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ABSTRACT 

 

The wide availability of computer technology and large electronic storage media has led to an  
enormous proliferation of databases in almost every area of human endeavor. This naturally 
creates an intense demand for powerful methods and tools for data analysis. Current  methods 
and tools are primarily oriented toward extracting numerical and statistical data characteristics.  
While such characteristics are very important and useful, they are often insufficient. A decision 
maker typically needs an interpretation of these findings, and this  has to be done by a data 
analyst. With the growth of the amount and of the complexity of the data, making such 
interpretations is an increasingly difficult problem. As a potential solution, the paper advocates 
the development of methods for conceptual data analysis. Such methods aim at semi-automating 
the processes of determining high-level data interpretations, and discovering qualitative  patterns 
in data. It is argued that these methods could be built on the basis of algorithms developed in the 
area of machine learning.  An exemplary system utilizing such algorithms, INLEN, is discussed. 
The system integrates machine learning and statistical analysis techniques with database and 
expert system technologies. Selected capabilities of the system are illustrated by examples from 
implemented modules.  

 

1. INTRODUCTION 
The current information age is characterized by an enormous expansion of data that are being 

generated and stored about all kinds of human activities.   An increasing proportion of these data 

is recorded in the form of computer databases.  This makes the data easy to access and easy to 

analyze by computer technology.  The rapid growth of such databases has not been, however, 

matched with an equally intensive development of new type of methods and powerful new tools 

for analyzing and interpreting the data. As a result, we face today a growing problem of how to 

extract desirable knowledge from the large accumulations of data.  

The existing data analysis tools are very useful and important for a whole range of data analysis 

tasks.  They are, however, oriented primarily toward extraction of quantitative and statistical data 
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characteristics, and as such have certain inherent limitations.  These tools include cluster 

analysis, numerical taxonomy, regression analysis, multivariate statistical methods, stochastic 

models, multidimensional analysis, times series analysis, nonlinear estimation techniques, and 

other.  For a sample of research on data analysis see, e.g., papers by Tukey, (1986),  Diday 

(1989),  Daniel and Wood (1980),  and Morgenthaler and Tukey (1989). 

These traditional data analysis techniques are particularly useful for such tasks as producing 

statistical data summaries,  fitting equations to data, revealing data organization on the basis of 

certain numerical measures, for developing mathematical data models, etc. Their results facilitate 

useful data interpretations, and can help to gain important insights into the processes that 

generated the data.  These interpretations and insights are the ultimate knowledge sought for by 

those who build databases.  Yet, this knowledge is not created by the current tools, but has to be 

derived by human data analysts.   As the quantity of available data increases, the complexity of 

extracting  knowledge from the data also increases, and may outstrip capabilities of data analysts.  

Summarizing, traditional numerically-oriented techniques offer powerful tools and have 

important practical applications, but they can solve only a limited range of problems.  For 

example,  a statistical data analysis can discover a correlation between certain variables. It  

cannot, however,  produce a conceptual  characterization or a casual explanation why such a 

correlation exists. Nor it can develop a justification of this correlation in terms of higher-level 

concepts or analogies to known phenomena. A statistical analysis can determine a central 

tendency and variability of various properties, and a regression analysis can fit a complex curve 

to a set of datapoints.  These techniques cannot,  however,  develop a qualitative characterization 

of the regularities in the datapoints and their dependence on various qualitative factors,  nor can 

they draw an analogy between this characterization and some regularity or law in another 

domain, or  relate it to similar past experiences.   

A numerical taxonomy technique can create a classification of entities, and specify a numerical 

similarity among the entities assembled into the same or different classes. It will not, however,  

hypothesize reasons for the entities being in the same class, or build qualitative descriptions of 

the classes created.  

Attributes that define the similarity, as well as the similarity measures,  must be defined by a data 

analyst in advance. These techniques cannot generate relevant attributes and appropriate 

similarity measures by themselves. All the above processes seem to require complex symbolic 

reasoning that relates high level concepts and analysis goals to available quantitative measures 

and transformations relevant to these goals.   
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A question then arises as to the possibility for performing some of the above data analysis 

functions by an automatic or semi-automatic process. The paper tries to address this question, 

and discusses some novel  data analysis tools.  

 

2. CAN MACHINE LEARNING HELP DATA ANALYSIS? 

The major premise of this paper is that various artificial intelligence methods, in particular, 

symbolic methods of machine learning and discovery, offer new and potentially useful tools for 

data analysis. These tools can perform new types of operations on data, and thus widen the scope 

of data analysis tasks that can be automated or semi-automated. Specifically, they can perform 

certain tasks of conceptual data analysis, that is, determine high-level symbolic data 

characterizations, and discover qualitative  patterns in data. Let us try to briefly review some of 

these methods in the context of database applications.    

2.1 Rule learning from examples 

One class of machine learning methods that are potentially useful for data analysis is based on 

methods for inductive learning from examples. Given a set of examples of different classes (or 

concepts), and certain problem relevant knowledge ("background knowledge"), an inductive 

learning method hypothesizes a general description of each class. The description is usually 

expressed as a set of decision rules or as a decision tree.  

A decision rule can have different forms; here we will assume the following form:   

CLASS   <::   CONDITION,  

where CLASS denotes a class or a concept that is assigned to an entity if that entity satisfies the 

CONDITION. The CONDITION is often a conjuction of some elementary conditions on the 

values of attributes, or a disjunction of such conjunctions (a DNF form). We will assume here 

that  if the CLASS needs a disjunctive description, then several conjunctive rules are linked to 

the same CLASS.  For example, Figure 1 gives an example of a disjunctive description of Class 

1 in the form of two rules.  

 

Class 1 <::  Jacket Color is Red, Green or Blue & 
                    Head Shape is Round or Octagonal 
 
Class 1 <::  Head Shape is Square  and Jacket Color is Yellow  

Figure 1.  A two-rule description of Class 1. 
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These rules characterize a class of robot-figures used in the EMERALD system for 

demonstrating machine learning capabilities. Paraphrasing,  "A robot belongs to Class 1, if the 

color of its  jacket is red, green or blue, and his head is round or octagonal; or, alternatively,   if 

the color of its jacket is yellow and its head is square." 

In a decision tree representation, nodes correspond to attributes, branches stemming from the 

nodes to attribute values, and the leaves to individual classes  (see, e.g., Quinlan,  1986). A tree 

can be simply transformed into a set of decision rules (a ruleset) by traversing all paths from the 

root to individual leaves. The opposite process, that is,  transforming a ruleset  into a decision 

tree is not so direct.  The reason for that  is that a rule representation  is  generally more powerful 

than a tree representation. The word "powerful" means here that, e.g., for some simple rulesets, 

the equivalent decision tree may be much more complex (e.g., Michalski, 1990).  

The EMERALD system, mentioned above, combines five programs  that display different kinds 

of  learning capabilities (Kaufman, Michalski, and Schultz, 1989; and Kaufman, Schultz and 

Michalski, 1991). These capabilities include rule learning from examples, learning distinctions 

between structures, conceptual clustering,  prediction of object sequences, and derivation of 

equations and rules characterizing data about physical processes.    The rules in Figure 1 were 

generated by the rule learning program  (version AQ-15) from a set of "positive" and "negative" 

examples of robot-figures  (Michalski,  Hong and Mozetic, 1986).  This paper concentrates on 

the applicability of the two of the above capabilities to data analysis, namely, rule learning and 

conceptual clustering.  For a description of other capabilities see, e.g.,  (Kaufman, Michalski and 

Kershberg, 1991). 

Most inductive rule learning methods learn attributional  descriptions of entities in a class, i.e., 

descriptions that involve only binary or multiple-valued attributes. Some methods learn 

structural descriptions, which characterize entities in terms of  both,  attribute values, as well as 

relationships that hold among components of the entities. Such relationships are represented by 

multiplace predicates (Michalski, 1983). For data analysis, the most interesting programs seem to 

be ones for learning attributional descriptions, because typical databases characterize entities in 

terms of attributes.  

The input to attributional  learning programs are sets of examples of individual classes, and some 

"background knowledge" relevant to the learning problem. The examples are in the form of 

vectors of attribute-value pairs associated with some decision class. In many cases, background 

knowledge (BK) is  limited to the information about the legal values of the attributes, their type 

(the scale of measurement), and the preference criterion for choosing among candidate 

hypotheses. Such a criterion is defined by the user in advance. In addition to BK, a learning 
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method may have a representational bias, i.e.,, it  constrains the form of descriptions to only a 

certain type of expressions, e.g., single conjunctions, decision trees, sets of conjunctive rules, 

DNF expressions, etc. In some methods, BK may include more information, e.g.,  constraints on 

the interrelationship between various attributes, rules for generating higher level concepts or 

attributes, and/or some initial hypothesis (e.g., Michalski,  1983).  Learned rules are usually 

consistent   and complete with regard to the input data. This means that they completely and 

correctly classify all the original "training" examples. Section 4 presents example solutions from 

the inductive concept learning program  AQ15. In some applications, especially those involving 

learning rules from noisy data or learning flexible concepts (Michalski, 1990), it may be 

advantageous to learn descriptions that may be  incomplete or inconsistent (Bergadano et al, 

1990).    

Attributional descriptions can be easily visualized by mapping them into a set of cells in a certain 

diagram. For example, Figure 2, shows a diagrammatic visualization of the rules from Figure 1. 
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Rule A:    Class 1 <::  Jacket Color is Red, Green or Blue & 
                                       Head Shape is Round or Octagonal 
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    Figure 2. A diagrammatic visualization of rules from Figure 1. 

Such a diagram is a planar representation of a multidimensional space spanned over the set of 

attributes (Michalski, 1978; Wnek et al., 1990). The diagram in Figure 2 was generated by the 

visualization program DIAV (Wnek, et al., 1990). Each cell in the diagram represents one 

combination of values of the attributes. For example,  the cell marked by an X represents the 

vector:  (HeadShape=S, Holding=S,  Jacket Color=R, IsSmiling=F). The four shaded areas 

marked Class1 (A)  represent rule A, and the shaded area marked Class 1 (B)  represents rule B. 

In such a diagram, conjunctive rules correspond to certain regular arrangements of cells and can 

be easily recognized  (Michalski, 1978). 
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The diagrammatic visualization  can be used for displaying the target concept  (i.e., the concept 

to be learned), the training examples (the examples and counter-examples of the concept), and 

the actual concept learned by a method. By comparing the target concept with the learned 

concept, one can determine the error area, i.e., the area containing all examples that would be 

incorrectly classified by the learned concept. Such a diagrammatic visualization method can 

illustrate any kind of attributional learning process (Wnek, 1990). Because a data table used in 

the data analysis can be viewed as a set of points in a multidimensional space,  the visualization 

technique can be a useful tool for representing the data and the learned symbolic descriptions 

(when the space is not too large).  

Two types of data analysis operators can be based on methods for learning concept descriptions 

from examples : 

A.  An operator for determining a general symbolic description of any designated group or 

groups of entities in a data set. Such a description expresses the common properties of the 

entities in the group. It can use abstract concepts in the description that are not present in the 

original set via the mechanism of constructive induction (see later). This operator is based on 

a program for learning the so-called characteristic concept descriptions.   

B.  Determining differences between different groups of entities. Such differences are expressed 

in the form of rules that define the properties that characterize one group but not the other. 

This operator is based on a program for learning the so-called discriminant concept 

descriptions.  

Section 3 will illustrate these two types of descriptions. For their definitions see (Michalski, 

1983). Basic methods for concept learning assume that examples do not have errors, that all 

attributes have a specified value in them and that concepts to be learned have a precise ("crisp") 

description. In many situations on or more of these assumptions may not hold. Therefore, some 

more advanced research problems in the area of concept learning from examples include:  

 • Learning from incorrect  data,  i.e.,  learning  from examples that may contain certain number 

of errors or noise. 

• Learning from incomplete data, i.e., learning from examples in which the values of some 

attributes are unknown.  

• Learning flexible concepts, i.e., concepts that lack precise definition and whose meaning is 

context-dependent.  
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All these problems are relevant to data analysis,  and thus the methods for solving them being 

developed in machine learning can be potentially useful.  For some of these methods see, e.g.,  

(Quinlan, 1990; Michalski, 1990; Bergadano et al.,1990). 

2.2 Conceptual clustering  

Another class of machine learning methods  that are important to data analysis are those 

concerned with developing "conceptual" classifications of a given set of entities. The problem is 

similar  to that considered in traditional cluster analysis, but is defined in a different way. Given a 

set of attributional descriptions of some entities,  a description language for characterizing 

classes of such entities, and a "classification  quality" criterion, the problem is to split the entities 

into classes that maximize this criterion,  and simultaneously determine general (extensional) 

descriptions of these classes in the assumed language. Thus, a conceptual clustering program 

seeks not only a classification (a dendrogram), but also a symbolic description of the proposed 

classes (clusters). Also, unlike in cluster analysis, the process of determining the classes is  

dependent on the properties of descriptions of the generated classes.    

To clarify the difference between conceptual clustering and conventional clustering, notice that  a  

conventional method typically determines clusters on the basis of a similarity measure that is a 

function solely of the properties (attribute values) of the entities being compared, and not of any 

other factors: 

Similarity(A, B) =  f(properties(A), properties(B)) 

In contrast, a conceptual clustering program clusters entities on the basis of a conceptual 

cohesiveness  that  is not only a function of properties of the entities, but also of two other 

factors: the description language L, which the system knows  a priori  and uses  for describing the 

classes of entities, and of the set of neighboring examples, the environment,  E: 

Conceptual cohesiveness (A, B) =  f(properties(A), properties(B),  L,   E)     

Thus, two objects may be similar, i.e., close according to some distance measure, they may have 

a low conceptual cohesiveness. An example of such a situation is shown in Figure 3.   



 
9 

A

B  

Figure 3. An illustration of the difference between closeness and conceptual cohesiveness. 

According to conceptual clustering, the points (black dots) in Figure 3  would be clustered into 

two "ellipses."  The points A and B,  which are "close" to each other,  have small conceptual 

cohesiveness, because they belong to configurations representing different  concepts. 

A classification quality criterion may take into consideration several factors, such as the "fit" of a 

cluster description  to the data, the simplicity of the description, and/or other properties of the 

entities or of the concepts that describe them  (Michalski, Stepp and Diday, 1981.). Section 4 

gives an example  of conceptual clustering.  

2.3  Other related symbolic operations on data 

Methods for learning rules from examples usually assume that  attributes used for describing the 

examples are given a priori. These attributes must be sufficiently relevant to the learning 

problem, otherwise, the learned rules will be poor. An important  advantage of symbolic methods 

over, e.g., statistical methods,  is that they can relatively easily handle nonessential  attributes. An 

attribute is nonessential,  if there is a complete and consistent description of the class(s) under 

consideration that  does not use this attribute.  Thus, a  nonessential  attribute is  either  just 

irrelevant, or relevant but dispensable.   Inductive learning programs such as the rule-learning 

program AQ, or the decision tree learning ID3, can relatively easily cope with a large number of 

nonessential attributes in data descriptions. 

If there are, however, very many nonessential attributes in the initial description of the examples, 

the efficiency of a learning program would decrease. Such situations call for a method that would 

determine the most relevant attributes for a given classification from among those given initially. 

Only attributes that are most relevant would then be used in the description learning process.  

Determining the most relevant attributes can therefore be a useful data analysis operator. Such an 
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operator can also be useful on its own merit, as it may be of interest to know which attributes are, 

e.g., most discriminatory for a given set of classes. 

Another related operator is to determine the most representative or, generally, the most important 

examples in a given set. Such an operator would be needed when there are very many examples 

of a given class. The most important examples would be those that are either most typical or 

most extreme. A method for determining the latter ones, the so-called  "outstanding 

representatives,"  is described in (Michalski and Larson, 1978). 

In many applications, it is not easy to determine a priori what attributes will be most relevant to 

the classification problem at hand. Often, attributes are dictated by a given application or already 

supplied in the database.  Yet, these attributes may not be the most relevant for the task. Such 

situations require a method for  generating new attributes, and selecting from them the most 

relevant ones (e.g., Bongard, 1970). This type of problems is considered in constructive induction  

(Michalski, 1983). A recently developed program for constructive induction, AQ17,  can 

generate new attributes by combining initially given attributes in many different ways, by 

creating complex relationships among them, or by obtaining advice from an expert (Michalski, 

Bleodorn and Wnek, 1991).   

3. LEARNING PROBLEMS AND A GENERAL DATA TABLE  

The above described learning problems  can be simply illustrated by means of a general data 

table (GDT). Such a table  is a generalization of a typical data table used in  data analysis (Figure 

4). The columns in a GDT correspond to attributes. These may be some initial attributes, given a 

priori,   or additional ones generated through a process of constructive induction. Each attribute is 

assigned a domain  and a type. The domain specifies the set of all legal values that the attribute 

can take on in the table, which includes "?" ("unknown") and N/A ("not applicable"). The type 

defines the order of the values in the domain (the scale).  For example, the AQ15 learning 

program (Michalski et al.  1986) allows three types of attributes: nominal (no order), linear (total 

order), and structured (a hierarchical order). The attribute type determines the kinds of operations 

that are allowed on this attribute during a learning process.   

Rows in the table correspond to individual entities that are being characterized by the attributes. 

An entry in the table can be a specific value of the corresponding attribute, the symbol "?," 

meaning that that value is unknown for the given entity, or the symbol N/A, if the given attribute 

does not apply to the given entity. For example, the color attribute usually applies to physical 

objects, but does not apply to relations or abstract entities.  
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An important problem of data analysis is to determine whether some attribute in a table depends 

on some other attributes. A related problem is to determine a specific form of this relationship. A 

case of the latter problem is when is it known that a nominal-scale attribute depends on other 

attributes, and the problem is to hypothesize a general description that characterizes this 

relationship. The latter problem is equivalent to a typical problem of concept learning from 

examples. In such a case,  one column in the data table is designated to represent the output 

attribute. The  values of that variable are classes whose descriptions are to be learned. In  Figure 

4, it is the first column that represents values of the output variable (in this case, the class of the 

examples).  In conceptual clustering, there is no such column, as there are no a priori classes 

which entities belong to (as in any other "unsupervised learning" problem).   

Using a GDT, one can simply characterize the problems described above  (Figure 4): 

Learning from examples:    Classes of examples are sets of rows in the table which have the 

same value of the output attribute (variable). The problem is to 

determine a set of general rules charactering these classes of 

examples. 

Example selection:   The problem is to select from the table rows that correspond to 

the most representative examples (rows) of different classes. 

Attribute selection:   The problem is to select columns that correspond to the most 

relevant attributes for characterizing given classes or the 

differences between classes. 

Generating new attributes:    The problem is to generate additional columns that correspond to 

new attributes generated by a constructive induction procedure. 

These new attributes are created by using the problem 

background knowledge, and/or special heuristic procedures 

(Michalski, Bloedorn and Wnek, 1991). 

Conceptual clustering:   The problem is to split the rows of the table into groups of rows 

that correspond to "conceptual clusters," that is sets of entities 

with high conceptual cohesiveness. An additional column is 

added to the table that corresponds to a new "output attribute."  

The values of this attribute in the table denote the proposed class 

of each entity. Rules that describe clusters are stored separately 

(see section 5). 
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Learning from imperfect data:     In this case, some entries of the table are missing, or be 

incorrect. The problem is to determine the best  (e.g., the most 

plausible) hypothesis that accounts for the data or for the most of 

the data.  

Methods for performing the above operations have been developed and implemented in various 

machine learning programs (see, e.g., Michalski, Carbonell and Mitchell, 1983 and 1986; Forsyth  

and Rada, 1986;  Kodratoff, 1988, and Kodratoff and Michalski, 1990). 
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Figure 4. An illustration of the role of different symbolic operators 
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4.  EXAMPLES OF KNOWLEDGE GENERATION OPERATORS 

As mentioned above, the programs for different forms of symbolic learning and knowledge 

transformation  can be used as data analysis operators. These operators are applied to a data table 

and produce certain data characteristics.  To illustrate this idea, we will use examples of how a 

conceptual clustering program and a learning from examples program can be used as data 

analysis operators (based on the material in Kaufman, Michalski and Kershberg, 1991).   

Suppose we are given a data table as shown in Figure 5.  

 ProcessorMicrocomputer Display RAM ROM No_Keys

Apple II 
 
Atari 800 
 
Comm. VIC 20 
 
Exidi Sorceror 
 
Zenith 118 
 
Zenith 1189  
 
HP 85 
 
Horizon 
 
Challenger 
 
O-S 11 Series 
 
TRS-80 I 
 
TRS-80 III 

Color_TV 
 
Color_TV 
 
Color_TV 
 
B/W_TV 
 
Built_in 
 
Built_in 
 
Built_in 
 
Terminal 
 
B/W_ TV 
 
B/W_TV 
 
B/W_TV 
 
Built_in

6502 
 
6502 
 
6502A 
 
Z80 
 
8080A 
 
Z80 
 
HP 
 
Z80 
 
6502 
 
6502C 
 
Z80 
 
Z80

52 
 
57-63 
 
64-73 
 
57-63 
 
64-73 
 
64-73 
 
92 
 
57-63 
 
53-56 
 
53-56 
 
53-56 
 
64-73

10K 
 
10K 
 
11-16K 
 
4K 
 
1K 
 
8K 
 
80K 
 
8K 
 
10K 
 
10K 
 
12K 
 
14K

48K 
 
48K 
 
32K 
 
48K 
 
64K 
 
64K 
 
32K 
 
64K 
 
32K 
 
48K 
 
48K 
 
48K

 

Figure 5. Illustrating learning problems by a  general data table. 

Suppose now that the task is to produce the "best" conceptual classification of the data into two 

and three classes. The table in Figure 5 is an input to a conceptual clustering program, acting as a 

CLUSTER operator. 

The results of applying this operator have two components: a new extended data table, and a set 

of rules. The new table has two additional columns; the first column indicates the class assigned 

to the tuples in the generated two-class clustering, and the second column indicates the class 

assigned to the tuples in the generated three-class clustering (Figure 6).  
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The second component are two sets of rules; the first ruleset describing classes in the two-class 

clustering, and the second set describing classes in the three-class clustering (Figure 7).   

 ProcessorMicrocomputer Display RAM ROM No_Keys 3-Group2-Group

Apple II 
 
Atari 800 
 
Comm. VIC 20 
 
Exidi Sorceror 
 
Zenith 118 
 
Zenith 1189  
 
HP 85 
 
Horizon 
 
Challenger 
 
O-S 11 Series 
 
TRS-80 I 
 
TRS-80 III 

Color_TV 
 
Color_TV 
 
Color_TV 
 
B/W_TV 
 
Built_in 
 
Built_in 
 
Built_in 
 
Terminal 
 
B/W_ TV 
 
B/W_TV 
 
B/W_TV 
 
Built_in

6502 
 
6502 
 
6502A 
 
Z80 
 
8080A 
 
Z80 
 
HP 
 
Z80 
 
6502 
 
6502C 
 
Z80 
 
Z80

1 
 
1 
 
2 
 
2 
 
3 
 
3 
 
2 
 
2 
 
1 
 
2 
 
1 
 
1

1 
 
1 
 
1 
 
1 
 
2 
 
2 
 
1 
 
1 
 
1 
 
1 
 
1 
 
1

52 
 
57-63 
 
64-73 
 
57-63 
 
64-73 
 
64-73 
 
92 
 
57-63 
 
53-56 
 
53-56 
 
53-56 
 
64-73

10K 
 
10K 
 
11-16K 
 
4K 
 
1K 
 
8K 
 
80K 
 
8K 
 
10K 
 
10K 
 
12K 
 
14K

48K 
 
48K 
 
32K 
 
48K 
 
64K 
 
64K 
 
32K 
 
64K 
 
32K 
 
48K 
 
48K 
 
48K

INPUT OUTPUT
(added to input table)

 

Figure 6. An extended table generated as result of the CLUSTER operator. 

 
 
 
[Class 1] <==   [Processor = 6502 v Z80]  & [ROM = 10K..14K] 
 
[Class 2] <==   [Processor = 6502A v 6502C v HP] 
[Class 2] <==   [ROM = 1K..8K] & [Display ° Built_in] 
 
[Class 3] <==   [Processor = 8080A v Z80] & [ROM = 1K..8K] & [Display = Built_in]

Rules characterizing  the generated  2-class  clustering:
 
 [Class 1]  <== [RAM = 16K..48K] 
 [Class 1]  <== [No_Keys Š 63] 
 
 [Class 2]  <== [RAM = 64K] & [No_Keys > 63] 
 

 
 

Rules characterizing  the  generated 3-class  clustering:

Figure 7. Rules characterizing classes created by the CLUSTER operator 
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Suppose now that we use the extended data table in Figure 6 as an input to a program for learning 

concept learning from example. Suppose that the parameters of the program are set so that the 

program should try to differentiate among the classes, i.e., to determine the simplest discriminant 

class descriptions (Michalski, 1983).  In this case, the program plays the role of the so-called 

DIFF operator. The results are shown in Figure 8.  

 
    Rules for 2-class clustering obtained by the DIFF operator   
 

[Class 1]  <==   [Display or Built_in] 
[Class 1]  <==   [ROM  14K] 
 
[Class 2]  <==   [RAM = 64K] & [No_Keys = 64-73] 
 
 
Rules for  3-class  clustering  obtained by the DIFF operator 
 
[Class 1]  <==   [Processor = Z80 v 6502]  & [ROM = 10K..14K] 
 
[Class 2]  <==   [Processor = 6502C v 6502A v HP]  
[Class 2]  <==     [ROM = 4K..8K] & [Display = B/W_TV v Term] 

[Class 3]  <==   [ROM = 1K..8K] & [Display = Built_in] 

Figure 8. Discriminant rules generated by DIFF operator 

Comparing  rules in Figure 7 with those on Figure 8 (note that the latter were generated without 

knowledge of the former), one can see that they similar but not identical. The reason for the 

difference is that given a set of examples, there are usually many different ways of creating a 

general description of them. The rules in Figures 7 and 8  are both complete and consistent with 

all the examples in Figure 6, i.e., they classify these examples in the same way.  

  

5. INTEGRATING DIFFERENT OPERATORS IN ONE SYSTEM 

To make symbolic data analysis operators, such as CLUSTER or DIFF, easily available to a data 

analyst, it is desirabe to integrate them into one system. Such an idea was implemented in the 

INLEN system (Kaufman, Michalski and Kershberg, 1989, 1991). INLEN incorporates a whole 

spectrum of machine learning operators, and also conventional statistical data analysis operators. 

To faciliate the application of all the operators, INLEN combines relational database technology 

with knowledge base  technology. The database technology is used for storing and updating data 

tables, and the knowledge base technology is used for storing, updating and applying rules.   
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A general diagram of INLEN is presented in Figure 9. The name is an acronym from inference 

and learning.  

 

Data Base

Knowledge Base

Knowledge 
Generation 
Operators 
(KGO)

Database 
Management 
Operators 
(DMO)

Knowledge 
Management 
Operators 
(KMO)

 

Figure 9. A general diagram of the INLEN system for conceptual data analysis 

INLEN offers to a data analyst three classes of operators: 

•  DMO: Data Management Operators. These operators are conventional data management 

operators that are used for creating, modifying  and displaying relational tables. 

•   KMO: Knowledge Management Operators. These operators play a similar role to the DMOs, 

but they apply to the rules and other structures in the knowledge base.  

•   KGO: Knowledge Generation Operators. These operators perform symbolic and numerical 

data analysis operations on data.  They are based on various machine learning and 

inference programs, on conventional data analysis techniques, and visualization 

operators for displaying  graphically the results of analysis. The diagrammatic 

visualization method, described briefly above, is used for displaying the effects of 

symbolic learning operations on data.   

The KGOs are the heart of the INLEN system. To facilitate their use, the concept of a knowledge 

segment  was introduced. A knowledge segment is a structure that links one or more tables from 

the database with one or more structures from the knowledge base. Such knowledge segments are 

both, the inputs to and outputs from KGOs.  Thus, KGOs can be viewed as modules for 

performing complex inferences on knowledge segments in order to create new knowledge 

segments.   
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The execution of a KGO usually requires some background knowledge (BK) from the knowledge 

base, and is guided by various parameters.  The BK specifies facts about the application domain, 

and provides information about  attributes, the constraints and relationships among attributes, etc.  

The parameters specify how to choose an output description from among multiple candidates.  

KGOs can usually work in either incremental or batch mode.  In the incremental mode, they try 

to improve or refine the existing knowledge; while in the batch mode, they try to create entirely 

new knowledge from facts in the database, using knowledge in the knowledge base.   

KGOs in INLEN can be classified into several groups, based on the type of the output they 

generate.  Each group includes a number of specific operators that are instantiated by  a 

combination of the parameters.   

•  GENRULE operators generate various kinds of rules from given facts. They include operators 
that generate symbolic descriptions of data, e.g,  generate rules characterizing a set of facts, 
discriminate between groups of facts, build decision trees, characterize a sequence of events, 
and determine differences between sequences. They also include operators generating 
equations qualitatively and quantitatively   characterizing numerical data sets,  and build 
conceptual hierarchies.  

• TRANSRULE operators  perform various transformations of the rules, e.g,  generalize or 
specialize, abstract or concretize given rules. 

• GENATR operators generate new attributes, or select the most representative attributes from a 
given set. 

• GENEVE operators generate events, facts or examples that satisfy given rules,  select the most 
representative events from a given set., determine an example that is similar to a given 
example, or predict a value of a given variable   

• ANAREL  operators analyze various relationships that exist in the data, e.g., determine the 
degree of similarity between two examples, check if there is an implicative relationship 
between two variables,  determine various statistical properties of the data. 

•  TEST operators test the performance of a given set of rules on an assumed set of facts.   The 
primary output from these operators is a confusion matrix, i.e., a table whose (i,j)th element 
shows how many examples from the class i  were classified by the rules to be in  class j.  

 

For more details about these operators the reader can consult the paper (Kaufman, Michalski and 

Kerschberg, 1991).  Summarizing, INLEN integrates a large range of operators for creating data, 

creating rules, and for performing many different symbolic and numeric operations on the data 

and/or rules. 
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6. CONCLUSION 

An enormous growth of databases has created an intense need for developing a new type of data 

analysis tools that can not only numerically but also conceptually  characterize data. Such 

conceptual characterizations include symbolic descriptions, logical relationships and qualitative 

evaluations, as well as causal dependencies among the entities in the data. These 

characterizations represent knowledge that may be more directly usable in human decision-

making than numerical characterizations.  

To determine such knowledge, a data analysis system has to be able to represent, and take into 

consideration, various kinds of background knowledge about the data and the domain of 

discourse. This background knowledge may include, for example, a specification of the domain 

and the type of the attributes, the relationships among them,  causal dependencies, theories about 

the objects or processes that generated the data, and other  high-level knowledge.  

This main idea of the paper is that modern methods developed in symbolic machine learning can 

be a basis for the development of such conceptual data analysis tools. As examples, we described 

methods for learning general concepts from examples and conceptual clustering.  We have also 

described an architecture of a large-scale system, INLEN, which integrates machine learning and 

statistical analysis techniques with database and knowledge base technologies.  

The machine learning techniques allow the system to perform  a whole range of symbolic data 

manipulation and knowledge extraction operations. These operations include, e.g., the generation 

of rules characterizing or discriminating between groups of facts, the creation of symbolic 

descriptions of sequences, the determination of new attributes, the building of conceptual 

hierarchies, and the construction of equations and logical preconditions for their application 

among others.   

INLEN is a very complex system, and its development  requires a significant amount of effort. Its 

experimental version is currently being implemented in the Center for Artificial Intelligence at 

George Mason University. Some of the INLEN components are based on programs already 

developed, and some require new  research. Even those that are based on existing programs need 

to be properly modified and/or  improved to be adequate, or sufficiently efficient, for the data 

analysis tasks. Further research is also needed to determine what other types of symbolic learning 

techniques might be applicable to  data analysis.   
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