
92-3

Hypothesis.driven Constructive

Induction in AQ17:

A Method and Experiments

Janusz Wnek and Ryszard S. Michalski

P92·2

MLI92·2

Hypothesis-driven Constructive Induction in AQ17:

A Method and Experiments

Janusz Wnek and Ryszard S. Micbalski
GMU Center for Artificial Intelligence

4400 University Dr.

Fairfax, VA 22030, USA

{ wnek, michalski }@aic.gmu.edu

Abstract

This paper presents a method for constructive induction in which new problem-relevant

attributes are generated by analyzing consecutively created inductive hypotheses. The method

starts by creating a set of rules from given examples using the AQ algorithm. These rules are

then evaluated according to a rule quality criterion. Subsets of the best-performing rules for each

decision class are selected to form new attributes. These new attributes are used to reformulate

the training examples used in the previous step, and the whole inductive process repeats. This

iterative process ends when the performance accuracy of the rules exceeds a predefined

threshold In several experiments on learning different well-defined transformations, the method

consistently outperformed (in terms of predictive accuracy) the AQ15 rule learning method,

GREEDY3 and GROVE decision list learning methods. and REDWOOD and FRINGE decision

tree learning methods.

1 Introduction

Most programs for inductive learning from examples create descriptions in terms of attributes that

are selected from those present in the original examples. Such programs, e.g., AQV AU1

(Michalski, 1973), ID3 (Quinlan, 1983), ASSISTANT (Cestnik et al., 1987), CN2 (Clark and

Niblett, 1989), do not create new attributes or, in general, concepts in the process of learning. In

contrast to such selective inductive programs, a constructive induction program generates and uses

new concepts in the hypothesized description. These new concepts (or descriptors) can be

attributes, predicates, terms, operators, etc., and are more relevant to the learning problem than

those initially given. A constructive learning program thus performs a problem-oriented

transformation of the knowledge representation space (Michalski, 1978).

http:aic.gmu.edu

2
The idea of constructive induction was fIrst proposed by Michalski (1978), and implemented in the

INDUCE. 1 program for learning structural descriptions from examples. INDUCE. 1 used user­

defIned inference rules and procedures to generate new descriptors. These descriptors were then

employed together with the original ones in the process of induction.

Subsequently, a number of other systems have been developed that exhibit certain constructive

induction capabilities. In general, the constructive induction methods can be divided into four

categories:

• Data-Driven (DCI) - by analyzing and exploring the input data. For example:

INDUCE (Michalski, 1978)

LEX (Mitchell, Utgoff & Banerji, 1983)

AM, EURISCO (Lenat, 1983)

BACON (Langley, Bradshaw &Simon, 1983)

STAGGER (Schlimmer, 1987)

AQ17-DCI (Bloedom&Michalski, 1991)

• Hypothesis-Driven (HCI) - by analyzing generated hypotheses. For example:

FRINGE (Pagallo & Haussler, 1990) - for decision trees
AQ17-HCI (Wnek &Michalski, 1991) - for decision rules

• Knowledge-Driven (KCI) - by applying expert-provided knowledge For example:

INDUCE (Michalski, 1978)

AQ15 (Michalski, Mozetic, Hong & Lavrac, 1985)

MIRO (Drastal, Czako & Raatz, 1989)

DUCE, CIGOL (Muggleton, 1987)

• Multistrategy (MCI) - by combining different methods. For example:

PLSO (Rendell, 1985) - DCI, KCI

CIlRE (Matheus, 1989) - DCI, KCI

AQ17 (combines a whole spectrum of methods, such as .DCI, HCI, A-rules, L-rules and GDN;

Bloedorn, Michalski & Wnek, 1992).

In an attribute-based learning system, the abstraction level of attributes strongly affects the

complexity of the hypothesized rules. By employing high-level attributes, the concept

representation can be greatly simplified. Such attributes may, however, be encoded as very

complex functions of low-level primitives. In such cases, to improve the efficiency, these complex

functions have to be compiled (Flann and Dietterich 1986). One important goal of constructive

induction is therefore to discover attributes that lead to the maximal simplification of the generated

hypotheses. Another goal is to discover attributes that produce the best performing hypotheses,

that is, to emphasize the predictive accuracy of generated hypotheses, rather than their simplicity.

3
The predictive accuracy can be measured by applying the hypotheses to the testing data, and

detemrining the correctness of the predictions.

The primary goal of the method proposed in this paper is to increase the predictive accuracy of the

hypotheses. The underlying idea is to generate new attributes by analyzing the hypotheses initially

created by a selective induction process, and then by consecutive learning steps. For that reason,

the method is called a "hypothesis-driven" constructive induction (HCI). The method is a major

component of the multi strategy constructive induction system AQ17 (Bloedorn, Michalski and

Wnek. 1992).

Initial and consecutive selective hypotheses are generated by the rule learning program AQ15

(Michalski et al., 1986). AQ15 learns rules from examples represented as sequences of attribute­

value pairs. Attributes can be multi-valued and be of different types, such as nominal, linear or

structured (in which the value set is a hierarchy). The teacher presents to the learner a set of

examples of each of the concepts to be learned. The program outputs a set of general decision rules

(that are equivalent to DNF expressions) for each class. These rules cover all the examples of a

given class and none of other classes' examples (Le., they are consistent and complete

descriptions). The rules generated optimize a problem-dependent "criterion of preference." In the

case of noisy data, the program may generate only partially consistent and/or complete rules.

The program is based on the AQ algorithm, which iteratively employs a star generation procedure

(Michalski et al., 1986). A star ofan example is the set of the most general alternative rules that

cover that example. but do not cover any negative examples. In the first step, a star is generated

for a randomly chosen example (a seed), and the "best" rule in it, as defmed by the preference

criterion, is selected. All examples covered by that rule are removed from further consideration. A

new seed is then selected from the yet-uncovered examples, and the process repeats. The algorithm

ends when all positive examples are covered. If there exists a single rule that covers all the

examples (that is, there exists a conjunctive characterization of the concept), the algorithm

terminates after the fIrst step. In the presented method, the above algorithm is combined with a

process of iteratively generating new attributes, and using them in subsequent learning steps.

2 A description of tbe metbod

As mentioned above. the proposed HCI method fa hypothesis-driven constructive induction')

determines new problem-relevant attributes by analyzing the currently held inductive hypotheses

(Figure 1). Its primary goal is to determine new attributes that produce a hypothesis with the

highest predictive accuracy. A natural extension of this goal is detection and removal from the input

data any irrelevant attributes.

4
Basic steps of the proposed HCI method are:

1. 	 Induce rules for each decision class from a subset of training examples using a selective

inductive program (AQ15)

2. 	 Analyze the rules to identify irrelevant attributes

3. 	For each decision class generate one candidate attribute that corresponds to a subset of the

highest quality rules

4. 	 Modify training examples by adding newly generated attributes and removing irrelevant ones

5. 	 Induce rules from the modified training set

6. 	Evaluate the predictive accuracy of the rules on remaining training examples. If the

performance does not exceed a predefmed threshold, go to step 2.

7. 	Induce rules from the complete training set using all relevant initial and derived attributes.

The steps 1, 5, and 7 are performed by the AQ15 program. In the step 2, the HCI method

identifies those attributes that were not found in hypotheses, or were found in rules that cover

marginal number of training exemples, "small disjuncts," only. The heuristic for constructing

attributes in Step 3 includes extracting a part of a classification hypothesis which contains best

rules. This is done by sorting all rules from the output hypothesis according to the so-called tu­

weights, and selecting the maximum number of rules with the highest tu-weights that satisfy the

inequality:

[(L tUbest) / (L tuall)] < THl (1)

where

tu =t-weight + (2 * u-weight) (2)

and t-weight denotes the total number of positive examples covered by the rule, and u-weight

denotes the number of positive examples that are uniquely covered by the rule (Le., no other rule in

the hypothesis covers those examples). The constant "2" in the formula (2) was determined

experimentally (it assures that the rules with higher u-weight are preferred in a constructed

attribute). The THl threshold is a program parameter, and is set to 0.65.

The number of best rules defined by the THl threshold can be extended by those remaining rules
that do not deviate much from already selected, with respect to tu-weights. If tubest-min is a lowest

weight among rules already selected than only rules with tu-weights greater than (TH2 * tubest­

min) will be added to constructed attribute. The TH2 threshold was equal to 0.65. The motivation

for the THl and TH2 thresholds arises from an assumption about the nature of constructed

attributes: they should convey to the next learning step as much useful knowledge of the learned

problem as possible. In this setting, a fundamental part of an intermediate concept is stored as new

5
Source of

INPUT FACTS

INPUT DATA NEW DESCRIPTOR
GENERATIONFORMULATION

RULE LEARNING

NODULE

EVAlUATION

MODULE

NO

KNOWLEDGE BASE
Rules and descriptors

Figure 1. HeI method built into a rule learning system

attribute. The remaining part of a concept. which holds exceptions or noise in the data. will be

covered in following iterations. The role of the 1H2 threshold is to assure that all strong rules from

a hypothesis will form a new attribute.

Initially. there are only two values assigned to the candidate attribute that characterize a class

membership. More values can be added if the same attribute description occurred in other classes.

The new attributes are logical expressions involving previous attributes. Mter new attributes are

determined. the training set is updated with new attribute values. For each training example the

values of the new attributes are calculated by evaluating the logical expression characterizing the

new attribute.

From this outline of the method one can see that the process of inducing rules from examples may

be repeated several times in order to achieve the desired predictive accuracy. This adds complexity

6
to the learning algorithm depending on how many times steps 2-6 are repeated. The complexity of

inducing rules from examples in AQ15 is O(PN), where P is a number of positive examples and N

is a number of negative examples (every positive example is generalized against all negative

examples). The complexity of forming a new attribute is linear with respect to the number of rules

in the hypothesis. As this constant effort is made for every iteration, the overall complexity is

O(PNT), where T is the number of iterations.

New attributes introduced in each iteration in the form of learned sub-concepts from the searched

hypotheses space make the learning problem easier. The training set was already pre-partitioned by

problem oriented and statistically significant attributes. Most of the training examples are covered

with the new attributes, and only exceptions require building additional concept descriptions.

3 Exemplary problem

To illustrate the performance of the constructive search, we describe an experiment on learning a

multiplexer function with 3 inputs and 8 outputs: the so-called multiplexer-II problem (Wilson,

1987). For each positive integer k, there exists a multiplexer function defmed on a set of k + 2k

attributes or bits. The function can be defined by thinking of the first k attributes as address bits

and the remaining attributes as data bits.

The function has the value of the data bit indexed by the address bits. In the experiment, the input

examples were encoded in terms of 11 binary attributes. Thus, the description space contains 2048

elements. The training set had 64 (6%) positive examples and 64 (6%) of the negative examples.

Table 1 shows a sample of positive and negative examples. The attributes aO, aI, a2 describe

address lines, and dO-d7 describe data lines. From these examples, the rule generation phase (Step

1) produced rules for the correct (POS-Class) and incorrect (NEG-Class) behavior of the

multiplexer. The rules are shown in Table 2.

Positive
aO a1 a2

examples
dO dl d2 d3 d4 d5 d6 d7

Negative
aOal a2

examples
dOdl d2d3 d4d5 d6d7

001 01000000 001 00111110
010 00100001 010 00000001
010 11111110 010 11011110
101 00001101 1 0 1 00000000
1 1 0 00001111 110 00001000

'" .a, '" ",

Table 1. A part of the training set of examples

POS-Class it NEG-Class If

7
1. (&0=1) & (al=l) & (a2=O) & (d6=I) or (t:11, u:6) I. (aO=I) & (at=l) & (&2=1) & (d7=O) or (t:13. u:5)
2. (aO=O) & (al=O) & (81=1) & (dl=l) or (t:ll, u:5) 2. (aO=O) & (a2=O) & (d2=O) or (t:l2, u:7)
3. (&0=1) & (al=O) & (&2=1) & (d5=I) or (t:l0, u:6) 3. (82--0) & (d3=O) & (d4=O) & (d7=1) or (t:11, u:2)
4. (&0=1) & (al=l) & (&2=1) & (d7=1) or (t:l0, u:4) 4. (aO=O) & (al=O) & (&2=1) & (dl=O) or (t:l0, u:8)
5. (aO=I) & (al=O) & (a2=O) & (d4=I) or (t:9, u:5) 5. (&0=1) & (&2=1) & (d5=O) & (d7=O) or (t:IO, u:2)
6. (al=l) & (d4=l) & (d6=I) & (d7=I) or (t:8, u:l) 6. (al=O) & (82=0) & (dl=l) & (d4=O) or (t:7. u:4)
7. (at=l) & (&2=1) & (d3=I) & (d7=1) or (t:8, u:l) 7. (aO=1) & (al=l) & (81=0) & (d6=O) or (t:1, u:3)
8. (aO=O) & (81=1) & (dl=l) & (d5=O) or (t:8, u:l) 8. (dO=O) & (d3=O) & (d5=O) & (d6=O) or (t:6, u:l)
9. (82=0) & (dl=O) & (d2=I) & (d3=I) or (t:6, u:2) 9. (aO=O) & (81=1) & (&2=1) & (d3=O) or (t:5. u:5)
10. (aO=O) & (al=l) & (d3=I) & (d4=O) or (t:6, u;2) 10. (dl=O) & (d2=I) & (d3=O) & (d5=O) or (t:5. u:l)
11. (dO=O) & (d3=O) & (d4=I) & (d5=I) or (t:6. u:l) II. (aO=I) & (&1=0) & (d5=O) & (d7=1) (t:4, u:4)
12. (&2=1) & (dO=I) & (d2=0) & (d5=I) (t:3, u:l)

Table 2. Rules induced by AQ15 from examples

1. (aO=l) & (a1=1) & (a2=O) & (d6=l) or (tu:23)
2. (aO=O) & (a1=O) & (a2=1) & (d1=1) or (tu:21)
3. (aO=l) & (a1=O) & (a2=1) & (d5=1) or (tu:22)
4. (aO=l) & (a1=1) & (a2=1) & (d7=1) or (tu:18)
5. (aO=l) & (a1=O) & (a2=O) & (d4=1) (tu:19)

I. tUbest = 103; I. tUa11 = 166; [(I. tubest) I (I. tuall)] = 0.62
I. tUbest+1 =113; I. tuall =166; [(I. tubest+ 1) I (I. tuall) =0.68

Table 3. Best rules from POS-Class according to the formula (l)

POS-Class and NEG-Class are hypotheses in the k-DNF form. Each rule in the hypotheses is

accompanied with t-weights and u-weights that represent total and unique numbers of training

examples covered by a rule. For the above POS-Class hypothesis, the rules presented in Table 3

were chosen to constitute the candidate attribute PosO, (Step 3): (here we present attribute

generation for POS hypothesis only). Table 4 shows the definition of the new attribute PosO.

PosO=l 	 if (aO=l) & (a1=1) & (a2=O) & (d6=l) or
(aO=O) & (a1=O) & (a2=1) & (d1=l) or
(aO=l) & (a1=O) & (a2=1) & (d5=1) or
(aO=l) & (a1=1) & (a2=1) & (d7=l) or
(a~1) & (al=O) & (a2=O) & (d4=1)

PosO=O 	 otherwise

Table 4. The defInition of the PosO attribute

Table 5 shows the modified training set. For each old training example a new PosO attribute value

has been added (Step 4). Table 6 presents rules induced from the modified training set (Step 5).

8

Positive examples Negative examples
aO a1 a2 dO d1 d2 d3 d4 d5 d6 d7 PosO aOal a2 dOdl d2d3d4d5d6d7 PosO
00101000000 1 00100111110 o
01000100001 o 01000000001 o
01011111110 o 01011011110 o
10100001101 1 10100000000 o
11000001111 1 11000001000 o
.tt Ie. s,t".

Table 5. The part of the modified training set

POS·Class if
1. (PosO=l)
2. (aO=O) & (al=1) & (a2=I) & (d3=I)
3. (a2=O) & (dl=O) & (d2=1) & (<13=1)
4. (aO=O) & (al=1) & (d2=I) & (d7=O)
5. (aO=O) & (d0=1) & (d1=1) & (d2=I)

or (t:51. u:45)
or (t:7. u:5)
or (t:6. u:2)
or (t:5. u:2)

(t:5. u:l)

NEG·Class If
1. (aO=I) & (PosO=O) or (t:34. u:12)
2. (a2=0) & (<12--0) & (PosO=O) or (t:20. u:8)
3. (al=O) & (dS=O) & (PosO=O) or (t:18. u:4)
4. (d3=0) & (dS=l) & (d7=1) & (posO=O) or (t:13. u:4)
5. (a2=1) & (d1=O) & (d2=I) & (d4=I) & (posO=O) (t:10. u:2)
6. (a2=I) & (dO=I) & (dl=O) & (d6=O) & (posO=O) (t:7. u:2)

Table 6. Decision rules with the constructed attribute

Target
concept

No. of
attributes

No. of
classes

No. of
rules

Average
rule length

No. of
training
examples

No. of
testing
examples

DNF3 32 2 6 5.5 1650 2000
DNF4 64 2 10 4.1 2640 2000
MX 11 32 2 8 4.0 1600 2000
PAR 5 32 2 16 5.0 4000 2000

Table 7. Target functions

As expected, the new attribute was used in the output hypothesis for both POS and NEG classes.

We can observe that most of the training examples were Uniquely covered by a rule (posO=l).

Also, due to changes in the hypotheses space, a new useful rule (Le., a part of the target concept

description) was induced. (See rule (2) in the POS-Class hypothesis in Table 6). The ongoing

research investigates ways of detecting and incorporating useful items into constructed attributes.

The final hypotheses produced by AQ17-HCI were tested against the testing set. The result was

85.6% accuracy (to be compared with 74% accuracy from rules generated by AQ15 without

constructive abilities, e.g. rules obtained in Step 1).

4 Experiments with the method

9

A major measure of the performance of a learning algorithm is the classification accuracy of the

learned concepts on the testing examples. The goal of our experiments was to test how well the

method does according to this criterion, and how well it compares to other methods: standard

decision rule algorithm - AQ15, standard decision tree algorithm - REDWOOD, and algorithms

with constructive abilities: FRINGE, GREEDY3, and GROVE (Pagallo and Haussler. 1989

&1990).

4.1 Experimental domains

The domains for testing AQ17-HCI and comparison with other methods were four Boolean

functions: DNF3, DNF4. MX11. and PAR5. The same functions were used to test decision tree

algorithms: REDWOOD (based on ID3) and FRINGE. and decision list algorithms: GREEDY3

and GROVE (Pagallo and Haussler. 1989. 1990).

DNF3 	 x1x2x6x8x25x28~29 or x 2 x 9 x 14..,x 16..,x22x25 or
x1..,x4-.x19..,x22x27x28 or ..,x2..,x lOx 14..,x21..,x24 or
xllx17x19x21..,x25 or ..,x 1..,x4x 13..,x25

Attributes x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32 have random values for each example.

DNF4 	 x1x4x13x57..,x59 or x18..,x22..,x24 or x30..,x46x48..,x58 or
..,x9x12..,x38x55 or ..,x5x29..,x48 or x23x33x4Ox52 or
x4..,x26..,x38..,x52 or x6x11x36..,x55 or ..,x6..,x9..,x10x39..,x46 or
x3x4x21..,x37..,x57

Attributes x2 x7 x8 x14 x15 x16 x17 x19 x20 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43 x44
x45 x47 x49 x50 x51 x53 x54 x56 x60 x61 x62 x63 x64 have random values for each example.

MX 11 multiplexer-II function (k=3) (Wilson. 1987).
For each positive integer k. there exists a multiplexer function defmed on a set of k + 2k
attributes or bits. The function can be defined by thinking of the first k attributes as address
bits and the last attributes as data bits . The function has the value of the data bit indexed by
the address bits1.

Attributes x12 .. x32 have random values for each example.

PARS parity-5 function.
For each positive integer k. there exists an even parity function deImed on a set of k
attributes. The function has value true on an observation if an even number of attributes are
present. otherwise it has the value/aise.

Attributes x6 .. x32 have random values for each example.

1 In experiments with multiplexer function. Pagallo and Haussler (1989. 1990) classified an example as positive
when the value of the function was 1 and negative for the value O. However, according to the definition, both values:
oand 1 are valid values of the function. Thus. each multiplexer function needs an additional bit to indicate whether
the value of the function was properly assigned. For the sake of comparability of the results of the HeI method with
other methods (Pagallo and Haussler; 1989. 1990; VanDeVelde. 1989) we used the same, simpler multiplexer
function. This function learns how to "switch on" or "set to 1" the addressed line.

10

Target
concept

Average % error

AQ15 HCI
1st Rank 100% match 1st Rank 100% match

DNF3
DNF4
MX11
PARS

0.3
0.2
0.0
1.6

1.5
11.5
0.0

18.8

0.0
0.0
0.0
0.0

0.0
0.0
0.0
0.0

Table 8. The experimental results for different problems

No. of
Average % error in learning target concept DNF4

training
examples

AQ15 HCI
lstRank 100% match 1st Rank 100% match

330
660

1320
1980
2640
3960

29.6
7.7
1.8
0.8
0.2
0.2

48.2
24.8
16.4
13.6
11.4
10.5

14.9
1.8
0.0
0.0
0.0
0.0

35.4
7.0
0.0
0.0
0.0
0.0

Table 9. The experimental results for different numbers of training examples in learning DNF4

Table 7 provides a short description of the test domains. The number of randomly generated

training examples was 1650, 2640, 1600, and 4000 for DNF3, DNF4, MXll, PARS

respectively, as in (Pagallo and Haussler, 1989). For each problem, 2000 random examples

(independent from training examples) were used to test learned hypotheses.

4.2 Experimental results

Here we compare the perfonnance of the AQ15 andAQI7-HCI programs. The rules generated by

both programs were tested using the A TEST program (Reinke, 1984). A TEST views rules as

expressions which, when applied to a vector of attribute values, evaluates to a real number. This

number is called the degree ofconsonance between the rule and the event The method for arriving

at the degree of consonance varies with the settings of the various A TEST parameters. Rule testing

is summarized by grouping the results of testing all the events of a single class. This is done by

establishing equivalence classes among the rules that were tested on those events. Each equivalence

class (called a rank:) contains rules whose degrees of consonance were within a specified tolerance

(tau) of the highest degree of consonance for that rank:. When ATEST summarizes the results it

11
Average % error

Target
Decision TREES (*)concept
REDWOO~

DNF3 7.4
DNF4 24.9
MX11 13.1
PARS 36.5

FRINGE

0.3
0.0
0.0

22.1

Decision LISTS (*)

GREEDY3

0.6
0.0
0.5

45.8

GROVE

1.4
7.8
3.9

41.3

Decision RULES (t)

AQ15

0.3
0.2
0.0
1.6

HCI

0.0
0.0
0.0
0.0

Table 10. The experimental results (*) from (Pagallo and Haussler, 1989, 1990)(t) Istrank
decisions

reports the percentage of 1st rank decisions (tau=O.02) as well as the percentage of only cOOice

decisions (100% match) (tau=O). In our experiments we used ATEST with its default parameters.

In learning DNF functions, the HCI method strongly outperformed AQ15 in terms of performance

accuracy (Table 8). Table 9 shows that the HCI method requires a significantly smaller training set

to precisely learn the DNF4 problem. These results are due to better descriptors used in expressing

learned concepts both in the learning phase (relations already discovered and stored under new

attributes make it possible for a deeper search for dependencies among training data) and the testing

phase (match between an example and a more concise rule results in a higher degree of consonance

(Reinke, 1984)).

4.3 Empirical comparison of HCI with other methods

Table 10 summarizes the results obtained in ten executions of the tested algorithms. The results for

the REDWOOD, FRINGE, GREEDY3, and GROVE algorithms come from (Pagallo and

Haussler, 1989, 1990).

AQ17 with hypothesis-driven constructive induction capabilities has learned all the target concepts

from fewer than the assumed number ofexamples (Table 7).

REDWOOD and GROVE did not learn any concept with 100% accuracy. FRINGE and GREEDY3

learned three concepts but failed to learn the P AR5 concept. It is worth noting that the standard

decision rule system AQ15 (without constructive induction abilities) learned all the concepts.

http:tau=O.02

12
E Ir

r !

o I
r .__....1...._........·__...._·1·_....--......·1·..--·-_·__.."1"-..·_·­
R
a .!--..-----~

!e 20
t ..._·1-..·-..i-r-..·---.................·1·

:

..·.....­
(%)

I I I I
·······,······••••..~4 •u··..._._...•.....•I..4 .."............................_"

I Iii
i I I
i I I

o

o 330 660 1320 1980 2640 3960
Number of Training Examples

Figure 2. Learning curves for DNF4

5 Discussion

Both AQ15 rules and the HCI constructed rules provide a complete and consistent coverage of the

input examples. Since HCI involves attributes constructed form AQ15 rules then a question arises:

why AQI7-HCI produces higher accuracy on testing examples?

The answer seems to lie in the AQI5's strategy to generalize examples. The extend-against

operator considers attributes one at a time and is limited to the initial attributes2. This can be an

essential obstacle in learning hard concepts in the context of preliminary description of a leamed

problem (Rendell & Seshu, 1990). Hard concepts are spread out all over the hypotheses space and

require multiple covers.

2 One way to address this problem can be a lookahead technique to detect interaction between attributes, but this
increases computational cost (Rendell and Seshu, 1990)

13
In order to merge those regions and make the induction process simpler, a learning algorithm has

to detect possible attribute interactions, and construct new attributes that capture those interactions.

A closer look at AQI7-HCI shows that it does exactly this. By selecting subsets of the best

performing rules as new attributes, the method takes advantage of already detected attribute

interactions and uses them in converting a hard problem to an easier one by just enlarging the initial

attribute set. Since new attributes combine initial interacting attributes, the systematic

transformation in a hypotheses space support the extend-against operator in finding more accurate

and effective hypotheses.

The results shown in Table 10 suggest that the all of the problems were hard for the standard

decision tree algorithm REDWOOD. The reason is that the decision tree structure does not capture

interactions between attributes. Only FRINGE which places conjunctions of initial attributes in the

nodes of the decision tree, thus acting more like AQI5, was able to partially overcome those

difficulties.

The AQ15 algorithm was able to find almost perfect solutions. This suggests that the structure of

this algorithm supports solving this kind of problems.

6 Changes in the Representation Space

The HCr method changes the representation space by removing irrelevant attributes and/or adding

new attributes. Attribute removal is meant in a different way than attribute selection in selective
learning. The same selective algorithm may build different hypotheses depending on whether an

attribute is present in the training set.

A domain description, expressed as a set of attributes, and a concept, expressed as a set of training

examples, are similar in terms of potential noise. In a domain description, irrelevant attributes play

the same role as noisy examples in training data. In both c~es, removing noise from the training

set speeds up and improves induction (Pachowicz, 1990; Vafaie & De long. 1991). However,

without seeing the whole training sample, it is as hard to select a proper attribute, as it is to decide

whether an example is noisy. One could argue that there are certain measures used by selective

algorithms that allow the estimation of the utility of a particular attibute. Unfortunately. those

measures, do not take into consideration how the attributes are interrelated, or whether attributes

are ambiguous.

The solution for finding relevant attributes is analoguos to that of finding relevant examples in a

training set (Pachowicz, 1990). The HCI method incrementaly removes from consideration those

attributes that were not found in hypotheses, or were found in "small disjuncts" only. Thus, the

14
constructive learning algorithm incrementaly adjusts representation space with the knowledge

extracted from learned hypotheses. Rendell & Seshu (1990) also identify the need for two

complementary measures for estimating the discriminatory ability of a set of attributes, J.Ls and J.LX,

to be applied during and after hypothesis induction.

The second constructive mechanism, attribute generation, also changes the representation space. It

is worth noting however, that this is only data reformulation without changes in the dimensionality

of the problem space, as opposed to attribute removal operation. In the HCI method, as well as in

the other constructive induction methods, the constructed attributes have two or more values. This

suggests that the problem space grows with additional attributes. However, there is only one value

in effect for each of the instances from the problem space. In this case, the new attributes express

relations between already existing attributes. In other words, since the new attributes are functions

defined in a problem space, they do not expand the problem space.

Rendell & Seshu (1990) outline three levels of attribute construction: patterns (conjunctions of

initial attributes), pattern classes (disjunctions of patterns), and pattern groups (descriptions of

classes). Patterns are built from initial (ground) attributes, pattern classes are built from patterns,

and pattern groups are built from pattern classes. Pattern construction is not disscused here, since it

is an integral part of AQ algorithm (Michalski, 1973). The HCI method selects best patterns (rules)

and builds pattern classes. Building pattern groups and the application of this method to recognize

24 classes of textures is addressed in (Bala, Michalski & Wnek, 1992).

7 Conclusion

The presented HCI method of constructive induction generates new attributes on the basis of an

analysis of the hypotheses, rather than by directly combining different attributes. This way the

search for new attributes is very efficient, although it is more limited in the repenoire of the

attributes that can be constructed by direct. data-driven methods (Bloedorn and Michalski. 1991).

In our experiments. the proposed method performed very favorably, in terms of performance

accuracy, in comparison to methods employed in such programs as AQ15, REDWOOD, FRINGE,

GREEDY3, and GROVE.

In the HCI method, new attributes correspond to subsets of best performing rules obtained in the

previous iteration of the method. This is a real advantage of the method because it can easily handle

problems with attributes of any type. such as Boolean, nominal, linear, as well as structured

(where domains are hierarchies). The algorithm detects irrelevant attributes among those used in a

primary description of a problem as well as those introduced during the attributes' generation

15
process. Initial and new attributes are examined according to classification abilities and new

hypotheses building is based on the most relevant attributes.

The presented HCI method has shown to be effective in improving performance accuracy of an

inductive system. It has also led to a simplification of learned descriptions.

On the other hand, generated attributes are rather complex. In future research, we plan to

investigate attribute generation based on selected components of the best preforming rules rather

than the entire rule. This could potentially lead to both a rapid improvement of the accuracy, as well

as to a greater simplification of the overall complexity of the hypotheses. We also plan to test the

method on different types of learning problems in order to determine its strongest areas of

applicability .

Acknowledgements

The authors thank Giulia Pagallo for the help in the design of the experiments, and Kenneth De
Jong and George Tecuci for comments on the earlier version of this paper.
This research was done in the GMU Center for Artificial Intelligence. Research of the Center is
supported in part by the Defense Advanced Research Projects Agency under the grants
administered by the Office of Naval Research No. NOOOI4-87-K-0874 and No. NOOOI4-91-J­
1854, in part by the Office of Naval Research under grants No. NOOOI4-88-K-0226, No.
NOOOI4-88-K-0397 and No. NOOOI4-91-J-1351, and in part by the National Science Foundation
grant No. IRI-9020266.

References

Bala, J., Michalski, R.S. and Wnek, J., "The Principal Axes Method for Noise Tolerant

Constructive Induction," submitted to Machine Learning Conference, Scotland, 1992.

Bloedorn, E. and Michalski, R.S., "Data-driven Constructive Induction in AQ17-DCI: A Method

and Experiments," Reports ofMachine Learning and Inference Laboratory, Center for Artificial

Intelligence, George Mason University, 1992.

Bloedorn, E., Michalski, R.S. and Wnek, J., "AQ17 - A Multistrategy Constructive Learning

System," to appear in Reports ofMachine Learning and Inference Laboratory, Center for Artificial

Intelligence, George Mason University, 1992.

Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.K., "Occam's Razor," Information

Processing Letters, 24, pp. 377-380, 1987.

Cestnik, R, Kononenko, 1. and Bratko, I., "ASSISTANT 86: A Knowledge Elicitation Tool for

Sophisticated Users," Proceedings ofEWSL~87, Bled, Yugoslavia, pp. 31-45, 1987.

Clark, P., and Niblett, T., "The CN2 Induction Algorithm," Machine Learning, 3, pp. 261~284,

1989.

Drastal, G., Czako, G. and Raatz, S., "Induction in an Abstraction Space: A Form of Constructive

Induction," Proceedings of the IJCAI-89, pp. 708-712, Detroit, MI, August 1989.

16
Flannt N.S. t and Dietterich, T.O., "Selecting Appropriate Representations for Learning from
Examples," Proceedings ofAAAI-86, Philadelphia, PA, pp. 460-466, 1986.

Langley, P, Bradshaw, O.L. and Simon, H.A., "Rediscovering Chemistry With the BACON
System," in Machine Learning: An Artificial Intelligence Approach, R.S. Michalski, 1.0.
Carbonell and T.M. Mitchell (eds.), Morgan Kaufmann, 1983.

Lenat, D.B., "Learning from Observation and Discovery," in Machine Learning: An Artificial
Intelligence Approach, RS. Michalski, 1.0. Carbonell, and T.M. Mitchell (eds.), Morgan
Kaufmann, 1983.

Matheus, C., "Feature Construction: An Analytic Framework and Application to Decision Trees,"
PhD. Thesis, University of Illinois, 1989.

Michalski, RS., "AQVAUI - Computer Implementation of a Variable-Valued Logic System VLl
and Examples of its Application to Pattern Recognition," Proceedings of the First International
loint Conference on Pattern Recognition, Washington, D.C., pp. 3-17, 1973.

Michalski, RS., "Pattern Recognition as Knowledge-Ouided Computer Induction," Computer
Science Dept., University of Illinois, Urbana, 1978.

Michalski, RS., Mozetic, 1., Hong, 1. and Lavrac, N., "The Multi-Purpose Incremental Learning
System AQl5 and its Testing Application to Three Medical Domains," Proceedings ofAAAI-86,
pp. 1041-1045, 1986.

Mitchell, T.M., Utgoff, P.E. and Banerji, R., "Learning by Experimentation: Acquiring and
Refining Problem-Solving Heuristics," in Machine Learning: An Artificial I nrelligence Approach,
RS. Michalski, 1.0. Carbonell, and T.M. Mitchell (eds.), Morgan Kaufmann, 1983.

Muggleton, S., "Duce, and Oracle-Based Approach to Constructive Induction," Proceedings of
lJCAl-87, pp.287-292, Milan, Italy, 1987.

Pachowicz, P., "Application of Symbolic Inductive Learning to the Acquisition and Recognition of
Noisy Texture Concepts," in Applications ofLearning and Planning Methods, November 1991.

Pagallo, O. and Haussler, D., "Two Algorithms that Learn DNF by Discovering Relevant
Features," Proceedings ofthe 6th International MLW, Ithaca, pp. 119-123, 1989.

Pagallo, O. and Haussler, D., "Boolean Feature Discovery in Empirical Learning," Machine
Learning,S, pp. 71-99, 1990.

Quinlan, 1.R, "Induction of Decision Trees," Machine Learning 1, pp. 81-106, 1986.

Reinke, RE., "Knowledge Acquisition and Refmement Tools for the. ADVISE Meta-expert
System," Master Thesis, University of nlinois, 1984.

Rendell, L., "Substantial Constructive Induction Using Layered Information
Compression:Tractable Feature Formation in Search," Proceedings of lJCAl-85, pp. 650-658.
1985.

Rendell, L. and Seshu, R., "Learning Hard Concepts Through Constructive Induction:
Framework and Rationale," Computational Intelligence, 6, pp. 247-270, 1990.

Rivest, R., ''Learning Decision Lists," Machine Learning 2, pp. 229-246, 1987.

17
Schlimmer, I.C, "Incremental Adjustment of Representations in Learning," Proceedings of the
Fourth International Machine Learning Workshop, pp.79-90, 1987.

Van de Velde, W., "IDL, or Taming the Multiplexer," Proceedings of the 4th EWSL-89, France,
pp. 211-225, 1989.

Vafaie, H. and De Jong, K., "Improving the Performance of a Rule Induction System Using
Genetic Algorithms," in Proceedings of the First International Workshop on Multistrategy
Learning, pp. 305-315, Harpers Ferry WV, 1991.

Wilson, S.W., "Classifier Systems and the Animat Problem," Machine Learning, 2, pp. 199-228,
1987.

Wnek, I. and Michalski, R.S., "Hypothesis-driven Constructive Induction in AQI7: A Method
and Experiments," Proceedings of the IJCA/-9J Workshop on Evaluating and Changing
Representations, K. Morik, F. Bergadano and W. Buntine (Eds.), pp. 13-22, Sydney, Australia,
1991.

Wnek, J., "Transfonnation of Version Space with Constructive Induction: The VS* Algorithm,"
submitted to the Machine Learning Conference, Aberdeen, Scotland, 1992.

