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Abstract 

This paper presents a method for constructive induction in which new problem-relevant 

attributes are generated by analyzing consecutively created inductive hypotheses. The method 

starts by creating a set of rules from given examples using the AQ algorithm. These rules are 

then evaluated according to a rule quality criterion. Subsets of the best-performing rules for each 

decision class are selected to form new attributes. These new attributes are used to reformulate 

the training examples used in the previous step, and the whole inductive process repeats. This 

iterative process ends when the performance accuracy of the rules exceeds a predefined 

threshold In several experiments on learning different well-defined transformations, the method 

consistently outperformed (in terms of predictive accuracy) the AQ15 rule learning method, 

GREEDY3 and GROVE decision list learning methods. and REDWOOD and FRINGE decision 

tree learning methods. 

1 Introduction 

Most programs for inductive learning from examples create descriptions in terms of attributes that 

are selected from those present in the original examples. Such programs, e.g., AQV AU1 

(Michalski, 1973), ID3 (Quinlan, 1983), ASSISTANT (Cestnik et al., 1987), CN2 (Clark and 

Niblett, 1989), do not create new attributes or, in general, concepts in the process of learning. In 

contrast to such selective inductive programs, a constructive induction program generates and uses 

new concepts in the hypothesized description. These new concepts (or descriptors) can be 

attributes, predicates, terms, operators, etc., and are more relevant to the learning problem than 

those initially given. A constructive learning program thus performs a problem-oriented 

transformation of the knowledge representation space (Michalski, 1978). 

http:aic.gmu.edu


2 
The idea of constructive induction was fIrst proposed by Michalski (1978), and implemented in the 

INDUCE. 1 program for learning structural descriptions from examples. INDUCE. 1 used user­

defIned inference rules and procedures to generate new descriptors. These descriptors were then 

employed together with the original ones in the process of induction. 

Subsequently, a number of other systems have been developed that exhibit certain constructive 

induction capabilities. In general, the constructive induction methods can be divided into four 

categories: 

• Data-Driven (DCI) - by analyzing and exploring the input data. For example: 

INDUCE (Michalski, 1978) 

LEX (Mitchell, Utgoff & Banerji, 1983) 

AM, EURISCO (Lenat, 1983) 

BACON (Langley, Bradshaw &Simon, 1983) 

STAGGER (Schlimmer, 1987) 

AQ17-DCI (Bloedom&Michalski, 1991) 


• Hypothesis-Driven (HCI) - by analyzing generated hypotheses. For example: 

FRINGE (Pagallo & Haussler, 1990) - for decision trees 
AQ17-HCI (Wnek &Michalski, 1991) - for decision rules 

• Knowledge-Driven (KCI) - by applying expert-provided knowledge For example: 

INDUCE (Michalski, 1978) 

AQ15 (Michalski, Mozetic, Hong & Lavrac, 1985) 

MIRO (Drastal, Czako & Raatz, 1989) 

DUCE, CIGOL (Muggleton, 1987) 


• Multistrategy (MCI) - by combining different methods. For example: 

PLSO (Rendell, 1985) - DCI, KCI 

CIlRE (Matheus, 1989) - DCI, KCI 

AQ17 (combines a whole spectrum of methods, such as .DCI, HCI, A-rules, L-rules and GDN; 

Bloedorn, Michalski & Wnek, 1992). 


In an attribute-based learning system, the abstraction level of attributes strongly affects the 

complexity of the hypothesized rules. By employing high-level attributes, the concept 

representation can be greatly simplified. Such attributes may, however, be encoded as very 

complex functions of low-level primitives. In such cases, to improve the efficiency, these complex 

functions have to be compiled (Flann and Dietterich 1986). One important goal of constructive 

induction is therefore to discover attributes that lead to the maximal simplification of the generated 

hypotheses. Another goal is to discover attributes that produce the best performing hypotheses, 

that is, to emphasize the predictive accuracy of generated hypotheses, rather than their simplicity. 
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The predictive accuracy can be measured by applying the hypotheses to the testing data, and 

detemrining the correctness of the predictions. 

The primary goal of the method proposed in this paper is to increase the predictive accuracy of the 

hypotheses. The underlying idea is to generate new attributes by analyzing the hypotheses initially 

created by a selective induction process, and then by consecutive learning steps. For that reason, 

the method is called a "hypothesis-driven" constructive induction (HCI). The method is a major 

component of the multi strategy constructive induction system AQ17 (Bloedorn, Michalski and 

Wnek. 1992). 

Initial and consecutive selective hypotheses are generated by the rule learning program AQ15 

(Michalski et al., 1986). AQ15 learns rules from examples represented as sequences of attribute­

value pairs. Attributes can be multi-valued and be of different types, such as nominal, linear or 

structured (in which the value set is a hierarchy). The teacher presents to the learner a set of 

examples of each of the concepts to be learned. The program outputs a set of general decision rules 

(that are equivalent to DNF expressions) for each class. These rules cover all the examples of a 

given class and none of other classes' examples (Le., they are consistent and complete 

descriptions). The rules generated optimize a problem-dependent "criterion of preference." In the 

case of noisy data, the program may generate only partially consistent and/or complete rules. 

The program is based on the AQ algorithm, which iteratively employs a star generation procedure 

(Michalski et al., 1986). A star ofan example is the set of the most general alternative rules that 

cover that example. but do not cover any negative examples. In the first step, a star is generated 

for a randomly chosen example ( a seed), and the "best" rule in it, as defmed by the preference 

criterion, is selected. All examples covered by that rule are removed from further consideration. A 

new seed is then selected from the yet-uncovered examples, and the process repeats. The algorithm 

ends when all positive examples are covered. If there exists a single rule that covers all the 

examples (that is, there exists a conjunctive characterization of the concept), the algorithm 

terminates after the fIrst step. In the presented method, the above algorithm is combined with a 

process of iteratively generating new attributes, and using them in subsequent learning steps. 

2 A description of tbe metbod 

As mentioned above. the proposed HCI method fa hypothesis-driven constructive induction') 

determines new problem-relevant attributes by analyzing the currently held inductive hypotheses 

(Figure 1). Its primary goal is to determine new attributes that produce a hypothesis with the 

highest predictive accuracy. A natural extension of this goal is detection and removal from the input 

data any irrelevant attributes. 
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Basic steps of the proposed HCI method are: 

1. 	 Induce rules for each decision class from a subset of training examples using a selective 

inductive program (AQ15) 

2. 	 Analyze the rules to identify irrelevant attributes 

3. 	For each decision class generate one candidate attribute that corresponds to a subset of the 

highest quality rules 

4. 	 Modify training examples by adding newly generated attributes and removing irrelevant ones 

5. 	 Induce rules from the modified training set 

6. 	Evaluate the predictive accuracy of the rules on remaining training examples. If the 

performance does not exceed a predefmed threshold, go to step 2. 

7. 	Induce rules from the complete training set using all relevant initial and derived attributes. 

The steps 1, 5, and 7 are performed by the AQ15 program. In the step 2, the HCI method 

identifies those attributes that were not found in hypotheses, or were found in rules that cover 

marginal number of training exemples, "small disjuncts," only. The heuristic for constructing 

attributes in Step 3 includes extracting a part of a classification hypothesis which contains best 

rules. This is done by sorting all rules from the output hypothesis according to the so-called tu­

weights, and selecting the maximum number of rules with the highest tu-weights that satisfy the 

inequality: 

[(L tUbest) / (L tuall)] < THl (1) 

where 

tu =t-weight + (2 * u-weight) (2) 

and t-weight denotes the total number of positive examples covered by the rule, and u-weight 

denotes the number of positive examples that are uniquely covered by the rule (Le., no other rule in 

the hypothesis covers those examples). The constant "2" in the formula (2) was determined 

experimentally (it assures that the rules with higher u-weight are preferred in a constructed 

attribute). The THl threshold is a program parameter, and is set to 0.65. 

The number of best rules defined by the THl threshold can be extended by those remaining rules 
that do not deviate much from already selected, with respect to tu-weights. If tubest-min is a lowest 

weight among rules already selected than only rules with tu-weights greater than (TH2 * tubest­

min) will be added to constructed attribute. The TH2 threshold was equal to 0.65. The motivation 

for the THl and TH2 thresholds arises from an assumption about the nature of constructed 

attributes: they should convey to the next learning step as much useful knowledge of the learned 

problem as possible. In this setting, a fundamental part of an intermediate concept is stored as new 
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Figure 1. HeI method built into a rule learning system 

attribute. The remaining part of a concept. which holds exceptions or noise in the data. will be 

covered in following iterations. The role of the 1H2 threshold is to assure that all strong rules from 

a hypothesis will form a new attribute. 

Initially. there are only two values assigned to the candidate attribute that characterize a class 

membership. More values can be added if the same attribute description occurred in other classes. 

The new attributes are logical expressions involving previous attributes. Mter new attributes are 

determined. the training set is updated with new attribute values. For each training example the 

values of the new attributes are calculated by evaluating the logical expression characterizing the 

new attribute. 

From this outline of the method one can see that the process of inducing rules from examples may 

be repeated several times in order to achieve the desired predictive accuracy. This adds complexity 
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to the learning algorithm depending on how many times steps 2-6 are repeated. The complexity of 

inducing rules from examples in AQ15 is O(PN), where P is a number of positive examples and N 

is a number of negative examples (every positive example is generalized against all negative 

examples). The complexity of forming a new attribute is linear with respect to the number of rules 

in the hypothesis. As this constant effort is made for every iteration, the overall complexity is 

O(PNT), where T is the number of iterations. 

New attributes introduced in each iteration in the form of learned sub-concepts from the searched 

hypotheses space make the learning problem easier. The training set was already pre-partitioned by 

problem oriented and statistically significant attributes. Most of the training examples are covered 

with the new attributes, and only exceptions require building additional concept descriptions. 

3 Exemplary problem 

To illustrate the performance of the constructive search, we describe an experiment on learning a 

multiplexer function with 3 inputs and 8 outputs: the so-called multiplexer-II problem (Wilson, 

1987). For each positive integer k, there exists a multiplexer function defmed on a set of k + 2k 

attributes or bits. The function can be defined by thinking of the first k attributes as address bits 

and the remaining attributes as data bits. 

The function has the value of the data bit indexed by the address bits. In the experiment, the input 

examples were encoded in terms of 11 binary attributes. Thus, the description space contains 2048 

elements. The training set had 64 (6%) positive examples and 64 (6%) of the negative examples. 

Table 1 shows a sample of positive and negative examples. The attributes aO, aI, a2 describe 

address lines, and dO-d7 describe data lines. From these examples, the rule generation phase (Step 

1) produced rules for the correct (POS-Class) and incorrect (NEG-Class) behavior of the 

multiplexer. The rules are shown in Table 2. 

Positive 
aO a1 a2 

examples 
dO dl d2 d3 d4 d5 d6 d7 

Negative 
aOal a2 

examples 
dOdl d2d3 d4d5 d6d7 

001 01000000 001 00111110 
010 00100001 010 00000001 
010 11111110 010 11011110 
101 00001101 1 0 1 00000000 
1 1 0 00001111 110 00001000 

'" .a, '" ", 

Table 1. A part of the training set of examples 

POS-Class it NEG-Class If 
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1. (&0=1) & (al=l) & (a2=O) & (d6=I) or (t:11, u:6) I. (aO=I) & (at=l) & (&2=1) & (d7=O) or (t:13. u:5) 
2. (aO=O) & (al=O) & (81=1) & (dl=l) or (t:ll, u:5) 2. (aO=O) & (a2=O) & (d2=O) or (t:l2, u:7)
3. (&0=1) & (al=O) & (&2=1) & (d5=I) or (t:l0, u:6) 3. (82--0) & (d3=O) & (d4=O) & (d7=1) or (t:11, u:2)
4. (&0=1) & (al=l) & (&2=1) & (d7=1) or (t:l0, u:4) 4. (aO=O) & (al=O) & (&2=1) & (dl=O) or (t:l0, u:8)
5. (aO=I) & (al=O) & (a2=O) & (d4=I) or (t:9, u:5) 5. (&0=1) & (&2=1) & (d5=O) & (d7=O) or (t:IO, u:2) 
6. (al=l) & (d4=l) & (d6=I) & (d7=I) or (t:8, u:l) 6. (al=O) & (82=0) & (dl=l) & (d4=O) or (t:7. u:4) 
7. (at=l) & (&2=1) & (d3=I) & (d7=1) or (t:8, u:l) 7. (aO=1) & (al=l) & (81=0) & (d6=O) or (t:1, u:3) 
8. (aO=O) & (81=1) & (dl=l) & (d5=O) or (t:8, u:l) 8. (dO=O) & (d3=O) & (d5=O) & (d6=O) or (t:6, u:l) 
9. (82=0) & (dl=O) & (d2=I) & (d3=I) or (t:6, u:2) 9. (aO=O) & (81=1) & (&2=1) & (d3=O) or (t:5. u:5) 
10. (aO=O) & (al=l) & (d3=I) & (d4=O) or (t:6, u;2) 10. (dl=O) & (d2=I) & (d3=O) & (d5=O) or (t:5. u:l) 
11. (dO=O) & (d3=O) & (d4=I) & (d5=I) or (t:6. u:l) II. (aO=I) & (&1=0) & (d5=O) & (d7=1) (t:4, u:4) 
12. (&2=1) & (dO=I) & (d2=0) & (d5=I) (t:3, u:l) 

Table 2. Rules induced by AQ15 from examples 

1. (aO=l) & (a1=1) & (a2=O) & (d6=l) or (tu:23) 
2. (aO=O) & (a1=O) & (a2=1) & (d1=1) or (tu:21) 
3. (aO=l) & (a1=O) & (a2=1) & (d5=1) or (tu:22) 
4. (aO=l) & (a1=1) & (a2=1) & (d7=1) or (tu:18) 
5. (aO=l) & (a1=O) & (a2=O) & (d4=1) (tu:19) 

I. tUbest = 103; I. tUa11 = 166; [(I. tubest) I (I. tuall)] = 0.62 
I. tUbest+1 =113; I. tuall =166; [(I. tubest+ 1) I (I. tuall) =0.68 

Table 3. Best rules from POS-Class according to the formula (l) 

POS-Class and NEG-Class are hypotheses in the k-DNF form. Each rule in the hypotheses is 

accompanied with t-weights and u-weights that represent total and unique numbers of training 

examples covered by a rule. For the above POS-Class hypothesis, the rules presented in Table 3 

were chosen to constitute the candidate attribute PosO, (Step 3): (here we present attribute 

generation for POS hypothesis only). Table 4 shows the definition of the new attribute PosO. 

PosO=l 	 if (aO=l) & (a1=1) & (a2=O) & (d6=l) or 
(aO=O) & (a1=O) & (a2=1) & (d1=l) or 
(aO=l) & (a1=O) & (a2=1) & (d5=1) or 
(aO=l) & (a1=1) & (a2=1) & (d7=l) or 
(a~1) & (al=O) & (a2=O) & (d4=1) 

PosO=O 	 otherwise 

Table 4. The defInition of the PosO attribute 

Table 5 shows the modified training set. For each old training example a new PosO attribute value 

has been added (Step 4). Table 6 presents rules induced from the modified training set (Step 5). 
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Positive examples Negative examples 
aO a1 a2 dO d1 d2 d3 d4 d5 d6 d7 PosO aOal a2 dOdl d2d3d4d5d6d7 PosO 
00101000000 1 00100111110 o 
01000100001 o 01000000001 o 
01011111110 o 01011011110 o 
10100001101 1 10100000000 o 
11000001111 1 11000001000 o 
.tt Ie. s,t". 

Table 5. The part of the modified training set 

POS·Class if 
1. (PosO=l) 
2. (aO=O) & (al=1) & (a2=I) & (d3=I) 
3. (a2=O) & (dl=O) & (d2=1) & (<13=1) 
4. (aO=O) & (al=1) & (d2=I) & (d7=O) 
5. (aO=O) & (d0=1) & (d1=1) & (d2=I) 

or (t:51. u:45) 
or (t:7. u:5) 
or (t:6. u:2) 
or (t:5. u:2) 

(t:5. u:l) 

NEG·Class If 
1. (aO=I) & (PosO=O) or (t:34. u:12) 
2. (a2=0) & (<12--0) & (PosO=O) or (t:20. u:8) 
3. (al=O) & (dS=O) & (PosO=O) or (t:18. u:4) 
4. (d3=0) & (dS=l) & (d7=1) & (posO=O) or (t:13. u:4) 
5. (a2=1) & (d1=O) & (d2=I) & (d4=I) & (posO=O) (t:10. u:2) 
6. (a2=I) & (dO=I) & (dl=O) & (d6=O) & (posO=O) (t:7. u:2) 

Table 6. Decision rules with the constructed attribute 

Target 
concept 

No. of 
attributes 

No. of 
classes 

No. of 
rules 

Average 
rule length 

No. of 
training 
examples 

No. of 
testing 
examples 

DNF3 32 2 6 5.5 1650 2000 
DNF4 64 2 10 4.1 2640 2000 
MX 11 32 2 8 4.0 1600 2000 
PAR 5 32 2 16 5.0 4000 2000 

Table 7. Target functions 

As expected, the new attribute was used in the output hypothesis for both POS and NEG classes. 

We can observe that most of the training examples were Uniquely covered by a rule (posO=l). 

Also, due to changes in the hypotheses space, a new useful rule (Le., a part of the target concept 

description) was induced. (See rule (2) in the POS-Class hypothesis in Table 6). The ongoing 

research investigates ways of detecting and incorporating useful items into constructed attributes. 

The final hypotheses produced by AQ17-HCI were tested against the testing set. The result was 

85.6% accuracy (to be compared with 74% accuracy from rules generated by AQ15 without 

constructive abilities, e.g. rules obtained in Step 1). 

4 Experiments with the method 
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A major measure of the performance of a learning algorithm is the classification accuracy of the 

learned concepts on the testing examples. The goal of our experiments was to test how well the 

method does according to this criterion, and how well it compares to other methods: standard 

decision rule algorithm - AQ15, standard decision tree algorithm - REDWOOD, and algorithms 

with constructive abilities: FRINGE, GREEDY3, and GROVE (Pagallo and Haussler. 1989 

&1990). 

4.1 Experimental domains 

The domains for testing AQ17-HCI and comparison with other methods were four Boolean 

functions: DNF3, DNF4. MX11. and PAR5. The same functions were used to test decision tree 

algorithms: REDWOOD (based on ID3) and FRINGE. and decision list algorithms: GREEDY3 

and GROVE (Pagallo and Haussler. 1989. 1990). 

DNF3 	 x1x2x6x8x25x28~29 or x 2 x 9 x 14..,x 16..,x22x25 or 
x1..,x4-.x19..,x22x27x28 or ..,x2..,x lOx 14..,x21..,x24 or 
xllx17x19x21..,x25 or ..,x 1..,x4x 13..,x25 

Attributes x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32 have random values for each example. 

DNF4 	 x1x4x13x57..,x59 or x18..,x22..,x24 or x30..,x46x48..,x58 or 
..,x9x12..,x38x55 or ..,x5x29..,x48 or x23x33x4Ox52 or 
x4..,x26..,x38..,x52 or x6x11x36..,x55 or ..,x6..,x9..,x10x39..,x46 or 
x3x4x21..,x37..,x57 

Attributes x2 x7 x8 x14 x15 x16 x17 x19 x20 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43 x44 
x45 x47 x49 x50 x51 x53 x54 x56 x60 x61 x62 x63 x64 have random values for each example. 

MX 11 multiplexer-II function (k=3) (Wilson. 1987). 
For each positive integer k. there exists a multiplexer function defmed on a set of k + 2k 
attributes or bits. The function can be defined by thinking of the first k attributes as address 
bits and the last attributes as data bits . The function has the value of the data bit indexed by 
the address bits1. 

Attributes x12 .. x32 have random values for each example. 

PARS parity-5 function. 
For each positive integer k. there exists an even parity function deImed on a set of k 
attributes. The function has value true on an observation if an even number of attributes are 
present. otherwise it has the value/aise. 

Attributes x6 .. x32 have random values for each example. 

1 In experiments with multiplexer function. Pagallo and Haussler (1989. 1990) classified an example as positive 
when the value of the function was 1 and negative for the value O. However, according to the definition, both values: 
oand 1 are valid values of the function. Thus. each multiplexer function needs an additional bit to indicate whether 
the value of the function was properly assigned. For the sake of comparability of the results of the HeI method with 
other methods (Pagallo and Haussler; 1989. 1990; VanDeVelde. 1989) we used the same, simpler multiplexer 
function. This function learns how to "switch on" or "set to 1" the addressed line. 
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Target 
concept 

Average % error 

AQ15 HCI 
1st Rank 100% match 1st Rank 100% match 

DNF3 
DNF4 
MX11 
PARS 

0.3 
0.2 
0.0 
1.6 

1.5 
11.5 
0.0 

18.8 

0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

Table 8. The experimental results for different problems 

No. of 
Average % error in learning target concept DNF4 

training
examples 

AQ15 HCI 
lstRank 100% match 1st Rank 100% match 

330 
660 

1320 
1980 
2640 
3960 

29.6 
7.7 
1.8 
0.8 
0.2 
0.2 

48.2 
24.8 
16.4 
13.6 
11.4 
10.5 

14.9 
1.8 
0.0 
0.0 
0.0 
0.0 

35.4 
7.0 
0.0 
0.0 
0.0 
0.0 

Table 9. The experimental results for different numbers of training examples in learning DNF4 

Table 7 provides a short description of the test domains. The number of randomly generated 

training examples was 1650, 2640, 1600, and 4000 for DNF3, DNF4, MXll, PARS 

respectively, as in (Pagallo and Haussler, 1989). For each problem, 2000 random examples 

(independent from training examples) were used to test learned hypotheses. 

4.2 Experimental results 

Here we compare the perfonnance of the AQ15 andAQI7-HCI programs. The rules generated by 

both programs were tested using the A TEST program (Reinke, 1984). A TEST views rules as 

expressions which, when applied to a vector of attribute values, evaluates to a real number. This 

number is called the degree ofconsonance between the rule and the event The method for arriving 

at the degree of consonance varies with the settings of the various A TEST parameters. Rule testing 

is summarized by grouping the results of testing all the events of a single class. This is done by 

establishing equivalence classes among the rules that were tested on those events. Each equivalence 

class (called a rank:) contains rules whose degrees of consonance were within a specified tolerance 

(tau) of the highest degree of consonance for that rank:. When ATEST summarizes the results it 
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Average % error 

Target 
Decision TREES (*)concept 
REDWOO~ 

DNF3 7.4 
DNF4 24.9 
MX11 13.1 
PARS 36.5 

FRINGE 

0.3 
0.0 
0.0 

22.1 

Decision LISTS (*) 

GREEDY3 

0.6 
0.0 
0.5 

45.8 

GROVE 

1.4 
7.8 
3.9 

41.3 

Decision RULES (t) 

AQ15 

0.3 
0.2 
0.0 
1.6 

HCI 

0.0 
0.0 
0.0 
0.0 

Table 10. The experimental results (*) from (Pagallo and Haussler, 1989, 1990)(t) Istrank 
decisions 

reports the percentage of 1st rank decisions (tau=O.02) as well as the percentage of only cOOice 

decisions (100% match) (tau=O). In our experiments we used ATEST with its default parameters. 

In learning DNF functions, the HCI method strongly outperformed AQ15 in terms of performance 

accuracy (Table 8). Table 9 shows that the HCI method requires a significantly smaller training set 

to precisely learn the DNF4 problem. These results are due to better descriptors used in expressing 

learned concepts both in the learning phase (relations already discovered and stored under new 

attributes make it possible for a deeper search for dependencies among training data) and the testing 

phase (match between an example and a more concise rule results in a higher degree of consonance 

(Reinke, 1984)). 

4.3 Empirical comparison of HCI with other methods 

Table 10 summarizes the results obtained in ten executions of the tested algorithms. The results for 

the REDWOOD, FRINGE, GREEDY3, and GROVE algorithms come from (Pagallo and 

Haussler, 1989, 1990). 

AQ17 with hypothesis-driven constructive induction capabilities has learned all the target concepts 

from fewer than the assumed number ofexamples (Table 7). 

REDWOOD and GROVE did not learn any concept with 100% accuracy. FRINGE and GREEDY3 

learned three concepts but failed to learn the P AR5 concept. It is worth noting that the standard 

decision rule system AQ15 (without constructive induction abilities) learned all the concepts. 

http:tau=O.02
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Figure 2. Learning curves for DNF4 

5 Discussion 

Both AQ15 rules and the HCI constructed rules provide a complete and consistent coverage of the 

input examples. Since HCI involves attributes constructed form AQ15 rules then a question arises: 

why AQI7-HCI produces higher accuracy on testing examples? 

The answer seems to lie in the AQI5's strategy to generalize examples. The extend-against 

operator considers attributes one at a time and is limited to the initial attributes2. This can be an 

essential obstacle in learning hard concepts in the context of preliminary description of a leamed 

problem (Rendell & Seshu, 1990). Hard concepts are spread out all over the hypotheses space and 

require multiple covers. 

2 One way to address this problem can be a lookahead technique to detect interaction between attributes, but this 
increases computational cost (Rendell and Seshu, 1990) 



13 
In order to merge those regions and make the induction process simpler, a learning algorithm has 

to detect possible attribute interactions, and construct new attributes that capture those interactions. 

A closer look at AQI7-HCI shows that it does exactly this. By selecting subsets of the best 

performing rules as new attributes, the method takes advantage of already detected attribute 

interactions and uses them in converting a hard problem to an easier one by just enlarging the initial 

attribute set. Since new attributes combine initial interacting attributes, the systematic 

transformation in a hypotheses space support the extend-against operator in finding more accurate 

and effective hypotheses. 

The results shown in Table 10 suggest that the all of the problems were hard for the standard 

decision tree algorithm REDWOOD. The reason is that the decision tree structure does not capture 

interactions between attributes. Only FRINGE which places conjunctions of initial attributes in the 

nodes of the decision tree, thus acting more like AQI5, was able to partially overcome those 

difficulties. 

The AQ15 algorithm was able to find almost perfect solutions. This suggests that the structure of 

this algorithm supports solving this kind of problems. 

6 Changes in the Representation Space 

The HCr method changes the representation space by removing irrelevant attributes and/or adding 

new attributes. Attribute removal is meant in a different way than attribute selection in selective 
learning. The same selective algorithm may build different hypotheses depending on whether an 

attribute is present in the training set. 

A domain description, expressed as a set of attributes, and a concept, expressed as a set of training 

examples, are similar in terms of potential noise. In a domain description, irrelevant attributes play 

the same role as noisy examples in training data. In both c~es, removing noise from the training 

set speeds up and improves induction (Pachowicz, 1990; Vafaie & De long. 1991). However, 

without seeing the whole training sample, it is as hard to select a proper attribute, as it is to decide 

whether an example is noisy. One could argue that there are certain measures used by selective 

algorithms that allow the estimation of the utility of a particular attibute. Unfortunately. those 

measures, do not take into consideration how the attributes are interrelated, or whether attributes 

are ambiguous. 

The solution for finding relevant attributes is analoguos to that of finding relevant examples in a 

training set (Pachowicz, 1990). The HCI method incrementaly removes from consideration those 

attributes that were not found in hypotheses, or were found in "small disjuncts" only. Thus, the 
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constructive learning algorithm incrementaly adjusts representation space with the knowledge 

extracted from learned hypotheses. Rendell & Seshu (1990) also identify the need for two 

complementary measures for estimating the discriminatory ability of a set of attributes, J.Ls and J.LX, 

to be applied during and after hypothesis induction. 

The second constructive mechanism, attribute generation, also changes the representation space. It 

is worth noting however, that this is only data reformulation without changes in the dimensionality 

of the problem space, as opposed to attribute removal operation. In the HCI method, as well as in 

the other constructive induction methods, the constructed attributes have two or more values. This 

suggests that the problem space grows with additional attributes. However, there is only one value 

in effect for each of the instances from the problem space. In this case, the new attributes express 

relations between already existing attributes. In other words, since the new attributes are functions 

defined in a problem space, they do not expand the problem space. 

Rendell & Seshu (1990) outline three levels of attribute construction: patterns (conjunctions of 

initial attributes), pattern classes (disjunctions of patterns), and pattern groups (descriptions of 

classes). Patterns are built from initial (ground) attributes, pattern classes are built from patterns, 

and pattern groups are built from pattern classes. Pattern construction is not disscused here, since it 

is an integral part of AQ algorithm (Michalski, 1973). The HCI method selects best patterns (rules) 

and builds pattern classes. Building pattern groups and the application of this method to recognize 

24 classes of textures is addressed in (Bala, Michalski & Wnek, 1992). 

7 Conclusion 

The presented HCI method of constructive induction generates new attributes on the basis of an 

analysis of the hypotheses, rather than by directly combining different attributes. This way the 

search for new attributes is very efficient, although it is more limited in the repenoire of the 

attributes that can be constructed by direct. data-driven methods (Bloedorn and Michalski. 1991). 

In our experiments. the proposed method performed very favorably, in terms of performance 

accuracy, in comparison to methods employed in such programs as AQ15, REDWOOD, FRINGE, 

GREEDY3, and GROVE. 

In the HCI method, new attributes correspond to subsets of best performing rules obtained in the 

previous iteration of the method. This is a real advantage of the method because it can easily handle 

problems with attributes of any type. such as Boolean, nominal, linear, as well as structured 

(where domains are hierarchies). The algorithm detects irrelevant attributes among those used in a 

primary description of a problem as well as those introduced during the attributes' generation 
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process. Initial and new attributes are examined according to classification abilities and new 

hypotheses building is based on the most relevant attributes. 

The presented HCI method has shown to be effective in improving performance accuracy of an 

inductive system. It has also led to a simplification of learned descriptions. 

On the other hand, generated attributes are rather complex. In future research, we plan to 

investigate attribute generation based on selected components of the best preforming rules rather 

than the entire rule. This could potentially lead to both a rapid improvement of the accuracy, as well 

as to a greater simplification of the overall complexity of the hypotheses. We also plan to test the 

method on different types of learning problems in order to determine its strongest areas of 

applicability . 
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