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Automating Knowledge Acqu1s1t10n as Extending,
Updating, and Improving a Knowledge Base

Gheorghe D. Tecuci

Abstract— A method for the automation of knowledge ac-
quisition that is viewed as a2 process of incremental extension,
updating, and improvement of an incomplete and possibly par-
tially incorrect knowledge base of an expert system is presented.
The knowledge base is an approximate representation of objects
and inference processes in the expertise domain. Its gradual
development is guided by the general goal of improving this
representation to consistently integrate new input information
received from the human expert (as, for instance, new facts or
examples of problem solving episodes)., The koowledge acqui-
sition method Is presented as part of a methodology for the
automation of the entire process of building expert systems,
and is implemented in the system NeoDISCIPLE. The method
promotes several general ideas for the automation of knowledge
acquisition as, for instance, understanding-based knowledge ex-

. tension, knowledge acquisition through muitistrategy learning,
consistency-driven concept formation and refinement, closed-loop
learning, and synergistic cooperation between 2 human expert
and a learning system.

I. INTRODUCTION

UTOMATING the process of building expert systems is

one of the major goals of artificial inteiligence [4]. An
expert system has two basic components, a knowledge base
(which contains knowledge relevant to a particular domain of
expentise) and an inference engine (which provides the control
and inference mechanisms for applying the knowledge from
the knowledge base). This characteristic architectural feature
of the expert systems has determined two main approaches
to the automation of the expert system building process:
building expert system shells and building tools for knowledgc
acquisition.

An expert system shell is a system consisting of an inference
engine for a class of tasks, and supporting representation
formalisms in which a knowledge base can be encoded. If
the inference engine of an expert system shell is adequate for
a certain expert task, then the process of building the expent
system is reduced to the building of the knowledge base.
Expert system shells can be characterized by the gencrality
of their inference engine. The range of such systems contains
very general shells, like OPS [9] and KEE [18], general shells
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for a certain type of expertise task like, for instance, diagnosis
in the case of EMYCIN [48], and even quite specific shells
for role-limiting problem solving methods as, for instance,
KNACK [19] and SALT [23]. The different types of expert
system shells trade the generality of the inference engine (and
thus their domain of applicability) against the assistance given
to the building of the knowledge base. Very general shells
give little assistance besides the encoding of knowledge in
rules or objects. On the contrary, the shells implementing role-
limiting methods provide considerable assistance in building
a knowledge base. A role-limiting method is characterized
by a very simple control structure that is independent of
the peculiarities of any particular task performed. Also, it
defines clearly the roles played by required task knowledge
and the form in which that knowledge can be represented [24].
Research on the identification of problem solving methods
for generic tasks [S]-[7] aims at defining suitable shells for
building expert systems.

A tool for knowledge acquisition provides assistance in
building a knowledge base. In general, one may distinguish
three stages of the knowledge acquisition process: systematic
elicitation of expert knowledge; knowledge base refinement;
and knowledge base reformulation. During systematic elicita-
tion, the basic terminology and the conceptual structure of the
knowledge base is acquired. Most often this is done through
a structured interview with a human expert (3], [15], [38].
The result of the systematic elicitation is an initial imperfect
knowledge base that is refined and improved during the next
stages. During knowledge refinement, the knowledge base
is debugged and extended. Knowledge-refinement tools use
the problem-solving abilities of the expert system to identify
failures (i.e., inability to solve some problem or generation
of a wrong solution). When problem-solving fails, the tool
elicits knowledge from the human expert in order to eliminate
the cause of the failure [1], [41], [50]. During reformulation,
the knowledge base is reorganized and/or compiled to solve
problems more efficiently [29], [33].

The above classification of expert system building tools
into expert system shells and knowledge acquisition tools
also reflects the traditional distinction made between problem
solving and learning. However, as new and more powerful
learning methods are developed, it becomes more and more
clear that leamning and problem solving share many common
processes. In fact, for learning methods like explanation-based
learning, abductive learning, or leamning by analogy [20],
[39] problem solving is often part of learning. Consequently,
building systems that have both learning and problem solving
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capabilities appears to be a very promising research direction.
Based on this observation, we define a learning system shell as
a learning and problem solving inference engine that supports
representation formalisms in which a knowledge base can be
encoded, as well as a methodology for automatically building
the knowledge base. Thus, a learning system shell is an expert
system building tool that incorporates both the capabilities of
an expert system shell and those of a knowledge acquisition
tool. '

In this paper we present the learning system shell NeoDIS-
CIPLE that illustrates several general ideas for the automation
of knowledge acquisition as, for instance, understanding-based
knowledge extension, knowledge acquisition through multi-
strategy learning, consistency-driven concept formation and
refinement, closed-loop leaming, and synergistic cooperation
between the human expert and the learning system shell. The
goal of this research is to elaborate a general framework for
the automation of knowledge acquisition.

It should be noticed that, although NeoDISCIPLE aims at
automating the entire process of building an expert system, this
paper concentrates on the support provided by NeoDISCIPLE
for extending, updating and improving a knowledge base.

This paper is organized as follows. Section I briefly presents
the ideas on which NeoDISCIPLE is based. Then, Sections
[II-VII present the knowledge refinement method of NeoDIS-
CIPLE, illustrating it with an example (building a question-
answering system in geography). Section VI presents two
other applications of NeoDISCIPLE and discusses some of
its general features. Section X relates NeoDISCIPLE to other
approaches, and the last section outlines some directions of
the future research.

II. GENERAL IDEAS ILLUSTRATED BY NEODISCIPLE

A. Hybrid Knowledge Representation

In NeoDISCIPLE knowledge has to be represented as
objects and rules that are manipulated by a rule interpreter.
The objects are described in terms of their properties and
relationships, and are hierarchically organized according to
the “more-general-than™ (or “isa™) relationship, thus forming
a hierarchical semantic network. The rules are expressed in
terms of the object names, properties and relationships. The
meaning of the rules depends on the application domain. These
rules may be inference rules for inferring new properties and
relationships of objects from other properties and relationships,
general problem solving rules as, for instance, rules that
indicate the decomposition of ccmplex problems into simpler
subproblems [42], or even action models that describe the
actions that could be performed by an agent (for instance,
a robot), in terms of their preconditions, effects and involved
objects [43]. .

The advantage of a hybrid knowledge representation over

uniform one is that it allows a more natural representation of
sha Aitrares runss af banwlisdes nisree charactari>ing a2 siven

B. Expert System Building as a Three Phase Process

With NeoDISCIPLE. an expert system is built in three
phases. In the first phase the human expert has to define a
preliminary knowledge base (KB). There are two main goals
of this phase: 1) to allow the human expert to introduce into
the XB whatever knowledge pieces sthe may easily express;
2) to provide the system with some background knowledge
that would support it in acquiring new knowledge. The result
of this phase will be an incomplete and possibly partially
incorrect KB. The expert can define both objects and rules.
In the current version of NeoDISCIPLE it is assumed that
the object descriptions may be incomplete but correct, and the
rules may be both incomplete and partially incorrect.

In the second phase, the system extends, updates, and
improves the KB through leaming from new input information
provided by the human expert. That is, it extends the hierarchy
of object concepts with new properties, relationships, and
concepts, learns new rules, and improves the existing ones. The
result of this phase will be a KB that is complete enough and
correct enough for providing correct solutions to the problems
to be solved.

In the last phase, the knowledge base is reorganized for
improving the efficiency in problem solving. The result of this
phase should be -an efficient expert system.

Although the boundaries between these phases cannot be
very clear, it is useful to identify them because each is
characterized by specific goals and techniques.

C. Understanding-Based Knowledge Extension

The imperfect KB provided by the human expert allows the
leaming system to react to new input information with the
goal of extending, updating, and improving the KB so as to
consistently integrate the input. \

In general, the input may be any piece of knowledge.
However, in the current version of NeoDISCIPLE, the input is
supposed to represent a specific fact, an example of a concept,
or an example of a problem solving episode (consisting of
a specific problem and its solution). Usually, the result of
learning from a specific fact will be an improved KB implying
the input fact and similar ones.! Also, the result of learning
from a specific problem solving episode will be an improved
KB allowing the system to solve similar problems.

The general leamning method of NeoDISCIPLE is shown in
Fig. 1, and is based on the “understanding” of the input?® [46].
That is, the system will try to show that the input is a plausible

- consequence of the system’s knowledge. To build such a

plausible proof, it may need to hypothesize new knowledge,
which is added into the KB. Moreover, in order to learn as
much as possible from the input, the system will generalize
the plausible proof (and thus the hypothesized knowledge),
will analyze the instances of these generalizations, and will

"The input fact will be explicitly stored into the KB when it is compietely
new and cannot be related to the previous knowledge of the system. This
should also happen when the cost of inferring the fact would be 100
high. However, this last case is not considered in the current version of
NeoDISCIPLE.

b T T Y T W P T N T T T U .
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Fig. {. Incremental development of the knowledge base.

correct them accor. = As shown in Fig. 1, this process is
supervised by the hu.nan expent.

The idea of understanding the input information in terms
of the current knowledge of the system provides a natural
scenario in which additional knowledge is acquired by means
of pieces of explanations provided by the expert or generated
by the system.

D. Knowledge Acquisition through Multistrategy Learning

Research in machine learning haS investigated in detail
several single-strategy learning methods [20], [26], [27], [39].
A striking feature of these methods is the complementary
nature of their requirements and results. For instance, empirical
induction requires many input examples and a small amount of
background knowledge. Explanation-based learning requires
one input example and a complete background knowledge.
Learning by analogy and case-based learning require back-
ground knowledge analogous with the input. Learning by
abduction requires causal background knowledge related to
the input. The result of empirical induction is a hypothet-
ical generalization of several input examples. The result of
explanation-based learning is an operational generalization of
an input example. The result of learning by analogy and of
case-based leamming is new knowledge about the input. The
result of learning by abduction is new background knowledge.
This complementary nature of the single-strategy learning
methods naturally suggests that one could obtain a synergistic
effect by properly integrating them. In such a multistrategy
system different strategies could mutually support each other,
and compensate for each other's weaknesses [28]. -

NeoDISCIPLE employs a multistrategy learning method.
It applies explanation-based learning (to attempt building a
plausible proof of the input, and to generalize it), learning by
abduction (to complete the proof), learning by experimentation
(10 generate instances of the generalized proof), empirical gen-
eralization (to generalize the generated instances), conceptual
clustering (to define new object concepts), and leamning by
instruction (10 acquire new knowledge from the user).

E. Consistency-Driven Concept Formation and Refinement

The semantic network of object concepts provided by the
human expert in the first phase of knowledge acquisition is an
incomplete terminology for representing and leamning new ob-
ject concepts, facts, rules etc. Because of this incompleteness,
the general knowledge pieces learned by NeoDISCIPLE may
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be inconsistent, covering also some negative examples (called
false positive or negative exceptions). In order to uncover
these negative examples, new object concepts may need to
be introduced into the semantic network, or the definitions
of the existing object concepts may need to be refined. For
instance, one may uncover the negative exceptions of a rule
by defining a new object concept discriminating between
the positive examples and the negative exceptions, and by
introducing it into the applicability condition of the rule [43],
[51}. Alternatively, one may refine the definition of some
object concept used in the condition of the rule with a new
feature shared only by the positive examples of the rule [43].
In this way, the hierarchy of object concepts is iteratively
developed with the goal of improving the consistency of the
learned rules.

F. Synergistic Cooperation Between the Human Expert and the
Learning System

The learning method of NeoDISCIPLE is based on the
cooperation between a human expert and a leamming system
(see Fig. 1) exploiting their complementary abilities. In this
cooperation, the human expert helps by solving problems
that are intrinsically difficult for a learning system. Diffi-
cult problems for learning systems include the credit-blame
assignment problem (i.c., assigning credit or blame to the
individual decisions that led to some overall result), and the
new terms problem (i.e., extending the representation language
with new terms when it cannot represent the concept or rule
to be learned) [43]. On the other hand, the leaming system is
responsible for the generation of general concepts or rules that
account for specific examples, and for updating the KB so as
to consistently integrate the learned knowledge.

G. Closed-Loop Learning

As shown in Fig. 1, the knowledge learned from an input
becomes background knowledge that is used in the subsequent
learning process, increasing the quality of learning. There-
fore, NeoDISCIPLE illustrates a typical case of closed-loop
learning.

11, ILLUSTRATION OF THE METHODOLOGY FOR BLILDING
EXPERT SYSTEMS

A. A Question-Answering System in the Area of Geography

We shall illustrate our approach to the automation of knowl-
edge acquisition with the help of an example—building an
expert system able to answer questions about geography.

The KB of the sysiem contains explicit object knowledge,
which we call basic object knowledge (in the form of a
semantic network of object concepts), and implicit object
knowledge (in the form of rules for inferring new object
features from other object features).

A sample of the KB is presented in Fig. 2. The top
part of the figure contains the semantic network of object
concepts that describes the types of the geographical objects,
together with their features (i.c., properties and relationships).
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These concepts are hierarchically organized along the IS-
A relationship (for instance. “rice” is both a “cereal” and

a “food,” and “cereal” is a “plant™) that implies that any
concept inherits all the features of its superconcepts. In order
to simplify the figure, each [S-A relationship is represented by
a grey arrow, and the name of the relationship is no longer
attached to the arrow. For the same reason, some of the objects
from the KB (Jamaica, mango. akee and grape) have not been
included in the figure. One may notice that some concepts
have several relationships with the same name as. for instance.
“(Romania TERRAIN flat)" and “(Romania TERRAIN hill).”
This means that the terrain of Romania includes both flat and
hill regions. Similarly, “(rice NEEDS-CLIMATE tropical)”
and “(rice NEEDS-CLIMATE subtropical)” means that the
type of climate needed by “rice” includes “tropical” and
“subtropical”.

The semantic network may be incomplete in the sense that
it may not contain all the relevant object names and features.

The bottom part of Fig. 2 contains three rules for inferring
new properties and relationships of objects from other prop-
erties and relationships. The conditions of the inference rules
are conjunctive expressions formed with the properties and
relationships (as predicates) and the object names (as predicate
arguments} from the hierarchical semantic network. One may
notice that, while the rule Rl has an exact applicability
condition, the rules R2 and R3 have two conditions, called
the plausible upper bound and the plausible fower bound.

The plausible upper bound is a conjunctive expression that

is supposed to be more general than the exact condition. and
the plausible lower bound is a conjunctive expression that is
supposed to be less general than the exact condition. The two
bounds define a plausible version space [31], [41] for the exact
condition to be learned by NeoDISCIPLE. The bounds and
the version space are called plausible because the learning
process takes place in an incomplete representation language
that may cause them to be inconsistent (negative examples that
are covered by the lower bound or positive examples that are
not covered by the upper bound).

There are two main differences between the plausible ver-
sion spaces used by NeoDISCIPLE and the standard version
spaces defined by Mitchell [31].

First, in the case of Mitchell's version space method. the
lower bound and the upper bound are exact boundaries of
the version space. Consequently, during learning, the lower
bound can only be generalized and the upper bound can only
be specialized. On the contrary, in the case of NeoDISCIPLE,
these bounds are only plausible (i.e., approximations of the
exact bounds). Therefore, during learning, each of them can
be both generalized and specialized.

Secondly, in the case of Mitchell's method, both bounds
may’ consist of an arbitrarily large number of conjunctive
expressions, that may lead to a combinatorial explosion, due
to the use of an exhaustive search method. On the contrary,
the learning method of NeoDISCIPLE is based on a heuristic
search in which each bound of the version space consists of

“only one conjunctive expression.
The rules in the NeoDISCIPLE's KB could therefore be
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Fig. 2. A sample KB (the grey unlabelled arrows in the semantic network
represent [S-A relationships).

One should also notice that the system keeps all the in-
stances from which the rules have been learned. An instance [
of a rule A is represented by the substitution o. which transform
R into [ (i.e.. I = oR). These instances are the main source
of knowledge for extending the representation language of the
system with new concepts or concept features {43}, as well as
for accordingly updating the rules.

When applying an incompletely learned rule. if the lower
bound condition is satisfied then the system “considers” the
conclusion as being true. If the upper bound condition is
satisfied, but the lower bound condition is not sausfied. then
the conclusion is considered only piausible, needing further
evidence in order to be accepted.

To answer a question of the form

Does (wheat GROWS-IN Tunisia)?
the system will first look into the hierarchy of object concepts.
If the above fact is not explicitly represented, then the system
will try to infer it from the explicitly represented facts. by
building a proof tree like the one in Fig. 3.

B. Definition of the Preliminary Knowledge Base

As mentioned in Section !I-B, the expert system s built in
three phases. In the first phase the human expert has to define
an initial KB, without any interaction with NeoDISCIPLE.

S/he may define both an initial semantic network of object
Aenesmte amd 2 eat f inference ntlec
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In the current version of NeoDISCIPLE it is assumed that
the descriptions of the object concepts may be incomplete but
correct. The inference rules, however, may be both incomplete
and possibly partially incorrect.

The minimum knowledge that the human expert is required
to provide consists of an incomplete hierarchical semantic
network of objects. Providing initial rules is not a requirement
because the system may learn such rules, as will be described
in Section VL

C. Knowledge Refinement

After the initial KB has been provided, NeoDISCIPLE
extends, updates, and improves it through successive inter-
actions with the human expert. During these interactions, the
human expert provides new geographical facts, and the system
improves the object descriptions and the rules from the KB,
or leamns new ones, so as to consistently integrate into the KB
the information contained in the input.

The knowledge refinement problem of NeoDISCIPLE, in
this geographical domain, is formulated and illustrated in
Table L.

The human expert has told the system that “(ricce GROWS-
IN Cambodia),” and NeoDISCIPLE has refined the knowledge
base represented in Fig. 2 so as to consistently integrate, not
only this new piece of knowledge, but also similar ones,

First of all, the system has learned two new relevant geo-
graphical relationships: “SOIL” and “NEEDS-SOIL.” These
relationships extend the representational capabilities of the
system and are, in fact, used to reexpress the version space
of the rule R3.

Secondly, the system has leamed new geographical facts
like “(Cambodia SOIL fertile-soil)” and “(rice NEEDS-SOIL
fertile-soil).”

Third, it has improved the rules B2 and R3. Indeed, it has
discovered two new positive examples of the rule R2 and has
generalized the plausible lower bound so as to cover them
(the generalized literals are underlined). It has also discovered
two positive examples and one negative example of the rule
R3. Consequently, it has specialized the two plausible bounds
of R3 so as no longer to cover the negative example, and
has generalized the plausible lower bound so as to cover the
positive examples. One should notice that, as opposed to the
standard version space method [31], where the lower bound
can only be generalized, in this case the lower bound has
been both generalized and specialized. It has been generalized
by generalizing “(z IS-A fruit)&(z IS-A hill)” to “(z IS-A
plant)&(z IS-A terrain-type),” and it has been specialized by
adding the conjunction of literals “(v IS-A soil-type)&(y SOIL
v)&(z NEEDS-SOIL v).” The specializations of the plausible
bounds of R3 show also how the new relationships “SOIL”
and “NEEDS-SOIL” extend the representation language of the
system. What is not directly observable in Table I is that the
improved knowledge base allows the system not only to derive
the input fact “(rice GROWS-IN Cambodia),” but also other
related facts as, for instance, “(com GROWS-IN Romania).”

The general knowledge refinement strategy of NeoDISCI-
PLE could be synthesized as follows:
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TABLE 1
THE KNOWLEDGE REFINEMENT PROBLEM

Given
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I5-A something)k(z IS-A something)d
3-TERRAIN 1)&

(y HAS-TERRAIN-COND-FOR 1)

wlk the patitive exampies  ~

{x<-plum, y<-Romania. £<-hill, v<.normal-soil)
(«grm.ycm«-w.«mww

M’:Mkmmw *

* the KB contains explicit object knowledge (in the form of
a hierarchical semantic network), and, possibly, implicit
object knowledge (in the form of inference rules).

* when the system receives a new fact from the human
expert, it will try to extend and update its KB so that the
current input fact is inferable from the KB. If this is not
possible, then the system will interpret the input fact as
representing basic object knowledge, and will introduce
it explicitly into the semantic network of objects.

The knowledge refinement method is presented in the next
section and illustrated in the Sections V and V1. Section V
shows how the system acquired the different knowledge pieces
from Table I, that improved the KB in Fig. 2. Section VI
illustrates the knowledge refinement method in the situation
in which the KB contains only the semantic network of object
concepts from the top of Fig. 2.

D. Knowledge Reformulation

When the KB of the system is complete enough and correct
enough for providing correct solutions to most of the problems
that the system is supposed to encounter, the main emphasis
of learning changes from knowledge refinement to knowledge
reformulation. The goal of knowledge reformulation is to
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improve the performance of the expert system. As will be
shown in Section VII, an interesting feature of NeoDISCIPLE
is that its knowledge refinement method becomes a knowledge
reformulauon one, when the KB of the system is complete.

IV. THE KNOWLEDGE REFINEMENT METHOD

The knowledge refinement method of NeoDISCIPLE fol-
lows the steps indicated in Fig. 1 and detailed as follows (these
steps will be illustrated in Sections V and VI).

Undersiand the input

1) Build a plausible proof tree T which shows that the input
I is a consequence of the knowledge from the KB. The
top of this tree is the input J, and the leaves are the facts
Fy,--- F, from the KB that plausible imply L.

2) Introduce into the KB the facts abduced (if any) during
the building of the tree T (the abductions made by the
system are validated by the expert).

3) Let Ri,--- R, be the rules from the KB that have
been used to build the tree T. Generalize (if necessary)
the Plausible lower bounds of these rules, as little as
possible, so as to cover the corresponding inference steps
from T, and to remain less general then the plausible
upper bounds.

Generalize the understanding
4) Build the most general plausible generalization T, of
the tree T, by using the upper bound conditions of
the rules R,,---. R,. The top of this tree will be the
generalization [, of the input I, and the leaves will be the
generalizations Fp,,. - - -, Fg,, of the facts Fp.--- . Fy.
5) Build the most general deductive generalization T;, of
the tree T, by using the lower bound conditions of
the rules R;,---, R,. The top of this tree will be the
generalization Ig of the input I, and the leaves will be
the generalizations Fp, - - . Fy, of the facts Fp.---, Fy.
6) Build a plausible version space VP, representing the
inferential capabilities of the system with respect to
inputs similar to I:
IF
plausible upper bound: F, & ---&F,
plausible lower bound: Fp& --- & Fy
THEN
Iy

While '
* the two bounds of the plausible version space VP
are not identical, and
» the KB contains an instance of the upper bound
that is not an instance of the lower bound
" Do steps 7 through 24
Experiment
7) Find, in the KB, an instance of the upper bound of
VP that is not an instance of the lower bound. Let
(Fozk - &F,;) = o(Fp k- -&F,,), where o is a
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8) Generate a fact similar to the input /. by applying ths
substitution o to [y a(/y)

9) Generate the instance of the tree T, corresponding 1o
the fact o(Ig), by applving o 10 T, : 0(T,).

Verify ‘

10) Ask the expert if o(/g) is true. If the answer is Yes
then go to step. Otherwise go to 13.
The tree o(T,) shows new positive instances of the
rules R,, - . R,. Generalize (if necessary) the plausi-
ble lower bounds of these rules, as little as possible,
s0 as to cover the corresponding inference steps from
the tree o(7,), and to remain less general then the
plausible upper bounds.
Generalize the plausible lower bound of the version
space VP, as little as possible, so as to cover
(Fped& -+ &F,.), and to remain less general then the
plausible upper bound. Then go 10 24.

11

12)

Repair

13) o(T,) is a wrong proof tree: the leaf predicates are true
and the top predicate is false. Ask the user to identify
a false inference step. Let this step be A,y — Ci; (the
blame assignment problem).
Let H; be the rule in the KB the instance of which is
Agr — Ciz. If the plausible lower bound of the rule
R, does not cover Ai; then go to 15. Otherwise go
to 17.
Specialize the plausible upper bound of the rule Ry, as
little as possible, so as no longer to cover A;; and to
remain more general then the plausible lower bound.
Update the tree T, by using the new upper bound of
the rule R,.
Specialize the upper bound of the plausible version
space VP, as little as possible, so as no longer to cover
(Fpz& - - &F,z) and to remain more general then the
lower bound. Then go to 24.
Let Ay — Ci be the inference step from the tree T,
corresponding to the false inference step Ay — Chz.
Ask the user to correct the inference step Ay — Ch, by
adding additional left hand side predicates. if the user
indicates that the correct inference is A & By — Ck
then go to step 18. Otherwise, if the user cannot correct
the inference step Ag — Cj, go to 23.
Introduce By into the KB (the new terms problem: B
may be a new term).
Let By, be the inductive generalization of B, obtained
by replacing each object in By with a variable. Let
Bizi, -+, Bian be the instances of Bku corresponding
to the known positive examples of Ri. Let By be a
least general generalization of these instances that is
less general than Bku. Specialize the upper and the
lower bounds of Rk by conjunctively adding By, and
By, respectively.
20) Add Bizi,- -, Biza into the KB,
21) Update the tree T, by using the new upper bound of

the rule Ri. ‘

22) Specialize the upper bound and the lower bound of

14)

15)

16)

17)

18)

19)
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Fig. 8. Generation of facts similar with the input one.

(rice GROWS-IN Flaride}
R
(Florida HAS-METEG-COND-FOR rice)  (Flaride HAS-TERRAIN.COND-FOR nce)
R
WATER-SUPPLY NEEDS-CLMATE
(Florids {rox

(Foxida TERRAIN NEEDS-TERRAIN

NEEDS-WATER-SUPPLY = (3 IMATE flar) a)

Fig. 9. Instance of the tree T, corresponding to the generated fact

*(rice GROWS-IN Florida).”

C. Experimentation®

The version space VP in Fig. 7 synthesizes the inferential
capabilities of the system with respect to the facts of the form
“(z GROWS-IN y).” To improve these capabilities, the system
looks into the KB for instances of the upper bound that are not
instances of the lower bound. For each such instance it shows
the user the corresponding inferred fact (see Fig. 8), asking if
it is true or false. Then the system updates the KB such that
the true facts are inferred, and the false facts are not.

The version space in Fig. 7 serves both for generating facts
of the form “(zx GROWS-IN y),” and for determining the
end of the learning process. To justify this last point, let us
anticipate that, during learning, the lower bound of the version
space is generalized so as to cover the generated facts accepted
by the user (the positive examples), and the upper bound is
specialized so as to no longer cover the generated facts rejected
by the user (the negative examples). The learning process will
end in one of the following situations: 1) the bounds of the
version space in Fig. 7 become identical; 2) the bounds are
not identical, but the KB no longer contains any instance of
the upper bound of the version space that is not an instance
of the lower bound. Therefore, no new fact of the form “(z
GROWS-IN )" can be generated.

Let us consider that “(rice GROWS-IN Florida)” is the first
" generated fact. For each such fact, the system determines the
corresponding instance of the tree T, (see Fig. 9).

D. Verification

The generated fact is shown to the user who is asked to
confirm or to reject it
“Does (rice GROWS-IN Florida)?” No

*Experimentation in NeoDISCIPLE is a form of icaming by analogy, as
shown in [42].
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Could you seil me why (sywemj
ModFionds HAS- TERRAIN-COND-POR res)

@ spuse of e focs
(Florwia TERRAIN fim) & (rem NEEDS-TERRAIN fla) ?

The W&: (fugmas expert}

(Flonda SOT. aormal-soil) & (noy NEEDS-SOQ. fertibe-woil)

Could you provide the Wdﬂg {syveem}
(Cambodis HAS- Mm}?

The explananon is: (himan crpest)

{Cambocha SOLL fertile- soil) & (now NEEDS-SOUL. fertile-sal)

Fig. 10. Sample dialog between the expent and the system.

Because the KB plausible entails this false fact, it should
be repaired, as shown in the following section.

E. Repair

The proof tree from Fig. 9 is wrong because the leaf literals
are true and the top literal is not. It follows that some of the
inferences made are incorrect. To detect them, the system and
the user follow the proof tree from bottom up. If the user states
that the consequent of a certain inference step is not true, then
the corresponding inference may be the faulty one. In this
case, the user states that the fact “(Florida HAS-TERRAIN-
COND-FOR rice)” is not true. This means that the following
inference step (which is an instance of the rule R3) is wrong:
(Fiorida TERRAIN flat)&(rice NEEDS-TERRAIN flat)

—+ (Florida HAS-TERRAIN-COND-FOR rice)

In such a case, the system will attempt to specialize the
plausible upper bound of the rule R3, as little as possible, so
as no longer to cover the wrong inference and to remain more
general than the plausible lower bound. Also, it will attempt
to specialize the plausible upper bound of the version space
VP in Fig. 7, as little as possible, so as no longer to cover the
leaves of the tree in Fig. 9 and to remain more general then
the lower bound.

However, none of the above specializations is possxble
Indeed, the plausible lower bound of the rule R3 covers the
wrong inference, and the same is true for the lower bound of
VP. This shows that the current representation language of the
system is incomplete because it does not contain any expres-
sion (any lower bound) covering the positive examples of the
rule R3 and rejecting this negative example. Therefore, the
solution in this case is to extend the representation language
with new predicates, and then to update the rule R3 and the
version space VP in Fig. 7. To this purpose, the system asks the
user to give an explanation of the above failure, as indicated
in the sample diaiog from Fig. 10.

The aforementioned sample dialog between the system and
the human expert illustrates how, by asking for explanations,
the system may extract many useful pieces of knowledge from
the expert.

The explanations given by the expert introduce two new
relevant geographical relationships, “SOIL” and “NEEDS-
SOIL,” as well as four new facts expressed with these new
relationships, that are explicitly stored into the semantic net-
work of object concepts,

The second explanation also shows that the inference step
(Cambodia TERRAIN flat)&(rice NEEDS-TERRAIN flat)

—+ (Cambodia HAS-TERRAIN-COND-FOR rice)
from the plausible proof tree in Fig. 3, is incomplete, and
indicates how it should be corrected:
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(Cambodia TERRAIN flat)&(rice NEEDS-TERRAIN flat)&
(Cambodia SOIL fertile-soil}&(rice NEEDS-SOIL fertile-soil)
— (Cambodia HAS-TERRAIN-COND-FOR rice)

Having discovered the wrong inference and the means of
correcting it, NeoDISCIPLE will next correct the rule R3,
that produced this inference, so as no longer to generate it.

First, the system inductively generalizes the additional con-
dition

{Cambodia SOIL fertile-soil)&(rice
NEEDS-SOIL fertile-soil)
by replacing each object with a variable, thus obtaining
(y SOIL v)&(z NEEDS-SOIL v)
and conjunctively adds this expression to the upper bound of
R3.

Then the system determines all the instances of the previ-
ous general expression, corresponding to the known positive
examples of R3:

(Romania SOIL v)&(plum NEEDS-SOIL v)
(France SOIL v)&(grape NEEDS-SOIL v)

Each such instance is shown to the human expert, that is
asked to provide the corresponding value for the variable v:
(Romania SOIL v)&(plum NEEDS-SOIL v)&(v [S-A normal-
soil)

(France SOIL v)&(grape NEEDS-SOIL v)&(v IS-A normal-
soil)

The previous expressions, together with

{Cambodia SOIL v)&(rice NEEDS-
SOIL v)&(v IS-A fertile-soil)
correspond to the known positive examples df the rule R3.
Therefore, NeoDISCIPLE determines a least general conjunc-
tive generalization of them [42] and conjunctively adds it to
the lower bound of R3. Consequently, the version space of
R3 becomes:

R3: IF
plausible upper bound
(z IS-A something)&(y [S-A something)&
(z IS-A something)&
(y TERRAIN 2)&(z NEEDS-TERRAIN z)&
(v_IS-A something)&(y SOIL v)&(x NEEDS-SOIL v)
plausible lower bound
(z 1S-A plant)&(y IS-A place)&(z IS-A terrain-type)&(y
TERRAIN :)&(z NEEDS-TERRAIN 2)&
(v_IS-A soil-type)&(y SOIL v)&(z NEEDS-SOIL v)
THEN
(y HAS-TERRAIN-COND-FOR z)
with the positive examples
(z<-plum, y<-Romania, z<-hill, v<-normal-soil)
(z<-grape, y<-France, z<-hill, v<-normal-soil)
(z<-rice, y<-Cambodia, z<-flat, v<-fertile-soil)
with the negative example
(z<-rice, y<-Florida, z<-flat)® '
The system introduces into the KB all the factual knowl-
edge learned: “(Romania SOIL normal-soil),” “(plum NEEDS-

5The value for v in the negative example is not defined. The predicate
(Florida SOIL v) would require the value “normal-soil,” and the predicate
{rice NEEDS-SOIL ¢) would require the value “fenile-soil.”
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(2 GROWS.IN y)

{y HAS-METEC.COND-FOR 1) (y HAS-TERRADY.COND-FOR i

(y WATER-SUPPLY U Y QMATE Y (v )
(x NEEDS-WATER-SUPPLY 1} (e NEED$-TERRAIN 1} | 2 NEEDS-50L v}
{2 NEEDS-CLIMATE u} (y SOL. v

Fig. 11. The updaied tree T,.
SOIL normal-soil),” “(France SQIL normal-soil),” and “(grape
NEEDS-SOIL normal-soil).”

Next, the tree T, (which was built by using the upper
bound condition of the rule R3) is updated 1o correspond to
the new upper bound of R3. That is, “(v [S-A something),”
“(y SOIL v)” and “(z NEEDS-SOIL v)" are added as leaf
preconditions for inferring “(y HAS-TERRAIN-COND-FOR
r).” The updated tree T, is shown in Fig. 11. As mentioned
previously, to simplify the figure, the literals of the form “(z
IS-A something)” are not shown.

The same type of modifications that have been made 10 the
version space of R3J are also made to the version space VP in
Fig. 7. Consequently, the version space VP becomes:

IF

plausible upper bound

(z IS-A something)&(y [S-A something)&

(z IS-A something)&

(t 1S-A something)&(u IS-A something)&

(y WATER-SUPPLY t)&(z NEEDS-WATER-SUPPLY t)&

(y CLIMATE u)&(z NEEDS-CLIMATE u)&

(v TERRAIN z)&(z NEEDS-TERRAIN 2)

(v 1S-A something)&(y SOIL v)&(r NEEDS-SOIL v)

plausible lower bound

(z IS-A plant)&(y IS-A place)&(z IS-A terrain-type)&

(t IS-A high)&(u IS-A tropical)&

(y WATER-SUPPLY ¢t)&(z NEEDS-WATER-SUPPLY t)&

(y CLIMATE u)&(z NEEDS-CLIMATE u)

&(y TERRAIN z)&(xr NEEDS-TERRAIN 2)

(v _IS-A soil-type)&(y SOIL v)&(z NEEDS-SOIL v)
THEN

{(z GROWS-IN y)

The first Experiment-Verify-Repair sequence is now com-
pleted and the system starts a new sequence.

F. Experimentation

In the previous Experiment-Verify-Repair sequence, the
bounds of the version space VP have been specialized by
conjunctively adding literals built with the newly defined
relationships “SOIL” and “NEEDS-SOIL.”

Because these relationships have been defined for very few
objects, it is very likely that the system will no longer find
instances of the plausible upper bound of VP, into the KB.
Consequently, the knowledge acquisition process would end.
To avoid such a situation, the system will try to elicit additional
knowledge about the new relationships “SOIL".and “NEEDS-
SOIL” for any objects that satisfy the other conditions of
the plausible upper bound of VP, without satisfying the
corresponding conditions of the plausible lower bound of VP.
As shown in Fig. 8, such objects are “corn” and “Romania.”
Therefore, the system initiates the following dialog:
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By, respectively. Then go 10 24.

23) Keep Ax — Cx as a negative exception of the rule
R, (the exceptions are used by NeoDISCIPLE in the
concept formation and refinement process, as described
in [43].

24) Continue the while loop.

The details of this method depend of the inferential capa-
bilities of the system with respect to the input. We distinguish
between three types of such capabilities:

Poor Knowledge about the Input: The system has no infer-
ence rules to build a plausible proof of the input. In such a
case, NeoDISCIPLE uses heuristics to propose facts from the
KB that directly imply the input. The user has to validate these
hypotheses and may indicate additional facts. In such a case,
the main result of learning is a new inference rule that derives
the input. However, if no facts that imply the input could be
found, then the input is explicitly stored into the KB. This case
will be illustrated in Section VI

Incomplete Knowledge about the Input: The system has in-
ference rules allowing it to build a plausible proof of the input.
Usually, in such a case, the main result of learning is the
improvement of the rules from the KB. This case will be
illustrated in Section V.

Complete Knowledge about the Input: The system has in-
ference rules allowing it to build a complete deductive proof
of the input. In such a case, the system does not leam any
new knowledge. However, it may leamn a rule that has the
potential of improving the problem solving performance of
the system. Therefore, when the KB of the system is correct
and complete, the knowledge refinement method behaves as a
knowledge reformulation one, as will be shown in Section VIl

An ideal knowledge acguisition scenario is the following
one. First the expert provides an initial semantic network (like
the one from the top of Fig. 2). Next, the system improves
the semantic network and leams rules (like the ones from the
bottom of Fig. 2), by applying the techniques illustrated in
Section VI. Next, the system improves the semantic network
and the rules, by applying the techniques illustrated in Section
V. Finally, it optimizes the knowledge base, as indicated in
Section VIL

V. KNOWLEDGE REFINEMENT IN THE CASE OF
INCOMPLETE KNOWLEDGE

A. Understanding the Input

Whenever the system receives a new input, it will wry to
understand it by building a plausible proof tree that shows
that the input is a plausible consequence of the knowledge
in the KB. Let us suppose that the current KB is the one
from Fig. 2 and the input is “(ricc GROWS-IN Cambodia).”
In this case, the system builds the plausible proof tree from
Fig. 3. We call this tree “plausible” because it was built
by using the upper bound conditions of the rules R2 and
R3. In order to simplify the figure, we have not included
in the tree the leaves “(Cambodia IS-A something),” “(high
IS-A something),” “(rice IS-A something),” “(tropical IS-A
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{noe GROWS- TN Cambodis )

{Catmbodie
WATER-SUPPLY
wgh)

(rwe
(ree NEEDS- TERRAIN
NEEDS-WATER-SUPPLY flat;
hugh)

Fig. 3. A plausible proof of “(rice GROWS.IN Cambodia).”

something),” and “(flat 1S-A something),” which are obviously
true facts.
Because both the leaves and the top of the tree are true facts,
NeoDISCIPLE makes the hypothesis that all the inference
steps from this tree are correct. That is, it makes the hypothesis
that the instances of 22 and R3 (obtained by applying the
upper bound conditions of these rules) are positive instances
of these rules. Therefore, the system generalizes the plausible
lower bounds of these rules, as little as possible, so as to
cover these instances and to remain less general than the
corresponding plausible upper bounds [42]. For instance, it
generalizes “fruit” to “plant” in the plausible lower bound of
R2. This generalization is made by climbing the generalization
hierarchy defined by the IS-A relationship, in the semantic
network from Fig. 2. NeoDISCIPLE also keeps the instance
of R2 from the iree in Fig. 3, as a known positive example of
R2. Therefore, the version space of rule R2 becomes:
R2: IF
plausible upper bound
(z IS-A something)&(y IS-A something)&
(t IS-A something)&(u IS-A something)&
(y WATER-SUPPLY t)&
(z NEEDS-WATER-SUPPLY t)&
(y CLIMATE u)&(z NEEDS-CLIMATE u)
plausible lower-bound
(z_IS-A plant)&(y [S-A place)&
(t IS-A high)&(u IS-A tropical)&
(y WATER-SUPPLY t)&(z NEEDS-WATER-SUPPLY
t)&
(y CLIMATE u)&(z NEEDS-CLIMATE u)
THEN
(y HAS-METEO-COND-FOR z)

with the positive examples
(z<-mango, y<-Cambodia, t<-high, u<-tropical)
{z<-akee, y<-Jamaica, t<-high, u<-tropical)
(zr<-rice,y<-Cambodia,t<-high,u<-tropical)

Similarly, NeoDISCIPLE generalizes the lower bound of
the version space of R3, so as to cover the instance of K3
from Fig. 3 (i.e., it generalizes “fruit” to “plant™ and “hill” to
“terrain-type”):

R3: IF plausible upper bound
{z IS-A something)&(y 1S-A something)&
(z IS-A something)&(y TERRAIN :)&(z NEEDS-
TERRAIN z)
plausible lower-bound
(z_1S-A plant)& (y IS-A place)&(z IS-A terrain-type)&
(v TERRAIN 2)&(z NEEDS-TERRAIN 2)
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{x! GRQWS.-IN y1)
(y1 HAS- METEGFCOND-FOR 31) (7} HAS-TERRAIN.COND-FOR 11)

(y2 HAS-METEQ-COND-FOR 12) (YIHAS- -COND-FOR 13)

(y2 WATERTSUPPLY &) (2 CLIMATE )

(x2 NEEDS-WATER-SUPPLY Q)
(s NEEDS-OIMATE )

{r3 TERRAIN 13}
{x3 NEEDS- ful

Fig. 4. The explanauon structure of the input. corresponding 10 T,

THEN
(y HAS-TERRAIN ""ND-FOR z)
with the positive ex.
(z<-plum, y<-Rom.. ... :<-hill)
(z<-grape, y<-France, z<-hill)
(z<-rice, y<-Cambodia, z<-flat)
One should notice that the improved KB (with the improved
rules R2 and R3) deductively implies the input fact “(rice
GROWS-IN Cambodia)."

B. Generalizing the Understanding

The same rules that have been used to prove the validity
of the input “(rice GROWS-IN Cambodia)” may be used by
the system to prove the validity of other facts of the form “(a
GROWS-IN b)." If “(a GROWS-IN 5)" is proven by using
R1 and the lower bound conditions of R2 and R3, then this
fact is considered to be true. However, if “(a GROWS-IN b)"
is proven by using at least one of the upper bound conditions
of R2 and R3. then this fact is considered only plausible.
NeoDISCIPLE uses the opportunity offered by the current
learning situation to improve the KB until all the implied facts
of the form “(a GROWS.IN b)" are derived from exact rules,
or from lower bound conditions of incompletely learned rules.

First, NeoDISCIPLE builds two generalizations, T, and T},
of the tree T in Fig. 3. T, is the most general generalization
of T, based on the rule R1 and the upper bound conditions
- of the rules R2 and R3. T, is the most general generalization
of T, based on the rule R1 and the lower bound conditions
of the rules R2 and R3.

The generalization technique is similar to that of [34].
NeoDISCIPLE first replaces each inference step with the rule
that generated it (by using the upper bound of the condition
in the case of T, and the lower bound of the condition in the
case of Tp). In this way it builds two explanation structures.
The one corresponding to T, is shown in Fig. 4. In order
to simplify the figure, we have removed the seven leaves of
the form “(z IS-A something).” Although these literals do not
impose any constraints on the corresponding variables, they
are part of the tree.

Next NeoDISCIPLE determines the most general unification
of the connection patterns:

(y1 HAS-METEO-COND-FOR z1})

(y2 HAS-METEO-COND-FOR z2) (y2 = yl, 22 = z1)
(y1 HAS-TERRAIN-COND-FOR z1)
|1

{12 HAS-TERRAIN.COND.-FOR 7331 w= 951 »T we »1)

(x GROWS-IN y)

{y HAS-METEO-COND-FOR 1} {y HAS-TERRAIN-COND-FOR 11

(y WATER-§UPPLY 3 o QMATE w

{y TERRAIN 1) (x NEEDS- TERRAIN 12

(x NEEDS-WATER-SUPPLY 1)
{x NEEDS-CLIMATE v}
Fig. 5. The generalization T, of the plausible proof tree in Fig. 3.

{(x GROWS-IN )

{7 HAS-TERRA IN-COND-FOR 1)

{y HAS-METEQ.COND-FOR 1)

Fig. 6. The generalization Ty of the plausible proof wee in Fig. 3.

plausible upper bound

(x 15-A something) & (y I5- Am:hmg)&(:ls -A something) &
(t15-A socpething) & (u 1S-A something) &

{y WATER-S Y 1) & (x NEEDS-WATER-SUPPLY 1 &

(& CLIMATE u) & (x NEEDS-O.IMATE w) &

(y TERRAIN z2) & (x NEEDS-TERRAIN 1)

plawsidie lower bound

{xIS Aphnt}&{ny-Apbe)&(zlS -A termain-type) &
{t1S-A high) & (4 I5-A wopical) &

(y WATER-SUPPLY ) & (x NEEDS-WATER-SUPPLY ) &
(y QOIMATE u) & (x NEEDS-CLIMATE u) &

{y TERRAIN 1} & (x NEEDS-TERRAIN z)

(x GROWS-IN y)

Fig. 7. The plausible version space VP synthesizing the inferential capa-
bilil;es of the system with respect to the facts of the form “(r GROWS-IN

%

Therefore: zl = 22 = 23 =z, Yyl = y2 = 3 = y.

By applying this unification to the explanation structure in
Fig. 4 one builds the most general justified generalization of
the tree in Fig. 3 (see Fig. 5).

Similarly, the system builds the generalized tree T, which is
shown in Fig. 6. It should be noticed that the system has built .
this tree by using the lower bounds of the improved rules R2
and R3.

The general proof tree 7, in Fig. 5 shows that the sys-
tem will consider plausible all the facts of the form “(z
GROWS-IN y),” for all z and y such as the leaves of the
tree are facts explicitly represented into the KB. Among
these, the system will consider to be true. without looking
for any other suppont, those facts for which r and y are
the leaves of the tree T (see Fig. 6). To synthesize these
inferential capabilities, NeoDISCIPLE builds the plausibie
version space VP in Fig. 7. The plausible upper bound of
this version space corresponds to the leaves of the tree 7,
the plausible lower bound corresponds to the leaves of the
tree T, and the conclusion corresponds to the top of these
trees:

311 should be noticed that the system may be able 10 prove “(r GROWS.IN
¥} by building other plausible proof trees. Considering all the plausible proof
trees, however, would not be computational feasible, and would require an
sinsrerniahie IAane intaracstian with the RUuman &vmert



i 45n

of the bounds consisting of a single conjunctive expression.
Thus. NeoDISCIPLE avoids the problem of the exponential
growth of these bounds.

The learning method of NeoDISCIPLE was mostly influ-
enced by the explanation-based learning strategy [12], [32). A
significant merit of this learning strategy is the identification of
the importance of the explanations in learning. NeoDISCIPLE
extends this idea by using the explanations as the main
source of expert knowledge. While EBL defines the notion
of explanation only in the context of a complete domain
knowledge, NeoDISCIPLE extends this notion to the cases
in which the knowledge of the system with respect to the
input is incomplete or even poor. As with EBL, NeoDISCIPLE
still requires a single input example to learn, because it is
able to generate additional examples. This example generation
capability is an important feature of NeoDISCIPLE that was
originally introduced by DISCIPLE.

NeoDISCIPLE also extends constructive induction [25].
In constructive induction, the representation language of the
learning system is extended with new terms that are a function
of the known terms. The main goal is to find terms that
simplify the descriptions of the learned concepts. Construc-
tive induction introduces new terms based of the intentional
definitions of the concepts. It is thus a kind of knowledge refor-
mulation that does not extend the representational capabilities
of the system. )

NeoDISCIPLE may introduce new terms by also using the
extensional definitions of the concepts (concepts defined by

the set of the instances covered). As in BLIP [36], [51],.

NeoDISCIPLE introduces new terms in order to reduce the
number of the exceptions of the learned rules. However, the
methods employed by NeoDISCIPLE [43] are more flexible
and adaptive to the current knowledge of the system, and also
involve the expert in this process. As opposed to BLIP, which
always introduces a single new concept that eliminate all the
exceptions of a rule, NeoDISCIPLE may introduce several
concepts, as well as several concept features.

NeoDISCIPLE may also be compared with systems that

have the same goal of improving a knowledge base as, for’

instance, ODYSSEUS [50] and EITHER [35). ODYSSEUS
automatically refines a KB by abducing facts that explain
the actions of a human expert. NeoDISCIPLE may also use
abduction to complete an explanation of the input, but it also
attempts to generalize the explanation, so as to explain similar
inputs. Thus, it learns more from an input than ODYSSEUS.
However, it does this with the help of the expert.

Both systems deal with uncertain rules. ODYSSEUS, how-
ever, represents uncertainty through numeric certainty factors,
while NeoDISCIPLE represents it symbolically [21], through
plausible version spaces.

EITHER is an autonomous multistrategy leaming system
that uses deduction, abduction, and induction to improve a KB,
so as to correctly classify a given set of positive and negative
examples of some concept. NeoDISCIPLE is an interactive
system that tries to improve a KB so as to produce the same
answers as a human expert, which is a more general problem.
However, EITHER globally improves the KB (for instance, by
considering all the possible explanations of a given example),
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while NeoDISCIPLE performs a local improvement of the
KB (it improves only the object concepts and the inference
rules that are invoived in an explanation of the input. and
does not attempt to find all the possible explanations). The
price paid by EITHER for its more ambitious goal is a
simpler representation language (an extended propositional
logic). algorithms that are very expensive computationally, and
the simplifying assumptions that the representation language
is complete and the only problem is with incorrect rules. In
NeoDISCIPLE we have taken the position that the problem of
KB improvement is too complex to be automatically solved.
Therefore the expert should be involved.

NeoDISCIPLE illustrates a general methodology for the
automation of knowledge acquisition, which is applicable
to problem solving methods employing operators that may
be learned by generalizing specific examples. On the other
hand, the problem solving engine of NeoDISCIPLE is a
general-purpose one and has limited capabilities. Therefore,
NeoDISCIPLE is complementary to KA systems based on
role-limiting methods as, for instance, SALT [23], which
provides a specialized problem solving method and helps the
expert to express his/her knowledge in the format required
by the method. However, SALT could hardly be regarded as
more than a powerful knowledge elicitation system, because
it has no learning capabilities. This complementarity suggests
however to develop customized versions of NeoDISCIPLE,
in which its general knowledge acquisition capabilities would
be associated with a specialized problem solving method.
An indication that this is a promising research direction is
the system KNACK [19] that employs a role-limited method
enhanced with several generalization capabilities.

X. FUTURE RESEARCH DIRECTIONS

We have presented an approach to the automation of build-
ing expert systems in which knowledge acquisition is viewed
as a process of extending, updating and improving an in-
complete and partially incorrect knowledge base. The main
claim of our approach is that the system will start with a
poor KB (i.e., with weak inferential capabilities), provided
by the user and, through further interactions with the user,
will evolves it to an incomplete KB (i.e., with incomplete
inferential capabilities), and then to a complete KB (i.e.,
with complete inferential capabilities). Several future research
directions have already been mentioned in the previous two
sections, in connection with some of the weaknesses of our
approach. Others are presented in the following.

The proposed KA methodology divides the process of
building an expert system into three phases: 1) providing a
preliminary KB; 2) incrementally extending and improving
the KB; and 3) reorganizing the KB.

The present version of NeoDISCIPLE addresses mainly the
second phase. Therefore, a promising research direction is to
evolve NeoDISCIPLE into a system that will assist an expert
user during all the three phases. For the automation of the
first phase, one may incorporate techniques for systematic
elicitation of expert knowledge into NeoDISCIPLE as, for
instance, the repertory grid technique used by ETS [38] and
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ACQUINAS {3]. One could also use an approach similar
to that of the BLIP and MOBAL systems [36], [51). These
systems are able to build such an initial KB from user provided
facts, generalization hierarchies, and general knowledge about
the structure of the inference rules. .

Also, the problem solving engine of NeoDISCIPLE has
quite limited capabilities because the main focus of this
research was not problem solving but learning. Consequently,
a necessary research direction is to develop the problem
solving capabilities of the system and, possibly, to develop
customized versions of NeoDISCIPLE for specialized problem
solving methods, as mentioned in Section IX.

The main focus of our research was the incremental ex-
-tension and improvement of the KB. Although the presented
learning methods are quite powerful and general, there are
many ways in which they can be improved. For instance, they
could be enhanced by integrating new learning strategies, as
explored in [45]-[47]. This is also related to the extension of
the representation Janguage of the system that currently allows
only the representation of objects and of strict or plausible
(i.e.. incompletely leamed) deductive rules. If, in the phase of
defining a preliminary knowledge base, the human expert is to
be allowed to introduce into the KB whatever knowledge he is
able to express easily, then NeoDISCIPLE should also allow
him to define cases [1], determinations [11], dependencies 8],
and other forms of knowledge. Consequently, the learning
methods of NeoDISCIPLE should be enhanced to deal with
such new forms of knowledge, both in terms of using and
improving them. Concerning the reorganization of the KB, the
explanation-based learning method described briefly in Section
VI provides only a potential for performance improvement.
This method should be developed by providing a solution to
the utility problem {29].
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NeoDISCIPLE (developing a knowledge base for planing the
manufacturing of a loudspeaker) is described in [42].

A. Action Planning for Robot Domestic Tasks

The framework for this domain. consists of a hierarchical
planner that decomposes “complex” robot commands into
simple actions executable by a robot. First the system was pro-
vided with a preliminary KB. This KB contained incomplete
descriptions of concepts representing some of the objects from
the robot world. Then the system learned to solve problems by
analyzing examples of problem solving episodes. For instance,
from the followir Slem solving episode

The problem
TAKE clean-cupl
has the solution
OPEN cabinet
TAKE clean-cupl
FROM cabinet

; 1o take clean-cupl

; the robot has to open the cabinet
; and to take the cup from it

the system learned the rule

IF ; I
(x 1S-A movable-obj) & ; z is a movable object
(v IS-A container) &

(z IS-IN y) & (y IS closed) ; in a closed container y

THEN ; then
the problem
TAKE = 10 take z
has the solution
OPEN y the robot has to open y

TAKE z FROM y and to take r from it

. The concept “movable-obj” reprcscnls the set of objects that
could be moved by the robot and has been defined by the
system in order to eliminate the negative examples that were
covered by the learned rule [43].

B. Qualitative Prediction in Chemistry

NeoDISCIPLE was also used to developed a preliminary
model of inorganic chemistry consisting of elementary
knowledge about some basis, acids and salts, but no
knowledge about chemical reactions. Starting from the reaction
“NaQH+HCI—H:0+NaCl,” the system leamed that, in
general, by combining a base with an acid, one obtains water
and salit:

IF
(b IS-A base) ; by combining a
base b,
(b COMPOSED-OF z1) ; composed of a

; hydroxide
z1 and a metal 2,
; with an acid a,

(b6 COMPOSED-OF z2)

(alS-A acid)
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{a COMPOSED-OF z3) ; composed of a

(a COMPOSED-OF z4) ; hydrogen
z3 and a metalloid
z4,

(uw 1S-A H20) . one obtains water
w,

{(w COMPOSED-OF r1) ; composed of z1

{COMPOSED-OF z3) ;and z3,

(s [S-A salt) ; and salt s,

(s COMPOSED-OF 12) ; composed of 12

{s COMPOSED-OF z4) ; and r4.

(s (COMPOSED-OF ANION-OF) a)

(s (COMPOSED-OF CATION-OF) b))

{z1 IS-A OH) ; one component

(z2 IS-A METAL) ; of the salt s

(z3 IS-A H) ; 15 an anion of the
acid a,

; the other component

. of the salt s

; is a cation of the
base b

(z4 1S-A METALLOID)
THEN
b+a—w-+s

Such a rule is used to predict the results of other chemical
reactions. For instance, it will predict that by combining KOH
with H,504 one obtains H,0 and K,S0,.

C. Discussion

There are several general questions that one may ask with
respect 10 the KA method illustrated by NeoDISCIPLE. In the
following we present some of these questions and give initial
answers. ‘

How general is the KA method ? Which are the suitable
application domains ?
~ In NeoDISCIPLE, the basic source of knowledge for learn-
ing is the hierarchical semantic network that provides the
generalization language. Therefore, the first requirement for
a suitable application domain is to allow the definition of a
rich semantic network.

A second requirement is to base the problem solving method
on problem solving operators that can be learned by general-
izing specific examples. The generality of these two require-
ments is a strong indication that the proposed KA method is
potentially applicable in a wide range of domains.

It is also necessary to characterize the difficulty of the tasks
that the expert is required to perform during the knowledge
acquisition process. How much knowledge should the expent
initially introduce into the KB? Should s/he also define rules?

As shown in Section VI, the minimum knowledge to be
initially introduced into the KB is the semantic network of
object concepts. This knowledge allows the system to learn
rules from the new input information provided by the expert.
Therefore, providing rules is not a requirement. On the other
hand, there is no theoretical upper limit with respect to the
knowledge provided by the expert, which may consist of both
object descriptions and rules. The practical limitation comes
from the fact that the provided semantic network is supposed
to be incomplete but correct. During learning, the definition
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of the object concepts may be refined and new concepts may
even be defined [15]. However, no deletions are performed.
It is a fuwre research direction to develop the knowledge
acquisition method to start with a semantic network that is not
only incomplete, but also partially incorrect, and to gradually
improve it.

How many questions are asked by the system during leamn-
ing from an input? How difficult it is to answer them?

Based on the experiments performed, we could state that
the number of questions asked is usually small (for instance,
during a learning session, the system needed to generate less
than 10 examples similar to the input). Also, the questions are,
in general, very easy to answer. Many of them ask for an “yes”
or “no” answer (e.g., asking if a generated example is positive
or negative, if some expression is.or is not an explanation
of some failure; if an object has or does not have a certain
feature; if an abduced fact is true or not; if an inference step
is true or not). More difficult questions are those asking the
expert 1o provide an explanation of some failure (when the
system was not able to propose any) or to indicate the name
of a concept covering specified instances [15]. However, even
these questions are not very difficult to answer.

What is the relationship between the knowledge the user
initially enters into the KB and the behavior of the system ?

NeoDISCIPLE has the capacity of adapting its learning
behavior to the knowledge it has about the input, which could
be characterized as poor, incomplete or complete. In the case
of poor knowledge about the input, the system performs mainly
inductive operations and relies heavily on the user to provide
explanations of the input, without giving much assistance.
In the case of incomplete knowledge, the system performs
both deductive and inductive operations. Its questions are
much more focussed and easier to answer. Finally, in the
case of complete knowledge, the system does not need any
help from the user. Consequently, there is a trade-off between
how much knowledge the user initially enters into the KB
and how much assistance s/he is required to give in the next
stages of knowledge acquisition. Our hypothesis is that thé
optimal situation is obtained by requiring the expert to initially
introduce into the KB as much knowledge s/he can easily

© express.

The proposed knowledge acquisition methodology is char-
acterized by three phases: definition of the initial knowledge
base, refinement of the knowledge base, and reformulation of
the knowledge base. When do the transitions between these
phases occur?

There are, in fact, no clear cut transitions between these
stages. Knowledge base refinement should start immediately
after the expert has provided the initial KB. However, if the
initial knowledge provided by the expert is not enough for the
understanding of a new input from the expert, this input is
explicitly stored into the KB (as if provided in the initial KB).
Also, knowledge reformulation should start when all the rules
in the KB have been completely learned. Nothing, however,
guarantees that the expert will not enter a piece of knowledge

_ that is totally or partially new, causing the system to explicitly

store it into the KB (as if provided in the first phase) or to
learn a new rule (as if provided in the second phase).
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We shouid finally stress that the above answers are based on
experiments involving small knowledge bases. [t is therefore
necessary to test how the system would scale up, and to
answer these questions in the context of much more complex
applications.

IX. RELATED RESEARCH

NeoDISCIPLE is an extension and a generalization of
DISCIPLE [41], [42]. While many of the learning techniques
of DISCIPLE and NeoDISCIPLE are similar, the learning
problems considered are different. DISCIPLE accepts as input
an example of a problem solving episode, represented by a
problem P and its solution S, and learns a general problem
solving rule, allowing the system to soive problems similar to
P, by proposing solutions similar to S. NeoDISCIPLE may
accept as input not only an example of a problem solving
episode, but also an example of a concept, or even a ground
fact (as illustrated in this paper). The main goal of the system
is no longer to learn a rule covering the input, but to extend,
update and improve the KB so as to consistently integrate
the information contained in the input. In particular, if the
knowledge of the system with respect to the input is poor, this
goal is achieved by learning a rule. Therefore, NeoDISCIPLE
includes DISCIPLE.

NeoDISCIPLE is also related to the learning systems that
integrate different learning strategies (e.g.. [2], [10], [13],
[14], [16], {17], [22], [30], [35], [37], [40], [49], [5O]. Our
method is however different from other multistrategy leaming
methods in terms of the integrated strategies, the way they are
integrated, and the interaction with the expert. More precisely,
NeoDISCIPLE uses explanation-based leamning (to build a
plausible proof of the input and to generalize it), learning by
abduction {to complete the proof), learning by experimentation
(to generate instances of the generalized proof), empirical gen-
eralization (to generalize the generated instances). conceptual
clustering (to define new object concepts), and learning by
instruction (to acquire new knowledge from the user). This
multistrategy learning method exploits the complementarity of
the requirements and results of the integrated single-strategy
learning methods, and allows NeoDISCIPLE to adapt its
behavior to the relationship between the input information and
its knowledge.

Although the learning strategies employed by NeoDISCI-
PLE are well-known, their integration was done by mak-
ing several significant developments to some of them. For
instance, the empirical inductive method of NeoDI{SCIPLE
is an extension of the version-space method [31] in that
the version space is no longer strict, but plausible. In the
case of Mitchell’s method the lower bound and the upper
bound of the version space are exact boundaries of the
version space. Consequently, during learning, the lower bound
can only be generalized and the upper bound can only be
specialized. On the contrary, in the case of NeoDISCIPLE,
these bounds are only plausible (i.e., approximations of the
exact bounds). Therefore, during learning, each of them can
be both generalized and specialized. Also, NeoDISCIPLE
employs a heuristic search in the plausible version space, each
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Fig. 12. Instance of the updated tree T, corresponding to the fact

“(corn GROWS-IN Romania).”

Could you provide a value for v such that
(Romania SOIL v)&(corn NEEDS-SOIL v)
[No / value] ? normal-soil
Because the user was able to provide a value for v, which
satisfy the plausible upper bound condition of VP, the system
generates the new fact “(com GROWS-IN Romania)” and the
corresponding mstancc of the updated tree T, from Fig. 11
(see Fig. 12).

G. Verification

The generated fact (which is plausibly entailed by the
current knowledge base) is shown to the user, which has to
characterize it as true or false:

“Does (corn GROWS-IN Romania) ?” Yes.

Because the user confirmed this fact, NeoDISCIPLE 1ireats
the tree in Fig. 12 in the same way it treated the tree from
Fig. 3. That is, it considers the instances of the rules R2 and
R3 from this tree as being new positive examples of these
rules, and generalizes their plausible iower bounds, as little
as possible, to cover these examples. In this case, however,
only the lower bound of R2 needs to be generalized (“high”
is generalized to “quantity” and “tropical” is generalized to
“climate-type”). Also, the newly discovered positive examples
are associated with the rules R2 and R3. Consequently, the
new rules R2 and R3 are those from Table 1.

The system also generalizes the plausible lower bound of
the version space VP, to cover the leaves of the tree from Fig.
12, and therefore to “deductively” infer “(corn GROWS-IN
Romania).” The new version space is shown in Fig. 13, with
the generalized literals underlined.

With the KB from Fig. 2 the knowledge acquisition process
stops here because there is no other fact of the form “(z
GROWS-IN y)” to be generated (i.e., there is no instance of
the upper bound of the version space in Fig. 13, which is not an
instance of the lower bound). One should notice, however, that
the system has made all the knowledge refinement operations
indicated in Table I

1t should also be noticed that the version space in Fig. 13
does not contain any new knowledge because whatever facts
it can infer could also be inferred by applying the rules Rl,
R2, and R3. Therefore, the version space VP is not kept into
the KB.

VI. KNOWLEDGE REFINEMENT IN THE CASE OF
POOR KNOWLEDGE

A. Understanding the Input
Let us now suppose that the current KB contains only the
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{rics
NEEDS-WATER-SUPPLY
tugh)

(x GROWS-IN y)

(y WATER-SUPPLY 1)

(x NEEDS-WATER-SUPPLY ) (x NEEDS-CLIMATEn} (X NEEDS-TERRAIN 1)

Fig. 15. Inductive generalization of the plausible proof in Fig. 14.

semantic network from the top of Fig. 2. This represents an
example of poor knowdedge about the input “(rice GROWS-
IN Cambodia)” because the system does not have rules to
build a plausible proof of the input. However, it makes the
hypothesis that the input fact is a direct consequence of other
facts that are explicitly represented into the semantic network.
It therefore uses heuristics to select such facts and proposes
them as partial explanations of the input. The user has 10 select
the true pieces of explanations and may indicate additional
ones. One heuristic is to propose as plausible explanations of
input validity the relationships between the objects from the
input (rice and Cambodia}, as shown in the following sample
dialog (see also [42]):

Are the following relationships explanations for
“(rice GROWS-IN Cambodia)™:
(rice NEEDS-TERRAIN flat)&(Cambodia TERRAIN flat)? Yes
(rice 1S-A food)&(Cambodia NEEDS food) ? No
(rice NEEDS-WATER-SUPPLY high)&(Cambodia WATER-
SUPPLY high) ? Yes
(rice  NEEDS-CLIMATE 1ropical)&(Cambodia CLIMATE
tropical) ? Yes

The pieces of explanations marked by a user’s yes represent
the facts from the KB that imply the input, and therefore define
the plausible proof in Fig. 14.

B. Generalizing the Understanding

NeoDISCIPLE inductively generalizes the plausible proof
iree in Fig. 14 by simply tuming all the constants into
variables:
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1F
plausibie upper bound
(x [5-A something) & (v IS-A something) & (2 1S-A something) &
{tiS-A sometung) & (u iS-A something) &
(y WATER-SUPPLY 1) & (x NEEDS.WATER-SUPPLY ) &
y CIMATE W) & x NEEDS-OIMATE w) &
(y TERRAIN ) & (x NEEDS-TERRAIN z)

plausible lower bound

(x 15-A nice) & (y 1S-A Cambodia) & (215-A fa &

(11S-A high) & (u IS-A oopical) &

(y WATER-SUPPLY 1) & (x NEEDS-WATER-SUPT  , &
{y CLIMATE u} & (x NEEDS-CLIMATE u) &

(y TERRAIN 1) & {(x NEEDS-TERRAIN 1}

THEN
(x GROWS-IN y)
with the posinive example
{x<-nce, y<-Cambodia, z<-flat, t<-high, u<-ropical)

Fig. 16. A plausible version space for a new inference rule.

The piausible proof tree from Fig. 14 and its inductive
generalization from Fig. 15 define the version space VP from
Fig. 16.

C. Experimentation

The knowledge acquisition process continues as in the case
of incomplete knowledge with the difference that the plausible
proof trees considered contain a single inference step.

Also, the plausible version space from Fig. 16 is no longer
a redundant knowledge piece. On the contrary, it represents
an initial version space for a new inference rule to be leamed
by NeoDISCIPLE. Therefore, in the case of poor knowledge
about an input I, the main result of learning is a rule for
inferring L '

In this way NeoDISCIPLE learns new rules that increase
its inferential capabilities.

VI, KNOWLEDGE REFORMULATION

When the KB of the system is complete and correct, the
knowledge refinement method becomes a knowledge refor-
mulation one. Let us suppose, for instance, that the semantic
network in Fig. 2 has been augmented with the relationships
from the top of Fig. 17, and the incompietely learned rules
R2 and R3 from Fig. 2 have evolved to the rules R2 and R3
from Fig. 17.

The resulting KB is “complete” with respect to the input fact
“(rice GROWS-IN Cambodia)” because it allows the system
to build a deductive proof of it. In such a case, the learning
method of NeoDISCIPLE reduces to pure explanation-based
learning [12], [32]. Indeed, NeoDISCIPLE builds a tree similar
to the one from Fig. 3, except that each inference step is

tafs
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¥
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{y HAS-TERRAIN -COND-FOR x)

Fig. 17. Knowiedge to be added to the one in Fig. 2 in order 10 ransform
it into complete knowiedge with respect 1o the input “{rice GROWS-IN
Cambodia).”

a deduction, and the tree is a logical proof. Then, by using
the general form of the rules R1, R2, and R3, it builds a
generalized proof tree, similar to the one from Fig. 5. Because
this generalized tree is a logical proof, its leaves deductively
imply the top. Therefore. the system may generate a rule,
the condition of which are the leaves of the tree, and the
conclusion of which is the top of the tree, shown at the bottom
of the page.

One should notice that, in such a case, the system does
not learn any new knowledge. It simply concentrates the
knowledge contained in the rules R1, R2, and R3, into a new
rule. This new rule allows the system to immediately infer facts
of the form “(z GROWS-IN y),” without needing to build a
proof iree like the one in Fig. 3. Thus, the learned rule has
a positive effect on the efficiency of the system. However,
the addition of a new ruje that does not contain any new
knowledge also has a negative effect on the efficiency of the
rule interpreter that may need to test more rules in order ©
solve a problem. Therefore, the decision on whether o keep
the learned rule should be based on its utility, that takes into
account both its positive and negative effects. Initial results on
the utility problem [29] suggest that the best performance is
obtained when the system learns a small number of such rules
that are sufficient for solving most of the problems. The utility
problem in NeoDISCIPLE is a topic for future research.

VIII. EXPERIMENTS

A version of NeoDISCIPLE is implemented in Common
Lisp and runs on the Macintosh. In order to test its feasibility
and generality, we have used it to build small knowledge
bases for several types of expertise domains. Two of them
are briefly described in the following. Another application of

~

IF

(z IS-A plant)&(y IS-A place)&(z IS-A terrain-type)&
(t 1S-A quantity)&(u IS-A climate-type)&(v IS-A soil-type)&
(y WATER-SUPPLY t)&(z NEEDS-WATER-SUPPLY )&

(v CLIMATE u)&(z NEEDS-CLIMATE u)&
{(y TERRAIN z)&{x NEEDS-TERRAIN 2)&
(y SOIL v)&(z NEEDS-SCIL v)

THEN
{(x GROWS-IN )

 If

; the water supply of the place y
; is that needed by the plant z,

; and the climate of y is that

; needed by z, and the terrain of
; y is that needed by z, and

; the soil of y is that needed by r
; then

;T grows in y
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