is permanently removed. This process has been shown
to be capable of strong optimization at the expense of introducing a different representation. More
sophisticated rule simplification techniques have been studied by many authors (Michalski 87; Clark
and Niblett 89; Zhang and Michalski 89]. They use statistical measures to balance the importance and
typicality of patterns. The techniques of pruning, tree transformation, and rule tweaking can be viewed
along a continuum of increasing liberty to manipulate the representation of patterns. IDL is somewhere
in the middle: it manipulates several rules at once and is capable of both introducing and deleting tests
in a rule. Also note that IDL is incremental, is not motivated by noise, works with one representation,
and uses tree structure information in addition to statistics.

Other researchers reduce tree complexity by allowing different tests than the primitive ones, for example
boolean combinations [Breiman, Friedman, Olhsen, Stone 84; Clark and Niblett 89; Pagallo and Haussler
89: Seshu 89] or linear threshold units [Utgoff 88b; Utgoff and Brodley 90]. Of these, FRINGE [Pagallo
and Haussler 89] is closest in spirit to IDL. It was developed to overcome the problem of replicated
subtrees when learning Disjunctive Normal Form concepts. Such concepts usually have no decision tree
representation without replications when the primitive attributes are used. FRINGE examines the fringe
(2 bottom levels) of a complete tree to find replicated partial paths. The conjunction of two attributes or
their negation is added as first class attribute and a new tree is built. This process iterates until no more
changes occur. In comparison, note that IDL is incremental, does not change representation bias and
tackles the replication problem for concepts which do have a representation without replication. Utgoff
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and Brodley’s method {90] is also incremental.

Wilson [87] used multiplexer concepts to test his classifier system, called Boole. Quinlan [88] noted the
extremely slow convergence rate and obtains much better results when using C4, a TDIDT like algorithm,
and postprocessing to rules (see above). Bonelli, Parodi, Sen and Wilson [90] describe NewBoole, a new
version of Boole which converges significantly faster to accurate results. It still requires around 800
examples to find an (almost) accurate hypothesis, and around 5000 examples to find the minimal set of
rules. The same authors also used neural nets of different sizes to learn the same concept. They report
convergence after 1600 cycles for a reasonable net (6:20-20-10-10:1). On the 11-multiplexer NewBoole
requires around 4000 examples to converge, a neura. st around 8000.

Selective training goes back to the windowing technique in ID3 [Quinlan 83]. Wirth and Catlett [88]
discuss related techniques and note that the benefit of windowing is limited. Utgoff [89] shows that a
window size of one (i.e., ID5R-hat) results in improved training. The idea is not really applicable in IDL,
because it still does much work after the tree has become fully accurate.

5.1.3 Conclusion

IDL represents a new approach to the incremental induction of decision trees. It uses a similar represen-
tation as ID4 [Schlimmer and Fisher 86] and the same set of search operators, (splitting, pruning and
transposition) as ID5(R) [Utgoff 88a,90). It was argued that a decision tree represents a target concept
by virtue of representing a specialization of it. The task of induction is to find a tree such that this spe-
cialization is as close as possible to the target concept. Search for a good decision tree can be understood
as search in concept space, mediated by decision tree manipulations. The role of the three operations
was reconsidered, as well as the heuristics to guide their application. A statistical selection measure,
based on a metric on concept space [Lopez de Mantaras 90] is used to guide the expansion of a tree. Tree
topological considerations, based on a notion of topological relevance, guide the transposition of nodes
to generate oportunities for pruning. IDL uses these heuristics to simulate a bi-directional search for a
tree which is topologically minimal. Such a tree minimizes the number of tests needed for classification,
and is therefore small. Experiments show that IDL finds small trees, and often optimal ones.

A number of things need to be investigated further. A major open issue is to characterize the concepts
for which IDL finds a topologically minimal tree. It is not understood, for example, what makes the
3-multiplexer so different from the 6-multiplexer concept to justify the occasional failure of IDL on the
former. Also, the large standard deviations on the mushroom domain are not well understood. It is
disappointing that IDL could not find drastically better trees on natural domains, like it did for the
multiplexers. Are there no natural data sets for multiplexer-like concepts? Since IDL occasionally fails
to find an optimal tree an average case analysis, as outlined by Pazanni and Sarrett [90] would be more
useful than a worst-case one. Integration of IDL with constructive induction techniques seems a promising
line of research. Situations in which IDL keeps on switching the levels of attributes could be used as an
indication that a new attribute may be useful. The behavior of IDL in the presence of noise has not
been studied. The integration of techniques developed for top-down algorithms [Mingers 89b] should be
investigated.
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5.2 Experimental Results

[ have done some of the experiments for the comparison of the algorithms. The runs on the first data-set
are complete, except for the timing information. The runs for the second example are in progress and |
will send them later today. I will not do the third example since [ surender to noise. Nevertheless I think
you will agree that in the class of decision tree algorithms, the performance of IDL is quite impressive.

Here is what I did. I ran several algorithms on the training-set and tested them on the test-set. If the
algorrithm is non-incremental I used a run on the complete training set. If the algorithm is incremental
I ran it with 500 examples randomly selected from the training set. Testing is always on the full test set.
All results are averaged over 10 runs.

[ used the following algorithms:

TDIDT: plain old ID3 with information gain as selection measure,

no pruning.

IDSR: the incremental version of ID3 produced by Utgoff. Information

gain is the selection measure. No pruning.

IDL: IDL as described in an unpublished paper, very similar to the :
algorithm described in IML-90

ID5R-hat: IDSR with example filter. Trains only if the example is

misclassified by the current hypothsis. No pruning.

1 send the results in several files. In seperate mails [ will provide the following information:

TDIDT: the tree
size and accuracy of the tree
the concept described by it

IDSR, IDL, IDSR-hat:

data on size and accuracy as it evolves with training
a typical tree and its size and accuracy

the concept described by that typical tree

The evolving data for the incremental algorithms allow to produce the learning curves for each of the
algorithms. I produced graphs with Exel and will send them by mail if I do not succeed making a

postscript version of it.

About the results:

IDL is clearly the best. It produces the smallest trees with by far the best accuracy of all. It is also worth
noticing that the standard deviations for IDL are very small, and that the concepts described by the
trees that IDL produces are the same. This means that search in concept space is finished, but IDL can
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not decide on the best representation. So it limit-cycles between 3 different trees, all small and equally
accurate (the only difference is in the order of testing the three relevant attributer). This illustrates how
the use of not only statistical information bt also tree-topological one makes the algorithm unsensitive
to sampling differences (small disjuncts or sparse sampling are no big problem either). Here are the data
for all 10 trees to show this:

MONKS-1

500
500
500
500
500
500
500
500
500
500

500
5§00
500
500
500
500
500
500
500
500

IDL used

42
36
42
40
40
40
36
42
40
42

29
26
29
27
27
28
26
29
27
29

97.
97.
97.
97.
97.
97.
97.
97.
97.

97

IDL nodes IDL leaves IDL accuracy
22222
22222
22222
22222
22222
22222
22222
22222
22222
.22222

On the other hand ID5R produces larger and less accurate trees with enormous standard deviations as
shown by data for the 10 trees that ID5R produces:

MONKS-1

500
500
500
500
500
500
500
500
500
500

500
500
500
500
500
500
500
500
500
500

IDSR used IDSR nodes IDSR leaves IDSR accuracy

75
64
50
61
70
40
73
78
74
59

48
40
32
40
43
27
45
50
46
37

81
81
90
87
77
97
77
84
80
86

. 94444
.71296
.97222
.T3148
.31481
.22222
.546295
.02778
.32407
. 34259

As expected ID5R-hat does somewhat better than ID5R. Here are the data for the 10 trees to give an
idea of the deviations.

MONKS-1 IDSR-hat used IDSR-hat nodes IDSR-hat leaves IDSR-hat accuracy
85.416664
79.861115
97.22222
97.22222
97.22222
92.361115
94.44444
97.22222

500
500
500
500
$00
500
500
500

S1
62

56
68

52 40
49 40
53 40

52
S0

St
39 26

48 40

36
43
27
27
27
33

27
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500 58 49 32 90.27778
500 53 40 27 97.22222

[ sent a number of files with the results of TDIDT, IDL, ID5R and ID5R-hat on the second monk'’s

concept. The results are averaged only over 5 runs this time.

The effect I seem to get is that [DL does not get beyond its initial phase of building up a large tree. In
other words, it does not get anyway near to collapsing it. The fact that it grows larger than for ID5R
is not anomalous, but normally this is followed by a rapid collaps to a smaller form (see MONKS-1 this
effect). This concept seems to be too difficult for trees to handle anyway...

Here are the 5 individual results for IDL:

MONKS-2 IDL used IDL nodes IDL leaves IDL accuracy
500 500 176 111 74.30556

500 500 170 104 65.046295

500 500 180 114 73.84259

500 500 197 112 68.05556

500 S00 184 111 61.34259

Here are the 5 individual results for ID5R:

MONKS~-2 IDSR used IDSR nodes IDSR leaves IDSR accuracy
500 500 145 93 64.12037

500 SO0 153 91 64.583336

500 500 173 104 65.74074

500 500 171 102 65.27778

500 500 165 95 61.805557

Here are the 5 individual results for ID5R-hat:

MONKS-2 IDSR-HAT used IDSR-HAT nodes IDSR-HAT leaves IDSR-HAT accuracy
500 113 130 77 63.425926

500 115 131 82 65.74074

500 118 133 80 64.81481

500 120 133 84 62.5

500 115 138 83 62.73148

IDL finds larger trees, slightly more accurate. IDSR and ID5R-HAT find trees that are comparable in
accuracy to the TDIDT tree (66.666664smaller.
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5.2.1 ID3R on test set 1

DESCRIPTION OF THE TREE:

i+ Typical tree found by idSr trained on first monks's training set
i3 500 examples (random from full training set)

;7 64 nodes

i1 40 leaves

i 81.71296 accuracy on test set

JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 :
HAS_TIE = 1 :
BODY_SHAPE = 1 : <1>...
BODY_SHAPE = 2 :
HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 2 : <1>...
HEAD_SHAPE = 3 : <0>...
BODY_SHAPE = 3 :

HEAD_SHAPE = 1 : <0>...

HEAD_SHAPE = 2 : <0>...

HEAD_SHAPE = 3 : <1>...
HAS_TIE = 2 :

BODY_SHAPE = 1 :
HEAD_SHAPE = 1 : <1>...
HEAD_SHAPE = 2 : <0>...
HEAD_SHAPE = 3 : <0>...

BODY_SHAPE = 2 :
IS_SMILING = 1 : <1>...
IS_SMILING = 2 : <0>...

BODY_SHAPE = 3 :
HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 3 : <1>...

JACKET_COLOR = 3 :
HOLDING = 1 :

HEAD_SHAPE = 1 :
BODY_SHAPE = § : <1>...
BODY_SHAPE = 2 : <0>

HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 : <1>...
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 3 :
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <1>...

HOLDING = 2 :

HAS_TIE= 1 : <0>...

HAS_TIE = 2 :

HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 2 : <1>..,

w N

-

[



v~ g,

Comparison of Decision Tree-Based Learning Algorithms 39

HEAD_SHAPE = 3 :
IS_SMILING = 1 : <1>...
IS_SMILING = 2 : <0>...

HOLDING = 3 :

IS_SMILING = 1 :
HAS_TIE = 1 : <O0>...
HAS_TIE = 2 : <1>...

IS_SMILING = 2 :

HEAD_SHAPE = 1 : <0>...

HEAD_SHAPE = 2 : <0>...

HEAD_SHAPE = 3 : <1>...

JACKET_.COLOR = 4 :

HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <1>...
BODY_SHAPE = 2 : <0>...
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 : <1>...
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 3 :
BODY_SHAPE = 2 : <0>...
BODY_SHAPE = 3 : <1>...
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5.2.2 IDL on test set 1

DESCRIPTION OF THE TREE:

:; Typical tree found by idl trained on first monks’s training set
;; 500 examples (random from full training set)

ii 36 nodes

i1 26 leaves

13 97.22222 accuracy on test set

BODY_SHAPE = 1 :
HEAD_SHAPE = 1 : <1>...
HEAD_SHAPE = 2 :

JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 : <0>...
JACKET_COLOR = 3 : <0>...
JACKET_COLOR = 4 : <0>...

HEAD_SHAPE = 3 :
JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 : <0>...
JACKET_COLOR = 3 : <0>...

BODY_SHAPE = 2 :

HEAD_SHAPE = 1 :
JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 : <0>...
JACKET_COLOR = 3 : <O0>...
JACKET_COLOR = 4 : <0>...

HEAD_SHAPE = 2 : <1>...

HEAD_SHAPE = 3 :
JACKET_COLOR = 1 : <1>...
JACKET.COLOR = 2 : <0>...
JACKET_COLOR = 3 : <0>
JACKET_COLOR = 4 : <0>...

BODY_SHAPE = 3 :

HEAD_SHAPE = { :

JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 : <0>...
JACKET_COLOR = 3 : <0>...
JACKET_.COLOR = 4 : <0>...
HEAD_SHAPE = 2 :
JACKET_COLOR = 1 : <1>...
JACKET.COLOR = 2 : <0>...
JACKET "OLOR = 3 : <0>...

JACKE?Y ZOLOR = 4 : <0>...
HEAD_SHAPE = 3 : <1>...
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5.2.3 ID5R-HAT on test set 1

DESCRIPTION OF THE TREE:

Tree found by idSr-hat trained on first monks's training set
58 examples used out of 500 (random from full training set)
49 nodes

32 leaves

90.27778 accuracy on test set

o
B
i
’

JACKET_COLOR = 1 : <1>...
JACKET_COLOR = 2 :
HOLDING = 1 :

HEAD_SHAPE = 1 :
BODY_SHAPE = 3 : <0>
BODY_SHAPE = 1 : <1>...
BODY_SHAPE = 2 : <0>...

HEAD_SHAPE = 2 : :
BODY_SHAPE = : <0>...
BODY_SHAPE = P <1>...

HEAD_SHAPE = 3 : <0>...

HOLDING = 2 : <0>...
HOLDING = 3 :

BODY_SHAPE = 1 :

HAS_TIE = 1 : <1>...
HAS_TIE = 2 : <0>...
BODY_SHAPE = 2 :

N -

HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 2 : <1>...
HEAD_SHAPE = 3 : <0>...
BODY_SHAPE = 3 :
HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 3 : <1>...

JACKET_COLOR = 3 :

HEAD_SHAPE = { :
BODY_SHAPE = 1 : <1>...
BODY_SHAPE = 2 : <0>...
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 : <1>...
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 3 :
BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 : <0>...
BODY_SHAPE = 3 : <1>,..

JACKET_COLCR = 4 :

HEAD_SHAPE = 1

BODY_SHAPE = 1 : <1>...

61
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BODY_SHAPE = 2 : <0>..,
BODY_SHAPE = 3 : <0>...

HEAD_SHAPE = 2 :
BODY_SHAPE = 3 : <0>

BODY_SHAPE = 1 : <0>...
BODY_SHAPE = 2 : <1>..,

HEAD_SHAPE = 3 :

BODY_SHAPE = 2 : <0>...
BODY_SHAPE = 3 : <1>,.

W. Van de Welde
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5.2.4 TDIDT on test set 1

DESCRIPTION OF THE TREE:

Tree found by tdidt trained on first monks’s training set
124 examples (full training set)

86 nodes

52 leaves

; 75.69444 accuracy on test set

JACKET_COLOR = 1 : <1>
JACKET_COLOR = 2 :
HOLDING = { :

HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <1>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <0>

HEAD_SHAPE = 2 :
IS_SMILING = 1 : <1>
IS_SMILING = 2 : <0>

HEAD_SHAPE = 3 :

HAS_TIE = 1 : <1>
HAS_TIE = 2 : <0>
HOLDING = 2 :

BODY_SHAPE = 1 : <0>

BODY_SHAPE = 2 : <1>

BODY_SHAPE = 3 : <0>

HOLDING = 3 :

IS_SMILING = 1 :

HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <1>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <0>

HEAD_SHAPE = 2 : <1>

HEAD_SHAPE = 3 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 3 : <1>

IS_SMILING = 2 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 :

HAS_TIE = 1 : <0>
HAS_TIE = 2 : <1>
JACKET_COLOR = 3 :
HAS_TIE = 1 :

HOLDING = 1 :

IS_SMILING = 1 :
BODY_SHAPE = 1 :

HEAD_SHAPE = 1 : <1>
HEAD_SHAPE = 2 : <0>

63
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BODY_SHAPE = 2 :
HEAD_SHAPE = 1 : <0>
HEAD_SHAPE = 2 : <1>
IS_SMILING = 2 : <0>
HOLDING = 2 :
IS_SMILING = 1 : <0>
IS_SMILING = 2 :
HEAD_SHAPE = 1 : <1>
. HEAD_SHAPE = 2 : <0>
HOLDING = 3 : <0>
HAS_TIE = 2 :
IS_SMILING = 1 :
HOLDING = 1 :
HEAD_SHAPE = 1 : <1>
HEAD_SHAPE = 2 : <0>
HOLDING = 2 :
HEAD_SHAPE = 1 : <0>
HEAD_SHAPE = 2 : <1>
HEAD_SHAPE = 3 : <1>
HOLDING = 3 : <1>
IS_SMILING = 2 :
HOLDING = 1 :
BODY_SHAPE = 2 :
HEAD_SHAPE = 2 : <1>
HEAD_SHAPE = 3 : <0>
BODY_SHAPE = 3 :
HEAD_SHAPE = 2 : <0>
HEAD_SHAPE = 3 : <1>
HOLDING = 2 : <O0>
HOLDING = 3 :
HEAD_SHAPE = 1 : <0>
HEAD_SHAPE = 2 : <0>
HEAD_SHAPE = 3 : <1>
JACKET_COLOR = 4 :
HEAD_SHAPE = 1 :
BODY_SHAPE = 1 : <1>
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <0>
HEAD_SHAPE = 2 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1>
BODY_SHAPE = 3 : <0>
HEAD_SHAPE = 3 :
BODY_SHAPE = 2 : <0>
BODY_SHAPE = 3 : <1>(1 11111 ->1)
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5.2.5 IDS3R on test set 2

DESCRIPTION OF THE TREE:

i+ Typical tree found by idSr trained on second monks’s training set
i 500 examples (random from full training set)

i; 165 nodes

;i 95 leaves

;3 61.805557 accuracy on test set

JACKET_COLOR = 1 :
IS_SMILING = 1 :
HEAD_SHAPE = 1 : <0>...
HEAD_SHAPE = 2 :
HOLDING = 1 : <0>...
HOLDING = 2 : <0>...
HOLDING = 3 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 3 : <1>...
HEAD_SHAPE = 3 :
HOLDING = 1 : <0>..
HOLDING = 2 :
BODY_SHAPE = 1 : <0>
BODY_SHAPE = 2 : <1>
HOLDING = 3 : <0>
IS_SMILING = 2 :
HOLDING = { :
HAS_TIE = 1 : <0>...
HAS_TIE = 2 :
HEAD_SHAPE = 1 : <0>
HEAD_SHAPE = 2 : <1>...
HOLDING = 2 : <1>...
HOLDING = 3 :
HEAD_SHAPE = 1 :
HAS_TIE = 1 : <0>...
HAS_TIE = 2 :
BODY_SHAPE = { : <0>
BODY_SHAPE = 2 : <1>
HEAD_SHAPE = 2 :
HAS_TIE = 1 :
BODY_SHAPE = 1 : <O>
BODY_SHAPE = 2 : <1>
HAS_TIE = 2 : <1>...
HEAD_SHAPE = 3 : <1>...
JACKET_COLOR = 2 :
BODY_SHAPE = 1 :
HEAD_SHAPE = 1 :
IS_SMILING = 1 : <O>...
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5.2.6 IDL on test set 2

DESCRIPTION OF THE TREE:

Typical tree found by idl trained on second monks’s training set
500 examples (random from full training set)

170 nodes

;; 107 leaves

66.203705 accuracy on test set
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5.2.7 TDIDT on test set 2

DESCRIPTION OF THE TREE:

:: The tree found by TDIDT trained on second monks’s training set
;; 169 examples (full training set)

;1 159 nodes

;1 95 leaves

;; 66.666664 accuracy on test set
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5.2.8 TDIDT on test set 1

DESCRIPTION OF THE TREE:

;i Tree found by tdidt trained on first monks’s training set
;i 124 examples (full training set)

;+ 86 nodes

i+ 52 leaves

;3 75.69444 accuracy on test set
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5.2.9 ID3R-HAT on test set 2

DESCRIPTION OF THE TREE:

Typical tree found by idSr-hat trained on second monks’s training set
.; 115 examples used out of 500 (random from full training set)
:: 131 nodes
82 leaves
65.74074 accuracy on test set
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5.3 Classification diagrams

Result of ID5R on test set 1
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Result of TDIDT on test set 2
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5.4 Learning curves
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6.1 Introduction

At the Institute for Real-Time Computer Control Systems & Robotics a library of inductive machine
learning algorithms is being developed. So far this library consists of:

e ID3 - classical decision tree learning algorithm

o ID5R - an incremental decision tree learning algorithm

¢ AQR - a version of the AQ-rule learning algorithms

e CN2 - rule decision list learning algorithm

e COBWEB - conceptual clustering algorithm for attributes with symbolic values
e CLASSIT - conceptual clustering algorithm for attributes with numerical values

CLASSWEB - algorithm that integrates COBWEB and CLASSIT. In the following only this algo-
rithm is referred to.

These algorithms have been implemented in a very homogeneous way, i.e. they use the same description
for objects that have to be learned, they are called in a similar way and they are all available under one
common user interface.

The reason for building up this ML-library is, that our institute is interested in applying machine learning
techniques to robotics applications. As a first step we wanted to gain experiences with the classical
inductive learning methods in order to find out their capabilities and limitations.

All algorithms base on a common description of the objects to be learned, which consists of a set of
attributes, each defined by a name, a domain, a ‘noisy-flag’ and some additional information for the
conceptual clustering algorithm. In addition a symbol which is used for unknown attribute values can
be identified. Each algorithm will then be called with a set of examples (classified for ID3, ID3R, AQR
and CN2; unclassified for CLASSWEB). As ID5R and CLASSWEB are incremental methods, a former
received classifier can also be given as input. Each algorithm results in a classifier which can be used for
classifying further given objects. For a better understanding of the results a textual representation of the
classifier can be printed on the screen. For decision tree learning algorithms and conceptual clustering
also a graphical display is available. For the incremental methods it is also possible to display a trace
during classifier generation. The implementation work has been done on a SUN Sparc Station 1+ IN
SUN Lucid Common Lisp using CLX and CLUE for only the graphical interface (([EW91)).

6.2 Short description of the algorithms

In this section a very short description of the algorithms will be given. For further details please see
the corresponding literature. The representation of examples as attribute-value-pairs, where the set of
attributes is given and fixed, is common to all algorithms.
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6.2.1 ID3

ID3 is the most popular representative of TDIDT-algorithms (Top Down Induction of Decision Trees).
[t builds up a decision tree based on the classified training examples ([Qui86]). The internal nodes of a
decision tree represent a test based on one specific attribute. For each possible attribute value there is
one subtree, which is for itself a decision tree. The leaves of the tree represent class names. For classifying
a new object with a built-up decision tree, the value of the attribute at the root of the tree will determine
which subtree has to be considered recursively. The recursion will end, if a leaf of the tree is reached. In
that case the class name given in that leaf represents the class in which the object has to be classified.

The idea for building up the decision tree is to iteratively find the attribute in the set of attributes of the
objects which gives the ’best’ partition of the set of training examples. 'Best’ is defined in terms of the
information gain given by a partition according to the specific attribute.

The basic algorithm has already been extended by Quinlan ([Qui86]) to handle noisy attributes and
unknown attribute values. In the implemented algorithm noise is handled by applying chi-square test for
stochastic independence to the noisy attribute with respect to the class distribution. Unknown attribute
values have to be handled during building of the decision tree and during classification. For building up
the decision tree unknown attribute values are taken into account in the calculation of the information

gain.

The algorithm as being implemented also uses windowing over the training set, i.e. a subset of the training
set is chosen at random and the decision tree is built up by using only these examples. After that all
other examples of the training set are classified using this DT. If some of the examples are incorrectly
classified, a selection of these will be added to the window and the procedure will start again. Due to the
complexity of the given training sets, a lot of iterative steps had to be performed.

6.2.2 ID5R

The ID5R algorithm ([Utg89]) has been developed by P.E. Utgoff as a kind of TDIDT-algorithm which
is able to work incrementally, but results finally, i.e. after all training examples, in the same decision tree
as ID3. 'Incremental’ means that the examples can be given one after another. A very easy solution for
the problem of successively given examples would be to generate an ID3J decision tree from scratch with
all examples given so far. In contrast to that approach, ID3R always uses the decision tree developed so
far for integrating the new example. For that reason the data structure of a node in an ID3R tree has
been enlarged by the information necessary to calculate the information gain function of the attributes.

If during insertion of the new example the situation arises that the current test attribute is not the one
with the highest information gain, the tree has to be restructured. This is done by investigating all
subtrees of the current node by using the new attribute as the test attribute. In a second step the test
attribute in the current node is exchanged for the attribute in the subtrees.

In our implementation ID5R does not result in exactly the same tree as ID3, even if all examples are _
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given. First this is caused by the fact that ID5R does not generate NULL-classes, because leaves are only
splitted further, if it is really necessary. Second, if there are several attributes with the same information
gain and one of these attributes is already used as test attribute, then a restructuring of the tree will not
be done. It would be of course also possible to take the first attribute in the list as new test attribute

and to restructure the tree accordingly.

6.2.3 AQR

The AQR algorithm is an implementation of the AQ-family, which has been founded by R. Michalski in
1969. AQR is a reconstruction of a straight-forward implementation of the basic AQ algorithm and has
been described in [CN89]. The algorithm results in one decision rule for each class. The condition of
each rule is called a cover and represents a disjunction of so-called complexes. Each complex for itself
Is a conjunction of selectors and each selector is a basic attribute test (has the attribute one of a set of
values, etc.).

For classifying a new object, each rule is checked to see, whether the condition is completely satisfied,
Le. the example is covered by the rule. If exactly one rule is satisfied, the corresponding class is the
classification result. If several rules are applicable, then the most common class of training examples
covered by those rules is used as result. If none of the rules can be applied, the class that appeared most
often in the training set is used as result.

The decision rules are sequentially built up for the different classes. Starting with an empty cover
successively a seed, i.e. a positive example which is not covered so far is being selected and a staris
being generated, which is a set of complexes that cover the seed but no negative examples. From these
complexes the one which is the best one according to a user-defined criterion is being chosen and added
to the cover as an extra disjunct. The positive examples that are covered by that additional complex
are then deleted from the list of examples. In our implementation the best complex is the complex that
maximizes the number of positive examples that are covered.

6.2.4 CN2

This algorithm has been developed by P. Clark and T. Niblett ([CN89]). It shall combine the advantages
of the families of ID3- and AQ-algorithms. The classifier resulting from that algorithm is an ordered set
of if-then-rules (decision list). This means that the representation is very similar to AQ, i.e. if ’complex’
then predict 'class’, but the rules have to be checked from top to bottom. If none of the rules applies to
a new object, again the class that appeared most often in the training set will be taken.

The idea of Clark and Niblett was to enable AQ-like algorithms to handle noisy data by also taking
complexes into account that do not fit the positive/negative border accurately. The method is based on
the beam-search method as being used in AQ. During each iteration the algorithm searches for a complex
that covers a large number of examples of one class and only few examples of other classes. The complexes
are evaluated by an evaluation function which determines their predictiveness and reliability. If a good
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complex has been found, the examples that are covered, are deleted from the set of training examples.
The search for a complex can be seen as a general-to-specific search with some pruning. During each
iteration a set of the best complexes found so far is being remembered. These are specialized by adding
a new conjunctive term or deleting a disjunctive part of one of the selectors. CN2 evaluates all possible
specializations of each complex, which may lead to an enormous computational effort.

6.2.5 CLASSWEB

CLASSWESB is a combination of the algorithms COBWEB ([Fis87]) and CLASSIT ([GLF89]). These
are methods for conceptual clustering. In contrast to the four algorithms described so far, these use
unclassified examples as input and try to find a concept hierarchy for the examples where the similarity
in one concept is as high as possible and the similarity between different concepts is as low as possible.
While COBWEB only handles nominal values and CLASSIT only numerical ones, our CLASSWEB
algorithm is able to handle both types in an integrated way.

For building up a concept hierarchy CLASSWEB uses four different operators to integrate a new example
into the already existing concept hierarchy. These are: 1.) classifying the object into an existing class,
2.) creating a new class, 3.) combining two classes into a single class and 4.) dividing a class into several
classes. Applied to internal concept nodes these different operators are scored according to category
utility and the best one is chosen.

During classification of new objects each object will be incorporated into the tree as if it were a new
example. This method also allows to predict unknown attribute values of the new example.

We have also implemented the so-called cutoff in CLASSWEB. By that parameter the algorithm does
not have to classify each example down to a leaf, but also may decide to stop at some higher level in the
hierarchy. Cutoff is a measure whether an example and a concept class are similar enough to stop at that
concept node. If cutoff is set to zero, the algorithm behaves exactly like the original COBWEB method.

6.3 Results

The following tables compare the performance of the different algorithms on the three problem sets. The
time data given correspond to compiled SUN Lucid Common Lisp 3.0 code on a SUN SPARC station
14.

6.3.1 Training Time

This following table states the time required for each algorithm on each training set to build up a classifier.
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Algorithm Training Set 1 | Training Set 2 | Training Set 3
ID3 35.51 154.02 23.04
ID3 no wind. 4.98 7.61 3.74
ID5R 99.20 407.09 78.91
AQR 4.17 9.45 4.00
CN2 4.48 74.04 10.25
CLASSWEB 568.18 731.22 414.10

Time is given in seconds and was averaged over three test runs over each algorithm and each training set.
Remarks:

The ID3-algorithm as implemented uses a 20%-windowing as mentioned above. For the three given
problems this leads to a large number of necessary iterations. That’s why there are also results given for
ID3 without windowing (ID3 no wind.).

The CN2-algorithm uses a user-defined threshold value for doing its noise test. This is set to 0.1.

The cutoff-parameter in CLASSWEB was set to 0.2.

6.3.2 Classifier Results

First we will give some measurements such as number of nodes, leaves, rules and so on, which will reflect
the complexity of the resulting algorithms. Afterwards some of the resulting classifiers for the different

algorithms and training sets are given.

ID3
Measurement | Training Set 1 | Training Set 2 | Iraining Set 3
# nodes 13 66 13
# leaves 28 110 29

ID3 no windowing

Measurement | Training Set 1 | Training Set 2 | Training Set 3
# nodes 32 64 14
# leaves 62 110 31
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ID5R

[ Measurement | Training Set 1 | Training Set 2 | Training Set 3
# nodes 34 64 14
# leaves 52 99 28

AQR
Measurement | Training Set 1 Training Set 2 Training Set 3

Class 0 | Class 1 | Class 0 | Class 1 | Class 0 | Class 1

# complexes 30 6 40 43 16 20
# selectors 109 14 147 187 47 67

CN2
Measurement | Training Set 1 | Training Set 2 | Training Set 3
# rules 10 58 24
# selectors 13 145 38
CLASSWEB
Measurement | Training Set 1 | Training Set 2 | Training Set 3
# concepts 24 24 14
# nodes 9 8 4
# leaves 15 16 10
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IS-SMILING = 2 &
BODY-SHAPE = | &
BODY-SHAPE = 3 & HEAD-SHAPE = 2 & JACKET-COLOR
& HOLDING = 3 & JACKET-COLOR = 3 & HEAD-SHAPE
& JACKET-COLOR = 4 & HEAD-SHAPE = 2 |

& HOLDING = 1 & BODY-SHAPE = 3 & HEAD-SHAPE =

HOLDING = 2 & BODY-SHAPE = 1|
HEAD-SHAPE = 2 |

& HEAD-SHAPE = 2 & BODY-SHAPE = 3 & JACKET-COLOR = 2

HEAD-SHAPE = 3 & HOLDING = 3 & BODY-SHAPE = 1
& BODY-SHAPE = 1 & HEAD-SHAPE = 3 |

& JACKET-COLOR = 4 & HOLDING = 1 & IS-SMILING

& BODY-SHAPE

JACKET-COLOR = 4 & BODY-SHAPE = 2 |

& JACKET-COLOR = 3 & BODY-SHAPE = 2 |

IS-SMILING = 2 & BODY-SHAPE = 2 & JACKET-COLOR

BODY-SHAPE = 2 & HEAD-SHAPE = 3 & JACKET-COLOR

P(0'] = 1/2)

& HEAD-SHAPE = 1 |
I
& BODY-SHAPE = 2 & HEAD-SHAPE = 2 |
& HEAD-SHAPE = 2 |
BODY-SHAPE = 3 & HEAD-SHAPE = 3 |

HAS-TIE = 2 & HEAD-SHAPE = 3 & BODY-SHAPE = 3
a==> CLASS '1’ (P[’1’] = 1/2)

DEFAULT ===> CLASS ’0’ (P{’0’] = 1/2)

CN2

=um> CLASS '1’
BODY-SHAPE = 3
HEAD-SHAPE = 3
HEAD-SHAPE = 2
=mm> CLASS '1’
===> CLASS '1°
===> CLASS 0’
==m> CLASS '1’
=a=> CLASS '0’
===> CLASS ’0’

JACKET-COLOR = 1
HEAD-SHAPE = 2 &
BODY-SHAPE = &t &
BODY-SHAPE = 1 &
BODY-SHAPE = 1
HEAD-SHAPE = 2
BODY-SHAPE = 2
HEAD~SHAPE = 3
HAS-TIE = 2
HAS-TIE =

===> CLASS
===> CLASS
===> CLASS

0!
'Q?
'0°?

DEFAULT w===> C(CLASS 0’

=3
& HEAD-SHAPE = 2 & JACKET-COLOR = 4

=3
=2

2
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Accuracy

Algorithm | Training Set 1 | Training Set 2 Training Set 3
ID3 100.00 100.00 100.00
ID3 no w. 100.00 100.00 100.00
ID5R 100.00 100.00 100.00
AQR 100.00 100.00 100.00
CN2 100.00 92.90 100.00

Algorithm | Test Set 1 | Test Set 2 | Test Set 3
1D3 98.56 67.92 94.44
ID3 no w. 83.24 69.12 95.60
ID5R 79.77 69.23 95.28
AQR 95.88 79.63 87.04
[ CN2 100.00 68.98 89.12

Results of CLASSWEB

The results of CLASSWEB have not been integrated into the tables above, because an accuracy as for the
other algorithms cannot be defined. This is due to the fact, that CLASSWEB uses unclassified instances
as input and thus does not have any information about classes in the resulting concepts either. For that
reason there is only a small probability that CLASSWEB generates concepts that have something to do
with the concepts the user expected. Indeed it was not possible to find the structure of the given concepts
in the automatically generated concept class. To determine the ’human-machine’ concept similarity we
built up the concept hierarchies with our CLASSWEB algorithm and then determined the concept for
each example. For each concept class we then calculated the number of positive and negative examples
covered by that concept. The maximum of both, which represents the amount of human-class-similarity
In one concept was summed up and divided by the total number of examples. The resulting value is
given in the tables below and can be interpreted as the overall percentage of covering one class by one
particular concept. This can not be interpreted as an accuracy.

Training Set 1 Training Set 2 | Training Set 3
63.71 64.50 72.13

Test Set 1 | Test Set 2 | Test Set 3
59.49 67.36 65.28
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6.4 Conclusion

It also has to be mentioned that some important capabilities of the algorithms have not been tested and
compared by using the given learning problems. These are for example the handling of noise in specific
attributes, of costs for determining attribute values and of unknown attribute values in ID3 and ID5R.
The incremental nature of ID5R was not really needed in these test cases because all examples were given
in advance. The ability to handle unknown attribute values in AQR and CN2 was not used either.

The results of CLASSWEB have to be interpreted carefully, because it differs in nature from the other
compared learning algorithms. Possibilities like predicting unknown attribute values by CLASSWEB

were not used.
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6.5 Classification diagrams
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Result of ID3 on test set No. 2
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Result of ID3 on test set No. 3
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Result of ID3JOW on test set No. 1
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Result of ID3OW on test set No. 2
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Result of ID3OW on test set No. 3
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Result of ID5R on test set No. 1
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Result of ID5R on test set No. 2
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Result of ID5R on test set No. 3
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Result of AQR on test set No. 1
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Result of AQR on test set No. 2
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Result of AQR on test set No. 3
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Result of CN2 on test set No.
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Result of CN2 on test set No. 2
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Comparison of Inductive Learning Programs

Result of CN2 on test set No. 3
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7.1 Short Description

PRISM was invented by Jadzia Cendrowska (1987). Based on Quinlan’s induction algorithm ID3, PRISM
pays attention to maximizing he information gain for a single value of an atribute in contrast to ID3 which
tries to minimize the average entropy for an attribute-value pair.

7.2 Introduction

The decision tree output of ID3 algorithm is one of its major weaknesses. Not only can it be incomprehen-
sible and difficult to manipulate, but its use in knowledge based systems frequently demands irrelevant
information to be supplied. We argue that the problem lies in the induction algorithm itself and can
only be remedied by radically altering the underlying strategy. The resulting algorithm, although based
on ID3, uses a different induction strategy to induce rules which are modular in the sense how they are
constructed. This approach avoids many of the problems associated with decision trees.

7.3 PRISM: Entropy versus Information Gain

The main cause of the problem described above is either that an attribute is highly relevant to only one
classification and irrelevant to the others, or that only one value of the attribute is relevant.

There can be shown that while in the construction process of a decision tree although e.g. the entropy
of a distinct branch d1 has been reduced to 0, the entropy of the other branch has actually increased
to some higher entropy-measure. Attribute d would be chosen by ID3 because it minimizes the average
entropy of the training set, or alternatively, it maximizes the average amount of information contributed
by an attribute to the determination of any classifiaction.

In order to eliminate the use of irrelevant values of attributes and attributes which are irrelevant to a
classification, an improving algorithm needs to maximize the actual amount of information contributed
by knowing the VALUE of the attribute to the determination of a specific classification.

7.3.1 Maximizing the information gain

So, the task of an induction algorithm must be to find the attribute-value pair, ax, which contributes the
most information about a specified classification, dn, i.e. for which I(dn | ax) is maximum.

This can be done in the following way: Let S be the data set; first find the ax for which p(dn — ax) is
maximum. Lets call the choosen attribute ¢2 (=attribute ¢, value 2). Repeat now the process on a subset
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of S which contains only those instances which have value 2 for attribute c until there are all instances
removed.

7.3.2 Trimming the tree

The remaining "branches” are not yet labelled, so the next step in the induction process is to identify
the best rule of the set of instances which are not examples of the first rule. This is done by removing
from S all instances containing this rule and applying the algorithm to the remaining instances. If this is
repeated until there are no instances of class d1 left in S, the result is not a decision tree but a collection
of branches. The whole process can then be repeated for each classification in turn, starting with the
complete training set, S, each time.

The final output is an unordered collection of modular rules, each rule being as general as possible, thus
ensuring that there are no redundant terms.

The following assumptions have been made about the training set:

[ ]

the classifications are mutually exclusive

there is no noise, i.e. each instance is complete and correct

e each instance can be classified uniquely

no instance is duplicated

the values of the attributes are discrete

the training set is complete, i.e. all possible combinations of attribute-value pairs are represented

Given that the assumptions above hold, the algorithm produces a complete set of correct rules.

7.4 The Basic Algorithm

If the training set contains instances of more than one classification, then for each classification, dn, in
turn:

Step 1:
calculate the probability of occurence, p(dn — ax), of the classification dn for each attribute-value pair

ax,
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Step 2:
select the ax for which p(dn — ax) is a maximum and create a subset of the training set comprising all
the instances which contain the selected ax,

Step 3:
repeat Steps 1 and 2 for this subset until is contains only instances of class dn. The induced rule is a
conjunction of all the attribute-value pairs used in creating the homogeneous subset.

Step 4:
remove all instances covered by this rule from the training set.

Step 5:
repeat Steps 1-4 until all instances of class dn, have been removed.

When the rules for one classification have been induced, the training set is restored to its initial state
and the algorithm is applied again to induce a set of rules covering the next classification. As the
classifications are considered separately, their order of presentation is immaterial. If all instances are of
the same classification then that classification is returned as the rule, and the algorithm terminates.

7.5 The Use of Heuristics

Opting for generality I: If there are two or more rules describing a classification, PRISM tries to induce
the most general rule first. Thus PRISM selects that attribute-vajue pair which has the highest frequency
of occurence in the set of instances being considered.

Opting for generality II: When both the information gain offered by two or more attribute-value pairs is
the same and the numbers of instances referencing them is the same, PRISM selects the first.

7.6 General Considerations and a Comparison with ID3

A rule will not be induced by PRISM if there are no examples of it in the training set, but this applies
to all induction programs. Even human beings cannot be expected to induce rules from non-existent
information.

The accuracy of rules induced from an incomplete training set depends on the size of that training set
(as with all induction algorithms) but is comparable to the accuracy of a decision tree induced by ID3
from the same training set, despite the gross reduction in number and length of the rules.

The major difference between ID3 and-PRISM is that PRISM concentrates on finding only relevant
values of attributes, while ID3 is concerned with finding the attribute which is most relevant overall, even
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though some values of that attribute may be irrelevant. All other differences between the two algorithms
stemn form this: [D3 divides a training set into homogeneous subsets without reference to the class of this

subset, whereas PRISM must identify subsets of a specific class. This has the disadvantage of slightly

incresed computational effort, but the advantage of an output in the form of modular rules rather than

a decision tree.

7.7 Implementation

Version: 0.9
Status: Experimental

Language: Common Lisp
Authors: Lindsey Spratt (spratt@hawk.cs.ukans.edu), Spring 1990,
modified by Stefan F. Keller (keller@ifi.unizh.ch), Summer 1991.

References

- Cendrowska, Jadzia (1987); PRISM: An algorithm for inducing modular rules, in: Int. Journal of
Man-Machine Studies, Vol. 26, Nr.1,2,4, Vol.27, Nr.2,3,4.

- Cendrowska, Jadzia (1988); PRISM: An algorithm for inducing modular rules, in: B.R.Gaines &
J.H.Boose (eds.), Knowledge Acquisition for Knowledge-Based Systems, Academic Press, 253-274.



126 S. Keller

7.8 Results on Running PRISM on the MONK’s Test Sets

TEST PLATFORMS:
Mac: Macintosh Allegro Common Lisp 2.0b2, Macintosh IIci, 4MB memory
Sun: Franz Allegro Common Lisp 4.0.1, Sun sparc/320, 24MB memory

TEST SET L:

No. of trainig-examples: 124

No. of test-examples: 432

No. of rules induced: 29

Covered test-examples: 86Mac run time: 80.14s, 85.10s, 80.43s, 81.10s, 80.05s
Sun run time: 23.30s, 22.80s, 23.50s, 23.12s, 23.08s

Average run time on Sun: 23.16s

TEST SET 2:

No. of trainig-examples: 169 .

No. of test-examples: 432

No. of rules induced: 73

Covered test-examples: 73Mac run time: (409.26s)

Sun run time: 121.50s, 122.50s, 120.75s, 122.18s, 121.00s
Average run time on Sun: 121.58s

TEST SET 3:

No. of trainig-examples: 122

No. of test-examples: 432

No. of rules induced: 26

Covered test-examples: 90Mac run time: (59.63s)
Sun run time: 16.77s, 17.00s, 16.63s, 16.60s, 17.30s
Average run time on Sun: 16.86s
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7.8.1 Test Set 1 — Rules

(RULE-1

(IF  ((jacket_color 1)))

(THEN (class 1)))
(RULE-2

(IF  ((head_shape 3) (body_shape 3)))

(THEN (class 1)))
(RULE-3

(IF  ((holding 1) (body_shape 2) (head_shape 2)))

(THEN (class 1)))
(RULE-4

(IF  ((body_shape 1) (head_shape 1)))

(THEN (class 1)))
(RULE-S

(IF  ((body_shape 2) (head_shape 2)))

(THEN (class 1)))
(RULE-~-6

(IF ((head_shape 1) (jacket_color 4) (body_shape 3)))

(THEN (class 0)))
(RULE=-7

(IF  ((jacket_color 2)

(THEN (class 0)))
(RULE-8

(IF  ((jacket_color 3)

(THEN (class 0)))
(RULE-9

(IF ((jacket_color 3)

(THEN (class 0)))
(RULE-10

(IF  ((jacket_color 2)

(THEN (class 0)))
(RULE-11

(IF  ((jacket_color 4)

(THEN (class 0)))
(RULE-12

(IF  ((jacket_color 3)

(THEN (class 0)))
(RULE-13

(IF  ((jacket_color 3)

(THEN (class 0)))
(RULE-14

(IF  ((jacket_color 2)

(THEN (class 0)))
(RULE-15

(holding 2) (has_tie 2)))

(has_tie 1) (holding 3)))

(holding 2) (head_shape 1) (has_tie 2)))

(head_shape 1) (body_shape 3)))

(body_shape 1) (head_shape 2)))

(has_tie 1) (body_shape 3)))

(has_tie 1) (head_shape 2) (body_shape 1)))

(is_smiling 2) (holding 3) (body_shape 1)))

(IF  ((head_shape 1) (body_shape 2) (is_smiling 2)))

(THEN (class 0)))
(RULE-16

(IF  ((jacket_color 3) (is_smiling 2) (head_shape 2) (body.shape 3)))

(THEN (class 0)))
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(RULE-17
(IF  ((jacket_color 2) (is_smiling 2) (head_shape 2) (body_shape 1)))
(THEN (class 0)))
(RULE-18
(IF  ((jacket_color 4) (head_shape 1) (is_smiling 1)))
(THEN (class 0)))
(RULE-19
(IF  ((jacket_color 2) (holding 2) (body_shape 3)))
(THEN (class 0)))
(RULE-20
(IF  ((jacket_color 3) (body_shape 2) (head_shape 1)))
(THEN (class 0)))
(RULE-21
(IF  ((jacket_color 2) (body_shape 2) (head_shape 1)))
(THEN (class 0)))
(RULE-22
(IF  ((jacket_color 4) (is_smiling 1) (body_shape 2) (head_shape 3)))
(THEN (class 0)))
(RULE-23
(IF  ((jacket_color 3) (head_shape 3) (body_shape 1)))
(THEN (class 0)))
(RULE-24
(IF  ((jacket_color 2) (head_shape 3) (body_shape 1)))
(THEN (class 0)))
(RULE-2S
(IF  ((jacket_color 3) (holding 1) (head_shape 3) (body_shape 2)))
(THEN (class 0)))
(RULE-26
(IF ((jacket_color 4) (holding 3) (has_tie 1) (head_shape 3)))
(THEN (class 0)))
(RULE-27
(IF  ((holding 3) (jacket_color 4) (is_smiling 1) (body_shape 3) (head_shape 2)))
(THEN (class 0)))
(RULE-28
(IF  ((jacket_color 3) (body_shape 1) (head_shape 2)))
(THEN (class 0)))
(RULE-29
(IF  ((jacket_color 2) (is_smiling 2) (holding 3) (has_tie 1)))
(THEN (class 0)))
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7.8.2 Test Set 2 — Rules

(RULE-1
(IF  ((holding 1) (jacket_color 1) (has_tie 1)))
(THEN (class 0)))

(RULE-2
(IF  ((jacket_color 4) (body_shape 1) (has_tie 1)))
(THEN (class 0)))

(RULE-3
(IF  ((head_shape 1) (holding 1) (is_smiling 1)))
(THEN (class 0)))

(RULE-4
fIF  ((jacket_color 4) (body_shape 3) (is_smiling 2)))
(THEN (class 0)))

(RULE-S
(IF  ((jacket_color 3) (is_smiling 2) (holding 2) (has_tie 2)))
(THEN (class 0)))

(RULE-6 .
(IF  ((has_tie 1) (head_shape 1) (is_smiling 1)))
(THEN (class 0)))

(RULE-7
(IF  ((holding 1) (head_shape 1) (has_tie 1)))
(THEN (class 0)))

(RULE-8
(IF ((head_shape 2) (has_tie 2) (body_shape 2) (is_smiling 2)))
(THEN (class 0)))

(RULE~-9
(IF  ((jacket_color 1) (is_smiling 1) (body_shape 1)))
(THEN (class 0)))

(RULE-10
(IF  ((jacket_color 3) (is_smiling 2) (holding 3) (has_tie 2)))
(THEN (class 0)))

(RULE-11
(IF  ((holding 1) (jacket_color 1) (is_smiling 1)))
(THEN (class 0)))

(RULE-12
(IF  ((is_smiling 2) (jacket_color 2) (body_shape 2)))
(THEN (class 0)))

(RULE-13
(IF  ((jacket_color 3) (has_tie 1) (body_shape 1)))
(THEN (class 0)))

(RULE-14
(IF  ((jacket_color 1) (head_shape 1) (body_shape 1)))
(THEN (class 0)))

(RULE-15
(IF  ((head_shape 2) (holding 2) (jacket_color 4)))
(THEN (class 0)))

(RULE-16
(IF ((jacket_color 3) (head_shape 3) (body_shape 3) (has_tie 1)))
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(THEN (class 0)))
(RULE-17 '
(IF  ((head_shape 2) (holding 2) (body_shape 3) (jacket_color 2)))
(THEN (class 0)))
(RULE-18
(IF  ((holding 3) (is_smiling 2) (jacket_color 4) (has_tie 2)))
(THEN (class 0)))
(RULE~-19
(IF  ({jacket_color 1) (is_smiling 1) (has_tie 1)))
(THEN (class 0)))
(RULE-20
(IF  ((jacket_color 3) (head_shape 2) (is_smiling 2) (holding 2)))
(THEN (class 0)))
(RULE-21
(IF  ((jacket_color 3) (head_shape 2) (has_tie 2) (holding 2)))
(THEN (class 0)))
(RULE=-22
(IF  ((jacket_color 3) (head_shape 3) (body_shape 2) (has_tie 2) (holding 3)))
(THEN (class 0)))
(RULE-23
(IF  ((holding 1) (is_smiling 1) (has_tie 1)))
(THEN (class 0)))
(RULE-24
(IF  ((holding 3) (is_sailing 2) (head_shape 2) (jacket_color 2)))
(THER (class 0)))
(RULE-25
(IF  ((jacket_color 1) (head_shape 1) (is_smiling 1)))
(THEN (class 0)))
(RULE-26
(IF  ((is_smiling 2) (holding 3) (body_shape 3) (jac. _color 3)))
(THEN (class 0)))
(RULE-27
(IF  ((head_shape 3) (body_shape 3) (jacket_color 2)))
(THEN (class 0)))
(RULE-28
(IF  ((body.shape 1) (jacket_color 1) (has_tie 1)))
(THEN (class 0)))
(RULE-29
(IF  ((jacket_color 3) (head_shape 3) (holding 2) (body_shape 3)))
(THEN (class 0)))
(RULE-30
(IF  ((holding 1) (body_shape 1) (is_smiling 1)))
(THEN (class 0)))
(RULE-31
(IF  ((body_shape 2) (jacket_color 3) (has_tie 2) (is_smiling 2)))
(THEN (class 0)))
(RULE-32
(IF  ((holding 3) (is_smiling 2) (jacket_color 2) (has_tie 2) (head_shape 3)))
(THEN (class 0)))
(RULE-33
(IF  ((body_shape 2) (holding 3) (jacket_color 1) (head_shape 1) (has_tie 1)))
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(THEN (class 0)))
(RULE-34
(IF  ((jacket_color 3) (holding 3) (head_shape 2) (has_tie 2)
(THEN (class 0)))
(RULE-35
(IF  ((jacket_color 2) (is_smiling 1) (body_shape 2)))
(THEN (class 1)))
(RULE-36

(body_shape 2)))

(IF  ((jacket_color 2) (body_shape 1) (head_shape 3) (is_smiling 1)))

(THEN (class 1)))

(RULE-37
(IF  ((holding 3) (body_shape 3) (jacket_color 1)))
(THEN (class 1)))

(RULE-38
(IF  ((jacket_color 2) (body_shape 1) (is_smiling 2) (has_tie
(THEN (class 1)))

(RULE-39
(IF  ((jacket_color 3) (is_smiling 1) (has_tie 2) (body_shape
(THEN (class 1)))

(RULE-40
(IF  ((body_shape 2) (jacket_color 4) (is_smiling 1) (has_tie
(THEN (class 1)))

(RULE-41
(IF  ((jacket_color 3) (body._shape 2) (head_shape 1) (has_tie
(THEN (class 1)))

(RULE-42
(IF  ((body_shape 3) (jacket_color 2) (holding 3) (head_shape
(THEN (class 1)))

(RULE-43
(IF  ((head_shape 2) (has_tie 1) (body_shape 3) (jacket_color
(THEN (class 1)))

(RULE-44

n»

v»

2)))

2) (is_smiling 1)))

1))

4)))

(IF  ((head_shape 2) (has_tie 1) (body_shape 3) (holding 1) (is_smiling 2)))

(THEN (class 1)))

(RULE-45
(IF  ((holding 2) (jacket_color 1) (is_smiling 2)))
(THEN (class 1)))

(RULE-46

(IF  ((jacket_color 3) (holding 1) (has_tie 2) (body_shape 1)))

(THEN (class 1)))

(RULE-47
(IF  ((holding 3) (has_tie 1) (body_shape 2) (jacket_color 3)
(THEN (class 1)))

(RULE-48

(is_smiling 2)))

(IF  ((has_tie 2) (body_shape 1) (jacket_color 2) (holding 2)))

(THEN (class 1)))
(RULE-49

(IF  ((has_tie 2) (body_shape 1) (jacket_color 2) (is_smiling 2) (holding 1)))

(THEN (class 1)))
(RULE-S0

(IF  ((holding 3) (jacket_color 1) “(is_smiling 2) (head_shape 3)))
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(THEN (class 1)))
(RULE-51
(IF  ((jacket_color 3) (is_smiling 1) (head_shape 2) (holding 2) (has_tie 1)))
(THEN (class 1)))
(RULE-52
(IF  ((has_tie 2) (head_shape 1) (jacket_color 2) (holding 2)))
(THEN (class 1)))
(RULE-53
(IF  ((body_shape 2) (jacket_color 4) (has_tie 1) (head_shape 2)))
(THEN (class 1)))
(RULE-54
(IF  ((has_tie 2) (head_shape 1) (jacket_color 4) (body_shape 1)))
(THEN (class 1)))
(RULE-5S
(IF  ((jacket_color 3) (holding 1) (has_tie 2) (is_smiling 1) (head_shape 3)))
(THEN (class 1)))
(RULE-56
(IF  ((holding 3) (jacket_color 2) (is_smiling 1) (head_shape 2)))
(THEN (class 1)))
(RULE-57
(IF  ((body_shape 2) (has_tie 1) (jacket_color 3) (holding 3) (head_shape 2)))
(THEN (class 1)))
(RULE-58
(IF  ((has_tie 2) (head_shape 1) (holding 3) (jacket_color 2)))
(THEN (class 1)))
(RULE-59
(IF  ((body_shape 2) (has_tie 1) (jacket_color 4) (is_smiling 2) (holding 2)))
(THEN (class 1)))
(RULE-60
(IF  ((has_tie 2) (body_shape 3) (head_shape 1) (holding 3)))
(THEN (class 1)))
(RULE-61
(IF  ((jacket_color 3) (head_shape 1) (has_tie 2) (body_shape 3)
(is_smiling 1) (holding 2)))
(THER (class 1)))
(RULE-62
(IF  ((body_shape 2) (jacket_color 1) (is_smiling 2) (has_tie 2)))
(THEN (class 1)))
(RULE-63
(IF  ((jacket_color 3) (holding 1) (has_tie 2) (body_shape 3) (is_smiling 2)))
(THEN (class 1)))
(RULE-64
(IF  ((body_shape 2) (has_tie 1) (jacket_color 3) (is_smiling 2) (head_shape 1)))
(THEN (class 1)))
(RULE~65
(IF  ((head_shape 3) (jacket_color 4) (holding 2) (has_tie 2)))
(THEN (class 1)))
(RULE-66
(IF  ((jacket_color 1) (head_shape 2) (is_smiling 2) (has_tie 2)))
(THEN (class 1)))
(RULE-67
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(IF  ((body_shape 2) (head_shape 3) (is_smiling 1) (holding 2)))
(THEN (class 1)))
(RULE-68
(IF  ((body.shape 2) (has_tie 1) (holding 3) (is_smiling 2) (jacket_color 4)))
(THEN (class 1)))
(RULE-69
(IF  ((jacket_color 3) (holding 1) (has_tie 2) (is_smiling 1) (head_shape 2)))
(THEN (class 1)))
(RULE-70
(IF  ((head_shape 3) (jacket_color 3) (has_tie 1) (holding 3)))
(THEN (class 1)))
(RULE-T1
(IF  ((head_shape 3) (jacket_color 4) (holding 1) (has_tie 2)))
(THEN (class 1)))
(RULE-72
(IF  ((body_shape 2) (has_tie 1) (is_smiling 2) (jacket_color 3) (holding 1)))
(THEN (class 1)))
(RULE-73
(IF  ((jacket_color 1) (holding 3) (head_shape 2) (body_shape 2)))
(THEN (class 1)))
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7.8.3 Test Set 3 — Rules

(RULE-1
(IF  ((body_shape 2) (jacket_color 1)))
(THEN (class 1)))

(RULE-2
(IF  ((jacket_color 2) (body_shape 1)))
(THEN (class 1)))

(RULE-3
(IF  ((body_shape 2) (jacket_cslor 2) (head_shape 1)))
(THEN (class 1)))

(RULE-4
(IF  ((jacket_color 3) (holding 1) (body_shape 2)))
(THEN (class 1)))

(RULE-5
(IF  ((body_shape 1) (jacket_color 1)))
(THEN (class 1)))

(RULE~6
(IF  ((jacket_color 3) (body_shape 1) (has_tie 2)))
(THEN (class 1)))

(RULE-7
(IF  ((body_shape 2) (jacket_color 2) (has_tie 2)))
(THEN (class 1)))

(RULE-8
(IF  ((jacket_color 3) (holding 1) (body_shape 3)))
(THEN (class 1)))

(RULE-9
(IF  ((jacket_color 3) (body_shape 1) (is_smiling 2)))
(THEN (claas 1)))

(RULE-10
(IF  ((jacket_color 3) (body_shape 2) (is_smiling 2)))
(THEN (class 1)))

(RULE-11
(IF  ((jacket_color 3) (head_shape 3) (is_sailing 1)))
(THEN (class 1)))

(RULE-12
(IF  ((body_shape 2) (head_shape 1) (has_tie 2) (is_smiling 1)))
(THEN (class 1)))

(RULE~13
(IF  ((head_shape 3) (holding 1) (is_smiling 1) (body_shape 3)))
(THEN (class 1)))

(RULE-14
(IF  ((jacket_color 4) (has_tie 2)))
(THEN (class 0)))

(RULE-15
(IF ((jacket_color 4) (head_shape 1)))
(THEN (class 0)))

(RULE-16 .
(IF  ((body_shape 3) (is_smiling 2)))
(THEN (class 0)))
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(RULE-17
(IF  ((jacket_color 4) (holding 3)))
(THEN (class 0)))
(RULE-18
(IF  ((body_shape 3) (holding 3)))
(THEN (class 0)))
(RULE-19
(IF  ((jacket_color 4) (body_shape 1)))
(THEN (class 0)))
(RULE-20
(IF  ((body_shape 3) (holding 2)))
(THEN (class 0)))
(RULE-21
(IF  ((jacket_color 4) (body_shape 2)))
(THEN (class 0)))
(RULE-22
(IF  ((body_shape 3) (head_shape 1)))
(THEN (class 0)))
(RULE-23
(IF  ((jacket_color 3) (is_smiling 1) (head_shape 1) (body_shape 1)))
(THEN (class 0)))
(RULE-24
(IF  ((jacket_color 3) (holding 3) (head_shape 2) (body_shape 2)))
(THEN (class 0)))
(RULE-25
(IF  ((holding 2) (has_tie 1) (is_smiling 1) (body_shape 2) (head_shape 2)))
(THEN (class 0)))
(RULE-26
(IF  ((jacket_color 3) (holding 2) (head_shape 1)))
(THEN (class 0)))
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7.9 Classification diagrams

Result of PRISM on test set No. 1
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Result of PRISM on test set No. 2
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Result of PRISM on test set No. 3
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8.1 Introduction

This paper briefly describes the results of the plain backpropagation algorithm {1] obtained on the three MONK’s
problems. Backpropagation is a function approximation algorithm for multilayer feed-forward perceptrons based
on gradient descent. Conversely to many symbolic learning algorithms, backpropagation learns functions by
nonlinear approximations. This technique has been successfully applied to a variety of real-world problems like
speech recognition, bomb detection, stock market prediction etc.

Although muitilayer networks represent continuous functions, they are quite often restricted to binary classification
tasks as the MONK’s problems. In all three cases we used the following architecture: There were 17 input units,
all having either value 0 or 1, corresponding to which attribute-value was set. All input units had a connection
to 2 hidden units, which itself had a connection to the output unit. An input was classified as class member if

the output, which is naturally restricted to ]0, 1{, was > .5.
The results are shortly summarized by:

[ accuracy
MONK's # 1 | 91.7%
MONK’s # 2 | 100%
MONK’s # 3 | 87.7%

The learned classes are visualized in the following three diagrams:
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8.2 Classification diagrams
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Results of BACKPROP on test set 2
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Results of BACKPROP on test set 3
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8.3 Resulting weight matrices

MONKS’s problem # 1: weights and biases

to-node
from-node hidden_1 hidden 2 output
input.l (head_shape round) -11.497804 -0.816155
input_2 (head_shape square) 2.270476 0.850737
input_3 (head shape octagon) 8.328228 0.830791
input_4 (body.shape round) -11.950109 -4.841933
input_5 (body.shape square) 13.642350  8.683802
input_6 (bodyshape octagon) || -1.446303 .3.217279
input.7 (is_smiling yes) 0.145956 0.270281
input.8 (is_smiling no) -0.281478  0.252456
input.9 (holding sword) 0.309568 0.016335
input.-10 (holding balloon) 0.024776 0.079897
input_11 (holding flag) -0.143636  0.032427
input.12 (jacket_color red) 7.599377  -8.896360
input_13 (jacket_color yellow) -2.220987  3.177385
input_14 (jacket_color green) -2.884973 3.121367
input.15 (jacket_color blue) -1.911483  3.179718
input.16 (has.tie yes) 0.186731 0.180876
input.17 (has_tie no) -0.142039 0.173498
bias 0.340921 0.450262
hidden 1 ‘T_ 24.172497
hidden .2 -35.035843
[ bias 11.738854 |
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MONKS’s problem # 2: weights and biases
to~-node
from-node hidden.1  hidden_2 output
input_1 (head_shape round) -4.230213  3.637149
input2 (head _shape square) 1.400733  -2.577242
input_3 (head_shape octagon) 1.479862  -2.492254
input.4 (body_shape round) -4.363966  3.835199
input.5 (body shape square) 1.154510  -2.347489
input.6 (body.shape octagon) || 1.542958 -2.227530
input.7 (is_smiling yes) -3.396133  2.984736
input_8 (is_smiling no) 1.868955  -2.994535
input.9 (holding sword) -4.041057  4.239548
input.10 (holding balloon) 1.293933  -2.195403
input.11 (holding flag) 1.160514  -2.272035
input_12 (jacket_color red) -4.462360  4.451742
input_13 (jacket_color yellow) 0.749287 -1.869545
input_14 (jacket_color green) 0.640353 -1.727654
input._15 {jacket_color blue) 1.116349  -1.332642
input_16 (has_tie yes) -3.773187  3.290737
input_17 (has_tie no) 1.786105  -3.296139
bias -1.075762  -0.274980
hidden 1 -11.038625
hidden 2 -9.448544
bias 5.0313%5
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MONKS’s problem # 3: weights and biases

to-node
from-node hiddenl ~ hidden2 | output
input_l (head _shape round) 0.289323 -1.699048 ]

input_2 (head shape square) 0.362874 -8.404805
input_3 (head_shape octagon) 2.376665 4.989420
input.4 (body_shape round) -8.085952 3.107904

input_5 (body-shape square) 0.469876 12.290827
input_6 (body_shape octagon) || 10.788216 -19.197418
input_7 (is_smiling yes) 0.998298 -8.935371
input_8 (issmiling no) 2.894973 4.401900
input.9 (holding sword) 4.283379 4.033230
input_10 (holding balloon) 1.615812  -5.180389
input_11 (holding flag) -2.107015  -2.652152
input_12 (jacket_color red) -8.990289 0.162749

input_13 (jacket _color yellow) -1.135560  12.240005
input_14 (jacket_color green) 4.198663 5.653207

input.15 (jacket_color blue) 10.960098 -21.990112

input_16 (has_tie yes) ] -0.391244  -4.312347

input.17 (has.tie no) -0.391244  -0.212025

bias 3.979607 -4.687716

hidden 1 -12.178342 |
hidden 2 20.635145
bias 9.146520
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9.1 The Cascade-Correlation algorithm

Cascade-Correlation {Fahlman, 1990] is a supervised neural network learning architecture that builds a near-
minimal multi-layer network topology in the course of training. Initially the network contains only inputs, output
units, and the connections between them. This single layer of connections is trained (using the Quickprop
algorithm [Fahlman, 1988]) to minimize the error. When no further improvement is seen in the level of error, the
network’s performance is evaluated. If the error is small enough, we stop. Otherwise we add a new hidden unit
to the network in an attempt to reduce the residual error.

To create a new hidden unit, we begin with a pool of candidate units, each of which receives weighted connections
from the network’s inputs and from any hidden units already present in the net. The outputs of these candidate
units are not yet connected into the active network. Multiple passes through the training set are run, and each
candidate unit adjusts its incoming weights to maximize the correlation between its output and ‘the residual error
in the active net. When the correlation scores stop improving, we choose the best candidate, freeze its incoming
weights, and add it to the network. This process is called “tenure.” After tenure, a unit becomes a permanent
new feature detector in the net. We then re-train all the weights going to the output units, including those from
the new hidden unit. This process of adding a new hidden unit and re-training the output layer is repeated until
the error is negligible or we give up. Since the new hidden unit receives connections from the old ones, each
hidden unit effectively adds a new layer to the net. (See figure 1.)

Cascade-correlation eliminates the need for the user to guess in advance the network’s size, depth, and topology.
A reasonably small (though not minimal) network is built automatically. Because a hidden-unit feature detector,
once built, is never altered or cannibalized, the network can be trained incrementally. A large data set can be
broken up into smaller “lessons,” and feature-building will be cumulative.

Cascade-Correlation learns much faster than backprop for several reasons: First only a single layer of weights is
being trained at any given time. There is never any need to propagate error information backwards through the
connections, and we avoid the dramatic slowdown that is typical when training backprop nets with many layers.
Second, this is a “greedy” algorithm: each new unit grabs as much of the remaining error as it can. In a standard
backprop net, the all the hidden units are changing at once, competing for the various jobs that must be done—a
slow and sometimes unreliable process.
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9.2 Results

For all these problems I used the standard Common Lisp implementation of Cascade-Correlation on a Decstation
3100. This code is public-domain and is available to outside users via anonymous FTP. Contact sef@cs.cmu.edu
for details.

I used the same parameters in all of these tests. Here is the printout of those parameters:

SigOff 0.10 WtRng 1.00 WiMul 1.00
OMu 2.00 OEps 1.00 ODcy 0.0000 OPat 20 OChange 0.010
IMu 2.00 IEps 1.00 IDcy 0.0000 IPat 15 IChange 0.030

Utype :GAUSSIAN  Otype :SIGMOID RawErr NIL  Pool 8
(train 100 100 10)

9.2.1 Monk #1I1:

After 95 epochs, 1 hidden unit: 0 Errors on training set. 0 Errors on test set.
Elapsed real time: 5.11 seconds

9.2.2 Monk #2:

After 82 epochs, 1 hidden unit: 0 Errors on training set. 0 Errors on test set.
Elapsed real time: 7.75 seconds

9.2.3 Monk #3:

After 259 epochs, 3 hidden units: 0 Errors on training set. 40 errors on test set (i.e. accuracy 95.4%).
Elapsed real time 12.27 seconds.

Training and test-set performance was tested after each output-training phase. The minimum test-set error was
observed after the initial output-training phase, before any hidden units were added. (Not surprising, since with
no noise this problem is linearly separable.) Using any sort of cross-validation system, this is where the algorithm
would stop.

At that point, the results were as follows:

Training: 7 of 122 wrong:
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Head: RND Body: RND  Smile: Y Holding: SWD  Jacket: GRN Tie: Y Output: T

Head: RND Body: SQR  Smile: Y Holding: BAL  Jacket: GRN Tie: Y Output: T

Head: SQR  Body: SQR  Smile: Y Holding: BAL Jacket: YEL Tie: Y Output: T

Head: SQR  Body: SQR  Smile: Y Holding: FLG Jacket: GRN  Tie: N Output: T

Head: SQR  Body: OCT  Smile: Y Holding: SWD  Jacket: GRN  Tie: Y Output: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: GRN Tie: N Output: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: BLU Tie: Y Output: NIL

Test: 14 of 432 wrong:

Head: RND Body: OCT Smile: Y Holding: SWD  Jacket: Gi-N Tie: Y Output: NIL
Head: RND Body: OCT Smile: Y Holding: SWD  Jacket: GRN  Tie: N Output: NIL
Head: RND Body: OCT  Smile: N Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: RND Body: OCT  Smile: N Holding: SWD  Jacket: GRN Tie: N Output: NIL
Head: SQR  Body: SQR  Smile: Y Holding: BAL Jacket: GRN Tie: Y Output: NIL
Head: SQR  Body: SQR  Smile: Y Holding: FLG  Jacket: GRN Tie: Y Output: NIL
Head: SQR  Body: OCT  Smile: Y Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: SQR  Body: OCT Smile: Y Holding: SWD  Jacket: GRN  Tie: N Qutput: NIL
Head: SQR  Body: OCT Smile: N Holding: SWD  Jacket: GRN  Tie: Y OQutput: NIL
Head: SQR  Body: OCT  Smile: N Holding: SWD  Jacket: GRN  Tie: N Output: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: OCT Body: OCT Smile: Y Hoiding: SWD  Jacket: GRN  Tie: N Output: NIL
Head: OCT Body: OCT Smile: N Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: OCT Body: OCT Smile: N Holding: SWD  Jacket: GRN Tie: N Output: NIL

So on the test set, performance is 96.7%

By turning up the OUTPUT-DECAY parameter to 0.1 (an odd thing to do, but sometimes useful when the
training set is too small for good generalization), we can do a little better. After the initial output-training phase:

Training: 8 of 122 wrong:

Head: RND Body: RND  Smile: Y Holding: SWD  Jacket: GRN Tie: Y OQutput: T
Head: RND Body: SQR  Smile: Y Holding: BAL  Jacket: GRN Tie: Y Output: T
Head: SQR  Body: SQR  Smile: Y Holding: BAL Jacket: YEL Tie: Y Output: T
Head: SQR  Body: SQR  Smile: Y Holding: FLG Jacket: GRN Tie: Y OQutput: T
Head: SQR  Body: SQR  Smile: Y Holding: FLG Jacket: GRN Tie: N Qutput: T
Head: SQR  Body: OCT Smile: Y Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: GRN  Tie: N Output: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: BLU Tie: Y Output: NIL -

Test: 12 of 432 wrong:



The Cascade-Correlation Learning Algorithm 151

Head: RND  Body: OCT Smile: Y Holding: SWD  Jacket: GRN  Tie: Y Output: NIL
Head: RND Body: OCT Smile: Y Holding: SWD  Jacket: GRN  Tie: N Qutput: NIL
Head: RND Body: OCT Smile: N Holding: SWD  Jacket: GRN  Tie: Y Qutput: NIL
Head: RND Body: OCT Smile: N Holding: SWD  Jacket: GRN  Tie: N Output: NIL
Head: SQR  Body: OCT Smile: Y Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: SQR  Body: OCT Smile: Y Holding: SWD  Jacket: GRN Tie: N Qutput: NIL
Head: SQR  Body: OCT Smile: N Holding: SWD  Jacket: GRN Tie: Y Output: NIL
Head: SQR  Body: OCT Smile: N Holding: SWD  Jacket: GRN Tie: N Qutput: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: GRN Tie: Y OQutput: NIL
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: GRN  Tie: N Output: NIL
Head: OCT Body: OCT Smile: N Holding: SWD  Jacket: GRN Tie: Y Qutput: NIL
Head: OCT Body: OCT Smile: N Holding: SWD  Jacket: GRN  Tie: N Output: NIL

Score on test set: 97.2%

We can see here what the problem is: All the bad test-set cases are Green and holding a sword, so they should
be true. But this positive value is not strong enough to offset the negative weight from Octagonal body.

In the training set, there are only two examples showing the green-sword combination overpowering an octagonal
body, and that is apparently not enough to make the point. There are 11 cases showing that octagonal/sword
should be negative and 8 cases showing that octagonal/green should be negative.

If we switch the training and test set, we see how easy it is to solve this problem in the absence of noise and
small-sample fluctuations.

Switching the training and test set: After 16 epochs and 0 hidden units:

Training: 0 of 432 wrong. Test: 6 of 122 wrong.

Head: RND Body: RND Smile: Y Holding: SWD  Jacket: GRN Tie: Y Output: T
Head: RND Body: SQR  Smile: Y Holding: BAL Jacket: GRN Tie: Y Output: T
Head: SQR  Body: SQR Smile: Y Holding: BAL Jacket: YEL Tie: Y Output: T
Head: SQR  Body: SQR  Smile: Y Holding: FLG Jacket: GRN Tie: Y Output: T
Head: SQR  Body: SQR  Smile: Y Holding: FLG  Jacket: GRN Tie: N Output: T
Head: OCT Body: OCT Smile: Y Holding: SWD  Jacket: BLU Tie: Y Qutput: NIL

These, [ believe, are exactly the noise cases deliberately inserted in the original training set. Note that three of
these noise cases are

Square/Square/Yes => NIL (when T is correct)

This explains the other two error cases observed in the first run of this problem. If we look at square/square/yes
cases in the training set, NIL cases outnumber T cases, 5 to 3.
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9.3 Classification diagrams
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