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Abstract

The paper discusses and experimentally
compares five different methods for concept
learning from examples. The first three are
symbolic methods, specifically, a decision tree
learning method (C4.5), a rule learning method
(AQ15), and a constructive rule learning
method (AQ17-HCI). The othér two are non-
symbolic methods, one, a neural net trained by
a backpropagation algorithm, (BpNet), and a
second, classifier system employing a genetic
algorithm (CFS). All methods have been
experimentally applied to various concept
learning problems. This paper reports the first
phase of experiments where concepts to be
learned were proposed by human subjects, and
thus “cognitively oriented.” The second phase
will involve learning other types concepts. To
analyze the performance of the programs, a
diagrammatic visualization system, DIAV, was
employed. DIAV presents learned and target
concepts as images in a planar model of a
multidimensional space, and permits one to
visualize exact error of a learning process. In
several experiments, symbolic methods, in
particular the AQ17-HCI method, consistently
outperformed subsymbolic methods in terms of
both, predictive accuracy and simplicity of
learned descriptions.

Key words: symbolic learning, neural
networks, genetic algorithms, diagrammatic
visualization.

1 Introduction

At present, there is a growing interest in
developing multistrategy systems that integrate
different learning strategies within one system.
From this perspective, it is important to get an
insight into the performance of various learning
methods, and to determine the areas of their
applicability. To this end, this paper reports a
study on comparing the performance of
symbolic and subsymbolic methods on the
same class of problems. Symbolic methods
included in the study are represented by
decision trees algorithm C4.5, decision rule
learning algorithm AQ1S5, and constructive
decision rule learning algorithm AQ17-HCI.
Genetic algorithms were represented by the
CFS classifier system, and neural networks by
the backpropagation algorithm.

An important difference between symbolic and
subsymbolic learning approaches is in the
cognitive aspects of the representation they use.
Knowledge represented by logic-based rules
and decision trees (especially when they are
small) is relatively easy to comprehend. This is
not the case with knowledge represented by
classifier systems or neural networks.
Therefore, to evaluate the applicability of the
methods to different problem areas, three
problem types are distinguished based on the
way they originated:

1) Learning concepts which reflect typical
human descriptions of classes of entities



(“cognitively-oriented” concepts). The concepts
were generated by human subjects, and were in
the form of logic-style expressions.

2) Learning concepts that represent some
technical problems or transformations.

3) Learning concepts generated randomly.

This classification is useful because in some
applications (e.g., in expert systems for human
disease diagnosis) the comprehensibility of the
learned knowledge is a crucial condition; while
in some other applications (e.g., adaptive
control of house temperature) this issue may be
irrelevant. The random concepts are used to test
the ability to learn any type of concepts.

In the first phase of our study, presented here,
we compared various methods on problems of
the first type, specifically, on learning concepts
that are generated by human subjects. The
current study therefore can be viewed as
favoring methods employing symbolic
representations, because such representations
are partially suitable for representing
“cognitively-oriented” concepts. The second
phase is concerned with learning problems of
the second and the third type, e.g., a 6- and 11-
multiplexer, parity functions; text-to-speech
mapping (Sejnowski and Rosenberg, 1987),
and several randomly generated problems,
which will be published in a separate paper.

This study follows several other efforts of
comparing different methods and paradigms.
For example, Fisher and McKusick (1989)
compared ID3 and a neural net using BP
algorithm on the problems of learning
diagnostic rules for thyroid diseases and
soybean plant diseases, and a few artificial
problems. The comparison was based on the
performance accuracy of testing examples and
the training time. Their conclusion was that the
neural net gave a better performance, but
required a significantly longer training time and
more training examples than ID3. Mooney et al
(1989) compared ID3 with perceptron and
backpropagation using the domain of soybean
diseases, chess-end games, audiological
disorders, and the Nettalk data set. Their
conclusion was that the accuracy of classifying
new examples was about the same for all the
three systems, but the neural net performed
better than ID3 when there was noise in the
data. Weiss and Kapouleas (1989) compared

ID3, predictive value maximization, neural net
using BP, and a few statistical methods. They
found that the statistical classifiers performed
consistently better in terms of accuracy in
classifying testing examples. Recently,
Dietterich, Hild and Bakiri (1990) compared
ID3 with a neural net using BP on the task of
text-to-speech mapping. Their major conclusion
was that neural net consistently outperformed
ID3 in terms of the performance accuracy, and
attributed this result to capture better statistical
information by the neural net. In another recent
study, Bergadano et al. (1991) compared
POSEIDON (an extended version of AQ15
using a two-tiered concept representation) with
exemplar-based type and decision tree type
(ASSISTANT) learning programs. Their study
involved two real world problems: labor
contracts and congressional voting.
Descriptions learned by POSEIDON
outperformed those produced by the other
methods, both in terms of performance
accuracy on new examples and in terms of the
description's simplicity.

In the past few years symbolic methods
utilizing various forms of constructive induction
(Michalski, 1978; Rendell and Shesu, 1990)
showed improvement in performance accuracy
and smaller complexity of descriptions learned
over pure selective methods (Pagallo and
Haussler, 1990; Wnek and Michalski, 1991).

This study differs from the studies mentioned
above in that it experimentally analyzes five
different methods. The methods are compared
in terms of the exact error rate (rather than a
statistical estimate), and also in terms of the
complexity of the descriptions learned. The
target and learned concepts are represented
graphically by a novel technique of a
diagrammatic visualization (Wnek & Michalski,
1991). This technique permits one to display an
error image that locates all errors precisely.

The comparison of the methods was done both
in terms of the accuracy of the descriptions
learned, and in terms of their complexity. The
concept of rule complexity of a representation,
or briefly, R-complexity was introduced in
order to have some way to approximate the
“cognitive” complexity of representations
learned by these diverse methods.



2 Learning Systems Compared

As mentioned earlier, the symbolic paradigm
was represented by the AQ15 and AQ17-HCI
rule learning programs, and the C4.5 decision
trees learning program. Of the various neural
net algorithms developed, BpNet, the back-
propagation has been the most popular. The
shell for the classifier system based on genetic
algorithm was developed by R. Riolo (1988).

2.1 Decision tree learning program
C4.5

The C4.5 program is a derivative of the ID3
program (Quinlan, 1986). ID3 builds the
decision tree as the representation for the
concept. Each interior node of the tree is
associated with an attribute value while the leaf
node represents the concept class, which is a
conjunction of the attribute values. The arc from
the interior node represents a value of the
attribute. Each path in the decision tree can then
be considered as a distinct decision rule, which
is mutually exclusive.

The algorithm starts with a training set of
examples belonging to different classes. It
selects a random subset of examples (window)
and compares the information measures of each
attribute. The attribute having the highest score
is selected as the root of the tree. From this it
generates a decision tree, adds misclassified
objects and continues until the trial decision tree
correctly classifies all objects not in the
window. The algorithm iterates until each node
has only events that belong to one class. The
entire process is repeated by default 10 times.

2.2 Rule learning program - AQ1S5

AQ15 generates a set of concept descriptions
from examples of concepts. The descriptions
are in the form of decision rules. They can be
built and optimized according to a variety of
problem dependent criteria (Michalski et al,
1986). The rules are expressed in the
attributional calculus language, VL1 (Michalski
and Larson, 1983). The main procedure of
AQ15 is based on the AQ algorithm that builds
a concept description from a set of positive and
negative examples. Below is a simplified
version of the AQ algorithm:

1. Select a seed example from the set of positive
training examples for a given decision class.

2. Generate a set of alternative most general
rules (a star) that cover the seed & do not cover
negative examples (using the “extension
against" generalization operator).

3. Select the "best rule" from the star, and
remove from the set of training examples those
covered by the rule.

4. If the set of training examples is not empty,
go to step 1, otherwise, repeat the process for
other classes.

The AQ15 has many other procedures and
various control parameters. In all experiments
the preference criterion was to “minimize the
number of rules and the number of conditions
in them.” The other major control parameters
were: “no truncation,” “strict matching,” and
“intersecting covers.”

2.3 Constructive rule learning program
- AQ17-HCI

AQ17-HCI is based on the AQ algorithm and
utilizes a constructive induction method in
which problem-relevant attributes are identified
and/or generated by analyzing consecutively
created inductive hypotheses (Wnek &
Michalski, 1991). The algorithm used in
AQ17-HCI (Hypothesis-driven Constructive
Induction) is:

1. Induce rules for each decision class from a
subset of training examples using AQ15.

2. Analyze the rules to identify irrelevant
attributes and/or attribute values.

3. For each decision class generate one
candidate attribute that corresponds to a
subset of the highest quality rules.

4. Modify training examples by adding newly
generated attributes and removing irrelevant
ones.

Induce rules from the modified training set.

6. Evaluate the predictive accuracy of the rules
on remaining training examples. If the
performance does not exceed a predefined
threshold, go to step 2.

7. Induce rules from the complete training set
using all relevant initial and derived
attributes.
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2.4 Neural net - BpNet

Backpropagation is a learning technique for
feedforward networks, i.e., networks in which
the interconnections form no feedback loops.
We consider a network of units in which a
weighted sum of the inputs is performed, the
result of this sum (also called the activation
level of the unit) is being fed through a non-
linear element, with a differentiable input output
function S. Here we use a sigmoid function.

Each of the five backpropagation nets was
trained using the corresponding positive and
negative examples coded as binary strings. The
learning parameters in BpNet system were set
to: eta = 0.25, alpha = 0.50; the number of
hidden units was experimentally determined and
set to 10% of the total number of input and
output units. Networks have been trained until
they reached r.m.s. (root mean square) error
below 0.0007.

2.5 Classifier system - CFS

The program performs the following steps of

the major cycle of the classifier system:

- compares messages with classifiers and
record all matches

- calculates bids, runs a competition, generates
new messages by activating the strongest
classifiers; matches and activates effectors

- redistributes the payoff between classifiers by
applying the bucket-brigade algorithm (BBA)

- applies genetic algorithms operators:
crossover and mutation to generate new
classifiers.

The classification was done by CLASS system
which implements domain-dependent parts of
the classifier system, e.g., emulation of
detectors and effectors, payoff function. The
system works in the stimulus-response mode
(no internal messages are posted). The
population of 60 classifiers is trained as the
examples are fed into the system. The training
process takes about 50 classifier system cycles
per example. The reward for correct/incorrect
answer is 6/-1, respectively (a full reward is
paid to all active classifiers). The CLASS
system has two effectors. Each of them consists
of two basic parts: a condition and an action
which is a classification.

3 Experimental Methodology

The above methods were compared by applying
them to the same group of concept learning
problems. In our experiments, five target
concepts were generated by different human
subjects. For each target concept, increasing
sets of training examples were generated, in
order to determine the convergence of the
learned concepts to the target concepts. The
learned descriptions were compared in terms of
the exact error rate, a representation-dependent
complexity, and an estimate of the
representation-independent R-complexity (rule
complexity).

Exact error is defined as the cardinality of the
set-difference between the learned concept and
the target concept.

Exact error rate is the ratio between exact error
and the size of event space. It was measured as
a function of the number of training examples.

A precise measure of the R-complexity of a
representation is defined by the number of
conjunctive statements (rules) in the minimal
DNF expression that is logically equivalent to
the given representation. Since finding such a
minimal DNF expression for any given
representation may be difficult (it is generally an
NP-hard task), we use an estimate of the R-
complexity. For a method learning a rule-based
representation, the number of rules generated
by the method is simply taken as an estimate of
R-complexity. For a decision tree learning
method, the R-complexity is estimated by the
number of leaves in the tree (since each leaf
corresponds to a rule).

For learning in neural nets and classifiers, the
R-complexity is estimated by determining the
number of conjunctive statements needed to re
express the learned concept as a DNF formula.
Such a formula can be obtained by determining
a "cover" of the image of the learned concept in
its diagrammatic representation. This
representation employs the General Logic
Diagram (GLD), which transforms a
multidimensional space into a plane (Michalski,
é9?"7)3; Wnek & Michalski, 1991; see section



3.1 ROBOTS domain

The experimental domain for testing the
methods was the world of ROBOTS in the
EMERALD! system, a large-scale system
integrating several machine learning programs.
For simplicity, the robots are described by just
six multiple-valued attributes (Figure 1). The
event space (the space of all possible robot
descriptions) is 432, and the space of possible
concepts is the set of all non-empty subsets of

this space, i.e., 2432 -1.

Attribute Attribute value
Head Shape round, square, octagonal
Body Shape round, square, octagonal
Smiling yes, no

Holding sword, balloon, flag
Jacket Color red, yellow, green, blue
Tie yes, no

Figure 1. Attributes used to describe concepts
in the first experiment.

3.2 Target concepts

In the experiment, five human subjects,
(undergraduate computer science students),
were asked to create five different concept
descriptions characterizing various selections of
robots from a predefined set of robots in the
EMERALD system (20 examples). Each such
concept represents a partitioning of the event
space into those robots that belong to the
concept (positive examples) and those that do
not (negative examples) (Figure 2).

Cr Head is round and jacket is red or
head is square and is holding a balloon
Coa: Smiling and is holding balloon or

head is round

Cs: Smiling and not holding sword

C4: Jacket is red and is wearing no tie or
head is round and is smiling

Cs: Smiling and holding balloon or sword

Figure 2. The target concepts.

1 EMERALD was developed at the Center for
Artificial Intelligence at George Mason University;
an earlier version of it was developed at the
University of Illinois at Urbana Champaign
(Kaufman, Michalski and Schultz, 1989).

Each concept description was the basis for
generating five sets of training examples. The
initial set was generated by the subjects who
created the concepts: subset Pos1 consisted of
6% of the complete set of positive examples and
subset Negl consisted of 3% of the complete
set of negative examples of a concept. The
remaining sets were generated by adding to the
initial set an appropriate number of randomly
generated examples: Pos2 and Neg2 (10% pos
and 10% neg), Pos3 and Neg3 (15% pos and
10% neg), Pos4 and Neg4 (25% pos and 10%
neg), Pos5 and Neg5 (100% pos and 10%
neg). Figures 3&4 visualize the ROBOTS
domain, concepts, and initial training sets for
each concept (6% pos and 3% neg examples).

3.3 Diagrammatic visualization

To illustrate learned concept descriptions and
locate their errors, as well as to determine their
R-complexity, a diagrammatic visualization
technique was employed (Wnek & Michalski,
1991). This technique uses a planar diagram for
representing a multidimensional space spanned
over multi-valued attributes, and permits one to
display the error image, which is an exact
characterization of the errors (the set-difference
between the target and learned concepts).

In such a diagram, each combination of the
values of the attributes (an instance of a
concept) is represented as a small cell. For
example, the top left corner cell in the diagram
in Figure 3 represents a “robot” example
described by the following attribute-value
vector: Head Shape = round, Body Shape =
round, SMiling = yes, HOIlding = sword,
Jacket Color = red, Tle = yes. Positive and
negative training examples are marked with +
and -, respectively. Concepts and errors are
represented as black or shaded areas. The areas
of the target concept not covered by the learned
concept represent errors of omission, while
areas of the learned concept not covered by the
target concept represent errors of commission.
The union of both types of errors represents the
error image .

4 Representations learned

Figure 5 presents an example of the
representation learned by each method from 6%
pos and 3% neg examples of the concept C1:



("Head is round and jacket is red or head is
square and is holding a balloon”).

4.1 A decision tree generated by C4.5

The method used two attributes in describing
the concept C1: Jacket Color and Head Shape
(Figure 5A). The learned concept can be read as
follows:

If Jacket Color is red and Head Shape is round or
Jacket Color is red and Head Shape is square or
Jacket Color is green and Head Shape is square

then C1

4.2 A decision rule generated by AQ1S

The method generated one rule description. It
consists of three conditions. Each condition
tests one attribute. The internal disjunctions
(inside condition) make the rule more concise
(Figure 5B).

4.3 A decision rule generated by AQ17

The rule generated by AQ17-HCI has the same
description as the one generated by AQI1S
however, it was generated in a transformed,
smaller description space (see also Figure 6).
The example shows a change in the ROBOTS
representation space by removing irrelevant
attributes and some of the attribute values.
Transformation A-TRANS removes three
attributes: Body Shape, SMiling, and TIe.
Transformation V-TRANS replaces two Jacket
Color values: yellow & blue with dummy value
X (Figure 5C).

4.4 A neural net generated by BpNet

Figure 5D shows a 20-node net trained by a
backpropagation algorithm. In each pair (a, b) a
is the weight of the link to the left hidden node,
and b is the weight to the link to the right node.

4.5 Classifiers generated by CFS

Each line in the Figure SE represents one
classifier in the following format: No, Id,
Classifier, Strength, and BidRatio (Riolo,
1988). The total population for representing the
concept consists of 60 classifiers. Each of the
classifiers (condition-action rules) is in the
following form:

conditionl, condition2 / action
Each condition consists of a string of fixed
length 16 built from the tertiary alphabet {0, 1,
#}. A condition string with prefix “m” is
matched by any message that has 0’s and 1’s in
exactly the same positions as the 0’s and 1’s in
the condition string. The # in the condition is
considered as a “wildcard” symbol that can
match a 0 or a 1. A classifiers condition-part is
satisfied when both of its conditions are
matched. When the condition-part of a classifier
is satisfied, the classifier becomes active, i.e. its
action-part produces one or more output
messages. These messages will activate output
interface to generate final classification.

In order to selectively activate only some of the
classifiers satisfied during a major-cycle,
classifiers compete to become active. That is,
each classifier that has its condition-part
satisfied makes a bid to become active. A
competition is then carried out and only the
highest bidders are allowed to become active.
BidRatio is a number between one and zero that
is a measure of the classifier’s specificity, i.e.,
how many different messages it can match.
Strength is meant to be a measure of a
classifier’s “usefulness” to the system. The
higher a classifier’s strength, the more it bids.

The number of classifiers and about 20 other
parameters were determined experimentally; the
remaining parameters from the total of about
150 took default values). For details see
(Wnek, 1990).

5 Experimental results

The individual diagrams in Figures 6 & 7
present the target concept C1 and the concepts
learned by C4.5, AQ15, AQ17-HCI, BpNet,
and CFS. In this case, the training set consists
of 6% of all possible positive examples (84),
and of 3% of all possible negative examples
(348).

The target concept is represented as a union of
black and sparsely shaded areas. The learned
concept is represented as a union of black and
densely shaded areas. The part of the target
concept that was learned by a system is
represented by black areas (Figures 6 & 7).
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AQ1S
If (Head Shape = round or square) & (Holding = sword or balloon) & (Jacket Color = red or green) then C1

AQ17-HCI
If (Head Shape = round or square) & (Holding = sword or balloon) & (Jacket Color = red or green) then C1

BpNet
Head Shape  Body Shape Smiling Holding Jacket Color Tie
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Input layer
17 nodes

Hidden layer
2 nodes

Output layer
| ) 1 node

CFS

No Id Conditionl Condition2 Action Strength BidRatio
HSBSSMHO JCTI

1227 m000000 01 O# 1 10 #1 1, mO0#00# 01001 10#1# /101101100#00000# 222  0.81

1236 m000000 01 O# 1 10 #1 1, mO0#00# 01 001 10#1# /101101100400000# 219 0.81

1217 mO#0000 00 10 1 00 O# O, m##0000#0 10100#0# /100#110110110011 208  0.78

v e LI

60 0017 m000000 01 01 1 10 01 1,m00000#0100110111 /101101100#400000# 34  0.25

Figure 5. Representations of the concept C1 learned from the initial set.
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Percentage of Pos and Neg Training Examples
6%,3%) | (10%,10%) | (15%, 10%) | (25%,10%) |(100%, 10%)
Genetic Alg.
(CFS) 21.3% 20.3% 22.5% 19.7% 16.3%
Neural Nets
(BpNet) 9.7% 6.3% 4.7% 7.8% 4.8%
Decision Trees
(C4.5) 9.7% 8.3% 1.3% 2.5% 1.6%
Decision Rules
(AQ15) 22.8% 5.0% 4.8% 1.2% 0.0%
D(ch'l‘;"}l;gg’s 4.8% 12% 0.0% 0.0% 0.0%
Table A. The average error rate of learned descriptions.
Percentage of Pos & Neg Training Examples
(6%,3%) | (10%,10%) | (15%,10%)]| (25%, 10%) | (100%, 10%)
Genetic Alg.
(CFS) 49 45 51 48 41
Neural Nets
(BoNet) 35 2% 12 22 12
Dec('zz';)T rees 3.1 2.8 2.5 25 25
Decision Rules 26 22 2 1.6 1.6
(AQ15)
D&g‘;’;‘ }l;g'l‘;s 2.4 2.0 1.6 16 1.6

Table B. The dependence of the R-complexity on the number of training examples.

The errors of omission are represented by
sparsely shaded areas. The errors of
commission are represented by densely shaded
areas (Figures 6, 7 & 8). The union of both
types of errors represents the error image
(Figure 8).

Figure 9 and Tables A & B summarize results
of all experiments. Figure 9 and Table A show
the average exact error rate, and Table B gives

the average R-complexity of descriptions
learned from different training sets. Pairs (a,b)
in the top row of Tables A & B denote the
percentage of positive and negative examples,
respectively, used in experiments.

The results in Figure 9 and Table A represent
the average exact error rate for all five concepts
learned from two different subsets of training
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examples (Posl & Negl, Pos2 & Neg2, ...).
In these experiments, target concepts were
precisely defined and there was no noise in
training data sets. Therefore, as results from
AQI15 were used complete and consistent
concept descriptions, rather than truncated
descriptions (Bergadano, et al., 1990). For the
same reason, as results from C4.5 were used
unpruned decision trees. The average error rate
(4.8% in the case of 100% positive and 10%
negative training) of the BpNet-generated
concepts was primarily due to an inadequate
learning of concepts C1 and C4. The error rate
of the CFS-generated descriptions was much
higher then that of the other descriptions, and
what is most surprizing, did not improve much
with the growth of training sets. For AQ15-
generated descriptions, the erro-r rate of
descriptions learned from less than 100%
positive examples was primarily due to the
description of concept C1.

A
25|

- O T3 Tm

20 CFS

@ QO 0

Decision trees generated by C4.5 produced
some error even when 100% positive examples
were given. The error may sometimes be
reduced if the function for converting trees into
rules is applied (this however, involves pruning
a tree and simplifying rules).

The average R-complexity was determined over
five concept descriptions learned for each of the
10 training sets. The R-complexity of the CFS-
and BpNet-generated descriptions was derived
by counting the estimated minimum number of
rules needed to represent (to cover exactly) the
image of the concepts in the diagrammatic
representation.

The complexity of rules obtained by AQ17-HCI
may differ from AQ1S5 due to new attributes'
descriptions. With respect to the R-complexity,
attribute generation process pays off when
learned concepts are more complex and consist
of larger number of rules and conditions inside
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Figure 9. Learning curves for concepts from ROBOTS domain.



rules. In the experiments with concepts C1-C5,
AQ17-HCI used mainly the Description Space
Reduction Transformation, where some of the
attributes and the attribute vales are removed
from the description space.

6 Summary and Future Work

Five learning methods, C4.5, AQ15, AQ17-
HCI, BpNet, and CFS were compared in terms
of the average exact error rate and the average
R-complexity of concept descriptions learned
from the same sets of training data. The results
showed that for the “cognitively oriented” target
concepts used in the experiments, the symbolic
methods, C4.5, AQ1l5, and AQ17-HCI,
outperformed the subsymbolic methods, BpNet
and CFS, both in terms of the average exact
error rate and the R-complexity of the
descriptions learned. One interesting finding is
that increasing the number of training examples
from 6%pos and 3%neg to 100%pos and
10%neg resulted in only a slight improvement
of the performance of the CFS-generated
descriptions (from 21.3% to 16.3%). Other
interesting findings are that even with 100%
positive examples the neural net, the genetic
algorithm, and to a smaller degree the decision
tree method did not learn the concept precisely.
The CFS classifier system seems to be not well
suited for the classification-type problems. To
test further this finding, in the future research
we plan to experiment also with another
implementation of CFS and another genetic
algorithm-based system.

The diagrammatic visualization proved to be a
very useful method for illustrating learning
processes. For symbolic learning systems there
is a direct mapping between the description
acquired by the system and the concept image in
the diagram. For non-symbolic methods, the
concept image is determined by mapping into
the diagram the decisions suggested by the
description for each possible instance. The so
obtained concept image can then be used for re-
representing the concept in the form of a DNF
description (or logic-style rules). As knowledge
encoded in a neural net or a population of
classifiers is hard to comprehend, this way the
diagrammatic visualization enables us to get an
insight into what was learned by these methods.
Because the size of the description space that

can be represented in a diagram is limited by the
size of the display, the effect of the technique is
the strongest for relatively small domains (no
more than 10-12 attributes). For larger
problems one can create a hierarchy of
diagrams.

As mentioned earlier, target concepts were
generated by human subjects, and therefore the
study favored methods that use symbolic
representations, as such representations are
more closely related to human representations.
Studying how systems learn such human-
generated concepts is important for applications
where knowledge that needs to be acquired is in
such “cognitively-oriented forms,” and/or
applications where the knowledge learned needs
to be understandable by human experts.

There are problem domains in which these
factors are not relevant. Therefore, to make a
complete evaluation of the relative performance
of these methods, the future research will
investigate other problem types, for example,
special technical problems, such as text-to-
speech mapping (Dietterich 1990) and boolean
DNF and parity functions (Wnek and
Michalski, 1991). Such studies should give us
an insight into the performance of different
methods in learning any kind of concepts.
Future research might also compare the
performance of the methods in learning from
noisy data or from inconsistent example sets,
and in learning imprecisely defined concepts.
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