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Automating Knowledge Acquisition as Extending, 
Updating, and Improving a Knowledge Base 

Gheorghe D. Tecuci 

Abstraet- A method for the automation of knowledge ac­
quisition that is viewed as a process or incremental extension. 
updating. and improvement of an incomplete and possibly pn­
Ually incorrect knowledge base of an expert system is presented. 
The knowledge base is an approximate representation of objects 
and inference processes in the expertise domain. Its gradual 
development is guided by the general goal of improving this 
representation to cOMistently integrate new input infonnalion 
received from the human expert (as, for instance. new facts or 
examples of problem solving episodes). The bowledge acqul. 
sition method is presented as part of a methodoloey for the 
automation of the entire process of building expert systems, 
and is implemented in the system NeoDlSCIPLE. The method 
promotes several general ideas for the automation of knowledge 
acquisition as, for instance. understanding-based knowledge ell­
tension, knowledge acquisition through multistratqy learning. 
consistency.driven concept fonnation and refinement, closed-loop 
learning, and synel"'iistic cooperation between a human expert 
and a learning system. 

1. INTRODUcnON 

AUTOMATING the process of building expert systems is 
one of the major goals of artificial intelligence [4]. An 

expert system has two basic components, a knowledge base 
(which contains knowledge relevant to a particular domain of 
expertise) and an inference engine (which provides the control 
and inference mechanisms for applying the knowledge from 
the knowledge base). This characteristic architectural feature 
of the expert systems has determined two main approaches 
to the automation of the expert system building process: 
building expert system shells and buUding tools f~)f knowledge 
acquisition. 

An expert system shell is a system consisting of an inference 
engine for a class of tasks. and supporting representation 
formalisms in which a knowledge base can be encoded. If 
the inference engine of an expert system shell is adequate for 
a certain expert task, then the process of building the expert 
system is reduced to the building of the knowledge base. 
Expert system shells can be characterized by the generality 
of their inference engine. The range of such systems contains 
very general shells. like OPS [9] and KEE [18], general shells 

Manuscript received September 29, 1991: February 21. 1992. This researc:b 
was done in the Artificial Intelligence Center of Georae Mason Univenit)' 
and was supponed in pin by the National Sc:ience Foundation under grant 
IRI-9020266. in pan by the Office of Navil Reseatd\ under grant NOOOI4-91­
J-1351. and in pan by the Defense Advanced Research Projects Agency under 
grant NOOOI4-91-J-18S4. administered by the Office of Nayal Researcb. 

The author is with the Artificial Intelligence Center. Depanment of Com­
puter Science. George Mason Univenity. 4400 Univcnity Drive, Fairfax. VA 
22030. Ind with the Rescarch Institllte for InfonDatlcs. Bucharest, Romina. 

IEEE Log Number 9201431. 

for a certain type of expertise task like. for instance. diagnosis 
in the case of EMYCIN [48], and even quite specific shells 
for role-limiting problem solving methods as, for instance, 
KNACK [19] and SALT [231. The different types of expert 
system shells trade the generality of the inference engine (and 
thus their domain of applicability) against the assistance given 
to the building of the knowledge base. Very general shells 
give little assistance besides the encoding of knowledge in 
rules or objects. On the contrary. the shells implementing role­
limiting methods provide considerable assistance in building 
a knowledge base. A role-limiting method is characterized 
by a very simple control structure that is independent of 
the peculiarities of any particular task performed. Also. it 
defines clearly the roles played by required task knowledge 
and the form in which that knowledge can be represented [24]. 
Research on the identification of problem solving methods 
for generic tasks [S}-[7] aims at defining suitable shells for 
building expert systems. 

A tool for knowledge acquisition provides assistance in 
building a knowledg~ base. In general, one may distinguish 
three stages of the knowledge acquisition prOCess: systematic 
elicitation of expert knowledge; knowledge base refinement; 
and knowledge base reformulation. During systematiC'elicita. 
tion. the basic terminology and the conceptual structure of the 
knowledge base is acquired. Most often this is done through 
a structured interview with a human expert [3], [15], [38]. 
The result of the systematic elicitation is an initial imperfect 
knowledge base that is refined and improved during the next 
stages. During knowledge refinement. the knowledge base 
is debugged and extended. Knowledge-refinement tools use 
the problem·solving abilities of the expert system to identify 
failures (i.e .• inability to solve some problem or generation 
of a wrong solution). When problem-solving fails, the tool 
elicils knowledge from the human ~'xpert in order to eliminate 
the cause of the failure [1]. [41]. [501. During reformulation. 
the knowledge base is reorganized andlor compiled to solve 
problems more efficiently [29]. [331. 

The above classification of expert system building tools 
into expert system shells and knowledge acquisition tools 
also reftects the traditional distinction made between problem 
solving and learning. However, as new and more powerful 
learning methods are developed. it becomes more and more 
clear that learning and problem solving share many common 
processes. In fact, for learning methods like explanation-based 
learning. abductive learning, or learning by analogy [20]. 
(391 problem solving is often part of leaming. Consequen~ly. 
building systems that have both learning and problem solvmg 
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capabilities appears to be a very promising research direction. 
Based on this observation, we define a learning system shell as 
a learning and problem solving inference engine that suppons 
representation formalisms in which a knowledge base can be 
encoded. as well as a methodology for automatically building 
the knowledge base. Thus, a learning system shell is an expert 
system building tool that incorporates both the capabilities of 
an expert system shell and those of a knowledge acquisition 
tool. . 

In this paper we present the learning system shell NeoDlS­
CIPLE that illustrates several general ideas for the automation 
of knowledge acquisition as, for instance. understanding-based 
knowledge extension. knowledge acquisition through multi­
strategy learning, consistency-driven concept formation and 
refinement. closed-loop learning. and synergistic cooperation 
between the human expert and the learning system shell. The 
goal of this research is to elaborate a general framework for 
the automation of knowledge acquisition. 

It should be noticed that. although NeoDISCIPLE aims at 
automating the entire process of building an expert system. this 
paper concentrates on the support provided by NeoDlSCIPLE 
for extending. updating and improving a knowledge base. 

This paper is organized as follows. Section II brieRy presents 
the ideas on which NeoDISCIPLE is based. Then. Sections 
Ill-VII present the knowledge refinement method of NeoDIS­
CIPLE. illustrating it with an example (building a question­
answering system in geography). Section VIII presents two 
other applications of NeoOISCIPLE and discusses some of 
its general features. Section X relates NeoDlSCIPLE to other 
approaches. and the last section outlines some directions of 
the future research. 

II. GENERAL IDEAS ILLUSTRATED BY NEODtSCIPLE 

A. Hybrid Knowledge Representation 

In NeoOISCIPLE knowledge has to be represented as 
objects and rules that are manipulated by a rule interpreter. 
The objects arc described in terms of their properties and 
relationships, and are hierarchically organized according to 
the "more-general-than" (or "isaj rc,lationship. thus forming 
a hierarchical semantic network. The rules are expressed in 
terms of the object names. properties and relationships. The 
meaning of the rules depends on the application domain. These 
rules may be inference rules for inferring new properties and 
relationships of objects from other properties arid relationships. 
general problem solving rules as, for instance. rules that 
indicate the decomposition of ccmplex problems into simpler 
subproblems [421. or even actIOn models that describe the 
actions that could be performed by an agent (for instance. 
a robot). in terms of their preconditions. effects and involved 
obj~ (431. 

The advantage of a hybrid knowledge representation over a 
uniform one is that it allows a more natural representation or 

B. Expert System Building as a Three Phase Process 

With NeoDlSCIPLE. an expen system is built in three 
phases. In the first phase the human expert has to ~efine a 
preliminary knowledge base (KB). There are twO mam goals 
of this phase: 1) to allow the human expert to introduce into 
the KB whatever knowledge pieces slhe may easily express; 
2) to provide the system with some background knowledge 
that would suppon it in acquiring new knowledge. The result 
of this phase will be an incomplete and possibly partially 
incorrect KB. The expert can define both objects and rules. 
In the current version of NeoDlSCIPLE it is assumed that 
the Object descriptions may be incomplete but correct. and the 
rules may be both incomplete and panially incorrect. 

In the second phase. the system extends. updates, and 
improves the KB through learning from new input information 
provided by the human expert. That is. it extends the hierarchy 
of object concepts with new propenies. relationships. and 
concepts. learns new rules. and improves the existing ones. The 
result of this phase will be a KB that is complete enough and 
correct enough for providing correct solutions to the problems 
to be solved. 

In the last phase. the knowledge base is reorganized for 
improving the efficiency in problem solving. The result of this 
phase should bean efficient expert system. 

Although the boundaries between these phases cannot be 
very clear. it is useful to identify them because each is 
characterized by specific goals and techniques. 

C. Understanding-Based Knowledge Extension 

The imperfect KB provided by the human expert allows the 
learning system to react to new input information with the 
goal of extending. updating. and improving the KB so as to 
consistently integrate the input. 

In general. the input may be any piece of knowledge. 
However. in the current version of NeoDISCIPLE. the input is 
supposed to represent a specific fact. an example of a concept. 
or an example of a problem solving episode (consisting of 
a specific problem and its solution). Usually, the result of 
learning from a specific fact will be an improved KB imply~ng 
the input fact and similar ones.! Also. the result of learnmg 
from a speCific problem solving episode will be an improved 
KB allowing the system to solve similar problems. 

The general learning method of NeoDISCIPLE is shown in 
Fig. 1, and is based on the "understanding" of the input2 [~61· 
That is. the system will try to show that the input is a plaUSible 

. consequence of the system's knowledge. To build such a 
plausible proof. it may need to hypothesize new knowledge. 
which is added into the KB. Moreover. in order to learn as 
much as possible from the input. the system will generalize 
the plausible proof (and thus tbe hypothesized knowledg~). 
will analyze the instances of these generalizations. and Will 

IThc inpul tad will be explicitly stored into the KB when il is complelel.y 
new and cannot be relatcd to t.bc previous knowlcdge of the system. This 
should also happen when thc cost of interring the (act would be 100 
high, Howevcr. this lasl case is nol considered in the current version of 
NeoDISClPLE. 
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Fig. I. Incremental development of the knowledge base. 

correct them accor. • As shown in Fig. 1, this process is 
supervised by the hi.. .:",In expert. 

The idea of understanding the input information in terms 
of the current knowledge of the system provides a natural 
scenario in which additional knowledge is acquired by means 
of pieces of explanations provided by the expert or generated 
by the system. 

D. Knowledge Acquisition through Multistrategy Learning 

Research in machine learning has investigated in detail 
several single-strategy learning methods [20]. [26]. [27], [39]. 
A striking feature of these methods is the complementary 
nature of their requirements and results. For instance, empirical 
induction requires many input examples and a small amount of 
background knowledge. Explanation-based learning requires 
one input example and a complete background knowledge. 
Learning by analogy and case-based learning require back­
ground knowledge analogous with the input. Learning by 
abduction requires causal background knowledge related to 
the input. The result of empirical induction is a hypothet­
ical generalization of several input examples. The result of 
explanation-based learning is an operational generalization of 
an input example. The result of learning by analogy and of 
case-based learning is new knowledge about the input. The 
result of learning by abduction is new background knowledge. 
This complementary nature of the single-strategy learning 
methods naturally suggests that one could obtain a synergistic 
effect by. properly integrating them. In such a multistrategy 
system' different strategies could mutually support each other, 
and compensate for each other's weaknesses [28].. 

NeoDISCIPLE employs a multistrategy learning method. 
II applies explanation-based learning (to attempt building a 
plausible proof of the input. and to generalize it), learning by 
abduction (to complete the proof). learning by experimentation 
(to generate ins~ances of the generalized proof). empirical gen­
eralization (to generalize the generated instances), conceptual 
clustering (to define new object concepts), and learning by 
instruction (to acquire new knowledge from the user). 

£. Consistency-Driven Concept Formation and Refinement 

The semantic network of object concepts provided by the 
human expert in the first phase of knowledge acquisition is an 
incomplete terminology for representing and learning new ob­
ject concepts. facts. rules etc. Because of this incompleteness. 
the general knowledge pieces learned by NcoDISCIPLE may 

be inconsistent. covering also some negative examples (called 
false positive or negative exceptions). In order to uncover 
these negative examples. new object concepts may need to 
be introduced into the semantic network., or the definitions 
of the existing object concepts may need to be refined. For 
instance. one may uncover the negative exceptions of a rule 
by defining a new object concept diScriminating between 
the positive examples and the negative exceptions. and by 
introducing it into the applicability condition of the rule [43]. 
[51]. Alternatively. one may refine the definition of some 
object concept used in the condition of the rule with a new 
feature shared only by the positive examples of the rule [43J. 
In this way, the hierarchy of object concepts is iteratively 
developed with the goal of improving the consistency of the 
learned rules. 

F. Synergistic Cooperation Between the Human Expert and the 
Learning System 

The learning method of NeoDlSCIPLE is based on the 
cooperation between a human expert and a learning system 
(see Fig. 1) exploiting their complementary abilities. In this 
cooperation. the human expert helps by solving problems 
that are intrinsically difficult for a learning system. Diffi­
cult problems for learning systems include the credit-blame 
assignment problem (i.e.. assigning credit or blame to the 
individual decisions that led to some overall result), and the 
new terms problem (Le., extending the representation language 
with new terms when it cannot represent the concept or rule 
to be learned) [431. On the other hand, the learning system is 
responsible for the generation of general concepts or rules that 
account for specific examples. and for updating the K.B so as 
to consistently integrate the learned knowledge. 

G. Closed-Loop Learning 

As shown in Fig. 1. the knowledge learned from an Input 
becomes background knowledge that is used in the subsequent 
learning process, increasing the quality of learn mg. There­
fore. NeoDlSCIPLE illustrates a typical case of closed· loop 
learning. 

III. 	 ILLUSTRATION OF nfE ME1HODOLOGY FOR BCILDI!"G 

EXPERT SYSTEMS 

A. A Question-Answering System in the Area of Geography 

We shall illustrate our approach to the automation of knowl­
edge acquisition with the help of an example-bulldtng an 
expert system able to answer questions about geography. 

The KB of the system contains explicit object knowledge, 
which we call basie object knowledge (in the fonn of a 
semantic network of object concepts), and impliCit object 
knowledge (in the form of rules for inferring new object 
features from other object features). 

A sample of the KB is presented in Fig. 2. The top 
part of the figure contains the semantic network of object 
concepts that describes the types of the geographical objects. 
together with lheir features (i.e .• properties and relationships). 
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These concepts are hierarchically organized along the [S­
A relationship (for instance. "rice" is both a "cereal" and 
a "food:' and "cereal" is a "plant") that implies that any 
concept inherits all the features of its superconcepts. In order 
to simplify the figure. each rS-A relationship is represented by 
a grey arrow. and the name of the relationship is no longer 
attached to the arrow. For the same reason. some of the objects 
from the KB (Jamaica. mango. akee and grape) have not been 
included in the figure. One may' notice that some concepts 
have several relationships with the same name as. for instance. 
"(Romania TERRAIN fiat)" and "{Romania TERRAIN hill)." 
This means that the terrain of Romania includes both fiat and 
hill regions. Similarly, "(rice NEEDS-CLIMATE tropical)" 
and "(rice NEEDS-CLIMATE subtropical)" means that the 
type of climate needed by "rice" includes "tropical" and 
"subtropical" . 

The semantic network may be incomplete in the sense that 
it may not contain all the relevant object names and features. 

The bottom part of Fig. 2 contains three rules for inferring 
new properties and relationships of objects from other prop­
erties and relationships. The conditions of the inference rules 
are conjunctive expressions formed with the properties and 
relationships (as predicates) and the object names (as predicate 
arguments) from the hierarchical semantic network. One may 
notice that, while the rule Rl has an exact applicability 
condition. the rules R2 and R3 have two conditions. called 
the plausible upper bound and the plausible Cower bound. 
The plausible upper bound is a conjunctive expression that 
is supposed to be more general than the exact condition. and 
the plausible lower bound is a conjunctive expression that is 
supposed to be less general than the exact condition. The two 
bounds define a plausible version space [31}. [41] for the exact 
condition to be learned by NeoDISCIPLE. The bounds and 
the version space are called plausible because the learning 
process takes place in an incomplete representation language 
that may cause them to be inconsistent (negative examples that 
are covered by the lower bound or positive examples that are· 
not covered by the upper bound). 

There are two main differences between the plausible ver· 
sion spaces used by NeoDISCIPLE and the standard version 
spaces defined by Mitchell [31}. 

First, in the case of Mitchell's version space method. the 
lower bound and the upper bound are exact boundaries of 
the version space. Consequently, during learning, the lower 
bound can only be generalized and the upper bound can only 
be specialized. On the contrary, in the case of NeoDISCIPLE, 
these bounds are only plausible (i.e .• approximations of the 
exact bounds). Therefore. during learning. each of them can 
be both generalized and specialized. 

Secondly, in the case of Mitchell's method. both bounds 
may' consist of an arbitrarily large number of conjunctive 
expressions, that may lead to a combinatorial explosion. due 
to the use of an exhaustive search method. On the contrary, 
the learning method of NeoDISCIPLE is based on a heuristic 
search in which each bound of the version space consists of 

. only one conjunctive. expression. 
The rules in the NeoDlSCIPLE's KB could therefore be 
n 
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Fig. 2. A sample KB (Ille grey unlabelled arrows in the semantic network 
represent IS-A relationships). 

One should also nOlice that the system keeps all the in­
stances from which the rules have been learned. An Instance I 
of a ruleR is represented by the substitution (7. which transform 
R into I (i.e., I =O'R). These instances are the main source 
of knowledge for extending the representation language of the 
system with new concepts or concept features I·UJ. lS well as 
for accordingly updating the rules. 

When applying an incompletely learned rule. if the lower 
bound condition is satisfied then the system "considers" [he 
conclusion as being true. If the upper bound condition is 
satisfied. but the lower bound condition is not saustied. then 
the conclusion is considered only plausible. needing further 
evidence in order to be accepted. 

To answer a question of the form 
. Does (wheat GROWS-IN Tunisia)" 

the system will first look into the hierarchy of object concepls. 
If th~ above fact is not explicitly represented. then the system 
will try to infer it from the explicitly represented facts. by 
building a proof tree like the one in Fig. 3. 

B. Definition of the Preliminary Knowledge Base 

As mentioned in Section II·B. the expert system IS built in 
three phases. In the first phase the human expert has [0 define 
an initial KB. without any interaction with NeoDISCIPLE . 
Slhe may define both an initial semantic network of object 
rnnrpnfC: ,,"ri,. o:..f nf inf,..r,..nr,.. ntl .. o: 

http:inf,..r,..nr
http:u<�II'I:l\Iic.oJ
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In the current version of NeoDISCIPLE it is assumed that 
the descriptions of the object concepts may be incomplete but 
correct. The inference rules, however, may be both incomplete 
and possibly partially incorrect. 

The minimum knowledge that the human expert is required 
to provide consists of an incomplete hierarchical semantic 
network of objects. Providing initial rules is not a requirement 
because the system may learn such rules, as will be described 
in Section V1. 

C. Knowledge Refinement 

After the initial KB has been provided. NeoDlSCIPLE 
extends, updates. and improves it through successive inter­
actions with the human expert. During these interactions. the 
human expert provides new geographical facts. and the system 
improves the object descriptions and the rules from the KB, 
or learns new ones, so as to consistently integrate into the KB 
the information contained in the input. 

The knowledge refinement problem of NeoDISCIPLE, in 
this geographical domain, is formulated and illustrated in 
Table I. 

The human expert has told the system that "(rice GROWS­
IN Cambodia)," and NeoDlSClPLE has refined the knowledge 
base represented in Fig. 2 so as to consistently integrate, not 
only thi,s new piece of knowledge, but also similar ones. 

First of all, the system has learned IWO new relevant geo­
graphical relationships: "SOIL" and "NEEDS· SOIL." These 
relationships extend the representational capabilities of the 
system and are, in fact, used to reexpress the version space 
of the rule R3. 

Secondly. the system has learned new geographical facts 
like "(Cambodia SOIL fertile-soil)" and "(rice NEEOS·SOIL 
fertile-soil)." 

Third, it has improved the rules R:1. and Rl. Indeed, it has 
discovered IWO new positive examples of the rule R2 and has 
generalized the plausible lower bound so as to cover them 
(the generalized literals are underlined). It has also discovered 
two positive examples and one negative example of the rule 
R3. Consequently, it has specialized tbe IWO plausible bounds 
of R3 so as no longer to cover the negative example, and 
has generalized the plausible lower bound so .as to cover the 
positive examples. One should notice that, as opposed to the 
standard version space method [31}, where the lower bound 
can only be generalized. in this case the lower bound has 
been both generalized and specialized. It has been generalized 
by generalizing "(x IS·A fruit)&.(z IS·A hill)" to "(x IS·A 
plant)&(z IS·A terrain-type)," and it has been specialized by 
adding the conjunction of literals "(v IS-A soU·type)&.(y SOIL 
v)&(x NEEDS-SOIL v)." The specializations of the plausible 
bounds of R3 show also how the new relationships "SOIL" 
and "NEEDS-SOIL" extend the representation language of the 
system. What is not directly observable in Table I is that the 
improved knowledge base allows the system not only to derive 
the input fact "(rice GROWS·IN Cambodia)," but also other 
related facts as, for instance, "(corn GROWS-IN Romania)." 

The general knowledge refinement strategy of NeoDISCI. 
PLE could be synthesized as follows: 

TABLE I 
THE lViowlEIXiE REflNf.MEJot1' PROBLEM 
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• 	 the KB contains explicit object knowledge (in the form of 
a hierarchical semantic nelWork), and, possibly. implicit 
object knowledge (in the form of inference rules). 

• 	when the system receives a new fact from the human 
expert, it will try to extend and update its KB so that the 
current input fact is inferable from the KB. If this is not 
possible, then the system will interpret the input fact as 
representing basic object knowledge, and will introduce 
it explicitly into the semantic nelWork of objects, 

The knowledge refinement method is presented in the next 
section and illustrated in the Sections V and VI. Section V 
shows how the syste!ll acquired the different knowledge pieces 
from Table I. that improved the KB in Fig. 2. Section VI 
illustrates the knowledge refinement method in the situation 
in which the KB contains only the semantic nelWork of object 
concepts from the top of Fig. 2. 

D. Knowledge Reformulation 

When the K.B of the system is complete enough and correct 
enough for providing correct solutions to most of the problems 
that the system is supposed to encounter, the main emphasis 
of learning changes from knowledge refinement to knowledge 
reformulation. The goal of knowledge reformulation is to 
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improve the performance of the expert system. As will be 
shown in Section VII. an interesting feature of NeoDISCIPLE 
is that its knowledge refinement method becomes a kno,wledge 
reformulation one, when the KB of the system is complete. 

IV. THE KNOWLEDGE REFINEMENT METHOD 

The knowledge refinement method of NeoDISCIPLE fol­
lows the steps indicated in Fig. r and detailed as follows (these 
steps will be illustrated in Sections V and VI). 

Understand the input 

1) Build a plausible proof tree T which shows that the input 
1 is a consequence of the knowledge from the KB. The 
top of this tree is the input I. and the leaves are the facts 
Fp.·· .. Fq from "the K.B that plausible im.ply l. . 

2) Introduce into the KB the facts abduced (If any) dunng 
the building of the tree T (the abductions made by the 
system are validated by the expert). 

3) Let Rt.···, R} be the rules from the KB that have 
been used to build the tree T. Generalize (if necessary) 
the plausible lower bounds of these rules, as little as 
possible. so as to cover the corresponding inference st.eps 
from T, and to remain less general then the plausible 
upper bounds. 

Generalize the understanding 

4) Build the most general plausible generalization Tu. of 
the tree T, by using the upper bound conditions of 
the rules R,,"" R,. The top of this tree will be the 
generalization Ig of the input I. and the leaves will be the 
generalizations Fpu.· ... Fqu. of the facts Fp . .... Fq. 

5) Build the most general deductive generalization TI. of 
the tree T. by using the lower bound conditions of 
the rules Rt,···, R). The top of this tree will be the 
generalization Ig of the input I. and the leaves will be 
the generalizations Fpl.···. F"h of the facts Fp.··· ! Fq• 

6) Build a plausible version space VP. representing the 
inferential capabilities of the system with respect to 
inputs similar to I: 

IF 
plausible upper bound: Fpu&'" &Fqu 
plausible lower bound: Fpl&'" &Fql 

THEN 
/g 

While 

the two bounds of the plausible version space VP 
are not identical. and 

• 	 the K.B contains an instance of the upper bound 
that is not an instance of the lower bound 

Do steps 7 tbrough 24 
Experiment 

7) 	Find. in the KB. an instance of the upper bound of 
VP that is not an instance of the lower bound. Let 
(Fp:z:&' .. · &Fq %) = C1(F'IIu&'" &Fqu ). where C1 is a 

8) Generate a fact similar to the input I, by applying th: 
substitution C1 to Ig; C1(/g} 

9) Generate the instance of the tree Tu. corresponding to 
the fact C1(/g). by applying C1 to Tu : O'(Tu )' 

Verify 

10) Ask the expert if C1 (lg) is true. If the answer is Yes 
then go to step. OtherNise go to 13. 

11) 	 The tree C1(Tu) shows new positive instances of the 
rules R", ... RJ • Generalize (if necessary) the plausi­
ble lower bounds of these rules. as little as possible. 
so as to cover the corresponding inference steps from 
tne tree C1(Tu). and to remain less general then the 
plausible upper bounds. . 

12) 	 Generalize the plausible lower bound of the versIOn 
space VP. as little as possible, so as to cover 
(Fpz& ' . , &Fq%). and to remain less general then the 
plausible upper bound. Then go to 24. 

Repair 

13) C1(Tu) is a wrong proof tree: the leaf predicates are true 
and the top predicate is false. Ask the user to identify 
a false inference step. Let this step be A",% ..... G",% (the 
blame assignment problem). 

14) Let R", be the rule in the KB the instance of which is 
Ab .;... Cb. If the plausible lower bound of the rule 
R", does not cover Ab then go to IS, Otherwise go 
to 17. 

15) Specialize the p(ausible upper bound of the rule R",. as 
little as possible. so as no longer to cover AIo:z and to 
remain more general then the plausible lower bound. 
Update the tree Tu by using the new upper bound of 
the rule R",. 

16) Specialize the upper bound of the plausible version 
space Vp, as little as possible, so as no longer to cover 
(Fp:z:& ... &Fq:z:) and to remain more general then the 
lower bound. Then go to 24. 

17) Let A", - C'" be the inference step from the tree T. 
corresponding to the false inference step .4h - Gh . 

Ask the user to correct the inference step A", - Gle. by 
adding additional left hand side predicates, If the user 
indicates tha~ the correct inference is .4k&B/c - Gk 
then go to step 18. Otherwise, if the user cannot correct 
the inference step A", - C"" go to 23. 

18) Introduce B", into the K.B (the new terms problem: B,. 
may be a new term). 

19) Let B"",be the inductive generalization of BIc obtained 
by replacing each object in B", with a variable. ~t 
Bbb' . " B"'~n be the instances of Bku corresponding 
to the known positive examples of Ric. Let Bic/ be a 
least general generalization of these instances that is 
less general than Bku. Specialize the upper and the 
lower bounds of Rk by conjunctively adding B le .. and 
Blct, respectively. 

20) Add Bbb "', Bbn into the KB. 
21) Update the tree Tu by using the new upper bound of 

the rule R",. 
22) Specialize the upper bound and the lower bound of 
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Fig. 8. Generation or facts $imilar wilh the input one. 

(rice OROWS-IN florida) 

Fig. 9. Instance of the tree Tn corresponding to the generated fact 
"(rice GROWS-IN Florida)." 

C. Experimentation4 

The version space VP in Fig. 7 synthesizes the inferential 
capabilities of the system with respect to the facts of the fonn 
"(x GROWS-IN y)." To improve these capabilities, the system 
looks into the KB for instances of the upper bound that are not 
instances of the lower bound. For each such instance it shows 
the user the corresponding inferred fact (see Fig. 8), asking if 
it is true or false. Then the system updates the KB such that 
the true facts are inferred, and the false facts are not. 

The version space in Fig. 7 serves both for generating facts 
of the fonn "(x GROWS-IN y)," and for detennining the 
end of the learning process. To justify this last point. let us 
anticipate that, during learning. the lower bound of the version 
space is generalized so as to COver the generated facts accepted 
by the user (the positive examples). and the upper bound is 
specialized so as to no longer cover the generated facts rejected 
by the user (the negative examples). The learning process will 
end in one of the following situations: 1) the bounds of the 
version space in Fig. 7 become identical; 2) the bounds are 
not identical, but the KB no longer contains any instance of 
the upper bound of the version space that is not an instance 
of the lower bound. Therefore, no new fact of the fonn "(x 
GROWS·IN y)" can be generated. 

Let us consider that "(rice GROWS·IN Florida)" is the first 
generated fact. For each such fact, the system detennines the 
corresponding instance of the tree T.. (see Fig. 9). 

D. Verification 

The generated fact is shown to the user who is asked to 
conllnn or to reject it: 

"Does (rice GROWS·IN Florida)?" No 

• Experimentation in NeoDISCIPl..E is a form of learning by analogy. a$ 
shown in (42). 

Cowl. ,.....,dl_..." 
t.~ KA,S.1UJI.AIN.(X)NI).fIC)R _, 

",..". .. ",w/Ol:l_
Cf1and& ~ ilia,'" (ra NIJII::IS..'T'EIUV..IN ilia) 1 

TIw~.: 
Cf1and& SOD......,"'" ... era N!:mS-soa. ""1DiI) 

CoWII ""'"...,.,.. w~' /I¥Iln '"~"" (C&tnI:laII.a HAS-1UJI.AIN.q;lNl)-fIOR _I , 

TIw~iI.· 
(Cani:oodIa SOil. fa'IiIe.lDiI)", era NEEDS-SOil. ,..,oaiI) 

Fig. 10. Sample dialog belween the eJIpcn and the SY$lem. 

Because the KB plausible entails this false fact, it should 
be repaired, as shown in the following section. 

E. Repair 

The proof tree from Fig. 9 is wrong because the leaf literals 
are true and the top literal is not. It follows that some of the 
inferences made are incorrect. To detect them, the system and 
[he user follow the proof tree from bottom up. If the user states 
that the consequent of a certain inference step is not true. then 
the corresponding inference may be the faulty one. In this 
case, the user states that the fact "(Florida HAS-TERRAlN· 
COND-FOR rice)" is not true. This means that the following 
inference step (which is an instance of the rule R3) is wrong: 
(Florida TERRAIN flat)&(rice NEEDS·TERRAlN flat) 

- (Florida HAS-TERRAlN·COND-FOR rice) 
In such a case. the system will attempt to specialize the 

plausible upper bound of the rule R3. as little as possible, so 
as no longer to cover the wrong inference and to remain more 
general than the plausible lower bound. Also, it will attempt 
to specialize the plausible upper bound of the version space 
VP in Fig. 7, as little as possible. so as no longer to cover the 
leaves of the tree in Fig. 9 and to remain more general then 
the lower bound. 

However, none of the above specializations is possible. 
Indeed, the plausible lower bound of the rule R3 covers the 
wrong inference, and the same is true for the lower bound of 
vp, This shows that the current representation language of the 
system is incomplete because it does not contain any expres­
sion (any lower bound) covering the positive examples of the 
rule R3 and rejecting this negative example. Therefore, the 
solution in this case is to extend the representation language 
with new predicates, and then to update the rule R3 and the 
version space VP in Fig. 7. To this purpose, the system asks the 
user to give an explanation of the above failure, as indicated 
in the sample dialog from Fig. 10. 

The aforementioned sample dialog between the system and 
the human expert illustrates how, by asking for explanations, 
the system may extract many useful pieces of knowledge from 
the expert. 

The explanations given by the expert introduce two new 
relevant geographical relationships. "SOIL" and "NEEDS­
SOIL." as well as four new facts expressed with these new 
relationships. that are explicitly stored into the semantic net· 
work of object concepts. 

The second explanation also shows that the inference step 
(Cambodia TERRAIN flat)&(rice NEEDS·TERRAlN flat) 

- (Cambodia HAS-TEI;{RAlN·COND-FOR rice) 
from the plausible proof tree in Fig. 3, is incomplete, and 
indicates how it should be corrected: 
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(Cambodia TERRAIN Hat)&(rice NEEDS-TERRAIN flat)& 
(Cambodia SOIL fertile-soil)&(rice NEEDS-SOIL fertile-sOil) 
..... (Cambodia HAS-TERRAIN-COND-FOR rice) 

Having discovered the wrong inference and the means of 
correcting it. NeoDISCIPLE will next correct the rule R3. 
that produced this inference, so as no longer to generate it. 

First, the system inductively generalizes the additional con. 
dition 

(Cambodia SOIL fertile-soil)&(rice 
NEEDS·SOIL fertile-soil) 

by replacing each object with a variable, thus obtaining 
(y SOIL u)&(x NEEDS-SOIL v) 

and conjunctively adds this expression to the upper bound of 
R3. 

Then the system determines all the instances of the previ­
ous general expression, corresponding to the known positive 
examples of R3: 

(Romania SOIL v)&(plum NEEDS-SOIL v) 
(France SOIL v)&(grape NEEDS-SOIL v) 

Each such instance is shown to the human expert, that is 
asked to provide the corresponding value for the variable v: 
(Romania SOIL v)&(plum NEEDS-SOIL v)&(v IS-A normal­
soil) 
(France SOIL v)&(grape NEEDS·SOIL v)&(v IS-A normal­
soil) 

The previous expressions, together with 

(Cambodia SOIL v)&(rice NEEDS­

SOIL v)&(v IS-A fertile·soil) 
correspond to the known positive examples bf the rule R3. 
Therefore, NeoDlSCIPLE determines a least general conjunc­
tive generalization of them [421 and conjunctively adds it to 
the lower bound of R3. Consequently, the version space of 
R3 becomes: 

R3: IF 
plausible upper bound 
(x IS-A something)&(y IS-A something)& 

(z IS-A something)& 

(y TERRAIN z)&(x NEEDS·TERRAIN z)& 

{v IS·A something)&(y SOIL v~x NEEDS-SOIL vl 

plausible lower bound 

(x IS·A plant)&(y IS-A place)&(z IS-A temin-type)&(y 

TERRAIN z)&(x NEEDS-TERRAIN z)& 

{v IS-A soiJ-type)&(y SOIL v~x NEEDS-SOIL vl 


THEN 
(y HAS-TERRAIN·COND-FOR x) 

with the positive examples 
(x<-plum, y<-Romania, z<-hill. v<-normal-soil) 

(x<-grape, y<-France, z<·hill, v<-normal-soil) 

{x<-rice. y<-Cambodia. z<-flat. v<-fertile-soil) 


with the negative example 
(x<-rice, y<-Florida. z<-ftat)' 
The system introduces into the KB all the factuai knowl­

edge learned: "(Romania SOIL normal-soil)," "(plum NEEDS­

5Thc valvc for II in Ihe negative eXaJ;I1pJc is not defined. The preditJle 
(Florida SOIL t') wovld reqvire Ihe valvc "nonnal-soil.w and Ihe predicatc 
(ric:c NEEDS-SOIL l') would requite the value "(enile·soil.~ 

(I CRowS·1N ,i 

Fig. 1 L The updaled Iree T". 

SOIL normal-soil)," "(France SOIL normal-soil):' and "(grape 
NEEDS-SOIL normal·soil)." 

Next. the tree T", (which was built by using the upper 
bound condition of the rule R3) is updated to correspond to 
the new upper bound of R3. That is. "(v (S-A something)," 
"(y SOIL v)" and "(x NEEDS-SOIL u)" are added as leaf 
preconditions for inferring "(y HAS-TERRAIN-COND-FOR 
x)." The updated tree T", is shown in Fig. 11. As mentioned 
previously, to simplify the figure. the literals of the form "(x 
IS-A something)" are not shown. 

The same type of modifications that have been made to the 
version space of R3 are also made to the version space VP in 
Fig. 7. Consequently. the version space VP becomes: 
IF 

plausible upper bound 
(x IS-A something)&{y IS-A something)& 
(z IS-A something)& 
(t IS-A something)&(u IS-A something)& 
(y WATER-SUPPLY t)&(x NEEDS·WATER·SUPPLY t)& 
(y CLIMATE u)&(x NEEDS-CLIMATE u)& 
(y TERRAIN z)&(x NEEDS-TERRAIN z) 
(v IS-A something)&(y SOIL v2!.{x NEEDS-SOIL v2 
plausible lower bound 
(x IS·A plant)&(y IS-A place)&(z (S·A terrain-type)& 
(t IS-A high)&(u IS-A tropicaJ)& 
(y WATER·SUPPLY t)&(x NEEDS-WATER·SUPPLY t)& 
(y CLIMATE u)&(x NEEDS-CLIMATE u) 
&(y TERRAIN z)&(x NEEDS-TERRAIN z) 
(v IS-A soil-type)&(y SOIL v2!.{x NEEDS-SOIL v2 

THEN 
(x GROWS-IN y) 
The first Experiment-Verify·Repair sequence is now com­

pleted and the system startS a new sequence. 

F. Experimentation 

In the previous Experiment-Verify-Repair sequence, the 
bounds of the version space VP have been specialized by 
conjunctively adding. literals built with the newly defined 
relationships "SOIL" and "NEEDS-SOIL" 

Because these relationships have been defined for very few 
objects, it is very likely that the system will no longer find 
instances of the plausible upper bound of VP. into the KB. 
Consequently, the knowledge acquisition process would end. 
To avoid such a situation. the system will try to elicit additional 
knowledge about the new relationships "SOIL ",and "NEEDS­
SOIL" for any objects that satisfy the other conditions of 
the plausible upper bound of VP. without satisfying the 
corresponding conditions of the plausibl~ lower bound of VP. 
As shown in Fig. 8, such objects are "com" and "Romania." 
Therefore. the system initiates the following dialog: 
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Dlel. 	 respectively. Then go to 24. 
23) 	 Keep Ale - Cle as a negative exception of the rule 

Rle (the exceptions are used by NeoDlSCIPLE in the 
concept formation and refinement process. as described 
in [43J. 

24) 	 Continue the while loop. 

The details of this method depend of the inferential capa­
bilities of the system with respect to the input. We distinguish 
between three types of such capabilities: 

Poor Knowledge about the Input: The system has no infer­
ence rules to build a plausible proof of the input. In' such a 
case. NeoDlSCIPLE uses heuristics to propose facts from the 
KB that directly imply the input. The user has to validate these 
hypotheses and may indicate additional facts. In such a case. 
the main result of learning is a new inference rule that derives 
the input. However. if no facts that imply the input could be 
found. then the input is explicitly stored into the KB. This case 
wiU be illustrated in Section VI. 

Incomplete Knowledge about the Input: The system has in­
ference rules allowing it to build a plausible proof of the input. 
Usually. in such a case. the main result of learning is the 
improvement of the rules from the KB. This case will be 
illustrated in Section V. 

Complete Knowledge about the Input: The system has in­
ference rules allowing it to build a complete deductive proof 
of the input. In such a case. the system does not learn any 
new knowledge. However. it may learn a rule that has the 
potential of improving the problem solving performance of 
the system. Therefore, when the KB of the system is correct 
and complete. the knowledge refinement method behaves as a 
knowledge reformulation one. as will be shown in Section VU. 

An ideal knowledge acquisition scenario is the following 
one. First the expen provides an initial semantic network (like 
the one from the top of Fig. 2), Next. the system improves 
the semantic network and learns rules (like the ones from the 
bottom of Fig. 2), by applying the techniques illustrated in 
Section VI. Next. the system improves the semantic network 
and the rules, by applying the techniques illustrated in Section 
V. Finally, it optimizes the knowledge base, as indicated in 
Section VII. 

V. KNOWLEDGE REFINEMENT IN TIlE CASE OF 

INCOMP~ KNO~E 

A. Understanding the Input 

Whenever the system receives a new input, it will try to 
understand it by building a plausible proof tree tbat shows 
that the input is a plausible consequence of the knowledge 
in the KB. Let us suppose that the current KB is the one 
from Fig. 2 and the input is "(rice GROWS-IN Cambodia)." 
In this case, the system builds the plausible proof tree from 
Fig. 3. We call this tree "plausible" because it was built 
by using the upper bound conditions of tbe rules R2 and 
R3. In order to simplify the figure, we have not included 
in the tree the leaves "(Cambodia IS-A something)." "(high 
IS· A something)," "(rice lS·A something)," "(tropical IS-A 

Fig. 3. A plausible proof of "(rice GROWS·IN Cambodia)." 

something)," and "(flat IS·A something):' which are obviously 
true facts. 

Because both the leaves and the top of the tree are true facts. 
NeoDlSCIPLE makes the hypothesis that all the inference 
steps from this tree are correct. That is. it makes the hypothesis 
that the instances of R2 and R3 (obtained by applying the 
upper bound conditions of these rules) are positive instances 
of these rules. Therefore, the system generalizes the plausible 
lower bounds of these rules, as little as possible. so as to 
cover these instances and to remain less general than the 
corresponding plausible upper bounds [42]. For instance. it 
generalizes "fruit" to "plant" in the plausible lower bound of 
H2. This generalization is made by climbing the generalization 
hierarchy defined by the IS·A relationship. in the semantic 
network from Fig. 2. NeoDISCIPLE also keeps the instance 
of R2 from the tree in Fig. 3, as a known positive example of 
R2. Therefore. the version space of rule R2 becomes: 
R2: IF 

plausible upper bound 
(x IS·A something)&.(y IS-A something)&' 

(t IS-A something)&.(u IS-A something)&' 

(y WATER-SUPPLY t)&. 

(x NEEDS-WATER·SUPPLY t)&. 

(y CLIMATE u)&.(x NEEDS-CLIMATE u) 

plausible lower-bound 

{x IS-A plant)&.(y rS-A place)&. 

(t IS-A high)&'(u IS-A tropical)&' 

(y WATER-SUPPLY t)&.{x NEEDS-WATER·SL'PPLY 

O&. 

(y CLIMATE u)&.(x NEEDS-CLIMATE u) 


THEN 

(y HAS-METEO-COND-FOR x) 


with the positive examples 
(x<·mango. y<-Cambodia, t<-high, u<-tropical) 
(x<-akee, y<-Jamaica, t<-high, u<-tropical) 
{x<-rice,y<-Cambodia,t<-hi2h,u<-tropical) 

Similarly, NeoDISCIPLE generalizes the lower bound of 
the version space of R3, so as to cover the instance of R3 
from Fig. 3 (i.e., it generalizes "fruit" to "plant'" and "hill" to 
"terrain-type"): 
R3: IF plausible upper bound 

(x IS-A something)&.(y IS-A something)&' 

(z IS-A something)&.(y TERRAJN z)&.(x NEEDS­

TERRAIN z) 

plausible lower-bound 

{x lS-A plant)&' (y IS-A place)&.{z IS-A terrain-type)& 

(y TERRAIN z)&.(x NEEDS-TERRAIN z) 
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(y2 WAn.R.·SUl'PI.. Y ,.n 
(u NUDS·WA1'Ell.·SUPPI.y 12)

(u N'EEI)S.QJMA1'E .:n zl) 

Fig. -l. The explanallon Sll'\IClure of the I?PUt. corrcsponding 10 T~. 

THEN 

(y HAS-TERRAf~'-" "lO-FOR x) 


with the positive e.x. 
(x<-plum. y<-Rorr... .. .:<-hiU) 
(x<-grape, y<-France, z<-hill) 
{x<-rice, y<·Cambodia, z<·ftat) 

One sbould notice that tbe ·improved KB (with the improved 
rules R2 and R3) deductively implies the input fact "(rice 
GROWS-IN Cambodia)." 

B. Generalizing the Understanding 

The same rules that have been used to prove the validity 
of the input ",(rice GROWS·IN Cambodia)" may be used by 
the system to prove the validity of other facts of the form "(a 
GROWS·IN b)." If "(a GROWS·IN b)" is proven by using 
RI and the lower bound conditions of R2 and R3. then tbis 
fact is considered to be true. However, if "(a GROWS-IN b)" 
is proven by using at least one of the upper bound conditions 
of R2 and R3, then this fact is considered only plausible. 
NeoDlSC(PlE uses the opportunity offered by the current 
learning situation to improve the KB until all the implied facts 
of the form "(a GROWS·IN b)" are derived from exact rules. 
or from lower .bound conditions of incompletely learned rules. 

First. NeoOISCIPlE builds two generalizations. Tu and Ti, 
of the tree T in Fig. 3. Tu is the most general generalization 
of T. based on the rule RI and the upper bound conditions 
of the rules R2 and R3. 1i is the most general generalization 
of T. based on the rule RI and the lower bound conditions 
of the rules R2 and R3. 

The generalization technique is similar to that of [34). 
NeoDlSCIPlE first replaces each inference step with the rule 
that generated it (by using the upper bound of the condition 
in the case of Tu. and the lower bound of the condition in the 
case of 1i). In this way it builds two explanation structures. 
The one corresponding to Tu is shown in Fig. 4. In order 
to simplify the figure. we have removed the seven leaves of 
the form "(x IS-A something)." Although these literals do not 
impose any constraints on the corresponding variables. they 
are part of the tree. 

Next NeoOISCIPlE deterrriines the most general unification 
of the connection panems: 

(yl HAS-METEO·COND·FOR xl) 
III 

(y2 HAS·METEO·COND·FOR x2) (y2 = yl, x2 = xl) 

(yl HAS-TERRAIN-CONO-FOR xl) 
III 

(".1 HAS-TERRAIN-COND-FOR x3H1J~ "",,,) .,.:t = ~n 

fa CItOW$.1l'I y) 

Fig, S. The generalizalion T~ of the plauSible proof tree In Fig. ). 

Fig. 6. The generalizallon TI of the plausible proof tree In Fig, 3. 

Fig. 7. The plausible version space VP synthesizing the inferenlial capa· 
bilities of the system with respect to the facts of Ihe form U(r GROWS· IN 
y),") 

Therefore: xl = x2 =x3 "'" x. yl =y2 =y3 =y. 
By applying this unification to the explanation structure in 

Fig. 4 one builds the most general justified generalization of 
the tree in Fig. 3 (see Fig. S). 

Similarly, the system builds the generalized tree Tl. which is 
shown in Fig. 6. It should be noticed that the system has built 
this tree by using the lower bounds of the improved rules R2 
and R3. 

The general proof tree Tu in Fig. 5 shows that the sys­
tem will consider plausible all the facts of the form "'(x 
GROWS-IN y)," for aU x and y such as the leaves of the 
tree are facts explicilly represented into the KB. Among 
these. the system will consider to be true. without looking 
for any other support, those facts for which x and yare 
the leaves of the tree r, (see Fig. 6). To synthesize these 
inferential capabilities, NeoDISCIPlE builds the plaUSible 
version space VP in Fig. 7. The plausible upper bound of 
this version space corresponds to the leaves of the tree T". 
the plausible lower bound corresponds to the leaves of the 
tree Ti, and the conclusion corresponds to the top of these 
trees: 

)1\ should be IIOticed that the system may be able 10 prove "(r GROWS·IN 
y)" by bUIlding other plausible proof IIOCS. Considering alllhc plaUSible proof 
Irees. however. would not be computational feasible. and would require: an 
unacce.lIabl" Inn .. in,,,,,,,,,;"n ",jlh 'he human ,,~""" 
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of the bound!' consisting of a single conjunctive expression. 
Thus. NeoDISCIPLE avoids the problem of the exponential 
growth of these bounds. 

The learning method of NeoDiSCIPLE was mostly influ­
enced by the explanation-based learning strategy (12]. 132]. A 
significant merit of this learning strategy is the identification of 
the importance of the expJanations in learning. NeoDISCIPLE 
extends this idea by using the explanations as the main 
source of expert knowledge. While EBL defines the notion 
of explanation only in the context of a complete domain 
knowledge. NeoDiSCIPLE extends this notion to the cases 
in which the knowledge of the system with respect to the 
input is incomplete or even poor. As with EBL, NeoDISCIPLE 
still requires a single input example to learn. because it is 
able to generate additional examples. This example generation 
capability is an important feature of NeoDiSCIPLE that was 
originally introduce'd by DISCIPLE. 

NeoDISCIPLE also extends constructive induction (25]. 
In constructive induction. the representation language of the 
learning system is extended with new terms that are a function 
of the known terms. The main goal is to find terms that 
simplify the descriptions of the learned concepts. Construc­
tive induction introduces new terms based of the intentional 
definitions of the concepts. It is thus a kind of knowledge refor­
mulation that does not extend ~he representational capabilities 
of the system. 

NeoDiSCIPLE may introduce new terms by also using the 
extensional definitions of the concepts (concepts defined by 
the set of the instances covered). As in BLIP [36], [51].. 
NeoDiSCIPLE introduces new terms in order to reduce the 
number of the exceptions of the learned rules. However. the 
methods employed by NeoDiSCIPLE (43] are more flexible 
and adaptive to the current knowledge of the system. and also 
involve the expert in this process. As opposed to BLIP. which 
always introduces a single new concept that eliminate all the 
exceptions of a rule, NeoDiSCIPLE may introduce several 
concepts. as well as several concept features. 

NeoDiSCIPLE may also be compared with systems that 
have the same goal of improving a knowledge base as. for' 
instance. ODYSSEUS [50] and EITHER [35]. ODYSSEUS 
automatically refines a KB by abducing facts that explain 
the actions of a human expert. NeoDiSCIPLE may also use 
abduction to complete an explanation of the input. but it also 
attempts to generalize the explanation. so as to explain similar 
inputs. Thus. it learns more from an input than ODYSSEUS. 
However. it does this with the help of the expert. 

Both systems deal with uncertain rules. ODYSSEUS. how­
ever. represents uncertainty through numeric certainty factors. 
while NeoDISCIPLE represents it symbolically [21], through 
plausible version spaces. 

EITHER is an autonomous multistrategy learning system 
that uses deduction. abduction. and induction to improve a KB. 
so as to correctly classify a given set of positive and negative 
examples of some concept. NeoDISCIPLE is an interactive 
system that tries to improve a KB so as to produce the same 
answers as a human expert. which is a more general problem. 
However. EITHER globally improves the KB (for instance, by 
considering all the possible explanations of a given example), 

while NeoDISCIPLE performs a local improvement of the 
KB (it improves only the object concepts and the inference 
rules that are involved in an explanation of the input. and 
does not attempt to find all the possible explanations). The 
price paid by EITHER for its more ambitious goal is a 
simpler representation language (an extended propositional 
logic). algorithms that are very expensive computationally, and 
the simplifying assumptions that the representation language 
is complete and the only problem is with incorrect rules. In 
NeoDiSCIPLE we have taken the position that the problem of 
KB improvement is too complex to be automatically solved. 
Therefore the expert should be involved. 

NeoDISCIPLE illustrates a general methodology for the 
automation of knowledge acquisition, which is applicable 
to problem solving methods employing operators that may 
be learned by generalizing specific examples. On the other 
hand, the problem solving engine of NeoDISCIPLE is a 
general-purpose one and has limited capabilities. Therefore. 
NeoDiSCIPLE is complementary to KA systems based on 
role-limiting methods as. for instance, SALT [23]. which 
provides a specialized problem solving method and helps the 
expert to express hislher knowledge in the format required 
by the method. However. SALT could hardly be regarded as 
more than a powerful knowledge elicitation system. because 
it has no learning capabilities. This complementarity suggests 
however to develop customized versions of NeoDiSCIPLE. 
in which its general knowledge acquisition capabilities would 
be associated with a specialized problem solving method. 
An indication that this is a promising research direction is 
the system KNACK (19] that employs a role-limited method 
enhanced with several generalization capabilities. 

X. FuTuRE REsEARCH DIRECTIONS 

We have presented an approach to the automation of build­
ing expert systems in which knowledge acquisition is viewed 
as a process of extending, updating and improving an in­
complete and partially incorrect knowledge base. The main 
claim of our approach is that the system will start with a 
poor KB (i.e.• with weak inferential capabilities). provided 
by the user and. through further interactions with the user. 
will evolves it to an incomplete KB (Le.• with incomplete 
inferential capabilities). and then to a complete KB (i.e .• 
with complete inferential capabilities). Several future research 
directions have already been mentioned in the prey ious two 
sections. in connection with some of the weaknesses of our 
approach. Others are presented in the following. 

The proposed KA methodology divides the process of 
building an expert system into three phases: 1) providing a 
preliminary KB; 2) incrementally extending and improving 
the KB; and 3) reorganizing the KB. 

The present version of NeoDISCIPLE addresses mainly the 
second phase. Therefore. a promising research direction is to 
evolve NeoDISCIPLE into a system that will assist an expert 
user during all the three phases. For the automation of the 
first phase. one may incorporate techniques for systematic 
elicitation of expert knowledge intO NeoDiSCIPLE as. for 
instance. the repertory grid technique used by ETS [38] and 
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ACQUINAS (3). One could also use an approach similar 
to that of the BLIP and MOBAL systems [36J. [511. These 
systems are able to build such an initial KB from user provided 
facts. generalization hierarchies. and general knowledge about 
the structure of the inference rules. 

Also. the problem solving engine of NeoDlSCIPLE has 
quite limited capabilities because the main focus of this 
research was not problem solving but learning. Consequently. 
a necessary research direction' is to develop the problem 
solving capabilities of the system and. possibly. to develop 
customized versions of NeoDlSCIPLE for specialized problem 
solving methods. as mentioned in Section IX. 

The 	main focus of our research was the incremental ex­
. tension and improvement of the KB. Although the presented 
learning methods are quite powerful and general. there are 
many ways in which they can be improved. For instance, they 
could be enhanced by integrating new learning strategies, as 
explored in (45]-[47]. This is also related to the extension of 
the representation language of the system that currently allows 
only the representation of objects and of strict or plausible 
(i.e.• incompletely learned) deductive rules. If, in the phase of 
defining a preliminary knowledge base. the human expert is to 
be allowed to introduce into the KB whatever knowledge he is 
able to express easily. then NeoDlSCIPLE should also allow 
him to define cases (1). determinations [11]. dependencies [8], 
and other forms of knowledge. Consequently, the learning 
methods of NeoOISCIPLE should be enhanced to deal with 
such new forms of knowledge. both in terms of using and 
improving them. Concerning the reorganization of the KB. the 
explanation-based learning method described briefly in Section 
VI provides only a potential for performance improvement. 
This method should be developed by providing a solution to 
the utility problem [291. 
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NeoDISCIPLE (developing a knowledge base for planing the 
manufacturing of a loudspeaker) is described in [42]. 

A. Action Planning for Robot Domestic TasJc.s 

The framework for this domain. consists of a hierarchical 
planner that decomposes "complex" robot commands into 
simple actions executable by a robot. First the system was pro­
vided with a preliminary KB. This KB contained incomplete 
descriptions of concepts representing some of the objects from 
the robot world. Then the system learned to solve problems by 
analyzing examples (If problem solving episodes. For ins~ance, 
from the followir '-Ilem solving episode 

The problem 
TAKE clean-cup! ; to take clean-cupl 

has lhe Solulion 
OPEN cabinet ; the robot has to open the cabinet 
TAKE clean-cupl ; and to take the cup from it 

FROM cabinet 

the system learned the rule 

IF If 
(x IS-A movable-obj) & x is a movable object 
(y IS-A container) & 
(x IS-IN y) & (y IS closed) in a closed container y 

THEN then 
the problem 

TAKE x to take x 
has the solution 

OPEN y the robot has to open y 
TAKE x FROM y and to take x from it 

The concept "movable-obj" represenlSthe set of objects that 
could be moved by the robot and has been defined by the 
system in order to eliminate the negative examples that were 
covered by the learned rule [431. 

B. Qualitative Prediction in Chemistry 

NeoDlSCIPLE was also used to developed a preliminary 
model of inorganic chemistry consisting of elementary 
knowledge about some basis. acids and salts, but no 
knowledge about chemical reactions. Starting from the reaction 
"NaOH+HCI-H20+NaCl." the system learned that, in 
general. by ~ombining a base with an acid. one obtains water 
and salt: 

IF 
(b IS-A base) ; by combining a 

base b, 
(b COMPOSED-OF xl) ; composed of a 
(b COMPOSED-OF x2) ; hydroxide 

x1 and a metal %2, 
(a IS-A acid) ; with an acid a, 

(a COMPOSED·OF xJ) ; composed of a 
(8 COMPOSED·OF x4) ; hydrogen 

x3 and a metalloid 
x4, 

(u: IS-A H20) ; one obtains water 
w, 

(w COMPOSED-OF xl) ; composed of xl 
(COMPOSED-OF xJ) ; and x3, 
(s IS·A salt) ; and salt 5, 

(5 COMPOSED·OF x2) ; composed of x2 
(5 COMPOSED-OF x4) ; and x4. 
(5 (COMPOSED·OF ANION·OF) a) 
(s (COMPOSED·OF CATION·OF) b» 
{xl IS·A OH) ; one component 
(x2 [S·A METAL) ; of the salt s 
(x3 IS·A H) ; is an anion of the 

acid a, 
(x4 IS-A METALLOID) ; the other component 

THEN ; of the salt s 
b+a-w+s ; is a calion of the 

base b 

Such a rule is used to predict the results of other chemical 
reactions. For instance, it will predict that by combining KOH 
with H2S04 one obtains H20 and K2S0... 

C. Discussion 

There are several general questions that one may ask with 
respect to the KA method illustrated by NeoDISCIPLE. In the 
following we present some of these questions and give initial 
answers. 

How general is the KA method? Which are the suitable 
application domains ? 

In NeoDlSCIPLE, the basic source of knowledge for learn­
ing is the hierarchical semantic network that provides the 
generalization language. Therefore, the first requirement for 
a suitable application domain is to allow the definition of a 
rich semantic network. 

A second requirement is to base the problem solving method 
on problem solving operators that can be learned by general­
izing specific examples. The generality of these two require· 
ments is a strong indication that the proposed KA method is 
potentially applicable in a wide range of domains. 

It is also necessary to characterize the difficulty of the tasks 
that the expert is required to perform during the knowledge 
acquisition process. How much knowledge should the expert 
initially introduce into the KB? Should s/he also define rules? 

As shown in Section VI. the minimum knowledge to be 
initially introduced into the KB is the semantic network of 
object concepts. This knowledge allows the system to Jearn 
rules from the new input infonnation provided by the expert. 
Therefore, providing rules is not a requirement. On the other 
hand, there is no theoretical upper limit with respect to the 
knowledge provided by the expert, which may consist of both 
object descriptions and rules. The practical limitation comes 
from the fact that the provided semantic network is supposed 
to be incomplete but correct. During learning. the definition 



of the object concepts may be refined and new concepts may 
even be defined [1S). However, no deletions are perfonned. 
It is a future research direction to develop the knowledge 
acquisition method to stan with a semantic network that is not 
only incomplete, but also panially incorrect, and to gradually 
improve it. 

How many questions are asked by the system during learn­
ingfrom an input? How difficult it is to answer them? 

Based on the experiments perfonned, we could state that 
the number of questions asked is usually small (for instance, 
during a learning session, the system needed to generate less 
than 10 examples similar to the input), Also, the questions are, 
in general. very easy to answer. Many of them ask for an "yes" 
or "no" answer (e.g., asking if a generated example is positive 
or negative. if some expression is or is not an explanation 
of some failure; if an object has or does not have a certain 
feature; if an abduced fact is true or not; if an inference step 
is true or not). More difficult questions are those asking the 
expert to provide an explanation of some failure (when the 
system was not able to propose any) or to indicate the name 
of a concept covering specified instances [15]. However, even 
these questions are not very difficult to answer. 

What is the relationship between the knowledge the user 
initially enters into the KB and the behavior of the system ? 

NeoDlSCIPLE has the capacity of adapting its learning 
behavior to the knowledge it has about the input. which could 
be characterized as poor, incomplete or complete. In the case 
of poor knowledge about the input. the system perfonns mainly 
inductive operations and relies heavily on the user to provide 
explanations of the input. without giving much assistance. 
(n the case of incomplete knowledge, the system performs 
both deductive and inductive operations. Its questions are 
much more focussed and easier to answer. Finally, in the 
case of complete knowledge, the system does not need any 
help from the user. Consequently, there is a trade-off between 
how much knowledge the user initially enters into the KB 
and how much assistance slhe is required to give in the next 
stages of knowledge acquisition. Our hypothesis is that the 
optimal situation is obtained by requiring the expen to initially 
introduce into the KB as much knowledge slhe can easily 
express. 

The proposed knowledge acquisition methodology is char­
acterized by three phases: definition of the initial knowledge 
base, refinement of the knowledge base, and refonnulation of 
the knowledge base. Wben do the transitions between these 
phases occur? 

There are. in fact. no clear cut transitions between these 
stages. Knowledge base refinement should start immediately 
after the expert has provided the initial KB. However, if the 
initial knowledge provided by the expen is not enough for the 
understanding of a new input from the expert, this input is 
explicitly stored into the KB (as if provided in the initial KB). 
Also. knowledge refonnulation should start when all the rules 
in the KB have been completely learned. Nothing. however. 
guarantees that the expen will not enter a piece of knowledge 

. that is totally or panially new, causing the system to explicitly 
store it into the KB' (as if provided in the first phase) or to 
learn a new rule (as if provided in the second phase). 

We should finally stress that the above answers are based on 
experiments involving small knowledge bases. ft is therefore 
necessary to test how the system would scale up, and to 
answer these questions in the context of much more complex 
applications. 

IX. RELATED RESEARCH 

NeoDISCIPLE is an extension and a generalization of 
DISCIPLE [41). [42). While many of the learning teChniques 
of DlSCIPLE and NeoDlSCIPLE are similar. the learning 
problems considered are different. DISCIPLE accepts as input 
an example of a problem solving episode. represented by a 
problem P and its solution S. and learns a general problem 
solving rule. allowing the system to solve problems similar to 
P. by proposing solutions similar to S. NeoDlSCIPLE may 
accept as input not only an example of a problem solving 
episode, but also an example of a concept. or even a ground 
fact (as illustrated in this paper). The main goal of the system 
is no longer to learn a rule covering the input. but to extend, 
update and improve the KB so as to consistently integrate 
the infonnation contained in the input. In panicular, if the 
knowledge of the system with respect to the input is poor. this 
goal is achieved by learning a rule. Therefore. NeoD1SCIPLE 
includes DlSCIPLE. 

NeoDlSCIPLE is also. related to the. learning systems that 
integrate different learning strategies (e.g., [2]. [10], [13], 
[14). [16), [17]. [22). (30). (35), [37). [40), [49], [501. Our 
method is however different from other multistrategy learning 
methods in tenns of the integrated strategies. the way they are 
integrated. and the interaction with the expert. More preCISely. 
NeoDISCIPLE uses explanation-based learning (to build a 
plausible proof of the input and to generalize it). learning by 
abduction (to complete the proof). learning by expenmentation 
(to generate instances of the generalized prooO, empirical gen­
eralization (to generalize the generated instances). conceptual 
clustering (to define new object concepts). and learning by 
instruction (to acquire new knowledge from the user). This 
multistrategy learning method exploits the complementarity of 
the requirements and results of the integrated single·strategy 
learning methods, and allows NeoDISCIPLE to adapt its 
behavior to the relationship between the input information and 
its knowledge. 

Although the learning strategies employed by NeoDISCI­
PLE are well-known, their integration was done by mak­
ing several significant developments to some of them. For 
instance, the empirical inductive method of NeoD[SCIPLE 
is an extension of the version-space method [31] in that 
the version space is no longer stria, but plausible. In the 
case of Mitchell's method the lower bound and the upper 
bound of the version space are exact boundaries of the 
version space. Consequently, during learning. the lower bound 
can only be generalized and the upper bound can only be 
specialized. On the contrary, in the case of NeoDISCIPLE, 
these bounds are only plausible (i.e .• approximations of the 
exact bounds). Therefore, during learning. each of them can 
be both generalized and specialized. Also, NeoDlSCIPLE 
.employs a heuristic search in the plausible version space, each 
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Fig. 12. Inslance of the updaled Iree T. correspond inc 10 the fact 
"(com GROWS~IN Romania)." 

Could you provide a value for v such that 
(Romania SOIL v)&(com NEEDS-SOIL v) 

[No J value} ? normal-soil 
Because the user was able to provide a value for v, which 

satisfy the plausible upper bound condition of VP. the system 
generates the new fact "(com GROWS-IN Romania)" and the 
corresponding instance of the updated tree Tu from Fig. 11 
(see Fig. 12). . 

G. Verification 

The generated fact (which is plausibly entailed by the 
current knowledge base) is shown to the user, which has to 
characterize it as true or false: 

"Does (com GROWS-IN Romania) 1" Yes. 
Because the user confirmed this fact, NeoDlSCIPLE trealS 

the tree in Fig. 12 in the same way it treated the tree from 
Fig. 3. That is. it considers the instances of the rules R2 and 
R3 from this tree as being new positive examples of these 
rules, and generalizes their plausible lower bounds, ~ little 
as possible, to cover these examples. In this case, however, 
only the lower bound of R2 needs to be generalized ("higb" 
is generalized to "quantity" and "tropical" is generalized to 
"climate-type"). Also, the newly discovered positive examples 
are associated with the rules R2 and R3. Consequently. the 
new rules R2 and R3 are those from Table I. 

The system also generalizes the plausible lower bound of 
the version space VP. to cover the leaves of the tree from Fig. 
12, and therefore to "deductively" infer "(com GROWS-IN 
Romania)." The new version space is shown in Fig. 13, with 
the generalized literals underlined. 

With the KB from Fig. 2 the knowledge acquisition process 
stops here because there is no other fad of the form "(x 
GROWS-IN y)" to be generated (i.e., there is no instance of 
the upper bound of the version space in Fig. 13. which is not an 
instance of the lower bound). One should notice, however, that 
the system has made all the knowledge refinement operations 
indicated in Table I. 

It should also be noticed that the version space in Fig. 13 
does not contain any new knowledge because whatever facts 
it can infer could also be inferred by applying the rules RI, 
R2. and R3. Therefore, the version space VP is not kept into 
the KB. 

VI. J(NOWLEDOE REFINEMENT IN THE CASE OF 


POOR KNOWLEDGE 


A. Understanding the Input 

Let us now suppose that the current KB contains ooly the 

Fig. 13. Updaled version space for the inference of "(r GROWS·IN 1/)." 

lrioz QROWS.IN~) 

Fig. 14. Plausible proof of ~(fice GROWS·IN Cambodia)." 

FiS. 1,5. Inductive ceneralization of the plausible proof in Fig. 14. 

semantic network from the top of Fig. 2. This represents an 
example of poor kno~edge about the input "(rice GROWS­
IN Cambodia)" because the system does not have rules to 
build a plausible proof of the input. However. it makes the 
hypothesis that the input fact is a direct consequence of other 
facts that are explicitly represented into the semantic network. 
It therefore uses heuristics to select such facts and proposes 
them as partiaJ explanations of the input. The user has to select 
the true pieces of explanations and may indicate additional 
ones. One heuristj.: is to propose as plausible explanations of 
input validity the relationships between the objects from the 
input (rice and Cambodia), as shown in the following sample 
dialog (see also [42]): 

Are the following relationships explanations for 
"(rice GROWS-IN Cambodia)": 
(rice NEEDS-TERRAIN flat)&(Cambodia TERRAIN fiat)? Yes 
(rice IS-A food)&(Cambodia NEEDS food) ?No 
(rice NEEDS-WATER-SUPPLY high)&(Cambodia WATER­
SUPPLY high) ? Yes 
(rice NEEDS-CLIMATE lropical)&(Cambodia CLIMATE 
tropical) ? Yes 

The pieces of explanations marked by a user's yes represent 
the faas from the KB that imply the input. and therefore define 
the plausible proof in Fig. 14. 

B. Generalizing the Understanding 

NeoDlSCIPLE inductively generalizes the plausible proof 
tree in Fig. 14 by sim'ply turning all the constants into 
variables: 

http:QROWS.IN


iF 
pli:uuiblt ~,/xHutd 
(I IS·A somelllill" .t (y IS-A scxnedUn,).t (l !S-A somelllillIJ & 

(lIS·A soazlllilla) .t (IIIS·A SOIDI:lhin" & 

(y WATER-SUPPL Y I).t (I NEEDS.WATER.SUPPLY I) & 

(y Q.JMAre y) & (I NEEDS-C..IMArell)& 

(y TE.RRAlN zl & (lI: NEEDS-'TC.RIVJN z) 

pl4uslblt /owr,. bollNt 
(I IS-A nee) & (y IS·A Cambccjq) & (z IS·A fl.al) .t 
(llS·A hi",) & (lIlS·A aoplC&l).t 
(y WA TER-SlJPPLY 0& (It NEEDS·WATER-SlJpc' 'J & 
(y Q.JMAre u) & (a NEEDS-a..IMAre u}.t 
(y reR.R.A11'l z) & (I NEEDS-TER.RA1N II 

nm.N 
(ll CiROWS-1N y) 


willi 1M posuiW UI11fIP" 

(I<·nee. y<·C·mOndiI. z<·!b&. I<·hip. Y<-lI'OpiQI) 

Fig. 16. A plausible version ~pace for a new inference rule. 

The plausible proof tree from Fig. 14 and its inductive 
generalization from Fig. 15 define the version space VP from 
Fig. 16. 

C. Experimentation 

The knowledge acquisition process continues as in the case 
of incomplete knowledge with the difference that the plausible 
proof trees conSidered contain a single inference step. 

Also, the plausible version space from Fig. 16 is no longer 
a redundant knowledge piece. On the contrary. it represents 
an initial version space for a new inference rule to be learned 
by NeoDISC[PLE. Therefore. in the case of poor knowledge 
about an input I. the main result of learning is a rule for 
inferring 1. 

In this way NeoDlSCIPLE learns new rules that increase 
its inferential capabilities. 

VII. KNowLEDGE REFORMULATION 

When the KB of the system is complete and correct. the 
knowledge refinement method becomes a knowledge refor­
mulation one. Let us suppose, for instance. that the semantic 
network in Fig. 2 has been augmented with the relationships 
from ~he top of Fig. 17, and the incompletely learned rules 
R2 and R3 from Fig. 2 have evolved to the rules R2 and R3 
from Fig. 17. 

The resulting KB is "complete" with respect to the input fact 
"(rice GROWS-IN Cambodia)" because it allows the system 
to build a deductive proof of it. In such a case, the learning 
method of NeoDlSCIPLE reduces to pure explanation-based 
learning [12]. (32). Indeed, NeoDISCIPLE builds a tree similar 
to the one from Fig. 3, except that each inference step is 

...,. 

Rl: d' 
(1 IS·'" pWll"*,y lS- ... pl.cclaft LS-...........QI'f~~ IS· ... cIima"''Y!lO)A 
(y w...m·stJPPLY (latl N'EmS-W"'lU.SI.;PP'L.Y n.nib.a.rMATE .l4t(1 Nm:I5.Q.IMATE.) 

C1 HAs-~Hl).FalI' 

U 17 
(.IS.... pioo'll)A(y IS·... pl.ccla/.IS·... IImIII-I)1l&)Ah 1S· ... lO\I·!'fP,II) 
(y TEJUI..\D'II)&(1 N'EmS.TElUVJH ,)AC1 soo. .)ACI SEEDS·SOo. v, 

'!'Imi 
(y HAS·'T'E!UtAD'I.(X)Hl).1'QR I) 

Fig. 17. Knowledge fO be added 10 the one In Fig. 2 In order to lransform 
if inlO complete knowledge with respect 10 Ihe input "(rice GROWS-IN 
Cambodia)." 

a deductien, and the tree is a logical proof. Then. by using 
the general form of the rules R 1, R2, and R3. it builds a 
generalized proof tree. similar to the one from Fig. 5. Because 
this generalized tree is a logical proof. its leaves deductively 
imply the top. Therefore. the system may generate a rule. 
the condition of which are the leaves of the tree. and the 
conclusion of which is the top of the tree, shown at the bottom 
of the page. 

One should notice that, in such a case. the system does 
not learn any new knowledge. It simply concentrates the 
knowledge contained in the rules RI, R2. and R3. into a new 
rule. This new rule aUows the system to immediately infer facts 
of the form "(x GROWS-IN V)," without needing to build a 
proof tree like the one in Fig. 3. Thus. the learned rule has 
a positive effect on the efficiency of the system. However. 
the addition of a new ruJe that does not contain any new 
knowledge also has a negative effect on the efficiency of the 
rule interpreter that may need to test more rules in order to 
solve a problem. Therefore. the decision on whether to keep 
the learned rule should be based on its utility, that takes into 
account both its positive and negative effects. Initial results on 
the utility problem [29) suggest that the best performance is 
obtained when the system learns a small number of such rules 
that are sufficient for solving most of the problems. The utility 
problem in NeoDISCIPLE is a topic for future research. 

VIII. EXPERIMENTS 

A version of NeoDiSCIPLE is implemented in Common 
Lisp and runs on the Macintosh. In order to test its feasibility 
and generality. we have used it to build smaIl know ledge 
bases for several types of expertise domains. Two of them 
are briefly described in the following. Another application of 

IF 
(x IS-A plant)&(y IS-A place)&(z IS-A terrain-type)& 
(t IS-A quantity)&(u IS-A climate-type)&(v IS-A soil-type)&' 

(y WATER·SUPPLY t)&(x NEEDS-WATER-SUPPLY t)& 

(y CLIMATE U)&(I NEEDS-CLIMATE u)& 
(y TERRAIN Z)&(I NEEDS-TERRAIN z)& 
(y SOIL 11)&.(X NEEDS-SOIL 11) 

THEN 
(I GROWS-IN y) 

; If 
; the water supply of the place y 

; is that needed by the plant I, 

; and the climate of y is that 
; needed by x, and the terrain of 
; y is that needed by I, and 
; the soil of y is that needed by x 

; then 
; x grows in y 

http:pl.ccla/.IS
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