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Abstract

The INLEN system combines database, knowledge base, and machine learning techniques to
provide a user with an integrated system of tools for conceptually analyzing data and searching
for interesting relationships and regularities in them. Machine learning techniques are used for
tasks such as developing general rules from facts, determining differences between groups of facts,
creating conceptual classifications of data, selecting the most relevant attributes, determining
the most representative examples, and‘disc:overing equations governing numeric variables. The
equations discovered are accompanied by conditions under which they apply. These techniques
are implemented as inference operators that a user can apply to a database or knowledge base to
perform a given knowledge extraction function. Examples of three major inference operéutors are
provided, one for learning general rules differentiating between groups of facts, one for creating
conceptual classifications of facts, and one for discoveting equations characterizing numeric and
symbolic data.

26.1 Imtroduction

This chapter briefly describes the goals and general design of the INLEN system for con-
ceptually analyzing databases and discovering regularities and patterns in them. The
name INLEN derives from the terms inference and learning, which represent two major
capabilities of the system. INLEN integrates a relational database, a knowledge base, and
a number of machine learning and inference capabilities. The latter two enable the system
to perform tasks such as creating conceptual descriptions of facts in the database, invent-
ing classifications of data, discovering rules and unknown regularities, and formulating
equations together with the conditions of their applicability. We present here a general
system design and explain all the basic functions. Major operators, specifically those for
determining rules from examples, creating classifications, and discovering equations, are
illustrated with examples. |

The motivating goal of the INLEN system is to- integrate three basic technologies—
databases, expert systems, and machine learning and inference—to provide a user with
a powerful tool for manipulating both data and knowledge and extracting new or bet-
ter knowledge from these data and knowledge. INLEN evolved from the QUIN system
(query and inference), a combined database management and data analysis environ-
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ment (Michalski, Baskin, and Spackman 1982; Michalski and Baskin 1983; Spackman
1983). QUIN was designed both as a stand-alone system and as a subsystem of Advise,
a large-scale inference system for designing expert systems (Michalski and Baskin 1983;
Michalski, Mozetic, et al. 1987; Baskin and Michalski 1989). In the last few years, new
tools have been developed, in particular, more advanced inductive-learning systems, for
example, AQ15 (Michalski et al. 1986) and ABACUS-2 (Greene 1988), and expert database
systems (Kerschberg 1986, 1987, 1988). These systems have influenced the development
of INLEN. INLEN also draws on the experiences with Agassistant, a shell for develop-
ing agricultural expert systems (Katz, Fermanian, and Michalski 1986), and Aurora, a
general-purpose PC-based expert system shell with learning and discovery capabilities
designed by Michalski and Katz (International Intelligent Systems 1988).

However, INLEN is more than just a tool. Its modular architecture enables it to incor-
porate many discovery tools. INLEN can be viewed as a toolbox, a methodology, or an
environment for making all sorts of discoveries in databases. It is especially appropriate
to apply INLEN to data systems that are constantly changing or growing; among the Sys-
tems capabilities are the ability to detect changes over time and explore the ramifications
of these changes.

26.2 INLEN _System Design

As previously mentioned, INLEN combines database, expert system, and machine learning
capabilities to create an environment for analyzing and extracting useful knowledge from
a data or knowledge base. It includes ideas from the recently developed expert database
technology to combine the storage and access abilities, of a database system with the
ability to derive well-founded conclusions from a knowledge-based system (Kerschberg
1986, 1987, 1988). INLEN integrates several advanced machine learning capabilities that
until now have only existed as separate experimental programs. Many learning systems
are capable of but a small subset of what can be learned from factual data. By integrating
a variety of these tools, a user will have access to a powerful and versatile system.

The general design of INLEN is shown in figure 26.1. The INLEN system consists of
a relational database for storing known facts about a domain and a knowledge base
for storing rules, constraints, hierarchies, decision trees, equations accompanied with
preconditions, and enabling conditions for performing various actions on the database or
knowledge base. The knowledge base not only can contain knowledge about the contents
of the database but also metaknowledge for the dynamic upkeep of the knowledge base
itself.

The purpose of integrating these capabilities is to provide a user with a set of advanced
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tools for searching for, and extracting useful knowledge from, a database; organizing
this knowledge from different viewpoints; testing this knowledge on a set of facts; and
facilitating its integration within the original knowledge base.

Information in the database consists of relational tables (RTs), and information in
the knowledge base consists of units called knowledge segments (KS). A KS can be
simple or compound. Simple KSs include rule sets, equations, networks, and hierarchies.
Compound KSs consist of combinations of any of these elements or combinations of
simple KSs and RTs. The latter form can be used, for example, to represent a clustering
that consists of groups of objects (represented as an RT) and the associated descriptions
of the groups (represented as rules). Another example of such a representation. is a
relational table with a set of constraints on, and relationships among, its attributes.
These constraints and relationships are represented as rules. Compound KSs also consist
of directory tables that specify the locations of their component parts in the knowledge
base or, in the case of RT components, in the database.

A justification for such knowledge types is that they correspond to natural forms of
representing human knowledge, especially technical knowledge. Also, by distingunishing
between these different forms of knowledge and selecting appropriate data structures
to represent them, we can achieve greater efficiency in storing and manipulating such
structures. Meanwhile, the KS architecture allows for an object-oriented structure in
which the user need not be overly concerned about the form taken by a piece of knowledge.

INLEN employs three sets of operators: daia management operators (DMOs), knowledge
management operators (KMOs), and knowledge generation operators (KGOs). DMOs are
standard operators for accessing, retrieving, and manually altering the information in the
database. Thus, théy operate on RTs. KMOs perform analogous tasks on the knowl-
edge base in situations in which manual input, access, or adjustments are required. The
knowledge generation operators interact with both the database and the knowledge base.
These operators evoke various situations in which manual input, access, and adjustments
are required. KGOs take input from both the database and the knowledge base. These
operators invoke various machine learning programs to perform tasks such as develop-
ing general rules from facts, determining differences between groups of facts, creating
conceptual classifications of data, selecting the most relevant attributes, determining the
most representative examples, and discovering equations governing numeric variables.
The results of KGOs are stored as KSs. Examples of the performance of a few basic
knowledge generation operators are given in An [llustration of Selected Knowledge Gen-
eration Operators: Cluster, Diff, and Diseq. A brief description of DMOs, KMQs, and
KGOs follows.
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26.2.1 Data Management Operators

DMQOs form a standard set of relational database operations for the purpose of manipu-
lating the system’s collection of facts:

Create generates a new relational table. It takes an attribute list as an argument.

Append adds a new tuple (row) to a relational table.

Change alters some or all of the values in some or all of the tuples of a table.

Delete removes rows or columns from a table, as specified, respectively, by Select or
Project operations. Alternatively, entire tables can be removed from the system.

Select retrieves a relational table from a database and returns the complete table or
part of it. The part represents the subset of its rows that satisfy criteria specified in the
arguments of the operator. Project reduces a table by removing columns. Columns that
are kept correspond to attributes specified in the arguments of the operator.

Join creates a relational table combining the columns of two tables. The rows are the
subset of the rows of the Cartesian product of the two tables whose attributes satisfy
criteria provided by the user.

Union, performed on two tables with the same set of attributes, returns the set of
tuples (rows) that appear in either of the two tables.

Intersect, performed on two tables with the same set of attributes, returns the set of
tuples that appear in both of the input tables.

26.2.2 Knowledge Management Operators

KMOs are used to create, manipulate, and modify INLEN’s knowledge base, thereby
allowing the knowledge base to be handled in a manner analogous to handling a database.
Knowledge can take the form of simple or compound KS8s. Consequently, most of KMOs
shown in figure 26.1 are generalized for any of these forms. Unless otherwise specified,
they should be thought of as operating on any KS; that is, they can operate on rules,
equations, hierarchies, and so on.

- Diverse representations of knowledge can be culled from the same database and, there-
fore, will represent distinct viewpoints obtained using the knowledge generation opera-
tors. For example, a dynamic system whose behavior is governed by a set of differential
equations could have its time series input-output behavior represented as a relation con-
sisting of all measurable input-output variables. Each tuple would consist of the input-
output variable value at some time. KGOs could be used to create knowledge viewpoints
such as functional and multivalued dependencies from relational database theory, a set
of decision rules, a causal and temporal semantic network, and so on. Each of these
viewpoints is valid and should be managed by KMOs.

Expert database tools and techniques can be used to manage the evolution of the com-
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bined knowledge database by incorporating knowledge discovered in the database. The
arrow in figure 26.1 linking the database and the knowledge base components represents
such an interaction.

KMOs listed in the following are depicted as analogues of INLEN’s data management
operators. Without intensive testing of the system in different domains, one cannot
tell how useful these operators are, but they represent our first approximation based
on the analogy with DMOs. Further research might lead to the development of other
operators and also other knowledge representations, including the likely use of a more
object-oriented approach in which one data representation is replaced by an active link
with the concept of a formula, a rule set, or some other representation.

Under the current design, these are KMOs and their functions:

Create is used to generate a new KS with a structure and set of attributes specified by
the user. KS will be empty until knowledge is added using e1ther an Append operator
or one of the knowledge generation operators.

Append is used for the manual addition of new knowledge to KS.

Change is used for the manual alteration of part of one or more items in KS.

Delete is used to remove selected portions of KS from the knowledge base. Alterna-
tively, an entire KS can be erased by giving no qualifying conditions to the operator.

Select is used to retrieve KS from the knowledge base (and from the database in the
case of component RTs). Criteria can be provided to return only selected items (such as
rules, subtrees, rows in tables, and so on) in this KS.

Project is used to return a subset of a compound K8 that ignores entire components
(for example, rule sets, decision trees, columns of tables) of KS. The items specified in
the operator’s arguments will be included.

Join is used to combine a pair of simple K8s or, components of compound KSs. For
example, a set of rules and a data table can be united into a compound KS, or two
rule sets can be combined by finding conditions in the first rule set that are satisfied by
decisions in the second rule set. Rules can then be expanded by replacing the matching
conditions in the first rule set with the conditions leading to the corresponding decisions
in the second rule set.

Union is applied to two or more KSs of the same type. It generates a list of the
elements present at least once in any of the segments.

Intersect is applied to two or more KSs of the same type. It generates a list of the
elements present at least once in each of the segments.

26.2.3 Knowledge Generation Operators

KGOs perform complex inferences (often approximating NP-complete tasks) on KSs to
create new knowledge. It should be noted that KGOs also consist of primitives (such as
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save and retrieve) to facilitate access to the structures they generate. These structures
will generally be compound KSs that include tables in the knowledge base that locate
their other components.

Many of these operators work with or generate rules. Rules in INLEN consist of a
decision part implied by a condition part. The decision part consists of a conjunction
of one or more statements or actions, and the condition part consists of a disjunction
of conjunctions, each consisting of one or more elementary conditions (for examples, see
tables 26.1 and 26.2). _

Under the current design, these are the basic KGOs employed by INLEN:

Cluster performs conceptual clustering of tuples in a relational table to create logical
groupings of objects or events represented by the tuples. It also determines a set of rules
characterizing the created groups. Specifically, the operator divides rows of a relational
table into two or more groups and returns KS consisting of a relational table similar to
the input table and containing additional information indicating the groups and a rule
set characterizing the individual groups. An example of this operator is given in the
next section. User-defined parameters can influence the creation of the groups. Detailed
descriptions of the conceptual clustering algorithm that performs this operator are in
Michalski, Stepp, and Diday (1981) and Stepp (1983, 1984).

Rulestruct also performs conceptual clustering but applies it to a rule set rather than
a relational table. A compound K8 is returned consisting of the original rule set with
grouping information plus a new rule set to explain the grouping.

Diff (differentiate) takes two or more classes of objects {each object represented as
a tuple in a relational table) and induces general rules characterizing the differences
between the classes. The output KS consists of the rule set created by the operator and
the object classes represented by RTs. The AQ program that executes this operator is
described in Michalski and Larson (1983). The rules produced are called discriminant
descﬁptﬁon&; that is, they specify sufficient conditions for distinguishing one class of
objects from the other class(es).

Char (characterize) determines descriptions characterizing a class of objects. This
operator also falls into the domain covered by the AQ program. Here, the emphasis is on
finding characteristic rules describing all examples of a class of objects, without concern
about the differences between this class and other classes. Output includes the initial
class plus the generated descriptions.

Atest tests a set of decision rules for consistency and completeness on a set of examples
(specified in a relational table). Consistency implies that no event in the example space is
covered by two different rules. Completeness refers to the condition that every possible
example will be covered by the conditions applying to at least one rule. The output
KS consists of the input rules, example sets, and a relational table containing Atest’s
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analysis. Atest is described in detail in Reinke {1984).

Varsel determines attributes in a relational table that are most relevant for differenti-
ating between various classes of objects. Qutput consists of a rule describing the selection
of the variables given the input classes and the subtable generated by projecting on the
chosen variables. By keeping only the most relevant attributes in the object (exampie)
descriptions, one can significantly reduce the computation time required by the Cluster
or Diff operators (Baim 1982).

Esel determines the examples (objects) that are most representative for given classes.
Promising examples are returned as output with a rule specifying the input classes
and the chosen examples, and other examples are rejected (Michalski and Larson 1978;
Cramm 1983).

Varcon applies mathematical operators specified in its argument to combine variables
into useful composites. The output KS will consist of the new composite variables and a
rule specifying the original table, the mathematical operators, and the created variables.
For example, Varcon can be used if the sum or product of two variables might be more
useful than either individual value (Davis 1981).

Treecon takes a set of rules or decision examples and organizes them into a decision
tree, which can be a more efficient way for storing or using this knowledge (Michalski
1978; Layman 1979). |

Discor discovers correlations between the values of attributes in a set of examples. It

is implemented as a standard statistical operation of correlation and returns a table of
its results.

Dismon seeks out monotonic relations between attributes in a set of examples and in
doing so can discover an interesting relationship within the data. It is an operator that
is used in the Diseq operator.

Diseq discovers equations that describe numeric data in a set of examples and formu-
lates conditions for applying these equations. Diseq returns a set of equations and the
rules that determine when they apply. It is based on the ABACUS-2 system for integrated
qualitative and quantitative discovery (Falkenhainer and Michalski 1986; Greene 1988).
ABACUS-2 is related to programs such as BACON (Langley, Bradshaw, and Simon 1983},
FAHRENHEIT (Zytkow 1987), and COPER (Kokar 1986).

Stanal performs a statistical analysis of the data to determine its various statistical
properties.
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Table 26.1
An Example of the Cluster Operator.
Input Output

Microcomputer Display RAMN ROM Procoasor Nao.Kays 2-Group 3-CGroup
Apple 11 Color_ 1V 48K 10K 6502 52 1 1

" Atari BOD Color_TV 48K 10K 6502 57-63 1 1
Comm. VIGC20 Calor_TV 32K, 11-16K 6503 A 64-73 1 3
Exldi Sorceror B/W.TV 48K 4K Z380 57-63 1 P
Zemith 118 3 Built_in BeR 1K AGREOA 64-72 ] L
Zenith 11B¢ Built_in 64K 8K Z80 £4-73 2 3
HP 85 Built_in 32K BOK HP 02 1 g
Horizon Terminal 8415 BI T80 R EE] 1 ]
Chalienger B/W_TV 32K 10K 6602 53-56 1 1
0-5 11 Series B/W. TV dBK 10K 65020C 53-56 1 Z
TRS-80 1 : B/ W_TV 4BK 12K Z80 53-56 1 1
TRS-B0 111 Boilt_in ABE 14K ZA0 B8d-74 i i

Two-Group Clustering:
[Group L] <= [RAM = 16K..4B8K] or [No.Keya <€ 613]
[Group 2] & [RAM = 64K)] & [No.Keys > 63]

The Cluster operator takes as the input the relational table, marked Input, and a parameter requiring it to partition the rowe

in the table into two- and then three-group clusterings. The two rightmost columns show the partitions generated. Cluster alao
generates rules describing the groups stored in the knowledge baze

Thres-Group Clustering:

[{Group 1] <« [FProceaser = 6502 v 8080A v ZB0] & [ROM = 10K..14K]

[Group 2] = [Processor = 6502A v 65020 v HP)| or [ROm = 1K, 8K]| & [Display 3£ Built.in]
[Group 3] <= [Processor = 6502 v 8080A v ZB0] & [ROM = LK..BK] & [Display = Builtin]

26.3 An Illustration of Selected Knowledge Generation Operators:
Cluster, Diff, Diseq

This section gives examples of how some basic KGOs work, specifically, the Cluster, Diff,
and Diseq operators.

26.3.1 Cluster

Cluster is capable of creating groupings of objects or events and, when used recursively,
can generate an entire taxonomy. Unlike traditional clustering methods, Cluster also
returns the rules that describe its grouping. The presented example is based on the
results described in Michalski and Stepp (1983), which involves creating a classification
of microcomputers. Variables considered include the type of processor, the amount of
random-access memory (RAM), the read-only memory (ROM) size, the type of display,
and the number of keys on the keyboard. Dividing the examples into two groups, the
system grouped them according to RAM size and keyboard; clustering into three groups
was based on the processor type, ROM size, and the display type. Table 26.1 presents
the original data and the classifications generated by the Cluster operator. The input
to Cluster was a table of the characteristics of the microcomputers, and the cutput
consisted of a table with new columns indicating the groups of the objects along with
rules characterizing the groups.
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Table 26.2

An Example of the Diff Operator.
Microcomputer Display RAM ROM P__r_ncaumr No_Keoys 2-Group 3-Group
Appke 11 Color. TV AREC 10K G502 52 1 1
Atari 800G Colar. TV F1) 4 10 BROZ 5763 1 1
Comm. VICZ1 Color.TV AZK 11-16K 65024, 64-7T3 1 P

[ Exidi Sorceror B/W.TV FEE aK Z80 57-63 1 z

“Zenith 118 Built-In 61K 1K 8080A 64-73 2 3
Zenith 1180 Built_in 641 1 ZB0 64-73 2 3

BS Built_in S3K 80K HE g2 1 2

Horizon Termiunl 84K 8K ZB0 5T.G63 1 2
Challenger B/W_TV 37K 1D 6502 5356 1 1

OS5 11 Seriea H/ W TV FEi 10K GH0aC 53-56 1 Z
TRS-80 1 B/W.TV 48K 12K ZBD $3-56 L 1

[ THS-80 111 Buailt_in 45K 14% =50 64-73 L 1

Diff takes aa input & relational table in which the last column indicates group (class) membership. In this example, the Diff
operator tries to rediscover the rules, invented by Cluster, from the examples of groups.

Bediscovered rules for Two-Group Differentiation:

[Group 1] <= [Display # Built.in] or {ROM > 14K]

[Group 2] <= [BRAM = S4K] & [NoKeys = 64-T3|
Rediscovered Rules for Three-Group Differentiation:
[Group 1] <= [Processor = ZB0 v 6502] & [ROM = 10K..14K]

[Group 2] < [Processor = 6502C v 85602A v HP] or [ROM = AK..8K] & |Display = B/W_TV v Term.]
[Group 8] «—= [ROM = LK..BK] & [DHsplay = Built_in]

‘These rules were generated by DIff directly from examples. They are similar but not identical to the rules criginally created by
Cluater. They provide an alternative, logically consistent, characterization of individual Eroups.

26.3.2 Diff

The Diff operator is based on the AQ inductive-learning method that has been effectively
used for many rule-learning tasks in areas such as medicine, agriculture, physics, com-
puter vision, and chess. One recent application for diagnosing potential breast cancers,
given a few training examples, is described in Michalski, ITwanska, et al. (1986). The
rules generated performed well on new cases of the disease. An application of the Diff
system to concisely describe the groups created by the Cluster operator (table 26.1) is
shown in table 26.2. The groups of examples are given as input, and Diff creates rules
that describe the differences between these groups. Note that the found rules are a little
simpler than the descriptions produced by Cluster (a redundant condition specifying the
processor type in the third group of the three-grouping cluster was removed). Diff often
produces a significantly simpler description.

Although this example shows an application of Diff to create the discriminant rules
for groups of examples, the AQ algorithm that it employs can also be used to determine
characteristic rules that describe classes of events (Michalski 1983). In the INLEN system,
this function is represented by the Char operator. In case of large example sets, there
can be large differences between characteristic and discriminant rules.
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Table 26.3
The Diseq Operator Formulates Stoke's Law.

Substance Radius (m) Muss . {leg) Helght {(m) Tima {8) Valocity (m/o8)
Vacuum 0.05 1 G G.1 0.98453
Vacuum - 0,05 2 z ad.4 3.83812
Vacuum 0.19 1 3 0.5 2.95359
Vacuum 0D.1.0 2 7 (.1 0.98453
Glycerol 0.05 1 5 Q.1 18.13200
Glyceral 0.05 2 g .3 J8.22400
Glyearol 0.10 | ] 9.5 B.55600
Glycerat 0.10 2 T 0.2 19,1120
Castor(yl 0.05 1 L .4 14.67T200
Castor(il 0.05 2 3 a.1 29.34400
Castor(il 0.10¢ 1 B 4.3 ¥.33600
Castar()il Q.10 2 3 3.5 14.87200

Diseq searches for relationehips among the data objects. 1t discovers that equations for the ball’'s velocity exist, but they dopend
on the medium through which the bal! iz falling.

Hera are the rulas Disgg discovared:

If [Substance = Vacuum)| than v = 88175 * ¢

If [Substance = Glycerol] then v * r = ¢.9556 * m

If [Substance = Castor(Qil] then v * r = 0.7336 * m,

whete v = velpeity, r = radiue, t = time, and m = mass.

26.3.3 Diseq

The Diseq operator is based on the Abacus-2 discovery system that is described in Greene
(1988). The operator is capable of learning equations that fit a set of tabular data. It
is also capable of subdividing a set of examples into subsets in which different rules
apply and coping with noisy data. It specifies conditions under which different rules
apply. Abacus-2 expands the capabilities of the earlier system Abacus (Falkenhainer and
Michalski 1986) and can discover more complex regularities. |

The Abacus programs have formulated equations characterizing a number of different
empirical data, for example, data specifying planetary motion, the distances between
atoms in a molecule, and Stoke’s law of falling bodies. Stoke’s law specifies the velocity
of an object falling through different media and is presented in table 26.3. As shown
in the table, the velocity of an object falling through a fluid is governed by an equation
involving different variables from those found in the equation describing the velocity of
an object falling through a vacuum. Diseq was able to find the equations for both cases.

26.4 Conclusion

INLEN is a large-scale integrated system capable of performing a wide variety of complex
inferential operations on data to discover interesting regularities in them. These regulari-
ties can be detected in qualitative data and quantitative data as well as in the knowledge
base itself. In addition, INLEN provides functions that facilitate manipulation of both the
data and the knowledge base.

A major novelty of INLEN is that it integrates a variety of knowledge generation oper-



460 Kaufman, et al.

ators that permit a user to search for various kinds of relationships and regularities in
the data. To achieve such an integration, the concept of KS was introduced. The KS
stands for a variety of knowledge representations, such as rules, networks, and equations,
each possibly associated with a relational table in the database (as in the case of a set
of constraints), or for any combination of such basic KSs.

Because INLEN serves to collect learning and discovery systems as operators, it is more
of a methodology than a simple tocl. Because it incorporates many diverse knowledge
generation operators, INLEN carries the possibility of extending the limits of discovery
systems’ capabilities. |

Many of INLEN’s modules have already been implemented as stand-alone systems or
parts of larger units. Other tools and the general integrated interface are under develop-
ment. Future work involves bringing these systems together and completing the control
system to facilitate access to the systems in the form of simple, uniform commands.
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