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Knowledge Acquisition by
Encoding Expert Rules versus
Computer Induction from
Examples: A Case Study
Involving Soybean Pathology*

R. S. Michalski** and R. L. Chilausky
University of [llinois, Urbana, IL

L. INTRODUCTION

The amount of diagnostic and therapeutic knowledge exisiting today in the
area of human medicine, animal medicine, pathology of plants, etc. sur-
passes by far what a single expert can encompass. Also, due to the rapid
growth of the above disciplines, it is increasingly difficult for an expert to
continually update once-acquired knowledge. A prospective solution to this
problem is the development of expert or advisory systems that can interac-
tively provide information, advice, and support in decision making. Such
systems could shorten or improve decision making by suggesting most likely
problems or areas of investigation, by calling attention to information which
might be overlooked, by suggesting non typical cases which are possible
within the accumulated evidence, etc. Early experimental systems that
pioneered the development of modern expert systems include:

MYCIN for antimicrobial therapy advice (Shortliffe, 1976);
INTERNIST for general medical diagnosis (Myers & Pople, 1977}
CASNET for disease modelling (Kulikowski, 1977, 1978);
CONSULT1and CONSULT II for medical diagnosis (Patrick, 1979); and
PROSPECTOR for mineral prospecting (Duda et al., 1378).

*The research presented here was supported in part by the National Foundation Grants NSF
MCS 76-22940 and NSF MCS 79-06614. The authors would like to thank Professor James Sinclair
and Professor Barry Jackobsen, from the Plant Pathology Department of the University of
Hlinois, for providing the expertise and the data for the experiments reported here, and for their
strong interest in this work.

*+Presently at George Mason University, Fairfax,VA.
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Subsequently, a large number of systems have been developed, and many
of them are now in practical use (see, e.g., Feigenbauin, McCorduck & Nii,
1988.)

An expert system consists of a knowledge base and an inference mecha-
nism, which matches the queries of users with rules in the knowledge base
in order to compute advice. A knowledge base is a symbolic representation
of factual and,as well, judgmental knowledge in the subject domain. In each
of the above-mentioned consultation systems, the knowledge base was
established by handcrafted encoding of the knowledge of human experts.
Such encoding can be a very time consuming task, requiring close coilabo-
ration between experts of the subject domain and computer scientists
trained as “knowledge engineers.” This task can be simplified somewhat by
special computer programs which facilitate the debugging, modification,
and maintenance of the knowledge base (Davis, 1976).

An attractive alternative would be to construct a knowledge base by
presenting examples of expert decisions to the system and have the system
determine the general rules. This means that a consulting system would have
to include a module capable of performing inductive inference. The research
on computer inductive inference is still at an early stage of development;
however, it is already possible to obtain practical results, if the problem is
sufficiently well defined and specialized. The papers (Buchanan & Feigen-
baum, 1978; Mitchell, 1977; Hayes-Roth & McDermott, 1978; Dietterich &
Michalski, 1979) describe some work in this area.

In this chapter, we present the results of applying an inductive computer
program to the problem of learning from examples the decision rules for the
diagnosis of soybean diseases. Then we contrast these decision rules with the
decision rules obtained by direct interrogation of experts in soybean pathol-
ogy. The results may be somewhat surprising to the reader: in the conclusion
we have attempted to explain them.

2. THE FORMALISM USED FOR KNOWLEDGE REPRESENTATION

A good formalism for knowledge representation should not only have
adequate operators for representing many different aspects of knowledge of
human experts, but also be well suited for implementing inference processes
on this knowledge. The latter issue seems io be sometimes neglected by
workers in the area of knowledge representation.

One of the basic ways for representing expert knowledge is in the form of
decision (or production) rules {Davis, Buchanan, & Shortliffe, 1975).*

*We use symbol :: > instead of — which is often used in production rules, to differentiate
the decision assignment operator from the logical implication.
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CONDITION :: > DECISION (1)

The interpretation of such a rule is that, if a situation satisfies CONDITION,
then infer DECISION. The parameter « denotes the “strength of implication.”
Typically, the CONDITION is a cenjunction of binary statements, and the
DECISION is some action, decision, or assignment of values to variables (e.g.,
in Shortliffe, 1976). In general, the CONDITION can be any description
expressed in some formal language.

A situation is a description of some object or processes under consider-
ation. For example, in medical diagnosis, a situation may be a description of
observed manifestations or results of tests performed on a patient. In plant
pathology, a situation may be a description of symptoms of a diseased plant.

Another way of representing expert knowledge is in the form of a se-
mantic net (Brachman, 1978) whose general form is a labeled graph with
nodes representing various conceptual entities and links representing rela-
tionships among these entities. This way of representing knowledge is quite
natural for certain problems. The network representation has, however,
several drawbacks. First, since everything is interconnected, it is difficult to
modify and incrementally update or extend the knowledge base. Also, it is
difficult to represent nonbinary relationships. For example, it is difficult to
represent a statement indicating that a certain logical product of concepts
(associated with various nodes) implies some other concept, and that the
“strength of the implication” is 50 and so. Such statements are, however, very
common in human decision processes, and, therefore, a decision rule repre-
sentation is often preferable.

In the study by Duda et al. (1978}, the initial representation of knowledge
is in terms of rules, but in the final stage, these rules are incorporated into a
so-called partitioned semantic net. Moreover, individual rules can be made to
represent individual “chunks” or “modules” of human knowledge, and there-
fore it is relatively easy to modify or incrementally buiid up the knowledge
base. Also, it seems that it is easier to explain to a user the inference process
done by a system by listing the involved decision rules, than by showing a
part of a network. Knowledge acquisition by learning from examples also
seems to be easier to implement using a rule representation.

The accurate encapsulating of knowledge in the form of rules, however,
encounters a number of problems. Typically, an expert’s knowledge is
expressed in terms of imprecise concepts and involves operators that are not
well defined. Alse, much of this knowledge is accompanied by statements
indicating varying degrees of credibility and varying Jevels of importance
assigned to expressed conditions.

In this chapter, we use the rule representation of knowledge. The knowl-
edge here involves descriptions of plant conditions indicating one of 15
soybean diseases. The format of the rules is based on the variable-valued
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logic calculus VL, {Michalski, 1974). This calculus was developed for for-
mally representing, in a simple, compact, and self-explanatory way, decision
and inference processes involving many-valued variables. Commonly, the
variables in such processes have semantically determined value sets, which
can differ both in the scope and in the structure relating its elements. For
example, “sex” is a 2-valued variable with no structure relating its possible
values, “height” or “temperature” of a human being varies in certain range of
possible values, and the values constitute a linearly ordered set.

A simple way of characterizing, e.g., a person is by a list of attribute-value
pairs, which in VL. is written in the form

[sex = male}[height = medium][blood-type=0+] ...

A form in brackets [ ] is called a selector, and generally is a relational
statement relating a variable to one or more values from its domain. A
concatenation of selectors denotes the logical product. VL, does not include
functions or predicates; in many applications, however, descriptions using
only variables are sufficient. (A richer language developed in the same spirit
that includes functions, predicates, and some other forms is VL,, (Michalski,
1978).)

In discussions with experts who are trying to describe their decision
processes, in particular diagnostic processes, we observed that they often
state a condition for a specific diagnosis as a sequence of observations or
symptoms (which can be represented by a conjunction of appropriate
selectors). However, these experts often also indicate that certain observa-
tions are more important than others. In our experiment, observations have
ranged from very important to merely supportive or confirmatory. There-
fore, we extended here the concept of a selector as defined by Michalski
(1974) by adding to it a weight. A weighted selector, 8%, is a form:

[(X;# R:wl] (2)

where x, is a variable, R, called the reference, is a list of one or more values
from the value set of this variable, # stands for one of the relational operators
= # 2 < > <, and w is the weight of the selector, w €[0,1]. 1s assumed to be
1, if not specified. Before explaining further the weighted selector, we will
define some preliminary concepts.

An event, e, is defined as a list of values of an assumed set of variables. For
example, assuming the variables: sex, height, and blood-type, an event can be

e: (male, 5fi 11 in, A+)

An event e is said to satisfy a selector 5: [x;#R] if the value of x;in e is related
by # to at least one element of R. For example, selector
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[albumin = low, medium]

is satisfied by e, if the value of albumin in e is low or medium.

It is easy to see that, if the reference of a selector has more than one
element, the selector is equivalent to a disjunction of selectors with one
element references:

ix;#a,b,...1=Ix*alVvix#blv.... (3}

A selector with a reference consisting of more than one element denotes the
so-called internal disjunction (disjunction on values of the same variable).

In medical or other applications, the knowledge of values of variables (of
tests, observations, etc.) may not be certain. It is usually possible to estimate
this uncertainty. Let D(S,e) €[0,1] denote the degree to which event e satisfies
the condition S : {x; # B].

Given an event and a weighted selector Sv, the degree of confirmation af
selector 8™ by event e is defined:

viSY,e) =v(5,e) + (1 — wi(1 - viS,e)) 4}

To explain the idea behind the rule (), let us assume that in a decision rule,
C:: >D, the condition, C, is a logical product of seiectors, each of which can
either be satisfied v{S,e)= 1 or not satisfied v(5,e) =0. If the weight of each
selector is 1, then, when a single selector is not satisfied, the condition, C, is
not satisfied. If, however, the weight (“importance”) of this selector is
small(<€ 1), then one would like to see the effect of not satisfying this selector
weakened. Formula (4) provides a means for capturing this property.

A product of selectors is called a complex, and a logical union of complexes
is called a disjunctive VL, expression {or weighted DVL, expression, if selec-
tions are weighted).

A simple way of expressing decision rules is in the form

C:>D

where C is a DVL, expression, D {DECISION) is a single selector, or a product
of selectors, and « measures the “strength” of the implication (¢ {0,1]).

An example of such a rule is the following description of postnecrotic
cirrhosis of the liver:

[albumin = low]{regeneration: bile ducts & fibrosis: diff or focal = present]

[fat:diff or zonal #strongly present][[fibrosis: portal or central = absent]

[liver nodules = no] i

[nausea = nol[albumin *above normal}fregeneration: retic. endo. = absent]
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[cells: central ar portal, fibrosis: diff or focal = present]
[cells: monos. or epithel. # strongly present]
:: >[Diagnosis = Postnecrotic Cirrhosis]

{When « is not specified then a= 1).

The above example illustrates the form of inductively-derived decision
rules used in this study (section 5 and Appendix 2). Expert-derived rules had
a somewhat more complex form (section 4 and Appendix I).

3. DESCRIPTION SPACE

In the case study, 15 soybean diseases were selected as being representative
of the nature and scope of the problems that are faced in the diagnosis of
plant diseases. The task was to develop a knowledge base which contained
sufficient information to diagnose the following subset of soybean diseases:

D1: Diaporthe stem canker
D2: Charcoal rot

D3: Rhizoctonia root rot
D4: Phytophthora root rot
D5: Brown stem rot

Dé: Powdery rnildew

D7 Downy mildew

D8: Brown spot

D9: Bacterial blight

D10:  Bacterial pustule
D11:  Purple seed stain
Di2:  Anthracnose

D13:  Phyllosticta leaf spot
D14:  Alternaria leaf spot
D15:  Frog eye leaf spot

A description space for diagnosing the selected soybean diseases was devel-
oped in conference with an expert in soybean pathology. The variables used
were 35 plant and environmental descriptors and one decision variable
{specifying diagnosis). The intent in selecting the particular descriptors and
their associated values was to provide a description space which was suffi-
cient to describe the diseases of soybeans in terms of macrosymptoms, i.e.,
those symptoms which could be clearly observed with no sophisticated
mechanical assistance. The reason is that an Extension Service Field Agent, a
farmer, or even a layman should be able to make reliable observations. A
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descriptor is a function which assigns to the plant or its environment a
specific value from the set called the domain of the descriptor. For example,
descriptor Time of Occurrence (TOC) specifies for the diseased plant the
time of occurrence of the disease in the field. The descriptor Condition of
Roots (COR) assigns a value describing the state of the roots of the plant. The
domains of these descriptors for this knowledge base were:

DI(TOC) = (April, May, June, July, August, September, October)
D(COR) = (Normal, Rotted, Galls or Cysts Present)

Table 1 lists the selected 35 descriptors. The number in parentheses fol-
lowing each descriptor indicates the number of possible values the de-
scriptor can take. In addition, there is a decision variable which specifies the
diagnosis of a disease from the assumed set of soybean diseases.

Individual diseased plants were described in terms of the above 35 de-
scriptors. Thus, the total description space (i.e., the set of all possible
sequences of values of descriptors), has the size 7X2X3X ... X2X2X3 =
approx. 3 X 10*°events.

4. EXPERT-DERIVED DECISION RULES

Diagnostic decision rules for the above-mentioned 15 soybean diseases were
obtained from discussions with plant pathologists during several confer-
ences. Approximately 20 hours were required to developed the descriptions
for the above 15 diseases. The descriptions of diseases were expressed in the
form of modified DVL, rules. This modification provided a way to express
the statements by experts which indicated different levels of significance for
applicable conditions. Significant conditions which must be present in a
plant when afflicted by a particular disease are grouped in a complex
preceded by Q,; conditions which, although generally present, merely con-
firm the information which is given by significant conditions are grouped in
a complex preceded by Q,. When this representation is used, a sum of these
terms constitutes a description of disease.

Additionally, we distinguish a new form of selector, called a functional
selector, which is defined:

x;: @ fnj

where fn is a function which assigns a weight to the selector dependent upon
the value of the variable x, and @ indicates the natureof fn. Itcanbe t, }, M,
U, where t(})indicates that fn is monotonically increasing (decreasing) over
the domain of x; and N{V) indicates that fn has the greatest (smallest)
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Table 1
Plant Descriptars Used in the Experiment
Number
of Values Variable
1. Environmental descriptors
1.1 Time of occurrence {n (x,)
1.2 Plant stand - (2) (x;)
1.3 Precipitation (3} (x5}
1.4 Temperature (3 (x,)
1.5 Occurrence of hail (2} (xg)
1.6 Number years crop repeated 10} (x5}
1.7 Damaged area {4) {x.}
2. Plant global descriptors
2.1 Severity (3) (xg)
2.2 Seed treatment {3} {xg)
2.3 Seed germination (3 (Xy0}
2.4 Plant height (2) (x4}
3. Plant local descriptors
3.1 Condition of leaves (2) (x5}
3.1.1 Leafspots—halos (3) (X,4)
3.1.2 Leafspots—margin (3) (x4}
3.1.3 Leafspot size (3 {x,5)
3.1.4 Leaf shredding or shot holing (2) (x5}
3.1.5 Leaf malformation (2) {x,,)
3.1.6 Leaf mildew growth (3) ()
3.2 Condition of stem (2) (x,5)
3.2.1 Presence of lodging (2) (X0}
3.2.2 Stem cankers 4 (x,4)
3.2.3 Canker lesion color (4) (x,5)
3.2.4 Fruiting pod on stem {2) (xz3)
3.2.5 External decay (3) (x,,)
3.2.6 Mycelium on stem (2) (X5}
3.2.7 Internal discoloration (3 (x25)
3.2.8 Sclerotia—internal or external (2) (x,.)
3.3 Condition of fruits—pods (4) {x25)
3.3.1 Fruit spots (5) (X50)
3.4 Condition of seed (2) (Xap)
3.4.1 Mold growth (2) (X4,)
3.4.2 Seed discoloration (2) (x5,)
3.4.3 Seed size (2 {X44)
3.4.4 Seed shrivelling (2} {Xg,)
3.5 Condition of roots (3) (X54)

weight around some mean and decreases (increases) with the distance from
this mean.

For example, in [# years crop repeated: 1 ER1] the I indicates that the
weight assigned by the function ER1 grows as the number of years the soy-
bean crop is repeated in the same field. The function ER1 canbe defined, e.g.:
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(1.0, if the crop is repeated 3 or more years
0.8, if the crop is repeated 2 years

0.7 if the crop is repeated 1 year

0.2, if the crop has not been repeated.

ER1:w =

which is graphically shown in Figure 1.
The following is an example of an expert decision rule (describing dia-
porthe stem canker):

Q.([time = Aug . . . Sepresent][precipitation: |EP][fruiting bodies = present]
{stem cankers = above second node][fruit pods = absent])

e

Q.([temperature =n}fcanker lesion color = brown]
[# years crop repeated: 1ER1]
::> [Diagnosis = diaporthe stem canker/

The complete set of the expert-derived decision rules and the weight as-
signing functions are given in Appendix 1.

5. INDUCTIVELY DERIVED DECISION RULES
5.1. Background Information

The inductively derived decision rules were generated by applying the
computer program AQ11 (Michalski & Larson, 1978} to a set of events
{descriptions of individual diseased plants) with known diagnosis. The events
were specified in the form of questionnaires completed by plant patholo-
gists. Table 2 is an example of a completed questionnaire which describes a
case of brown spot. All available events (630) were partitioned into a learning
and testing set (Table 3). |

0

o5 -

1 L A

#o. times crop repeaied

Figura 1




Table 2
An Example of a Learning Event
(completed questionnaire describing a diseased plant)

Environmental descriptors
Time of occurrence = July
Plant stand = normal
Precipitation = above normal
Temperature = normal
Occurrence of hail = no
Number years crop repeated = 4
Damaged area = whole fields

Plant global descriptors
Severity = potentially severe
Seed treatment = none
Seed germination = less than 80%
Plant height = normal

Plant local descriptors

Condition of leaves = abnormal
Leafspots—halos = without yellow halos
Leafspots—margin = without watersoaked margin
Leafspot size = greater than ¥s inch
Leaf shredding or shot holding = present
Leaf malformation = absent
Leaf mildew growth = absent

Condition of stem = abnormal
Presence of lodging = no
Stem cankers = above the second node
Canker lesion color = brown
Fruiting bodies on stem = present
External decay = absent
Mycelium on stem = absent
Internal discoloration of stemm = none

. Sclerptia—internal or external = absent

Condition of fruits—pods = normal
Fruit spots = absent

Condition of seed = normal
Mold growth = absent
Seed discoloration = absent
Seed size = normal
Seed shriveling = absent

Condition of roots = normal

Diagnosis

Diaporthe stem canker ( ) Charcoal rot{ ) Rhizoctonia root rot( )
Phytophthora root rot( ) Brown stem root rot( } Pawdery mildew{ }
Downy miidewl{ ) Brown spot{X) Bacterial blight{ )

Bacterial pustulel } Purple seed stain{ ) Anthracnosel )

Phyllosticta leaf spoil )} Alternaria leaf spot( ) Frog eye leaf spot( )

500
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Table 3
Events Available for Learning and Testing
Learning Testing Available
Disease events EVEnts evenis
Diaporthe stem canker 10 10 20
Charcoal rot 10 10 20
Rhizoctonia root rot 10 10 20
Phytophthora root rot 40 48 88
Brown stem rot 20 24 44
Powdery mildew 10 10 20
Downy mildew 10 10 20
Brown spot 40 52 92
Bacterial pustule 10 10 20
Bacterial blight 10 10 20
Purple seed stain 10 10 20
Anthracnose 20 24 44
Phyilosticta leaf spot 10 10 20
Alternaria leaf spot 40 51 91
Frog eye leaf spot 4 51 91
Total 290 340 630

Also, rules describing some a priori knowledge of the problem were
specified. These rules included the following:

1. A description of known relationships among variables, specifically
relations stating that, if some part of a plant is healthy, then all the descrip-
tors which specify the particular conditions of that part do not apply. For
example,

[leaves = normal] => [leafspots halos = *}{leafspots margin = *]
[leafspot size = *][leaf shredding = *]
[leaf malformation = *][leaf mildew growth = *]

where * denotes “does not apply” and => is the logical implication. Table 4
gives the rules used.

2. Definitions of generalization trees which relate to each other the values of
structured variables {Michalski & Larson, 1978) from the viewpoint of their
generality. Two structured descriptors were used:

DAMAGED AREA

0 Scattered plants
1 Groups of plants in low areas

—__—~——4 Not whole fields

2 Groups of plants in upland areas
3 Whole fields /
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Table 4
Rules Describing a priori Knowledge

1. [leaves = normal] => [leafspots halos = *}{leafspots margin = *]
{leafspot size = *]{leaf shredding = ~]
[leaf malformation = *][leaf mildew growth = *]

2. [leafspots halos = absent] => {leafspots margin = *[leafspot size = *]

3. {stem = normal] => [presence of lodging = *][stem cankers = *]
{canker lesion color = *][fruiting bodies on stem = *]
[external decay of stem = *}{mycelium on stem = *]
[internal discoloration = *]
[sclerotia internal or external = *]

4. [fruit pods = normal} => [fruitspots = *]

5. [seed = normal}] => [seed mold growth = *]{seed discoloration = *]
[seed size = *][seed shriveling = *]

LEAF SPOTS HALOS

0 Absent —_—
1 with yellow halos ————3 Present
2 Without yellow halos

The learning events and the above rules were the input to the inductive
program AQ11. Before presenting the rules and discussing them, we will
briefly describe the basic algorithm underlying the program (Michalski &
Larson, 1978).

5.2. Description Of The Top-Level Algorithm

Suppose there is given a set of hypothesis, V = [Vj}.i = 1,...,m, and a
family of event sets {“facts”), F = {F,}, which these hypotheses are supposed
to describe. Suppose that for any i, V; describes correctly only a part of the
events from F;,

The preblem is to produce a new set of hypotheses, V' = [V}, where each
V describes all events from set F,, and does not describe events from other
event sets

Fl.’j ¢ i-

The following solution to this problem is based on an algorithm for deter-
mining a cover, C(E,/Eg), of an event set E, against the event set E,. Such a
cover can be interpreted as a DVL, expression which is satisfied by every
event in E, and not satisfied by any event in E, (or in E; \ E,, if E; N E; ¥ ¢).
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The covering algorithm is based on the effective use “negative events” (i.e.,
those in E), and is especially efficient when the negative examples are
expressed as a cover. For lack of space, we have to omit here a review of the
covering algorithm, and describe only the process of hypothesis generation
which uses the algorithm as the basic block. The algorithm is described in
Michalski (1971, 1975). The solution consists of 3 major steps.

Step 1

The first step isolates those facts which are not consistent with the given
hypotheses. For each hypothesis, two sets are created:

F+.—a set of events which should be covered by the hypothesis, but are
not;

F-a set of events which are covered by the hypothesis, but should not be
covered.

(An event is said to be covered by a hypothesis if the event satisfies the VL,
formula that represents the hypothesis.) Specifically, this step determines,
foreachi, i = 1, 2, ..., mthe sets.?

Fr=FA\V,
-F,-}=ff'jﬂFP j=12,...,mj#L

Thus, F;" denotes events which should be covered by V; but are not, and F;,
denotes “exception” events, i.e., events in F;, j #i, which are covered by V,
but should not be covered.

Step 2
This step determines, for each i, a generalized formula V;, describing all
exception events (the union of sets F j = 1,2, ..., myj # D. This is done by
generating, for given i and each j, a cover of Fy; against the events in the sets
?I-UFI'-I-,I.: 1,2,...;"’1:
m
e L7 -+
V= U(Fﬂ/f__\gl (V; UF")
and then taking the logical union of Vy;

I -
=
J*i

m

27 . denotesthe set of events covered for V,
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The reason for this step is that it is computationally more efficient to use
formulas V; than the union of Eg j = 1,2, . . ., m;j #Ii

Step 3

New “correct” hypotheses could be obtained now by “subtracting” from each
Vv, the formula V; and “adding” to it the set F;". To do this however, is
difficult. Again, an advantage is taken of the available covering techniques.
Namely, the new hypotheses, v}, i = 12, ..., m, are determined as covers:

N = C(FJ Ef__l_l. [(V, \VpU Fkl).
k#i

(The point is that directly simplifying a union of terms is difficult; but
subtracting a complex from a complex, or generating a cover of an event set
against a formula, is easier.)

Step 4

This step determines the final representation of hypotheses VL. The V!, are
expressions which are unions of complexes. Some complexes in a VY may
represent (cover) only a few events in ;. Such “low weight” complexes can be
replaced by the events (facts) themselves (since an event takes less memory
than a complex). They may also indicate errors in data,

The rules for the generalization of structured descriptors were applied
after the decision rules had been generated.

5.3 The Inductively Derived Rules

AQ11 ;ﬁroduced decision rules in which the CONDITION part is a DVL,
expression involving selectors withw = 1. The following is an example of an
inductively derived decision rule {describing Phytophthora root rot).

[plant stand < n}{precipitation = n]{temperature e n][stem = abn]
[plant height = abn][leaves = abn]{leaf malformation = abs} (24, 6, 24)

v
[time = Ar.. Augl[plant stand = abn][damaged area = low areas)
[plant height = abn]{leaves = abn}[stem = abn] (16, 16, 34)

[external decay #firm & dry]
=> [Diagnosis = Phytophthora root rot}
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The complete set of inductively derived decision rules is given in Appendix 2.
(AQ11, written in PL/I, took approximately 4 minutes and 30 seconds on an
IBM 360/75 to generate the rules.) The triplet of numbers given with each
complex (a product of selectors) of the rule indicates the performance of that
complex in covering the learning set of events. The first element of the triplet
indicates the number of new events covered by this complex (those which
were not covered by previously generated complexes); the second, the
number of events which oniy this complex covered; the third, the number of
events which this complex covered totally. This triplet provides information
about the relative importance of each complex to a given decision rule,
The program ESEL (Michalski & Larson, 1878) was used to select the
learning events from the set of available events. This program attempts io
select the most representative events from each disease set using a “distance”
measuring technique. This method of selecting the learning events biases the
testing set in some sense, since the testing events are those which were not
selected by the program. To eliminate this effect, one could acquire a distinct
set of testing events or select learning events totally randomly. The point of
this study was, however, not to test the learning method using a teacher
which randomly selects examples, but a “good” teacher which selects repre-
sentative learning examples. The program ESEL was such a teacher. The
selected events were analyzed by AQ11 to produce the decision rules.

6. COMPARISON OF THE PERFORMANCE OF THE RULES
Both the inductively derived rules and the expert-derived rules were tested
using the same testing events (340 cases in total of soybean diseases—Table
3). The experiment involved the application of several inference techniques
(Michalski & Chilausky, 1980). Here we present the results which were
obtained with the best performing technique for each set of rules.
A. Evaluation Techniques Used for Expert- Derived Rules
(Scheme <P, A, M) as described in Michalski & Chilausky, 1980.)

(a} Evaluation of a selector:

"1, if the value of the variablé in the event satisfies the selector,

D{S) = 1 — w, otherwise.

{(b) Evaluation of a functional selector Gi.e., [x; : @ fn]):

v(S™) = value of fn for the value of the variable in the event
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{c) Evaluation of a complex:
wT) = & (WS{)/# of selectors in the complex
where i indexes each selector in the complex.

(d) Evaluation of an expression. Each rule was a sum of two complexes,
T, (conditions preceded by Q) and T, (conditions preceded by Q,). (In two
rules ‘T, was empty.) T, contributed 90% and T, contributed 10% to the
degree of confirmation of the rule:

W) = 0.9 » VT, + 0.1+ v(TJ)

The coefficients 0.9 and 0.1 were determined experimentally. (When T, was
empty, the coefficient for T, was 1.)

B. Evaluation Techniques Used for the Inductively-Derived
Rules

(Scheme ¢N, A, §) as described in Michalski & Chilausky, 1980.}

{a) Evaluation of a selector:

w, if the value of the variable in the event satisfies the
D(S) = | selector,
—w, otherwise.

(The rules consisted of only selectors with w = 1))

(b) Evaluation of a complex:

WT) = Evi8)| # of selectors in the complex.
(c) Evaluation of an expression:

ForF=T,VT,
V(F) = W(T1) + W(T,) — VIT, » V(T,)

{For the rules which consisted of more than two complexes the evaluation
was appropriately extended.)

Tables 5 and 6 show the results of testing both sets of rules {expert derived
and inductively derived) to determine the accuracy with which they classi-
fied testing cases of plant diseases. The correct diagnoses for testing events
were determined by plant pathologists. If two or more rules were satisfied
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Confusion Matrix Summarizing the Diagnosis of 340 Testin

Table 5

g Events Using Expert-Derived VL Rules

Maximum Assigned decision
Correct Indecision * of Test
diagnosis ratio Ties altern cases D1 D2 D3 D4 D5 D& D7 D8 D9 D10 pi1 D12 D13 Di4 D15
Diaporthe stem canker
(D1} 18 7 3 10 100 40 40
Charcoal rot
(D2) 1+0 0 1 10 100
Rhizoctania root rot
(D3) 0.3 0 1 10 90
Phytophthora root rot
{D4) 14 18 2 48 27 8 100 2
Brown stem rot
(D5} 0+96 2 3 24 87 4 4
Powdery mildew
(D6) 10 0 1 10 100
Downy mildew
(D7) 3e4 10 5 10 80 100 30 30 70 30
Septoria brown spot
(D8} 49 52 8 52 37 40 100 38 a7 a0 44 100
Bacterial blight
(D9 27 9 4 10 50 100 90 30
Bacterial pustule
(D10) 32 9 5 10 6 70 50 100 30 30 20 10
Purple seed stain
{D11) 2+1 8 5 10 20 10 10 80 60 30
Anthracnose
(D12} _ 2.1 21 4 24 50 4 4 54 96
Phyllosticta leaf spot
(D13) 41 10 6 10 20 100 50 g0 8¢ 70
Alternaria leaf spot
(D14} 31 51 5 a2l 3g 100 20 8 94 69
Frog eye leaf spot
(D15) 422 51 6 51 4 19 63 100 4 ¢ 100 100
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Table 6

Confusion Matrix Summarizing the Diagnosis of 340 Testing Events Using Inductively-Derived VL Rules

Maximum

Assigned decision

Correct Indecision Test
diagnosis ratio  Ties cases D1 D2 D3 D4 D5 Dé D7 D8 D9 D10 Dit D1z Di3 D14 Di5
Diaporthe stem canker

(D1} 247 10 10 100 100 70
Charcoal rot

(D2} 10 G 10 100

- Rhizoetonia root rot

{D3) 2+0 10 10 100 100
Phytophthora root rot

{D4) 10 0 48 100
Brown stem rot

(DS) 143 3 24 8 100 4 8 8
Powdery mildew

(DG} 1.0 0 10 100
Downy mildew

(D7} 4«1 10 10 100 90 30 90 100
Septoria brown spot

{DB) 40 52 52 10 100 88 100 100
Bacterial blight

(D9) Je2 10 10 100 &0 10 80 80
Bacterial pustule

(D10} 1+6 4 10 20 100 10 30
Purple seed stain

(011) 2+8 7 10 40 10 100 10 60 60
Anthracnose

(D12) 1.1 2 24 8 100 4
Phyllosticta leaf spot

{D13) Je8 10 10 100 100 100 100
Alternaria leaf spot

{D14) 32 51 51 100 22 100 100
Frog eye leaf spot

(D15) 3«9 51 51 2 100 &2 4 100 100
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by a testing event (i.e., a description of a sick plant), the event was multiply
classified (i.e., assigned a set of alternatives). The labels for the confusion
matrices are defined as follows. .

¢ Correct diagnosis
The correct diagnosis for the given testing event.
e Indecision ratio
The ratio of the number of alternative diagnoses for the events of the
given disease over the number of testing events in the set. An
mcrease in the indecision ratio indicates an increase in the average
number of alternative diagnoses for the cases of the given disease. A
small indecision ratio does not imply correct diagnoses.
e Ties The number of testing events of the disease which were not
uniquely diagnosed.
e Maximum ¥ of altern
" The maximum number of alternatives in diagnosing a case of the
given disease.
® Test cases
The number of testing events of the given disease.
* Assigned decision
Each column under this label gives the percentage of decisions
indicating the corresponding disease for the testing events (for which
the correct diagnosis is indicated by the label in the row).
Thus, the percentage of correctly assigned diagnoses are on the
diagonal of each confusion matrix.

Table 7
Performance of the Rules
% % %
correct preferred not Indecision
Type diagnosis diagnosis diagnosed ratio Threshold
Inductively derived 100+0 9786 — 2+64 080
Expert derived 96«2 = 718 2+1 2+90 D#&5

Table 7 gives a comparison of the overall performance of the two sets of
rules. The rules which satisfied a criterion of acceptability were selected as
alternative diagnoses. The criterion of acceptability was that the degree of
confirmation of a rule must be greater than the THRESHOLD, and be either
maximum or smaller than maximum by no more than MARGIN OF UNCEBE-
TAINTY. The THRESHOLD was 0.65 for the expert-derived rules and 0.8 for
the inductively derived rules. The label “% Correct diagnosis” indicates the
percentage of cases when the correct disease (according to experts) was one
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of alternative diagnoses. The MARGIN OF UNCERTAINTY was specified as 0.2
for both sets of rules. The label “% Preferred diagnosis” indicates the per-
centage of cases when the disease which had the highest degree of confir-
mation was the correct one. Both inductive and expert rules performed well
in selecting the correct disease as one of the diagnostic alternatives. However,
the inductively derived rules performed better in selecting the correct disease
as the preferred diagnosis. The indecision ratio (total decisions over total
events) for the two sets of rules were comparable and the number of alter-
native diagnoses were distributed quite similarly (Tables 5 and 6}. Seven cases
could not be diagnosed by the expert rules using the given THRESHOLD. The
THRESHOLDS (determined experimentally) were significantly different. This
appears to indicate that the inductive rules are “cleaner”; i.e., there is less
:aformation in them which is nonessential to diagnosis.

7. CONCLUSION

The comparison of two knowledge acquisition techniques indicates that de-
cision rules derived inductively performed somewhat better than the rules
derived by representing the knowledge of experts (in the specific context of
soybean disease diagnosis). Since this result was contrary to the initial ex-
pectations of the authors, the experiment was repeated several times intro-
ducing various corrections to the expert-derived rules and the input events
and using different inference techniques. The results always had basically the
same pattern. There can be several explanations for this outcome.

1. The information obtained during the conference with the experts
was not sufficiently adequate.

2. Our knowledge representation scheme was not adequate. (It may be
interesting to notice here that expert-derived rules were basically
single conjunctions of selectors having varying weight, while induc-
tively derived rules were either a single conjunction of unweighted
selectars or a logical union of such conjunctions.)

3. The inference techniques used to evaluate the decision rules were
not adequate.

4. Experts in making diagnoses are not necessarily experts in ex-
plaining the process of diagnosis. These functions are different. If
this is the case, it means that the reliability of the data describing
diagnoses made by experts (i.e., reliability of the learning events) will
tend to be better than the diagnostic decision rules which they
formulate. This would provide an additional argument for knowl-
edge acquisition by induction from examples.

The major conclusion of this experiment is that the current computer
induction techniques can already offer a viable knowledge acquisition
method if the problem domain is sufficiently simple and well-defined.
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APPENDIX 1
Expert- Dervied Rules For 15 Soybean Diseases

Q, indicates significant conditions.
Q. indicates corroborative conditions.
Abbreviations used: n—normal; abn—abnormal; p—present; abs—absent.

D1: Qy[time = Aug. . Sep]|precipitation: {EP]
[stem cankers = above second node][fruiting bodies = pl
[fruit pods = n])
+
Q. {[temperature = n}[canker lesion color = brown]
[# years crop repeated: 1ER1))
::> [Diagnosis = Diaporthe stem canker]

D2: Qg (time = Jul .. .Aug][precipitation < n][tempeature = n]
[plant growth = abn]{leaves = abn][stem = abn]|sclerotia = p]
[roots = rotted][internal discoloration = black])
-+

Q.([damaged area= unpland areas]{severity = severe][seed
size <n}
[# years crop repeated: tER2))

::> [Diagnosis = charcoal rot]

D3: Q,([time = May . . June]plant stand < n] [temperature<n
{precipitation <n}[leaves = abn][stem = ahn]
{canker lesion color = brown]([roots = rotted]
{loceurrence of hail = no]l[stem cankers = below soil line, at or

slightly above soil line})
(Joccurrence of hail = yes] => [stem cankers = above second
node]))
-+
Q,([fruiting bodies = abs][external decay = firm & dry][mycelium
= abs])

1:> [Diagnosis = Rhizoctonia root rot)

D4: Qg [time: NET][plant stand <n]
{([time= Apr . . June] = > [precipitation = n}})
({time = Jul.. .Aug]=> [precipitation = above n])
([ime = Apr]=>[temperature =above n])
({time = May .. .Aug] => [temperature = n])jdamaged areas =
low areas]
[plant growth = abn]{leaves = abn]{stem = abn
[stem cankers = at or slightly above soil line]
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([time = May . . .Aug]=> [canker lesion color = dark brown or
black])
[roots = rotted])
+
Q.([# years crop repeated = 2]}
::>[Diagnosis = Phytophthara root rot]

D5: QgJltime = IJul.. .Sep]lprecipitation> n][temperature < n}[leaves
= abn]
[stem = abn][internal discoloration = brown][lodging = p})
-+
Q.([seed size <n][# years crop repeated: 1ER3))
::> [Diagnosis = Brown stem rot]

D6: Qllleaves = abn][leaf mildew growth = upper leaf surface])
+
Q. [time = Aug. . .Sep]
::> [Diagnosis = Powdery mildew]

D7: Qg ftime = June... Aug]{precipitation=n]{damaged areas =
whole fields]
[leaves = abn][leafspots halos = no yellow halos]
{leaf mildew growth = lower leaf surface]
([time = Sep. .. Oct=>[see = abn])[mold growth on seed = p})
::> [Diagnosis = Downy mildew]

D8: Qfleaves = abn][leafspots hales = p]
- fleafspots watersoaked margin = abs][leafspot size> ¥sinch]))
+
Q. ([time = May, Aug. .. Sep][precipitation = n})
::> [Diagnosis = Brown spot]}

D9: Q,([time = April. .. Jun, Aug. .. Sep]
({time = April. . . Jun] => [precipitation = n, above n})
(ftime = Aug. .. Sep] => [precipitation =>above n])
(ftime #* Aug] => [temperature = n])
(ftime = Aug] => [temperature = below n])[leaves = abn]
[leafspots halos = with yellow halos]{leafspots watersoaked
margin = p]
[leafspot size < ¥s inch][leaf shredding = p])
::> [Diagnosis = Bacterial blight]

D10: Q[time = June. .. Aug][precipitation= n][leaves = abn]
[leafspots halos = no yellow halos][leafspots watersoaked
margin = abs]

[leafspot size < ¥z "][leaf shredding = p])
+
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D12:

D13:

D14

D15;
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Q. [# years crop repeated > 1]
::>[Diagnosis = Bacterial pustule]

:Q,([time = Sep. . . Oct}{seed = abn][seed discoloration = p]
[seed size = smaller than n])
+
Q_([time = Aug. . . Sep]|precipitaiton =nj[leaves = abn])
3> [Diagnosis = Purple seed stain}

Q,([time = Aug. . . Oct}{precipitation <n][stem = abn]
[canker lesion color = brown][fruiting bodies = p]
([time = Sep. .. Oct] => [seed = abn]))

[fruit spots = abs, brown spots with black specks])
+
Q_[damaged area = whole fields]
::> [Diagnosis = Anthracnose]

Q.[time = Apr. . . Jul]l{precipitation= n]{leaves = abn]
[leafspots halos = no yellow halos][leafspots watersoaked
margin = abs]
[leafspot size > ¥s inch][leaf shredding = p])
+
Q.([damaged area = whole fields][time # Jun] => [temperature =
n])
{[time = Jun] => [temperature = below n])
22> [Diagnosis = Phyllosticta leaf spot]

Q.E([time = Jul. . . Oct][leaves = abn}[leafspots halos = no yellow
halos]
[leafspots watersoaked margin = abs][leafspot size > % inch]
[leaf shredding = abs])
+
Q (([time = Sep. . . Oct] => [fruit pods = diseased))
([fruit pods = diseased] => [fruit spots = colored spots])
([seed = abn] =>[seed discoloration = p}))
11> [Diagnosis = Alternaria leaf spot]

Q. ([time = Jul. .. Sept][precipitation = n}[leaves = abn]

[leafspots halos = no yellow halos]{leafspots watersoaked
margin = abs]
[leafspot size > ¥ inch])

+

O ((ftime = Sep]=> [fruit spots = colored spots])
[stem canker = above second node]{canker lesion color = tan]
{fruiting bodies = abs))
12> [Diagnosis = Frog eye leaf spot]
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Definition of Weight Assigning Functions

EP:

ER1:

ER2:

- ET:

ER3:

(1-0, if precipitation = above normal
0-7  if precipitation = normal
| ", otherwise

1 1-0  if # years crop repeated=3
0-8  if # years crop repeated = 2
0-7  if # years crop repeated = 1
| 0-2, if crop not repeated

[ 1-0, if # years crop repeated =2
0-6. if # years crop repeated = 1
| 0-2, if crop not repeated

(1-0,  if time of occurrence = May. . . Jul
0-7.  if time of occurrence = Apr, Aug
| ¥, otherwise

(1-0,  if # years crop repeated = 2
0-5, if # years crop repeated = 1
| 0-1, if crop not repeated

APPENDIX 2

Inductively Derived Rules For 15 Soybean Diseases

Abbreviations used: n—normal; abn—abnormal, p—present; abs—absent.

D1:

D2:

13:

[time = Jul. .. Oct][precipitation > n]{leaf malformaiton = abs]
[stem = abn]{stem cankers = above second node] (10,10,10)
[external decay = firm & dryl{fruit pods = n]

::> [Diagnosis = Diaporthe stem canker]

[leaf malformation = abs}{stem = abn]
[internal discoloration = black] {10,10,10)
11> [Diagnosis = Charcoal rot]

[leaves == n]{stem = = abn][stem cankers = below soil line]
[canker lesion color = brown] (9,9,9)
A

[leaf malformation = abs]{[stem = abn]

[stemn cankers = below soil line][canker lesion color = brown]
(1,1,1)

::> [Diagnosis = Rhizoctonia root rot]
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[plant stand > n][precipitaiton = n][temperature < n]

[plant height = abn][leaves = abn}{leaf malformation = abs]
{24,6,24)
[stem = abn]
vV
[time = Apr.. . Aug}[plant stand = abn]{damaged area = low]
[plant height = abn]{leaves = abn][stem = abn] (16, 16,34)

[external decay = abs, soft and watery)
:i>[Diagnosis = Phytophthora root rot]

[leaf malformation = abs][stem = abn]
[internal discoloraiton = brown] (13,13,13)
V
[leaves = n]{stem = abn]{internal discoloration = brown} (7,7,7)
11> Diagnosis = Brown stem rot]

{leaves = abnl}{leaf malformation = abs}
{leaf mildew growth = on upper leaf surface]{roots = n] (10,10,10)
11> [Diagnosis = Powdery mildew]

[leafspots halos = p]{leaf mildew growth = on lower leaf surface]
[stem = n][seed mold growth = p] (10,10,10)
21> [Diagnosis = Downy mildew]

[precipitation = n]{# years crop repeated > 1]

[damaged area #whole fields}{leaves = abn]

[leafspots halos = no yellow halos}

fleafspots watersoaked margin = abs][leafspot size > % inch]

[leaf malformation = abs]j[roots = n] (19,2,19)
v

[precipitation >n][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs]{leafspot size > ¥ inch]

[roat = n] (15,11,30)
Vv

[time = April. . . Jun]{damaged area # whole fields}[leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][leafspot size > % inch]

{leaf shredding = abs][leaf malformation = abs]froots = n} (6,6,12)

::> [Diagnosis = Brown spot]

[time = Jun. .. Sep][temperature = n][leaves = abn]

[eafspots halos = pljleafspots watersoaked margin = p}

fleafspot size <§inch][fruit pods = n}[roots =n] (10,10,10)
::>[Diagnosis = Bacterial blight]
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fleaves = abn][leafspots halos = with yellow halos]
[leafspots watersoaked margin = abs]{leafspot size < ¥ inch]

[stem = n}{fruit pods = n] (7,6,7)
vV

[leafspots halos = p]{leafspot size <%inch]stem = n]

[roots = rotted] (2,2,2)
vV

[time = May]{precipitaiton = n][leaves = abn]
[leafspots halos = with yellow halos} (1,1,2)
::> [Diagnosis = Bacterial pustule]

[plant stand = n]{precipitation > n][severity = minor]
fplant height = n]{leafspots halos = no yellow halos][seed = abn]

[seed discoloration = p]{seed size = n] {5,5,5)
v
[leaves = n][seed = abn][seed size = n] (5,5.5,)

::> [Diagnosis = Purple seed stain]

[precipitation > n}[leaf malformation = abs][stem = abn]

[stem cankers = at or slightly above soil line, above second node]

[seed = abn][roots = n} (10,8,10).
| v

[time = Aug. .. Oct]{precipitation>n][leaves = n]

[stem cankers = above second node][fruit pods = diseased)

[fruit spots = brown spots with black specks] (5,5,5)
VvV

{temperature > n}[leafspots halos = abs}[leaf malformation = abs}

[stern = abn]{external decay = firm and dry] (5,5,7)

12> [Diagnosis = Anthracnose]

[time = Jun. .. Jullpprecipitation < nj[severity = minor}

[leafspats halos = no yellow halos]

[leafspots watersoaked margin = abs][stem = n][roots = n] (8,5,6)
v

[precipitation < n]{leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][roots = n] (3,3,4)
vV

[plant stand < n]{precipitation = n][occurrence of hail = no]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = abs][stem = n][roots = n]

(1,1,1)
2> [Diagnosis = Phyllosticta leaf spot]
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Di4: [time = Augl]{precipitation>> n]{seed treatment = none]}

[leaves = abn][leafspots halos = no yellow halos)

[leafspots watersoaked margin = p]{leafspot size > ¥ inch]

[leaf mildew growth = abs][stem = n][fruit pods = n] (8,5,8)
Vv

ftime = Sep. .. Oct][precipitation > n]

[damaged area = scattered plants, low areas, whole fields]

[seed germination = 80;pc]{leaves = abn]

{leafspots watersoaked margin = p][leafspot size > ¥ inch]

[stem = n] {13,4,13)
V

[time = Aug. .. Oct]{damaged area = scattered plants, low area]

[seed germination < 80;pc][plant height = n]{leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > ¥s inch]

[leaf mildew growth = abs][stem = n] {7,3,10)
Vv

[time = Oct][seed germination < 90;pc][leaves = abn]

fleafspot halos = no yellow halos]

{leafspots watersoaked margin = p][leafspot size > % inch]

[leaf mildew growth = abs][stem = n] {4,2,7)
Vv

[time = Aug. .. Oct][damaged area = upland areas, whole fields]

[seed treatment = none, other]{seed germination = 80%)]

leaves = abnl][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p]{leafspot size > % inch]

{leaf mildew growth = abs]Istem = n][fruit pods = n} {3,3,3)

foccurrence of hail = noJ[damaged area = scattered plants]

[severity = potentially severe][seed germination < 80%]

{leaves == abn}[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p]fleafspot size > ¥ inch]

[leaf mildew growth = abs][stem = n] (3,3,11)
\'

[time =  Aug...Oct][temperature=n][seed treatment =

fungicide]

[seed germination = 80-89%][leaves = abn]

[leafspots halos = no yeltow halos]

[leafspots watersoaked margin = p][leafspot size > ¥% inch]

[leaf mildew growth = abs]istem = n][fruit pods = n] (1,1,6)
V

[time = Sep. .. Oct][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p]{leafspot size > % inch]
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[leaf shredding = p] (1,1,1)
::> [Diagnosis = Alternaria leaf spot]

[precipitation = n]

[damaged area = low areas, upland areas, whole fields]
[leaves = abn][leafspots halos = no yellow halos]
{leafspots watersoaked margin = p][leafspot size > % inch]

{leaf shredding = abs][leaf mildew growth = abs][stem = abn)
[roots = n] (13,0,13)
V

[time = Jul. .. Sep][precipitation = n]{temperature = n]

{occurrence of hail = no]{damaged area = low areas, whole fields]

[seed treatment = fungicide][leaves = abn]

[leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > % inch]

[leaf shredding = abs][leaf malformation = abs}[roots = n] (7,5,8)
Vv

[time = Aug. .. Sep][precipitation = n]

[damaged area = low areas, upland areas]{severity = minor]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p]{leafspot size > ¥ inch]

[leaf shredding = abs]{leaf mildew growth = abs][seed = n
roots = nj (8,4,20)
vV

{time = Jul. .. Aug][precipitation > n][# years crop repeated = 1]
[damaged area = scattered plants][seed treatment = none, other]

" [leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > ¥ inch]
[leaf shredding = abs][leaf mildew growth = abs]{roots = nj
4,3,8)

v

{precipitation > n][# years crop repeated < 2]

[damaged area = scattered plants, upland areas]

[severity = potentially severe][seed germination < 80%]

[leaves = abn][leafspots halos = no yellow halos]

[leafspots watersoaked margin = p][leafspot size > % inch]

{leaf mildew growth = abs][roots = n] 4,3,9)
V

{time = Jul}[occurrence of hail = yes][leaves = abn]

{leafspots halos = no yellow halos]

[leafspots watersoaked margin = pj[leafspot size > ¥ inch]

[leaf mildew growth = abs}[stem = n] | (2,2,4)
v
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[plant stand = n][precipitation <n][# years crop repeated = 2]

{leaves = abn][leafspots halos = no yellow halos]

{leafspots watersoaked margin = p][leafspot size> ¥% inch]

[leaf shredding = abs][leaf mildew growth = abs][seed = n]

{roots = nj (2,2,5}
1> [Diagnosis = Frog eye leaf spot]



