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Abstract: Among the central tasks in the development of expert systems is the formulation, debugging and
implementation of a knowledge base. The knowledge encoded in the knowledge base is usually supplied by experts.
There are, however, many application domains in which knowledge required by an expert system has to be extracted
from facts collected in a data base. In view of the large sizes and the complexity of contemporary data bases in
different areas, such as agriculture, medicine, business, etc., determining useful knowledge from them is becoming
an increasingly difficult problem. This paper describes a multistrategy “intelligent assistant” for knowledge discovery
in large data bases, called INLEN. The system integrates a database, a knowledge base, and machine learning
capabilities within a uniform user-oriented framework. The latter capabilities are incorporated into the system in the
form of knowledge generation operators (KGOs). These operators can generate diverse kinds of knowledge about the
properties and regularities existing in the data. For example, they can hypothesize general diagnostic rules from
specific cases of diagnosis, optimize the rules according to problem-dependent criteria, determine differences and
similarities among groups of facts, propose new variables, create conceptual classifications, determine equations
governing numeric variables and the conditions under which the equations apply, derive statistical properties and use
them for qualitative evaluations, etc. The initially implemented system, INLEN-1, is described, and its performance
is illustrated by an example. ,

Keywords: Knowledge discovery, machine learning, databases, multistrategy systems.

Introduction
From the time when large computer storage media became available in the late fifties, there has been an
extraordinary growth of computer databases in almost every area of human endeavor. Whether in agriculture,
medicine, industry, military, government or science, thousands of databases have been developed to capture
information relevant to some particular class of activities.

There has not been, however, corresponding progress in the methods for extracting useful knowledge from these
databases. Many programs have been developed to analyze data, but th=se techniques typically employ various
statistical methods, and as such have certain intrinsic limitations. A statistical analysis can detect a correlation
between given factors, but does not produce a conceptual explanation why such a correlation exists, nor does it
produce any qualitative description characterizing this correlation. A statistical technique can determine a central
tendency and variability of given properties, but it cannot explain them in terms of causal dependencies. It can fit an
equation to a set of datapoints, but cannot qualitatively characterize the applicability conditions for this equation, nor
modify or create new variables and involve them in the equation. A numerical taxonomy technique can create a
classification of entities and determine a numerical similarity among the entities in the same or different classes, but
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it will not create a qualitative explanation of the classes created. Attributes that define a similarity and the measures
of similarity involved must be given in advance. In short, the techniques mentioned above require that an
interpretation of the findings, i.., a “conceptual” analysis of data, be performed by a hun}qu_ analyst. As the quantity
of available data increases, the complexity of such an analysis may outstrip human capabilities.

The goal of this research is to overcome some of these limitations by employing modern techniques ‘of machine
learning and discovery. These new techniques open new possiblities for deriving useful knowle_dgq directly frgm
data, and thus provide new tools for the development of expert systems. Early research on the application of machine
learning to the development of diagnostic rules, and to building agricultural expert systems have shown a great
potential of such an approach. For example, Chilausky, Jacobsen & Michalski (1976) have §uccefu11y demonstrated
the applicability of machine learning techniques to learning diagnostic rules for soybean dlseas_e‘s.from qupleg of
diseases. Subsequently, this method was used in the first expert system with learning capabilities (chhalslq &
Chilausky, 1980); Michalski et al.; 1982a; Uhrik, 1982; Michalski et al. 1983; Reinke, 1983). Machine learning
techniques found also application in other agricultural domains, for example, for predicing black cutworm da1:nage in
comn (Boulanger, 1983), for ground development (Newkirk, 1985), and for weed identification (Fermanian, Michalski
and Katz, 1985). Subsequently, these techniques have been incoporated in an agricutural expert system development
tool, called AgAssistant (Katz, Fermanian and Michalski, 1987; and Fermanian and Michalski, 1992). It may be
relevant to mention that these techniques also have also applications to medicine (e.g., Mozetic, 1985; Bratko,
Mozetic and Lavrac, 1988).

This paper describes the architecture and initial implementation of a large-scale system, called INLEN, for
conceptually analyzing databases and discovering regularities in them. The name INLEN derives from inference and
learning, which represent two major capabilities of the system. INLEN integrates a relational database, a knowledge
base and a variety of machine learning programs. The latter ones are implemented in the form of knowledge
generation operators that create new “nuggets” of data and/or knowledge from given data and knowledge. The
operators employ all basic forms of inference—deduction, induction and analogy. These capabilities allow a user to
explore the data using a variety of strategies, and therefore INLEN can be viewed as a multistrategy data exploration
system. In addition to knowledge generation operators, INLEN also includes methods for visualizing different types
of data and knowledge, and for generating explanations for the discovered relationships.

The basic approach is to build an “intelligent assistant” that can amplify the effectiveness of experts by generating
important findings and explanations of them partially on its own. The system includes criteria and heuristics
characterizing the type of information or classes of patterns that might be important to a user. It also provides a
variety of advanced plausible reasoning techniques for implementing a search for such patterns. The role of such an
intelligent assistant is to search for all kinds of qualitative and/or quantitative patterns, and to notify an analyst about
the patterns viewed as important. These patterns would be formulated by applying methods of symbolic concept
learning. Experiments with some existing machine learning programs have shown that these programs can find
unexpectedly simple patterns that are difficult for people to recognize (e.g., Michalski,1983), or discover regularities
that would be hard to formulate without an aid of a program (e.g., Falkenhainer & Michalski, 1990). Some patterns
that learning programs find may turn out to be irrelevant, but some of them may turn out to be truly important.
When a database is large, it may be difficult for an analyst to find patterns due to the sheer volume of data. It can
also help to avoid the possible human error of overlooking something of ncte in the data.

INLEN’s approach is to build a synergistic system that allows a human expert and a computer tool to perform the
tasks that each party is better suited for. Some patterns are more easily ¢ztectable by a machine than by humans;
others are obvious to the human eye, but difficult to notice by today’s discovery systems. Data and knowledge
management functions, searches through large data sets, consistency checking and discovery of certain classes of
patterns are relatively easy to perform by a learning and discovery system. On the other hand, defining criteria for
judging what is important and what is not, making decisions about what data to process, and evaluating findings
from the viewpoint of human utility are easier for a human expert.

Systems able to extract useful knowledge from large databases can be useful in many fields. Their major application
is for automated knowledge aquisition for expert systems in such areas as classification decision making, resource
allocation and management, business transactions, agriculture, medicine, chemistry, physics, economics,
demographics, global change, scheduling, planning, etc. Workers in all of these areas have contact with large
amounts of data, much of which is, or can be, stored in databases. Current methods for knowledge acquisition are
complex, time-consuming and error-prone (e.g., Boose & Gaines, 1989; Boose, Gaines & Ganascia, 1989; Boose,
Gaines & Linster, 1988). Most of the difficulties come from the fact that the system lacks the capability of self-
improving its knowledge through experience, i.e. lacks learning abilities.
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The underlying data and knowledge representation in INLEN is knowledge segments, which link relational tables
with rules, equations and/or hierarchies. The knowledge segment is a flexible structure for storing background or
discovered knowledge about the facts in the database. Its format is designed to facilitate interaction with other data
and/or knowledge, and to facilitate the user’s understanding of the concepts stored within.

INLEN evolved from the QUIN system (Query and Inference), a combined database management and data analysis
environment (Michalski & Baskin,1983; Michalski, Baskin & Spackman, 1982; Spackman, 1983). QUIN was
designed both as a stand-alone system, and as a subsystem of ADVISE, a large-scale inference system for designing
expert systems (Baskin & Michalski, 1989; Michalski & Baskin, 1983; Michalski et al. 1987). In the last few
years, new tools have been developed; in particular, more advanced inductive learning systems, e.g., AQ 15
(Michalski et al., 1986) and ABACUS-2 (Greene,1988), and expert database systems (Kerschberg, 1986;
Kerschberg, 1987; Kerschberg, 1988). The above systems have influenced the development of INLEN. INLEN
also draws upon the experiences with AGASSISTANT, a shell for developing agricultural expert systems (Katz,
Fermanian & Michalski, 1987), AURORA, a general-purpose PC-based expert system shell with learning and
discovery capabilities, designed by Michalski and Katz [INIS, 1988], and EMERALD (Kaufman, Michalski &
Schultz, 1989; Kaufman, Michalski & Schultz, 1990) a user-oriented multi-program environment for education and
research in machine learning.

The main aims of this paper are to briefly present the architecture and the design of the INLEN system, explain its
underlying principles, and to demonstrate some of its capabilities. Section 2 gives examples of some knowledge
discovery tasks for which machine learning techniques seem to be particularily useful. Section 3 introduces INLEN's
architecture, and shows how the system would addresses the problems brought up in Section 2. Section 4 focuses
on the first experimental implementation of the system, called INLEN-1. Section 5 describes the results of applying
INLEN-1 to searching for patterns in a database of scientific publications. Finally, Section 6 summarizes the main
ideas of the paper and discusses issues for future research.

Examples of Knowledge Extraction from Data
This section gives examples of problems of knowledge extraction from data for which symbolic machine learning
methods seem o be particularily useful. Data are assumed to be represented in a relational database table. In such a
table, each row (“tuple”) corresponds to some entity (object, event, example, etc.), and each column corresponds to
an attritute used to characterize the entities. Each entry contains a value of the corresponding attribute as applied to
given entity. If the value of some attribute is unknown for some entity, the corresponding entry is marked “?”; if
some attribue does not apply to an entity, the corresponding entry is marked “N/A” (Non-applicable).

Figure 1 presents an example of such a relational table. The table characterizes different trains, using such attributes
as the number of cars (“#Cars™), the type of load (“Load™), the type of engine (“Engine”), the number of engine
wheels (“4EngWIs™), the first name of the conductor (“Condctr”), the first name of the engineer (“Engineer”), the
type of the car (“CarType”), the train line (“Line”) and the train’s direction (“Direction™). For example, train #1 is
described as a passenger train with 7 cars, a diesel engine, etc. Train #3 does not have a conductor. Train #6is a
nuclear monorail, has no cars, and does not run on any regular train line.

It is assumed that the system has also encoded background knowledge about the train’s attributes, specifically, about
the values that each attribute can take, the type of each attribute (that characterizes the underlying order of values;
e.g., linear, hierarchical, etc.), and about existing relationships among the attributes. An example of a relationship
between attributes is: “If a train has no cars, then the attribute “the name of the conductor” does not apply, which is
represented by a rule: Conductor = N/A if # Cars = 0. In general, there could be all kinds dependencies among
attributes. Given such a table, the problem is to discover “interesting” relationships about the objects described in
the table. Suppose, for example, that a data analyst wants to see is there is an interesting relationship between the
train’s direction and other train properties.

Here is a sample of general rules characterizing this relationship (found by an inductive learning program AQ15):

Direction is South, if (Engine = Electric and # Cars < 7) or (Engine = Coal and CarType = Flat)
Direction is North, if #EngWIls = 6 or 10)

Direction is West, if # Cars > 16

Direction is East, if (#EngWIs = 8, or 12..16) and (CarType+Flat) and (Load # Lead or MilSupp or Food)
Direction is unknown, if (Engine = Nuclear) or (Load = MilSupp)



Attributes
Train# | # Cars Load Engine | #Eng | Condctr Engineer Car Line Direction
Wis Type
1 7 Passngr Diesel 10 Eric Mike Cl box | Amtrak North
2 12 7 7 6 Ken Casey Tank UP North
3 7 ‘Wheat Coal 8 N/A Jerzy Closed B&O East
6 0 N/A Nuclear 1 N/A Alan N/A N/A ? .
7 4 Lead Electric 12 Bart Debbie ? ATSF South
9 15 Fruit Diesel 8 Paul John Cl box | C&O East
T 10 37 Cars Diesel 18 Joan Steve Flat Penn West
u 11 33 CD’s Electric 4 Dale JJ J-top Rio West
P 15 9 Passngr Coal 8 Bill Ashraf Flat ICG South
1 19 83 MilSupp 7 12 N/A ? Tank N/A ?
e 20 6 Fuel Coal 6 Janet Lou Coal NCRR North
S 22 17 Tox_Wst Coal 13 Tom Jim Op_box 7 ‘West
26 23 Animals Coal 9 Bamey Richard | Cl box ICG West
41 8 Passngr | Electric 16 James Michael | Cl box Metro East
42 9 Passngr | Electric 12 Stanley Jerry Op_box | Conrail East
44 15 Gold Diesel 10 Janusz | Terry Armored | L&N North
47 6 ? Electric 18 Gordon Betsy P-Top B&M South
63 7 Clothing ? 16 Marvin David 7 SP East
75 22 Food Diesel 16 George Carol Closed | -CB&Q West
84 15 Qil Electric 14 Chuck Victor Tank MP East
102 5 Animals Coal . 18 Bonzo Bob Flat Conrail South

Table 1. An exemplary relational table in INLEN describing a set of trains

The rule for the “Direction is South” inclades, as one of the conditions, the engine’s type. Suppose that engine’s
type is difficult to determine, and it would be better to have a rule that includes another attribute that is known. Here
is an example of such a rule: :

Direction is South if (Eng Wls > 8 and # Cars < 6) or (# Cars <9 and CarType = Flat)

The above examples illustrate problems of determining logical rules characterizing dependencies among any
variables. Such problems are well handled by, symbolic inductive leaming programs, such as those in the AQ family
(Michalski & Larson, 1978; Michalski & Larson, 1983). :

Another class of problems is to create classifications of given entities. A traditional way of grouping (clustering)
entities into classes is based on a measure of similarity among entities. Such an approach creates goupings, but does
not provide any description (or justification) of them. Such a description has to be developed by a data analyst. The
INLEN’s approach is to implement a conceptual clustering method that groups entities on the basis of conceptual
cohesiveness (Michalski, Stepp & Diday, 1981; Michalski & Stepp, 1983). Such a method produces groupins
(clusters) and their descrtiptions. It can construct a number of alternative goupings. Below is an examle of a
classification of the entities in the table déveloped by a conceptual clustering program (CLUSTER/2). The trains
are grouped into four classes, Class 1, Class 2, Class 3 and Class 4, each characterized by the following self-
explanatory description:

Class 1: Engine is Electric and CarType is Open

Class 2: Engine is Electric and CarType is Closed

Class 3: Engine is Coal or Diesel and CarType is Closed

Class 4: Engine is not Electric and CarType is not Closed

If a table is very large, the data analyst might want to reduce the number of rows (and/or columns) of the table by
determining the most representative entities (and/or attributes) for any given class. In INELN, such tasks are
performed by adopting some existing programs for this purpose (Cramm, 1983; Davis, 1981; Michalski & Larson,
1978). Also, the attributes initially given may not be sufficiently relevant to the given problem, and there is a need
to generate new, more relevant attributes. This is the task of constructive induction (Michalski, 1983). Papers by
(Wnek and Michalski, 1991a; Bloedom and Michalski, 1992) describe recent powerful learning programs for
constructive induction that are to be incorporated into INLEN.
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Another type of data analysis problems is to seck quantitative rules (equations) that charagterize'the numerical
attributes in the table. A more general problem is to formulate such equations and to determine their apphgablhty
conditions expressed in terms of qualitative attributes. Such a capability can be implemented by applying the
machine discovery program ABACUS (Falkenhainer & Michalski, 1990; Greene, 1988).

As shown above, a data table may have some entries missing. An important problem is to estimate the most likely
value for the unknown entry. The INLEN’s approach is to use for this task an approach based on the theory of
plausible inference (Collins & Michalski, 1989). In this approach, the likely value are estimated by conducting
different “lines of reasoning” that employ plausible deduction, induction or analogy (Dontas, 1988). If the data are
represent facts changing in time, there may be a need to analyze the time-based sequences in the data, and predict
future values of the variables in the sequences. A “qualitative prediction” program such as SPARC (Michalski, Ko
& Chen, 1985; 1986) applies to such a task.

In general, there is potentially a wide variety of data analysis tasks for which machine leanming techniques can bring
interesting new solutions. The research on INLEN’s aims at integrating all kinds of such learning and knowledge
discovery capabilities within a uniform, user-oriented global environment.

The Architecture of INLEN

As mentioned above, INLEN combines data base, knowledge base and machine learning capabilities in a single
system. INLEN’s design incorporates ideas from the recently developed expert database technology to combine the
storage and access capabilities of a data base system with the ability to derive well-founded conclusions from a
knowledge-based system (Kerschberg, 1986; 1987 and 1988). Among novel features of INLEN is the
implementation of various advanced machine learning capabilities as easy-to-use operators. Until now, these
capabilities existed only as separate experimental programs. By integrating such capabilites in one system, a user
will has an access to a very powerful and versatile data analysis tool.

Figure 1 presents the top level architecture of INLEN. Main components of the system are a relational data base for
storing known facts about a domain, and a knowledge base for storing rules, constraints, hierarchies, decision trees,
equations accompanied with preconditions, and enabling conditions for performing various actions on the data base
and/or knowledge base. This knowledge base can contain not only knowledge about the contents of the data base,
but also metaknowledge for the dynamic updating of the knowledge base itsclf. '

The purpose for integrating the above capabilities is to provide a user with a set of advanced tools to search for
useful knowledge from a data base, to organize that knowledge from different viewpoints, to test this knowledge on a
set of facts, and to facilitate its integration within the original knowledge base.

These tools are designed to complement one another, and to be capable of performing many types of data analysis.
For example, different operators might be employed to learn a set of rules from examples (empirical induction),
generalize a descriptor or a set of objects (constructive deduction or induction), hypothesize explanations for events in
the data based on rules in the knowledge base (abduction), speculate on unknown attribute values of an object based
on known values of similar objects (analogical reasoning), and suggest unknown attribute values by employing
rules or formulas in the knowledge base (deduction).

The data base consists of relational tables (RTs). The knowledge base consists of knowledge segments (KSs). A
knowledge segment can be simple or compound. Simple KSs are in the form of rulesets, equations, networks and
hierarchies. Compound KSs consist of combinations of any of the above, or combinations of KSs and RTs. In this
way, a knowledge segement may represent, €.g., a set of rules from the knowledge base and a collection of facts
from the data base (a set tables, attributes, their domains, etc.) to which these rule apply. For example, the
conceptual clustering operator, given a relational table, creates a new relational table (stored in the data base) that
represents clusters of entities, and a set of rules (stored in the knowledge base) that characterize these clusters.
Another example of a KS structure is a relational table with a set of constraints and relationships among its
attributes. Those constraints and relationships are represented as rules. Compound KSs also consist of directory
tables that specify the locations of their component parts in the knowledge base or, in the case of RT components,
in the data base. A justification for such knowledge types is that they correspond to natural forms of representing
human knowledge, especially technical knowledge. Also, by distinguishing between these different forms of
knowledge and selecting appropriate data structures {0 represent them, we can achieve greater efficiency in storing and
manipulating such structures. .
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Figure 1. A top-level functional architecture of INLEN

INLEN employs four sets of operators: data management operators (DMOs), knowledge management operators
(KMOs), knowledge generation operators (KGOs), and macro-operators. The data management operators are standard
operators for accessing, retrieving and manually altering the information in the data base. Thus, they operate on
RTs. The knowledge management operators perform analogous tasks on the knowledge base, in situations in which
manual input, access or adjustments are required. The knowledge generation operators interact with both the data
base and the knowledge base. They take input from both the data base and the knowledge base, invoke various
machine learning programs, and store results, as knowledge segements, in the data base and/or knowledge base.
Figure 1 shows the ten major classes of KGOs. These classes and their individual members are discussed in the next
section. The macro-operators are stored sequences of the other operators, along with instructions how to control the
flow of commands within the macro. Macroperators allow a data analyst to develop complex data analysis programs
that guide INLEN’s knowledge discovery processes.

The schema shown in Figure 1 expands the initial design described in (Kaufman, Michalski & Kerschberg, 1989).
The most important new features include several novel knowledge generation operators, the idea of macro-operators
and conceptual data analysis programs. Also, the latest design groups the individual machine learning operators into
higher-level operator classes based on theirbasic functions.

As mentioned above, Data Management Operators (DMOs) and Knowledge Management Operators (KMO) are
standard data and knowledge handling operators. Their description can be found in (Michalski, Kerschber, Kaufman

and Ribeiro, 1992). Here we will concentrate on describing Knowledge Generation Operators (KGO) that are central
to understanding the capabilites of INLEN.

The KGOs perform inferences on knowledge segments in order to create new or better knowledge. As part of their
function, the KGOs also include implicit primitives to handle the retrieval of inputs and the placement of their
results into the data and/or knowledge base. These structures are generally associated with compound KSs which
include indexing tables within the knowledge base.

Each knowledge generation operator requires certain background knowledge and parameters. The background
knowledge consists of information about the domain, the variables in the data tables, etc. The parameters define
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criteria for choosing an output description among multiple candidates. For simplicity, these inputs are not included
in the following descriptions, as they are assumed to be part of any KGO.

It is practical to group the KGOs into classes by the type of output they generate (Figure 1.) Those whose .primary
output consists of rules are separated from those that only generate tuples. Operators in each class are discussed

below. Most of these operators are extensions of existing programs.

GENRULE: Generate Rules

Operators in the GENRULE class take some data and/or knowledge as an input, and return a ruleset con.sisu'ng of
facts induced from the input examples. The generated rules consist of a decision part implied by a condition part.
The decision part consists of a conjunction of one or more statements or actions, while the gondition part consists of
a disjunction of conjunctions, each consisting of one or more elementary conditions. Specific GENRULE operators
differ from one another in the organization of the input (unordered or ordered) and/or the type of rules generated
(characteristic or discriminant). The GENRULE KGOs include the following operators:

CHARSET (Characterize Set) determines a description characterizing a cless of entities. Input to the operator may
be a table representing a group of events and their relevant attributes. It may also be a set of knowledge segments,
defined by their own meta-attributes, that the user wishes to characterize with a rule. CHARSET discovers

characteristic rules that describe all of the examples in the input group in as much detail as possible. The output
from this operator includes the input set of events in addition to the generated rules that describe the characterization.

DIFESET (Differentiate Set) takes one set of objects (each object represented as a tuple in a relational table that may
represent data or metaknowledge) as a primary input, and one or more sets of objects as a controlling input. These
sets may be represented by separate RTs, or by the values of one or more “decision variables” within a single table.
DIFFSET induces general rules that encapsulate the differences between the primary set and the other classes. The
operator may be called upon to treat each of the groups in turn as the primary and discover rules differentiating it
from the others. The output KS consists of the ruleset created by the operator, and the object classes, represented by
RTs. Here, the emphasis is on finding discriminant descriptions, i.e., descriptions that specify sufficient conditions
for distinguishing one class of objects from the other class(es). This operator is demonstrated in Section 3.

CHARSET is based on research on learning characteristic descriptions from examples. An early program for this
purpose, UNICLASS, is described in (Steep, 1979). A version of the program that executes both CHARSET and
DIFESET, AQ11, is described in (Michalski & Larson, 1983). It includes capability for a “no-memory” incremental
learning. The next major program in this family is AQI1S5, which includes a capability for “full-memory”
incremental learning and the TRUNC method for two-tiered concept representation (Hong, Mozetic & Michalski,
1986). More recent research has resulted in the incorporation of further capabilities into the AQ system, such as
learning flexible concepts (Bergadano et al., 1992; Zhang, 1992) and capabilities for constructive induction (Bloedorn
& Michalski, 1992; Wnek & Michalski, 1991a).

CHARSEQ (Characterize Sequence) determines descriptions characterizing a sequence of objects or events. Thisisa
more complex operator than CHARSET, since the learner must now take into account the influences of ordering and
positioning of examples in the sequence, and it may also have to consider negative examples -- objects that do not
belong at a given point in the sequence. The input consists of a table containing the examples in the sequence,
including an example’s Iocation in the sequence. The output from CHARSEQ consists of a ruleset characterizing
the sequence.

DIFFSEQ (Differentiate Sequence) discovers differences between two or more sequences of objects or events. Input
consists of a primary sequence and one or more other sequences. The operator will seek rules that encapsulate the
differences between the primary sequence and the other input sequences. Like CHARSEQ, DIFFSEQ is far more
complex than its other counterpart, and it returns a ruleset describing its discoveries.

CHARSEQ and DIFFSEQ represent an extension of the SPARC methodology for determining patterns in sequences,
described in Diettrich & Michalski, 1986; Michalski, Ko & Chen, 1985; 1986). The methodology assumes that
individual entities in the sequence are described by a finite set of multivalued and multitype attributes. SPARC
employs three rule models for representing and discovering patterns in various types of sequences: a decomposition
model that captures direct dependencies of the future event on the past events, a periodic model that expresses a
periodic behavior of a sequence, and a DNF “catch-all” model. Due to the enormous complexity of the prediction
problem, the implementation of these operators requires a substantial amount of new research. Ongoing research
involves enhancing and extending the SPARC'’s rule models, and their recursive evocation. These two enhancements
will enable the system to encompass a much wider classes of sequences, and to improve its prediction capabilities.



GENTREE: Generate Decision Trees

The two GENTREE operators output knowledge in the form of decision trees. EVENTREE (Event to Tree) uses
events in a relational table as input, and generates a tree for classifying the input events. RULETREE (Rgle to Tree)
organizes a set of decision rules into one or more trees. EVENTREE is based on ideas implemented in the C4.5
program for generating decision trees from examples (Quinlan, 1990) and ASSISTANT (C§§m1k, Kokonenko &
Bratko, 1987). The RULETREE operator utilizes the OPTTREE program for creating decision trees from rules
(Layman, 1979; Michalski, 1978).

GENEQ: Generate Equations

" GENEQ is a single operator that discovers equations that describe numeric data in a set of examples, ;md formulates
conditions for applying these equations. The input to GENEQ includes a table that incorporates quantitative data and
constraints on the mathematical operations that may be used to manipulate these values. GENEQ returns a set of
equations, and a set of rules that characterize the elements of the input table to which they apply.

GENEQ is based on the ABACUS-2 system for integrated qualitative and quantitative discovery (Greene, 1988), an
extension of ABACUS (Falkenhainer & Michalski, 1990). These quantitative discovery programs are conceputally
related to systems such as COPER (Kokar, 1986) BACON (Langley, Bradshaw & Simon, 1983) and FAHRENHEIT
(Zytkow, 1987).

GENHIER: Generate Hierarchies

The GENHIER operators organize a set of tuples, rules, equations, etc. into a set of clusters or a hierarchy. The
CLUSTER operator creates a logical division of the input objects into two or more groups (a hierarchy one level
deep). The TAXONOMY operator generates a full-fledged classification hierarchy by a recursive invocation of
CLUSTER. In addition to the generated hierarchies, both operators determine a set of rules characterizing the created
groups. The rule characterizing the top-level group (the set of all input examples) is equivalent to the rule that
would be generated by applying CHARSET to the input set. Rules on lower levels emphasize the differences
between these rules and their parents and siblings in the classification hierarchy.

The internal form of the output from these operators is a knowledge segment consisting of a relational table and a
ruleset. The table is an extension of the input table, with additional columns specifying the classes the examples
have been put into on each level of the hierarchy. The rules characterize the individual groups and the input RT as a
whole. CLUSTER and TAXONOMY use the conceptual clustering algorithm implemented in the CLUSTER
program described in Michalski, Stepp & Diday, 1981; Michalski & Stepp, 1983; Stepp, 1983; Stepp, 1984,

TRANS: Transform Knowledge Segments

The TRANS operators perform basic inferential transformations on knowledge segments, hence both the primary
inputs and outputs are knowledge segments of the same type, typically decision rules. There are two pairs of inverse
operators: ABSTRACT and CONCRETIZE, and GENERALIZE and SPECIALIZE, in addition to IMPROVE, an
operator that improves knowledge by exploring additional examples or facts. Default, induced or user-specified
parameters guide the system in selecting from multiple possible outputs.

ABSTRACT modifies its input knowledge segment by removing details from its description. For example, the
known fact, “The Chrysler Dynasty is a mid-sized car that gets 26 miles per gallon”, may be abstracted by replacing
concepts in it by more general concepts, entailed by the original one. The resulting knowledge segment might
contain the fact, “The Chrysler Dynasty is an efficient automobile for its class.” Conversely, CONCRETIZE takes
a fact such as “The Lincoln Town Car is a luxury automobile” as input, and creates an output statement such as
“The Lincoln Town Car is expensive, and contains many comforts and conveniences for the driver and passengers.”

GENERALIZE and SPECIALIZE affect the size of the set covered by an input KS. For example, the rule, “A
creature is in class 1 if it is a dog,” can be generalized to “A creature is in class 1 if it is a mammal,” or specialized
to “a creature is in class 1 if it is a golden retriever.”

The methods for implementing ABSTRACT and CONCRETIZE operators have not been much studied in the past.
A discussion of their function and examples are in (Michalski, 1990). The input to IMPROVE is one or more
knowledge segments and a new set of examples. From the examples, any exceptions to the input knowledge are
detected, and the KSs are modified accordingly by a learning program. Tke output from this operator consists of the
revised rules. The methodology for IMPROVE is based on the AQ15 program (Hong, Mozetic & Michalski, 1986).
AQI5 has been implemented and tested in conjunction with other environments.



GENATR: Generate Attributes

The GENATR operators map relational tables to relational tables whose rows are the same but whose columns have
been changed, either by the addition of new attributes or by the removal of old ones.

SELATR (Select Attributes) determines the attributes in a relational table that are most relevant for differentiating
between various classes of objects, and produces a reduced table that retains only variables chosen by the operator
(Figure 2). By keeping only the most relevant attributes in the object (example) descriptions, one can significantly
reduce the computation time required by operators such as CLUSTER or DIFFSET.

CONATR (Construct Attribute) applies operators specified by its arguments to combine given attributes into useful
composites. The output consists of an expanded table that includes the new composite variables, and equations
specifying the relationship between the created variables and the variables from which they were derived (Figure 2).
For example, CONATR may create the sum or product of two numerical attributes, and assign to them attribute
names, so they can be used as new attributes.

The GENATR operators are based on existing programs. SELATR employs the VARSEL program (Baim, 1982),
and CONATR incorporates the capabilities of the CONVART program (Davis,1981).

GENEVE: Generate Events

The GENEVE class covers a wide variety of operators that generate a new set of tuples, either from an existing
relational table, or from the entire event space to which a table’s tuples belong. The events in the output table are
selected according to some criterion of desirability, such as typicality, extremity, being contained in two or more
classes, etc.

SELEVE (Select Event) determines the examples (objects) that are the most representative of the examples contained
in input relational tables. The output from this operator is a subtable of the input table, with the same columns as
the original table. The most promising examples are returned in this reduced relational table, while other examples
are rejected (Figure 2).

CONEVE (Construct Event) searches the example set or event space for elements satisfying an input description, and
satisfying some selection criteria such as those described above. In many cases, CONEVE will chain to another
operator whose specialty involves the characteristics being sought. For example, in projecting next month’s sales
based on previous figures, CONEVE might call upon CHARSEQ to infer patterns in the sequence of sales
amounts. The input description will be treated as a knowledge segment, and the output will be one or more tuples,
representing actual or hypothetical examples in a data set.

PREDVAL (Predict Value) speculates on likely values for unknown attributes of incomplete or hypothetical data
elements. It comes to its conclusions using existing knowledge segments to reason about the incomplete tuples and
plausible reasoning to learn from examples of similarly behaving events, and sequence characterization techniques to
extrapolate from changes in a linear domain. Input consists of incomplete tuples or, in the case of hypothetical data,
a characterization of some of the would-be tuple’s attributes. The operator’s output is one or more tples.

SIMILIZE (Find Similar) seeks out events or relationships that are similar to the input in some defined sense. A
similar example may have similar attribute values or relationships among its attributes. A similar concept may
involve similar attributes or ranges of values. Input to SIMILIZE may be a tuple, a table, or a knowledge segment,
and the output will generally be one or more structures of the same type as the input. Depending on the application,
the output can be generated from existing structures in the data or knowledge base, or from the entire event space.

SELEVE uses the ESEL methodology, described in (Cramm, 1983) (Michalski & Larson, 1978). PREDVAL,
CONEVE, and SIMILIZE are the subject of research, which is based on the foundations set up by the SPARC and
APPLAUSE (Dontas, 1988) programs.

ANALYZE: Analyze Data

The ANALYZE family of operators return knowledge in the form of numerical weights characterizing various logical
or statistical relationships.

RELATR (Relate Attributes) determines a relationship, such as equivalence, implication, correlation or monotonic
dependency that may exist between two or more attributes in a relational table. Input to RELATR consists of the
tables and attribute specifications, and may also include a specification of context, such as “Only compare attributes
for monotonicity over events in which another attribute is constant.” The output from this operator is a knowledge
segment that links the inputs with any discovered relationships, and includes a numerical strength of the
relationships.
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Figure 2. An Iustration of the roles of the SELEVE, SELATR and CONATR operators

RELEVE (Relate Events) behaves similarly to RELATR, but it determines relationships among tuples in a
relational table. The input to RELEVE consists of a table of the input events, and the context in which the
examples are to be compared. The output consists of a knowledge segment that includes links between examples and
weights that represent the strength of the relationships.

RELKS (Relate Knowledge Segments) discovers relationships such as inclusion, disjointedness, correlation,
generalization and abstraction within a set of knowledge segments. The input to RELKS consists of a set of
knowledge segments and a description of the context in which relationships are to be discovered. The operator
returns a KS consisting of a table of its results and a description of the discovered relationships.

GENSTAT (Generate Statistics) performs a statistical analysis and computes various statistical properties of the
elements in a relational table. This is actually a meta-operator that represents various specific statistical operations,
such as finding means, standard deviations, correlation coefficients, average rates of change, etc. Input consists of a
relational table, while output consists of a KS that contains a table of results and a link between that table and the
input table.

TEST: Test Knowledge

The TEST operator determines the performance of a ruleset on a set of examples by testing the input knowledge
segments for consistency and completeness with regard to the input examples (specified in a relational table).
Consistency implies that no event in the example set is covered by rules of two or more different classes.
Completeness refers to the condition that every example is covered by the conditions applying to at least one rule.
Input consists of a set of examples to be tested (in the form of an RT) and a set of knowledge segments that are to be
tested against the examples. The output KS consists of several relational tables containing TEST’s analysis,
including parameters characterizing the performance of the tested knowledge segments. The primary output table is
in the form of a confusion matrix, i.e. a matrix whose (i,j)th element shows the percentage of the testing examples
from the class i that were classified by the rules to be in class j. TEST also creates links between the output tables
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and the input structures. TEST uses the ATEST methodology (Reinke, 1984) for analyzing consistency and
completeness in rules, and generating confusion matrices.

VISUALIZE

VISUALIZE presents a graphical representation of the data or rules. It employes two operators. One is DIAV (which
stands for diagrammatic visualization), and the second is GRAPH (which stands for graphical visualization). The
DIAV operator is for visualizing tuples, rules, and operations on them using a diagram, which is a plane
representation of a mutlidimentional space spanned over discrete attributes. The GRAPH operator is based on
traditional techniques for visualizing numerical data and continuous functions.

The DIAV operator takes as input a relational table, or a knowledge segment representing a rule. The output
appears as a two-dimensional representation of the event space, with the input set highlighted. Figure 3 shows a
diagrammatic representation of two rules (A and B) constituting a description of Class 1. The class consists of
examples of robot images characterized in terms of four attributes: HeadShape, JacketColor, Holding, and IsSmiling.
The attribute “HeadShape” specifies the shape of the robot’s head, which can be Round, Square or Octagonal. The
attribute “JackeColor” takes four values: Red, Yellow, Green or Blue. The attribute “Holding” specifies what the
robots is holding in its hand, which can be Sword, Balloon or Flag. The attribute “IsSmiling” can be True orFalse.
Each cell in the diagram represents a unique combination of atrribute values. The VISUALIZE-DIAV operator is
based on the DIAV program (Wnek & Michalski, 1991b; Whek et al, 1990).

MACRO-OPERATORS )

Macro-operators allow for repeatable, standard sequences of operations. They encompass a small number of INLEN
operators, and can be added to a KGO menu and called upon as single operators. As with the basic INLEN operators,
macro-operators can be invoked in conjunction with any appropriate parameters, arguments or specifications. For
example, a macrooperator might call for the automatic generation of a statistical and similarity analysis, and a
comparison with predicted levels, upon the receipt of a company’s sales data for a new month.

It may also be the case that there is an application, possibly repeatable, that must call upon a longer sequence of
operators, possibly making simple control decisions based on the output of earlier operators in the sequence. INLEN
allows the user to read a data-analysis program from a file in order to perform such tasks. Because such programs of
operators can make their own control decisions, they allow for long, unsupervised sessions. The language for these
programs includes the capacity for branching, looping, and local variables. For example, a program may be called to
invoke a DMO for adding new records to a data base from a file, until all records in a waiting area were cleared out.
It can then call TEST to see if the new records are consistent with the relevant knowledge stored in the knowledge
base. In the case of inconsistency, it can then call the DIFFSET operator to modify the inconsistent knowledge.

Implementation of INLEN
The design and implementation of INLEN builds upon our earlier developm.ent of QUIN (Michalski & Baskin, 1983;
Michalski, Baskin & Spackman, 1982; Spackman, 1983), ADVISE (Baskin & Michalski, 1989), and AURORA
(INIS, 1988) systems. As described above, the complete INLEN system will include a great variety of modules,
some of which can be used as powerful stand-alone programs. In order to implement such a large-scale system with
so many capabilities, we have undertaken its development in stages. Each stage represents a version of the system

with an increasing set of capabilities. Each: version is self-contained, and can be independently tested and applied to
data analysis problems.

The ﬁrst stage, already completed, is the implementation and testing of INLEN-1. Below is a brief description of this
version. INLEN-1 includes a knowledge base of decision rules, a relational data base, and an extensive user-oriented
menu-based graphical interface. INLEN-1 has six major modules:

« Definition of an application system
 Knowledge acquisition

« Rule learning and discovery
 Advisory and prediction

» Review of an application system

« Tutorial on using INLEN-1
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Figure 3. An example of the diagrammatic visualization of rules

The application system definition module allows user to define the data base schema, import facts into the data base
from other data bases, and specify various parameters to control learning and advisory modules. Attributes in the
data base may be defined as nominal, linear or hierarchical. Domains of nominal attributes are sets of values whose
order is arbitrary, and thus does not carry information. For example, the “automobile license number” is a nominal
attribute. Domains of linear attributes represent totally ordered sets. For example, any numerical measurement, such
as length, height, temperature, is a linear variable. Domains of hierarchical attributes are hierarchies. For example,
if malfunctions of a complex system are organized into a hierarchy of different types, then “malfunction type” is a
hierarchical attribute. Knowing the type of an attribute helps the system to appropriately conduct reasoning
involving this attribute, for example, in inductive generalization operations and in matching instances with rules.

The knowledge acquisition module consists of programs that support direct entry of rules and other knowledge into
the system, as well as their modification and improvement. The module includes a rule editor that helps to fomulate
rules accoriding to a certain format. The learning and discovery module contains programs supporting various
knowledge generation operators (KGOs). The KGOs currently integrated in the system include: CHARSET,
DIFFSET, IMPROVE, TEST and PREDVAL. These operators support rule learning from examples, rule
optimization, rule improvement through examples, and rule testing for completeness and consistency.

The advisory and prediction module conducts reasoning utilizing the inputs provided or requested from a user, and the
knowledge base. The goal of reasoning is to determine advice regarding a decision, e.g., a classification of an
unknown entity, a diagnostic decision, a choice among alternative solutions, etc. The process can be viewed as a
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determination of an unknown value of a output attribute. Any attribute in the data can be the output attribute. The
choice is made by the user.

The inference process takes into consideration various uncertainties, so thac any generated advice is associated with
degree of confidence in it. The system usually generates a list of alternative solutions with associated degrees of
confidence. The solutions are developed through a three-stage inference process. The first, reduction stage, reduces
the set of possible hypotheses by testing them against facts voluntarily supplied by a user.

The second, discrimination stage, generates consecutive questions to the user, collects answers and propagates them

" through the system. The questions asked are determined on the basis of three criteria: knowing an answer to the
question should maximally reduce the number of candidate hypotheses, the question should be an “important” one as
determined by a domain expert, and the question should be “logically” connected to other questions.

The third, confirmation stage, takes a leading candidate hypothesis, and attempts to either confirm it or disconfirm it
by collecting more information. The confirmation is achieved if the candidate’s confidence level either exceeds a user-
defined threshold, or exceeds the confidence degree in all other candidate hypotheses by a predefined amount. The
system review module consists of utilities to allow the user to view the contents of the data base and the knowledge
base, the data base schema, and the learning and inference parameters.

INLEN 1 was tested on a variety of problems requiring rule discovery from facts or rule improvement through facts.
One experimental application is described below.

Experi 1 Applicati

This application concerns the analysis and search for patterns in a data base of scientific publications written by
scientists in the Commonwealth of Independent States (CIS; formerly USSR). The data base, which we refer to as
CISA (CIS Authors), contains 2,841 records. Each record contains information on a particular paper published by a
CIS author. Some records contain values for all fields, while other records have missing or non applicable values.

Data Base Definition

Currently, INLEN-1 only supports analysis of one relational table at a time. However, this table may be formed
from data contained within multiple tables. In the CISA table created for the experiments, every scientific
publication is described by a record listing the values of the following attributes:

. AUTHOR - Author’s name.

COAUTHOR - Co-authors’ name.

TITLE - Title of the paper.

PUBYR - Publication year of the paper.

INSTITUTE - Research institute, or other affiliation of the author.

SPECIALTY|1 - Principal specialty topic of the paper (¢.g. COMMS, RADAR, etc.).
SPECIALTY?2 - Secondary specialty topic of the paper.

SPECIALTY?3 - Tertiary specialty topic of the paper.

SYSTEM - Physical system mentioned in the paper (e.g. Salyut, Halley Probe).

AGENCY - Collecting agency within the U.S.

Here is an example of a record instance in the CISA data base:

AUTHOR = Aleksandrov, Y. M. ;

COAUTHOR = Kotelnikov, V. A.; Andreyev, R. A.; Zaytsev, A. L.

TITLE = Results of Radar Observation of Venus on Wave Length of 39 Centimeters in 1980
PUBYR = 1980

INSTITUTE = Institute of Radio Engineering and Electronics

SPECIALTY1 = Radar

SPECIALTY?2 = Propagate

SPECIALTY3 =N/A

SYSTEM = Venus Mapper

AGENCY = DTIC.
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One goal 'of this experimental application was to determine general rules and “interesting” patterns and general rules
characterizing the CISA data base. The second goal was to use the acquired patterns or rules to fill in any missing
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data in the INSTITUTE field. The rules needed for the latter goal are expressed as relationships between the
INSTITUTE field and the other attributes in the CISA data base.

Our approach toward this goal was to first select only those records with a known institl}te .since thej, author’s
research affiliation was not always listed on the paper and resulted in missing values for this field. This led to a
view of the CISA data base with 179 records. Using this view, we then generated rules for each institute in our data
base. This was accomplished by applying INLEN’s inductive capabilities against all records to determine
relationships about the CIS institutes. These relationships were then stored in INLEN’s knowledge base where they
were used by INLEN to deduce the missing values for the INSTITUTE field.

To illustrate how INLEN-1 represents knolwedge, below is an exmple of a characteristic rule learned by it
for the CISA domain:

#Pos #Neg Dis Com
Institute is Leningrad Institute of Materials and Optics if:
1. SYSTEM is Halley Probe 3 0 100 100
2. SPECIALTY]1 is Optics 3 1 75 100
3. AGENCY is JPRS or SNAP 3 7 30 100
4. PUB_YR is 1984 3 29 9 100

A characteristic rule lists all conditions characterizing a set of examples, in contrast to discrimiant to rule that lists
only those sufficient for discrimination (Michalski, 1983). The weights associated with the conditions in this rule
are generated automatically during rule learning, based on the example set from which the rule was learned. The
#Pos and #Neg weights represent the total number of positive and negative examples of the class that matched the
condition. For example, three examples of the LITMO class had Optics as their primary specialty, while one
example of other classes also specialized in Optics. The Dis paremter (“distinctiveness™) is equal to (100 * #Pos) /
(#Pos + #Neg). It represents the percentage of examples having the given value(s) that belong to the positive class.
Distinctiveness can be thought of a measure of how much information is provided by a given condition. The high
distinctiveness indicates that if the primary specialty of an institute is Optics then this is strong evidence that this
institute is LITMO. The low distinctiveness associated with PUB_YR suggests that knowing that a publication is
from 1984 only provides flimsy evidence toward this conclusion.

The parameter Com (“commonality”) represents the degree to which a condition describes the examples of a class. It
is equal to (100 * #Pos) / (#Examples of the class), and may be less than 100, if several rules are required to cover
the examples of a class. A condition with high commonality will be universally true throughout the examples of a
given class, while one with low commonality will apply only to a small svbset of the class. A goal when trying to
ascertain missing values for given attributes is to gather information associated with high distinctiveness and
commonality values; the former because it will discriminate better between classes, and the latter because it will be
associated with more potential examples of the target class.

The analysis using INLEN led to several interesting discoveries about the CISA data base. One discovery was a rule
which related the Halley Probe system with the Leningrad Institute of Materials and Optics. The actual rule produced
by INLEN in this case was: .

INSTITUTE is Leningrad Institute of Materials and Optics if: SYSTEM is Halley Probe.

This rule was generated by setting INLEN’s knowledge creation parameters to generate the least complex rule
possible. This setting was chosen since we were searching for simple but possibly illuminating descriptions of the
CIS institutes.

Another interesting rule discovered by the system concerned the technical specialty areas of the Kaunas Polytechnical
Institute. This rule was created with the same knowledge generation operator. The rule produced by INLEN-1 was:
INSTITUTE is Kaunas Polytechnical Institute if: SPECIALTY2 is Wideband or Satellites.

This rule illustrates the presence of disjuncts to form a simple rule, and tells us that research on wideband satellites
occurs at this institute. These results illustrate just two of the interesting relationships discovered from the CISA
data base using INLEN-1.

Once relationships were found for all the institutes and our knowledge base for INSTITUTE was complete, we then
attempted to deduce values for those records with missing institute values. We were not always able to infer these
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missing institute values with a high degree of confidence, but in several cases, the discovered knowledge was
sufficient to infer values for these institutes with very high degrees of confidence.

The experiments with the CISA data base provided us with an opportunity to evaluate some of the current
capabilities of INLEN-1, and helped to suggest further topics for research in the context of the applications illustrated
by the CISA experiments. Here is a brief summary of general findings:

The system allows users with little domain expertise to discover interesting relationships in the data.

1t can discover simple or complex patterns that have been hidden by the volume of the data. -

It may find surprising relationships between attributes not known to be directly linked.

The knowledge representation used in the system is easy to interpret and understand, and thus the knowledge
discovered can be easily explained and related to other knowledge.

The experiments also exposed some problems of the current system that require new research, and an implementation
of additional features. Currently, many of the manipulations required are manually applied to the data base. The
system needs additional mechanisms that would help to automate some of the inference processes. Future
experiments should address the problem of “scaling up” the system, that is to test its applicability to analyzing very
large data bases. Finally, the system should have an ability for supporting an evolution of the the data base and
knowledge base schema to be able to adquately incorporate new data and learned knowledge.

INLEN is a large-scale multistrategy data-analysis system capable of performing a wide variety of inferential
operations on data and knowledge. The system is designed to serve as an intelligent assistant for data analysis and
discovery of interesting regularities in them. These regularities can be detected in qualitative data, quantitative data,

in a mixture of qualitative and quantative data, or in the knowledge base itself. INLEN also provides functions that
facilitate manipulation of both the data and the knowledge base.

The research on INLEN is intended to demonstrate the feasibility of a system capable of examining large quantities
of data, detecting trends, complex correlations and anomalies, analyzing the importance of these discoveries,
visualizing and reporting significant patterns, and predicting missing or future data elements. In business domains, a
strategic advantage may be attained. In scientific domains, hidden regularities may be discovered. The ability to
process and analyze increasing volumes of data can become a tremendous asset to users faced with more information
than they can absorb. Using machine learning and inference techniques, the search through the data can be made in
far less time, and with a greater “signal-to-noise ratio.”

INLEN implements a number of novel ideas. It integrates a variety of knowledge generation operators that permit a
user to search for various kinds of relationships and regularities in the data. This integration allows it to exploit the
strengths of diverse learning and discovery programs, and to reduce the limitation to specific tasks. To achieve this
integration, the concept of a knowledge segment has been introduced. The knowledge segment stands for a variety
of knowledge representations such as rules, networks, equations, etc., each possibly associated with a relational table
in the data base (as in the case of a set of constraints), or for any combination of such basic knowledge segments.
INLEN also utilizes macro-operators and data analysis programs to facilitate operation of the system and to allow
more flow control to be handled by INLEN itself. Users can easily develop and invoke both of these tool sets.

By employing diverse knowledge generation operators, INLEN has the capability for multistrategy learning and
discovery. Depending on the situation at hand, operators may be called upon to perform empirical induction,
constructive induction or deduction, abductive hypothesizing, analogical reasoning, or deductive inference. This
research aims to create a domain-independent learning and discovery system that is not limited to a narrow scope of
tasks, but is capable of assisting data base analysts in diverse fields.

Many of the INLEN operators are based on the research results and programs developed over the last fifteen years at
our and other laboratories. Incorporating these programs into INLEN requires different amounts of effort. In a few
cases, this includes primarily a change of the program interface. In other cases, the programs have to undergo major
modifications or be redeveloped from scratch. Finally, some other operators are still at the stage of research and
initial implementation.

In conclusion, the experiments conducted with the first version of the system, INLEN-1, have clearly demonstrated
that it is a very flexible and powerful intelligent assistant for knowledge discovery in data.
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