EXPERIMENTAL COMPARISON OF SYMBOLIC AND
SUBSYMBOLIC LEARNING

by

J. Wnek
R. S. Michalski

HEURISTICS, The Journal of Knowledge Engineering, Special Issue on Knowledge
Acquisition and Machine Learning, Vol.5, No.4, pp. 1-21, 1992.

Experimental Comparison of Symbolic
and Subsymbolic Learning

Janusz Wnek and Ryszard S. Michalski®

ABSTRACT—This paper reporis on three studies comparing symbolic and subsymbolic methods for concept learning from
examples. The first study compared five learning methods, three representing symbolic learning paradigm—decision tree
learning (C4.5), rule learning (AQ15), and constructive rule learning (AQ17-HCI), and the other two representing the
subsymbolic paradigm—neural net learning using backpropagation (BpNet), and a classifier system employing genefic
algorithm (CFS). All methods have been experimentally applied to learn several different DNF-type concepts (i.e., concepts
representable by a simple DNF expression). The second study compared performance of a large number of learning programs
on learning DNF-type concepts from data with and without noise, and a non-DNF-type “m-of-n" concept. The third study
compared genetic algorithm based learning (GABIL and Adaptive GABIL) with decision tree learning (C45) and decision
rule learning (AQ14) on twelve DNF-type concepls. In all studies, symbolic methods, particularly those applying constructive
induction, outperformed subsymbolic methods in learning DNF-type concepts from data both without and with noise. In cases
of learning non-DNF-type concepls, symbolic methods without constructive induction performed worse, but those with
constructive induction matched the performance of neural network methods, and also gave comprehensive concept

descriptions.

Introduction

In view of a rapidly growing intcrest in multistrategy
lcarning systems, it is important to develop insights into
the performance of diverse lcamning methods and
paradigms, and to dcterminc areas of their most desirable
applicability. To this end, this paper describes three studies
comparing the performance of symbolic and subsymbolic
methods on a sample of learning problems. The first study
involved a comparison of three symbolic and two
subsymbolic methods. Symbolic methods were represented
by C4.5—a decision tree learning program, AQl5—a
decision rule learning program, and AQI7-HCI—a
constructive decision rule learning program. Subsymbolic
methods were represented by CFS—a genetic algorithm
bascd classifier system, and BpNet—a neural network
learning program using a backpropagation algorithm.
Other studies involved the same programs oOr their
diffcrent variants.

An important difference between symbolic and
subsymbolic learning approaches lies in the cognitive
aspects of the knowledge representation. Knowledge
represenied by logic-based rulcs or decision trees
(¢specially when the latter are small) is relatively easy to
comprehend and relate to human knowledge. This is not
the case with knowledge represented by classifier systems

*The authors can be reached at the Cen. for Al, 4400 University Dr.
Fairfax, VA 22020, Wnek@aic.gmu.edu or Michalski@aic.gmu.edu

Volume 5, Number 4 Winter 1992

or neural networks. While for some applications it may
not be important that the learned concept descriptions are
understandable to people, e.g., in an adaptive controller of
house temperature, in some applications, €.g., in expert
systems for human disease diagnosis, business or military
decision making, this requirement is essential.

Despite various attempts, there is no established universal
measure of cognitive comprehensibility of concept
representations {1]. Therefore, we will make a simplifying
assumption that the comprehensibility of a concept can be
roughly estimated by the number of rules needed to
express it, or the number of disjuncts in an equivalent
DNF expression. In this measure, called the R-complexity
(rule-complexity) of a concept, elementary conditions in
the rules representing a concept (or the components of
disjuncts in DNF) are assumed to be simple conditions on
attribute values. Based on this definition, one can
distinguish between two general classes of concepts:

1) Concepts expressable by a simple DNF expres-sion
(using the a priori given attributes) or de-scribed
by few rules; called DNF-type concepts.

2) Concepts requiring a complex DNF expression Of
many rules to describe them; called non DNF-type.

It is important to point out that concepts that have a long
DNF expression using given attributes, may have a short

DNF expression if these attributes are replaced by other
attributes, or transformed into combined attributes through
the process of constructive induction {2]. Thus, whether a
given concept is DNF-type or not depends on the
attributes (generally, descriptors—attributes or functions
whose values characterize the entity) that are available for
constructing a concept representation. In other words, the
R-complexity is defined with regard to the assumed
concept representation space.

All three studies compared several methods by applying
them to learning the same class of DNF-type concepts. We
found that concepts generated by human subjects who are
asked o create classes of entities, and to express them
linguistically, usually fall into such category. Given a
concept representation, its R-complexity can thus be
viewed as an approximate indication of the “cognitive"
complexity of the concept. For representations other than
rule-based, the R-complexity can be determined by
converting them to logically equivalent sets of rules. When
the description spaces are not 100 large, this can be done
using the DIAV concept visualization method, outlined in
a later section.

Presented studies follow scveral other efforts to compare
lcarning methods and paradigms. For cxample, Fisher and
McKusick [3] compared ID3 and a ncural net using
backpropagation algorithm on the problems of learning
diagnostic rules for thyroid diseascs, soybean plant
discascs, and a few artificial problems. The comparison
was based on the performance accuracy of descriptions as
applicd to testing examples and the training time. Their
conclusion was that the neural net gave a better
performance, but required a significantly longer training
time and more training examples than ID3.

Mooney et al. [4] compared ID3 with perceptron and
backpropagation algorithms using the domain of soybean
diseases, chess-end games, audiological disorders, and the
Nettalk data set. Their conclusion was that the accuracy of
classifying new examples was about the same for all the
three systems, but the neural net performed better than
ID3 when there was noise in the data. Weiss and
Kapouleas [5] compared ID3, predictive value
maximization, neural net using backpropagation, and a few
statistical methods. They found that the statistical
classifiers performed consistently better in terms of
accuracy in classifying testing examples.

Dietterich, Hild, and Bakiri [6] compared ID3 with a
neural net using backpropagation on the task of text-10-
specch mapping. Their major conclusion was that the
neural net consistently outperformed ID3 in terms of the
performance accuracy, and attributed this result to the
capture of better statistical information by the neural net.

2

Bergadano et al. [7} compared POSEIDON (also called
AQI16, it is an extended version of AQI1S using a two-
tiered concept representation) with exemplar-based and
decision tree (ASSISTANT) learning programs. Their
study involved two real-world domains: labor contracts
and U.S. congressional voting. In this study, descriptions
learned by POSEIDON outperformed those produced by
all other methods, both in terms of performance accuracy
on new examples and in terms of the description’s
simplicity.

The first study presented here differs from the above
studies in that it experimentally analyzes five different
methods. It also compares the learned descriptions in
terms of their exact error rate, rather than a statistical
error estimate, and in terms of their R-complexity. In the
study, the target and learned concepts were represented
graphically by a novel technique of diagrammatic
visualization [8). This technique permits one to display an
image of the target and leamed concepts and an error
image that identifies all errors.

The paper consists of seven sections. The second briefly
describes the five leaming systems used in the first study.
Next, the methodology used to compare the methods is
presented. Also described are training data and the
concepts to be learned (five DNF-type concepts created by
human subjects). The concepts are illustrated by the
diagrammatic visualization technique (DIAV). Following
this, results of experiments with the mcthods are de-
scribed. Next, two related studies done by other research
groups are summarized. The first one involved three types
of problems, leamning a DNF-type concept, learning a non-
DNF-type concept, and learning a DNF-type concept from
noisy data. The results were obtained using a large number
of leamning programs, that were grouped into four cat-
egories according to the representational paradigms used:
decision tree, decision rules, neural networks, and Horn
clauses. This study was coordinated by S. Thrun and in-
volved several Artificial Intelligence laboratories both in
USA and in Europe [9]. The second study applied a dec-.
ision tree learning program, a decision rule leaming
program, and two genetic algorithm-based programs to
learn twelve DNF-type concepts. The study was done by
Spears and Gordon [10]. Results from comparison of
learning systems are summarized and problems for further
research indicated.

Learning Systems Involved in the
First Study

As mentioned earlier, the symbolic paradigm is
represented by a decision tree leamning program, C4.5, and
two rule learning programs, AQ15 and AQ17-HCL The

The Journal of Knowledge Engineering

subsymbolic paradigm is represented by a backpropagation
neural network, BpNet, and a classifier system based on
a genetic algorithm, CFS. These programs aré widely
known and well described in machine learning literature.
To serve the tutorial purpose of this paper, we provide
here a brief account of the basic algorithm underlying
each program, and give references to the literature for
readers interested in further details.

Decision Tree Learning Program C4.5

C4.5 learns concepts by building 2 decision tree that
classifies supplied training examples of the concepts. Each
interior node of the tree is assigned an attribute, while the
leaf nodes are assigned concept names. A branch down
from an interior node represents a value of the attribute
assigned to the node. Any path from the root (0 a leaf in
the tree can be viewed as a decision rule for the class
assigned to that leaf.

The input to the algorithm consists of sets of training
examples for different concepts (or decision classes). In
the first step, the algorithm selects a random subset of
training examples from cach set (a "window"). Then, for
cach attribute it evaluates the information gain, i.e., the
information gained if the attribute were chosen for testing.
The attribute with the highest score is assigned to the root
node of the tree. Branches from this node represent
different values of this attribute. End-nodes of these
branches (current lcaves) arc assigned subscts of examples
in which the attribute takes the value associated with the
given branch. If a subset contains examples of only one
decision class, then the end-node becomes a leaf of the
decision tree. For all other subsets, - the algorithm is
repeated, until all leaves in the tree are assigned single
decision classes. .

At this point, the created tree correctly classifies all
examples in the window. Now the tree is used to classify
remaining examples from the training set (outside the
"window"). If the tree gives the correct answer for all
examples, then the process terminates. If not, misclassified
examples are added to the window and the process is
repeated until the trial decision tree correctly classifies all
examples not in the window. After the entire decision tree
has been generated, C4.5 recursively examines each
subtree to determine whether replacing it with a leaf or a
branch would reduce the number of errors. An operation
of replacing a subtree with a leaf or branch is called tree
pruning. Both decision trees, unpruned and pruned, are
evaluated on testing (unseen) examples.

The C4.5 program [11] is a derivative of the inductive
decision tree (ID3) program [12]. In addition to decision

Volume 5, Number 4 Winter 1992

tree generating, C4.5 is able to convert an unpruned
decision tree into sets of generalized (pruned) decision
rules. A tree is converted to rules by forming a rule
corresponding to each path from the root of the tree to
each of its leaves. All rules are then examined and some
of them are generalized (pruned) by dropping conditions.
Next, rules for each class are considered separately and
redundant rules are sifted out. For uncovered examples, a
default class is assigned.

We have tested all three representations learned by C4.5
using default parameter setting, i.e., the best tre¢ was
selected out of ten generated from the same training set,
attributes were selected according to “gainratio” (ratio of
information gain to potential information) criterion, etc. As
expected, since the training examples did not have noise,
on average, unpruned decision trees performed best in
terms of predictive accuracy. Pruned decision trees and
decision rules were simpler but more €rroneous. Thus, we
here report the results obtained for unpruned decision trees
only.

Rule Learning Program AQ15

The AQ1S5 program generates concept descriptions from
concept examples. The descriptions are in the form of
decision rules expressed in an attributional logic calculus,
called variable-valued logic VL1 [13]. A distinct feature
of this representation is that it employs, in addition 10
standard logic operators, also the internal disjunction
operator (a disjunction of values of the same attribute),
which can significantly simplify rules involving
multivalued attributes. The program can optimize the rules
according to user-defined (or default) preference criteria,
such as the overall simplicity or the evaluation and/or
storage cost of the rules. The main procedure of AQ15 is
based on the AQ algorithm that builds a concept
description from a set of positive and negative examples
(e.g., [13]). Below is a simplified version of the AQ
algorithm:

« Randomly select a seed example from the set of
positive training examples of the concept to be
learned.

« Generate a set of most general rules (a star) that
cover the seed and do not cover any negative
examples. (This operation employs the extension
against generalization operator {11.)

. Select the "best rule” from the star (according to the
assumed preference criteria), and remove examples
covered by this rule from the set of training
examples.

« If the set of training examples does not become
empty, return 10 the first Step. Otherwise, the
obtained set of rules constitutes a complete and
consistent concept description with respect to the
input examples.

The algorithm is repeated for each concept to be learned.
1t is ‘biased toward finding a conjunctive description of a
concept (a single rule), because if such a description exists
for the given set of examples, it will be found in the very
first step. (The description will be a member of the first
~ star generated.) The AQ15 program has various parameters
whose default values can be changed by a user accord-
ingly to the requirements of the domain. In the
experiments reported here, the preferred criterion was 0
minimize both the number of rules describing the
concepts, and the number of conditions in them. Since
training examples did not have noise, no rule truncation
was performed. For further details see [7, 14].

Constructive Rule Learning Program
AQ17-HCI

AQ17-HCI represents a recent major advance in the
development of the AQ-based series of inductive learning
programs, specifically, the above-described AQ15 system.
The main new feature is an incorporation of a method for
hypothesis-driven constructive induction (HCI).
Constructive induction, as introduced by Michalski in
1978 [15], addresses the problem of changing the
representation space so that it is more adequate for the
learning problem at hand. This involves creating new
attributes (or descriptors) that better characterize the
concepts to be learned than the original descriptors. The
last few years have witnessed an increasing interest in
constructive induction methods, since they can produce
concept descriptions that are more accurate and/or simpler
than those produced by the traditional selective induction
methods [2, 16, 17].

The HCI method generates problem-relevant descriptors
by analyzing consecutively created inductive hypotheses
[2]. Below is a brief description of the algorithm used in
AQ17-HCL. For the sake of simplicity, it is assumed that
the training set consists of subsets of positive examples E’,
and negative examples, E. If a training set consists of
subsets representing different concepts, then E* represents

the subset of training examples for the concept under
consideration, and the union of the remaining subsets
plays the role of E'.

HCI Algorithm

1. Randomly divide cach of the training sects, E* and E’,

into two subsets: the primary set P and the secondary
st S.E'=P US*, E =P US. (The primary train-
ing set is used for the representation space modifi-
cations. Both primary and secondary sets are used for
final rules generation).

2. For each concept, induce the most specific (ms) cover
of the set P, against the set P (Such a cover is
denoted COVms P/P.) It represents the sct of the
most specific rules that together characterize examples
in P,, but no examples in P-.

3. Evaluate the performance of the rules on the secondary
training set, S. If the performance exceeds a predefined
threshold, or all changes in the representation space
were exhausted, go to Step 8.

4. Analyze the rules in order to identify possible changes
in the representation space.

5. Change the representation space by removing irrelevant
attribute values or attributes, or by adding new
attribute values or atiributes.

6. Modify the training set of examples, E, according to
the changes in the representation space.

7. Go to Step 2.

8. For each concept, induce a set of the most specific
rules from all positive examples against all negative
examples, i.e., a cover COVms (E'/ E), and the most
general cover of negative examples against positive
examples COVmg (E/ E*).

9. Build final concept descriptions by generalizing the
most specific positive rules against the most general
negative rules, i.e., COVmg (COVms (E*/E")/COVmg
(E/E").

The AQ17-HCI program has two important moved fea-
tures. The first one is an ability to change the
representation space using HCI. This means that the
method uses additional knowledge transmutations allowing
abstraction and concretion, apart from inductive
generalization and specialization [18]. The second feature
is an extended generalization heuristic, employed in steps
8 and, 9, that additionally generalizes the most specific

rules characterizing the training set. Instead of producing

the most specific rules or most general rules (consistent
with the input examples), the obtained rules represent an
intermediate degree of generalization. This extension was
proposed by Wnek 191

The Journal of Knowledge Engincering

Neural Net Program BpNet

A neuwral network is a structure of interconnected
processing units that define a problem representation
space. They can be of three types: input, output, and
hidden. From the classification task point of view, the
input units provide means for representing instances of a
concept, while the output units denote the concept. The
hidden units are optional and can be organized in layers.
They provide communication links between input and
output units in the task of translating input example into
output classification. The units are interconnected and each
connection has its weight. The connections are directed
from input units, through hidden, to output units. Some
networks, however, may have feedback loops. Each
connection is subject to changes in the learning process.

Backpropagation, as originally introduced by Rumeihart,
Hinton and Williams {20, is a learning algorithm for feed-
forward networks (networks in which the interconnections
form no feedback loops) based on gradient minimization.
We consider a network of units in which 2 weighted sum
of the inputs is performed, the result of this sum (also
called the activation level of the unit) is being fed through
a non-lincar clement, with a sigmoid input-output function.

Lcaming by backpropagation involves two phases. During
the first phasc an cxample is presented and propagated
forward through the nctwork to compute the output values
0, for cach output unit. These outputs are then compared
with the target values ,, resulting in output errors e, for
cach unit. The sccond phase involves a backward pass
through the network (analogous to the initial forward pass)
during which the error message is passed to each unit in
the network and the appropriate weight changes are made.

The two phases are repeated until the network reaches
stable equilibrium, ie., the overall error reaches a
predefined level. The output error for a given training
example is given by

ell = oll - lll

where 0, and ¢, are the output and the target values of the
output unit n. The total squared error for that input
example is

E=) e?

neU

where U denotes the sct' of output units.
Thus, learning by backpropagation corresponds to gradient

minimization of the average squared crror. The average is
computcd over all examples in a given training set. The

Volume 5, Number 4 Winter 1992

BpNet program is an implementation of the
backpropagation algorithm [21]. :

Classifier System CFS

A classifier system is a parallel rule-based (production)
system. The rules, called classifiers, have the same form,
so it is easy to determine whether a condition part of a
rule is satisfied. Since the rules can be active
simultaneously, complex situations are expressed by
combinations of rules. The classifiers can be modified by
a general-purpose learning system.

Classifier system learning and classification in done in
cycles. In each cycle, an input example is translated into
a message that has the same form as the condition part of
the rules. The message is compared with all rules. All
matched rules compete with each other in order 0 become
active and to produce new messages. The new messages
can either store some intermediate information and then be
used in the next cycle, or produce a classification, if
matched with the system’s effectors. The classification is
compared with the target class of the example and paycff
is distributed among active rules. It means that given a sct
of classificrs, the behavior of the classifier can be changed
by changing the strengths associated with those classificrs.
In particular, the strength of classifiers that cause system’s
correct behavior can be increased; and the strength of
classificrs that deteriorate the performance of the system
can be decreased.

The leaming process can be supplemented by utilizing
genetic algorithms, a class of adaptive search technigues.
"Genetic algorithms derive their name from the fact that
they are loosely based on models of genetic change in a
population of individuals. These models consist of three
basic elements: (1) a Darvinian notion of "fitness," which
governs the extent to which an individual can influence
future generations; (2) a "mating operator,” which
produces offspring for the next generation; and (3)
"genetic operators,” which determine the genetic makeup
of offspring from the genetic material of the parents” {22].

Classifier systems were first introduced by Holland and
Reitman [23, 24). The shell for the classifier system used
in the experiments was developed by Riolo {25]. The CFS
package of subroutines and data structures is domain

. independent and provides routines to perform the major

cycle of the classifier system. The CFS system was run in
the stimulus-response mode, ie., without generating
internal messages. Training cycles were repeated fifty
times for each example. Payoff for correct and incorrect
answer was sct 10 6 and -1, respectively, with a full payoff
paid to all active classificrs. Final classification was

produced by two effectors. The CFES package uses more
than 150 control parameters. The population size of sixty
classifiers, number of training cycles, payoff, and about 20
other parameters were determined experimentally. The
remaining parameters were set to default values.

Methodology

The testing domain in this study is the world of robot-like
figures in the EMERALD system [26] (Emerald is a large-
scale system integrating several different learning
programs for the purpose of education and research in
machine learning. It was developed at the Center for
Artificial Intelligence at George Mason University. An
carlier version, ILLIAN, was developed by the second
author and his collaborators at the University of Illinios at
Urbana-Champaign and is demonstrated at the

Boston Museum of Science). For simplicity’s sake, the
robots arc described by just six multivalued attributes
(Figure 1-A). The auributes are Head Shape, Body Shape,
Smiling, Holding, Jacket Color, and Tie, and can have 3,
3, 2, 3, 4, and 2 values, respectively. Consequently, the
size of event space (the space of all possible robot
descriptions) is 3 x 3 x 2 x 3 x 4 x 2 = 432, The space of

all possible concepts in this space is 2%* -1 (=10').
Undergraduate computer science students, unfamiliar with
machine learning, were asked to create five concepts
characterizing subsets of imaginary robots from a
predefined set of sixteen robots in the EMERALD system.
Below are descriptions of the five concepts ("Target
concepts”) used in the experiments (the numbers in
parantheses represent the total numbers of positive and
negative examples, respectively):

C1l: Head is round and jacket is red or head is square
and is holding a balloon (84 positive, 348 negative)

C2: Smiling and is holding balloon or smiling and head

is round (120 positive, 312 negative)

C3: Smiling and not holding sword (144 positive, 288

negative)

C4: Jacket is red and is wearing no tie or head is round

and is smiling (117 positive, 315 negative)

CS: Smiling and holding balloon or sword (144 positive,

288 negative)

A. ROBOTS Domain B. Concept Ct T1 HOUC
‘ y
Attributes Possible Values n S
HS Head Shape round, square, octagon it Y | bir
BS Body Shape round, square, octagon 1
SM Smiling yes, no Y| f
HO Holding sword, balloon, flag u
JC Jacket Color red, ysllow, green, blue | Y | s
TI Tie yes, no o SR e n
y
e rukab
+ Positive example A= Y
nf
= Negative example / Y
R2 —
Call A - a robot description: = n®
[HS=r] & [BS=r] & [SM=y] & [HO=f] & [JC=g] & [Ti=n] -+ EARg M
=il n
Target concept C1 consists of two rules: & e — ;
Rule R1: Head is round and jacket is red / Tl
Rule R2: head is square and is holding balloon A y
% —{ b |b
- cells representing rule R1: [HS=r] & [JC=r] - ;
- cells representing rule R2: [HS=s] & [HO=b]} : _H f
: smy[a][y[n[y[n]y[n[y[n]yin]y[n]y[n]yin
HS| r s] r s o r s o
BS r S o

Figure 1. The Target Concept C1 and the Initial Training Examples in the ROBOTS Domain

The Journal of Knowledge Engineering

Concept C2 Concept C3
[SM=y] &[HO = b] or SM=y] & [HS =1] HOUC (SM =y] &[HO =D, f]

=

‘~< =l-<

¥ ¥

i

1
=I'< :!l‘< ﬂl'< ="< =[‘< :ll‘< =l‘< ﬂl'< Hl% =“< =
]

SM;[n y[n]y[n ‘ymln y[y[n[y[n]yin]y|n

=l-< =lt< =|~< =I-< =|-< =|‘< =1~< =l~< =]-<.=l‘<'=“<‘-‘='l~<

=

Concept C4 HOUJC Concept C5
[WC=r&[Tl=n] or (HS=r] &{SM=y] [SM =y]&[HO =s, b]

+ Positive example — Negative example Target concept

Figure 2. A Visualization of the Target Concepts C2, C3, C4 and CS, and the Initial
Training Examples for Each Concept

Volume 5, Number 4 Winter 1992

Each such concept represents a partitioning of the event
space into robots that belong to the concept (positive
examples) and those that do not (negative examples).
Based on the concepts C1-C5 the students generated initial
sets of training examples used in Experiment 1. Each
initial training set consisted of approximately 5 positive
examples and 11 negative examples (6% of all possible
positive examples and 3% of all possible negative
examples). The remaining sets for Experiments 2-5 were
generated by adding to the initial set an appropriate
number of randomly generated examples. The average
total sizes of the training sets in Experiments 2-5 are
following: 12 positive and 30 negative (10% and 10%), 18
positive and 30 negative (15% and 10%), 30 positive and
30 negative (25% and 10%), 122 positive and 30 negative
(100% and 10%). The additional experiments were
performed in order to observe the convergence of the
lcarned concepts to the target concepts.

The concepts C1-CS are presented graphically in Figures
1-B and 2 using a method for diagrammatic visualization.
This method employs a General Logic Diagram (GLD)
which is a planar representation of a multi-dimensional
space spanned over multivalued discrete attributes. (The
system DIAV implementing the visualization mecthod
permits one to directly display description spaces up to 10°
cclis—c.g., about twenty binary attributes.) Larger spaces
can also be displayed, but their representations have to be
projccted to subspaces [8, 13]. Each cell in the diagram
represents a combination of the attribute values, e.g., a
concept example. For example, the cell A in Figure 1-B
represents the following robot description:

Hcad Shape = round, Body Shape = round, SMiling =
yes, HOlding = flag, Jacket Color = green, Tle = no

Positive and negative training examples are marked with
+ and -, respectively. Concepts are represented as sets of
cells. The concept C1 can be described by two rules:

R1: Head Shape is round and Jacket Color is red
R2: Head Shape is square and is HOlding balloon

The rules are represented in the diagram by shaded areas
marked R1 and R2.)

The diagrammatic visualization method permits one to
display the target and learned concepts, individual steps in
a learning process, and the errors in learning. The set of
-cells representing the target concept (the concept to be
lcarncd) is called target concept image (T). The set of
cclls representing the lcammed concept is called learned
concept image (L). The arcas of the target concept not

covered by the learned concept represent errors of
omission (T \ L), while the areas of the learned concept
not covered by the target concept represent errors of
commission (L \ T). The union of both types of errors
represents the error image. In the diagrams, errors are
marked by slanted lines.

Figure 3 explains the meaning of various cases in concept
visualization. Concept images are represented in the
diagrams by shaded areas, e.g., Figure 3-A. If the target
and leamned concepts are visualized in the same diagram,
then the shaded areas represent learned concept (Figure 3-
B). Error image is represented by slanted areas. It is easy
to distinguish between errors of omission and errors of
commission. Since errors of commission are part of a
learned concept, corresponding areas on the diagram are
both shaded and slanted. Errors of omission are not part
of the learned concept, thus the corresponding slanted
areas remain white in the background. The location of the
target concepts is implicitly indicated by correctly learned
concept and errors of omission. The parts of the target
concept that were correctly learned are shaded only.

A. Target concept

Figure 3. Interpretation of Various Areas in the
Diagrammatic Visualization

The descriptions learned by the methods were compared
in terms of the exact error rate. Exact error rate is the

The Journal of Knowledge Engineering

ratio between exact error and the size of event space. Itis There are many ways to define error rates in order to

measured as a function of the number of training characterize learning capabilities of a system. Here are
examples. Exact error is defined as the total number of three assumptions related to the Equation 1. Firsdy, for
errors of omission and errors of commission, or simplicity, we do not make any distinction between errors
equivalently the cardinality of the set-difference between of omission and errors of commission, which may be
the union and the intersection of the target and learned important in some real-world domains. Secondly, Equation
concepts. 1 indicates that if the event space were large and the
target concept were relatively small, then the error rate

Exact_error would always be small, and thus, not sensitive to learning

Exact_error_rate = errors. Figure 4 illustrates two cases where Equation 1

would give the same error rate for different learning

where results. In the first case (Figure 4-A), a system did not

- - learn any part of the target concept and still maintained

Exact_error =#[(NL)UUAT) =# (TULNTOL)] 2% error rate, or, in other words, it was 98% accurate!

Since the correct performance of a system is artificially

increased by the system’s performance on non-examples

of a concept, the error estimating method is subjected to
the Hempel’s paradox {27, 28].

#Event_space

where (T\L) — error of omission,
(L\T) — error of commission

Equation 1.

A. Target concept A — "small concept” B. Target concept B — "large concept®

1111 { 1 TIIIT] Il
s un 1

5
A’. Concept A is not learned at ali: B'. Large portion of concept B is learned:
Exact_error_rate = (2%) Exact_error_rate = (2%)

T T

i it

1

V/A Errors of omission
A+

Correctly learned concept

EZ7) Errors of commission

Target concept %

Figure 4. The Dependence of the Error Rate Definition on the Size of the Target Concept

Volume S, Number 4 Winter 1992 9

In the second case (Figure 4-B), where the target concept
occupies relatively large portion of the event space, the
2% error rate intuitively reflects the true performance of
a system. In our experiments, the description space is
small and the target concepts cover approximately 30%.

The third assumption related to Equation 1 is that in order
to get complete insight into the performance of the tested
methods, we used all examples from the event space to
test the performance. In other studies, training examples
might have been excluded from the testing phase.

In addition to the exact error rate, we used R-complexity
(rule complexity) measure of a method performance. The
R-complexity of a concept representation is defined by the
number of conjunctive statements (rules) in the minimal
DNF expression that is logically equivalent to the given
representation. Since finding such a minimal DNF
expression for any given representation may be difficult (it
is generally an NP-hard task), we use an estimate of the
R-complexity. For a method that learns a rule-based
representation, the number of rules generated by the
mcthod is taken as such an estimate. For example, the R-
complexity of the C1-C5 target concepts is 2,2, 1, 2 and
1, respectively. For a decision tree learning method, the R-
complexity is estimated by the number of leaves in the
tree, since each leaf corresponds to a rule. For neural nets
and classifiers, the R-complexity is cstimated by
determining the number of conjunctive statements needed
to re-cxpress the learned concept as a DNF expression.

Experiments in the Robots Domain

Representations Learned

Figure 5 presents an example of representations learned by
each method. In the figure, the representations were
learned- in Experiment 1 from 6% of all positive and 3%
of all negative examples of the target concept C1:

Head is round and jacket is red or head is square and is
holding a balloon.

A Decision Tree Generated by C4.5

Figure 5-A shows the best, unpruned decision tree selected
out of ten different trees generated from the training set.
The learmed concept is described using two attributes:
Jacket Color and Head Shape. The learned concept can be
read as follows:

IF Jacket Color is red and Head Shape is round or

Jacket Color is red and Head Shape is square or
Jacket Color is green and Head Shape is square

10

THEN C1

The exact error rate is 16.7% and the R-complexity of this
tree is 3. After pruning, the tree is reduced to a root
labeled ~C1. Such a tree classifies all examples as not
belonging to concept C1 and thus produces 84 omission
errors (19.4% error rate). The R-complexity of this tree is
1. The third representation learned by C4.5 is decision
rules obtained from the unpruned decision tree (Figure §-
A). After rule pruning and simplification, the final
outcome consists of two rules:

1) IF Head Shape is octagonal THEN ~C1
2) DEFAULT CLASS is ~Cl1

These decision rules are equivalent to the pruned decision
tree and produce the same error. The R-complexity is 2.

A Decision Rule Generated by AQ1S5

The method generated one rule. It consists of three
conditions. Each condition tests values of one attribute.
The intcrnal disjunctions simplify the rule (Figure 5-B).

A Decision Rule Generated by AQ17-HCI

The rule learned by AQ17-HCI was exactly equivalent to
the target concept (Figure 5-C). It was generated in a
transformed, smaller description space. Figure 6 shows
steps in leaming concept C1 by AQ17-HCI. The input to
the method is a set of training examples in the original
representation space as shown in diagram A (the diagram
also shows the target concept). The method divides the
training set into primary and secondary examples and
employs the AQ15 leaming algorithm to induce rules from
the primary set of training examples (diagram B). Since
the performance test on the secondary training set is not
satisfactory, the representation space is reduced to contain
relevant attributes only, i.e., those attributes that are
present or significant in the induced hypothesis. The
method changed ROBOTS original representation space by
removing three irrelevant attributes: Body Shape, SMiling,
and Tle (diagram C). The new representation space
implied changes in the event space so the number of
training examples was decreased by 1. It is due to the fact
that two positive examples, E1 and E2, from the original
event space, have the same description in the new event
space.

El: (round, round, yes, sword, red, no)
E2: (round, square, yes, sword, red, yes)
Although such an abstracted problem is simpler for

The Journal of Knowledge Engincering

Decision Tree Learning (C4.5)

Error rate = 17% R-complexity =3

Jacket Color

~C1

C1 C1 ~C1 ~C1 C1 ~C1

B | Rule Learning (AQ15)

if (Head

Error rate = 19% R-complexity = 1

Shape = round or square) & (Holding = sword or balloon) & (Jacket Color = red or green) then C1

¢ | Constructive Rule Learning (AQ17-HCI)

Error rate = 0% R-complexity =2

If (Head Shape = round & Jacket Color = red) or
(Head Shape = square & Holding = balloon) then C1

D | Neural Net (BpNet) Error rate = 21% R-complexity = 23

Head Shape Body Shape Smiling Holding Jacket Color Tie
e N N TN AN Y
L -0.12-0.34 -0.45 0.42 -2.1 -14 21 1.
R 0.18 0.1 -0.7 1
Q Q

13 -078 05 -001 -03 06 21 14 068

6
18 1.7 -21 -13 0.9 -1.71 -0.6 012 13 -1.4 -21 31 074
@

1.23
Q

an

e — Hidden units

Sigmoid §lgm01d @)

+2.4 5 -1.3

Output unit

Sigmoid (1)

y if y>0.5 then C1 else ~C1
E | Classifier System (CFS) : Error rate = 21% R-complexity = 38
HS BSSMHOJCTI

No Id Conditiont Condition2 Action Strength BidRatio

1 1227 m0OOC000 01 O# 1 10 #1 1, mOO#OO# 01001 10#1# /10 1101100#0000 O# 222 0.81
2 1236 m0O00000 ©O1 O# 1 10 #1 1, mOO#0O# 01001 10#1# /101101 100#0000 0# 219 0.81
3 1217 mO#0000 00 10 1 00 O# O, m##0000 #0101 00#0# /10 0#1101101100 11 208 0.78

60 0017 mOOOOOO 01 01 1 10 01 1, m0000O# 0100110111 /10 1101100#0000 O# 34 0.25

HSBSSMHOJCTI
Effector 1: if m100 #41 0# 11 0 10 011 then Ct
Effector 2: 1f m10 1 ### 11 01 1 00 #00 then~C1

Figure 5. Re

presentations of the Concept C1 Leamned by Different Methods (From the Initial Set of Examples Consisting
of 6% of Positive and 3% of Negative Examples)

Volume 5, Number 4 Winter 1992 11

A. Target concept C1 and initial training examples [Tl HOUC C. Target concept C1 in the reduced space E
+ SN | y -
; ik & i
y -] o —
: Wb Y
3 y — - | - -l g
= B ! —
y - - - b
= 1=]S —
7 Hs[rsJo[r|s]o]r]s]o
Dl HO s b £
- B
¥ D. Maximally specific "positive" concept:
- n]® COVpns (E*/E) e
s B y Shed
j =l P | ® ={r
v -
= o miil £l
- y - -
Gk O
Y | bl : - g - b
- % n S
- ap Hs[r [sJo]rfsfof[r[s]o
u 0 s b

E. Maximally general “negative” concept:

-/E+
L-%— s COVmg (E"/E*)
Y
N
y
ol
Y]
n S
RSN
n y HS[r[sflorsJofr]s]o
R HO s b f
n
y
n] ¢
Y F. Final concept learned (no errors) C]
— b —
nl’|® ¥ I, =|Ir
Y f S
n — — - y
y —
1S — d | - -lig
¥ L]
. b|b — - | - b
= —::—f HS[r|s|o|r]s|o|r]|s]o
B. Concept C1 as learned from the set of primary {TIHOJJC HO S b
training examples
<+ Positive example @ Secondary positive ex. Intermediate concepts Errors of omission

12

= Negative example & Secondary negative ex. Target concept or final c. learned Errors of commission

Figure 6. Steps in Learning Concept C1 by AQ17-HCI

The Journal of Knowledge Engineering

learning, the resulting hypothesis is still not accurate
(diagram D). At this point, the training data set seems to
be insufficient to allow proper learning. The lacking
information can, however, be induced while taking into
consideration both positive and negative hypotheses.
Figure 6, diagrams D and E show two covers, COV,,
(E*/E") and COV,,, (E/E"), that were generated using ail
initial training examples. AQ17-HCI generalized the
positive concept description against the negative concept,
and, by this means, improved the leamed concept. The
concept C1 was learned precisely (Figure 6, diagram F).

A Neural Net Generated by BpNet

Figure 5-D shows an architecture of the neural net used in
the experiments. There were seventeen input units, all
having either value O or 1, corresponding to attribute-
values. All input units had connections to two hidden
units. The number of hidden units was determined
experimentally. The two hidden units were connected to
one output unit. The network was trained by the BpNet
backpropagation algorithm until it reached a root mean
square crror below 0.0007. The figure also shows final
connection weights for the concept C1. Due to the space
limitations, the connections from the input units to the left
hiddcn unit and the right hidden unit are specified in the
rows marked L and R, respectively. The weights from the
hidden units to the output unit arc 2.4 and -1.3. An input
cxample is classificd as a class member if it is translated
into output valuc greater or equal 0.5.

Classifiers Generated by CFS

Each line in Figure 5-E represents one classifier in the
following format No, Id, Classifier, Strength, and
BidRatio [25]. The total population for representing the
concept consists of 60 classifiers. Each of the classifiers
(condition-action rules) is in the following form:
conditionl, condition2 / action. Each condition consists of
a string of a fixed length (16), built from the tertiary
alphabet (0, 1, #). A condition string with prefix "m" is
matched by any message that has O's and 1's in exactly the
same positions as the 0's and 1's in the condition string.
The # in the condition is considered as a "wildcard”
symbol that can match a 0 or a 1. A classifier's condition-
part is satisfied when both of its conditions are matched.
When the condition-part of a classifier is satisfied, the
classifier becomes active, i.e., its action-part produces one
output message. The # in the action part has different
meanings. Here it plays a role in the "pass throug" in the
sénse that ‘whever it occurs in the action part, the
corresponding bit in a message is passed through into the
produced message. The messages generated by active
classifiers are compared to effectors in order to produce

Volume 5, Number 4 Winter 1992

final classification. In Figure 5-E, BidRatio is a number
between one and zero that is a measure of the classifier's
specificity, i.e., how many different messages it can
match. Strength is meant to be a measure of a classifier's
"usefulness” to the system, thus the higher a classifier's
strength, the more it bids.

Summary of Results

Figures 6 and 7 present the results of learning concept C1
by the five learning systems using diagrammatic
visualization. In comparison to the representations in
Figure 5, these diagrams give a uniform image of the
learning results. From the diagrams, one can easily
determine learning accuracy (correct vs. error areas—black
vs. shaded areas) and interpret the errors (why certain
areas were covered or not). Most importantly, one can
generate rules equivalent to the learned representation and
determine a R-complexity of the description. This feature
is especially useful for subsymbolic systems that do not
have easily understood knowledge representation, as
shown in Figure 5.

The final concept description leamed by AQ17-HCI
exactly matches the target concept and, thus, there are no
slanted areas in diagram F, in Figurc 6. The other four
methods did not learn the concept C1 precisely; however,
all the methods were consistent with the training examples
(Figure 7). The error rate level is almost cven for all of
them (about 20%), but one can note differences in their
generalization patterns. The symbolic methods yield
regular, rectangular covers, as opposed to irregular covers
of subsymbolic methods.

Tables 1 and 2 summarize the results of all the experi-
ments. For each leamning program, the final result in
Experiment 1 is an average over results from learning the
five concepts from their initial training sets (column 1). In
the remaining experiments, since additional examples were
generated randomly, the testing was repeated 10 times for
each concept. Consequently, for each learning program,
the result is an average from 50 learning sessions (cols. 2-
5). Pairs (a,b) in the top row of the tables denote the
percentage of positive and negative examples used in
experiments.

Table 1 shows the average exact error rate of the
descriptions learned in five experiménts, and Figure 8
presents corresponding learning curves. The error rate of
the CFS-generated descriptions was much higher then that
of the other descriptions, and what is most surprising, it
did not improve much with the growth of the training sets.
Differences between decision tree learning (C4.5), neural
network (BpNet), and decision rule learning (AQ15) are

13

Decision tree learning program C4.5 HOUC Neural net learning program BpNet

iy . F
blr .
, -
) - S
4 /7 Z7 bly

=R

=lm]b|®
.g~. & '
— s
27 7 7 .
A= 7 A
— f
sM{y[n[y[n[y[n]y[n]y[n]y[nTy[n]y[n[y]n ylyhyInyp Iy yIny]n [yn]sm
r s 0 r s [r S o [HS
r s o BS
¥ . =
n S
ank
y
ol
| Y | 7
n|°® - = ¥
y e
by VA | |
y
!
Y
n s —]
y 4
=L .
= R -
- n % &
= RAN
n
?’ A)7 Y | bib 157 /
=7 A T mE
= R -
n
Decision rule learning program AQ15 TIHOJC Classifier system CFS
Correct classification
4 Positive example (6% of all possible) Errors of omission + /] Target concept

Learned concept

= Negative example (3% of all possible) Errors of commission

Figure 7. Concepts Learned by Different Methods in the Relation to the Target Concept C1

14 The Journal of Knowledge Engineering

Percentage of Training Examples Used in Each Experiment
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment §
(6%, 3%)* (10%, 10%)* (15%, 10%)* (25%, 10%)* (100%, 10%)*
Genetic Alg. 21.3% 20.3% 22.5% 19.7% 16.3%
(CFS)
Neural Nets 9.7% 6.3% 4.7% 7.8% 4.8%
(BpNet)
Decision Trees 9.7% 8.3% 1.3% 2.5% 1.6%
(C4.5)
Decision Rules 22.8% 5.0% 4.8% 12% 0.0%
(AQ15)
Decision Rules 4.8% 12% 0.0% 0.0% 0.0%
(AQ17-HCY)

Table 1. The Average Error Rate of Learned Descriptions
* In cach (x%, y%), x denotes percentage of positive training examples selected from all possible positive examples, and
y—negative training examples selected from all possible negative examples

Percentage of Training Examples Used in Each Experiment
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
(6%, 3%)* (10%, 10%)* (15%, 10%)* (25%, 10%)* (100%, 10%)*
Genetic Alg. 49 45 51 48 41
(CFS)
Neural Nets 35 26 12 22 12
(BpNet)
Decision Trees 3.1 28 25 25 2.5
(C4.5)
Decision Rules 26 22 2 1.6 1.6
(AQ15)
Decision Rules 24 2.0 1.6 1.6 1.6
(AQ17-HCI)

Table 2. Numbers of Rules Representing Concepts Learned by Different Methods (R-complexity)
* In each (x%, y%), x denotes percentage of positive training examples selected from all possible positive examples, and
y—negative training examples selected from all possible negative examples

relatively small, although only AQ1S precisely learned all
concepts.in Experiment 5. The 4.8% average error rate of
the BpNet-gencrated concepts was primarily due to an
inadequate leaming of concepts C1 and C4. Also, decision
trees generated by C4.5 produced some error even when
100% positive examples were given. For AQ15-generated
descriptions, errors in experiments 2-4 were primarily due
to errors in learning concept C1. The results of the
constructive rule leaming program AQ17-HCI show that

Volume 5, Number 4 Winter 1992

all the concepts were precisely leaned when the program

- was given 15% positive and 10% negative examples. In all

experiments, AQ17-HCI generated the best performing
descriptions.

One interesting finding is that increasing the number of
training examples in experiments 1 to 5 resulted in only a
slight improvement in the performance of the CFS-
generated descriptions (from 21.3% to 16.3%). Other

15

Predictive

Accuracy ,
AQl7 AQ1lS C4.5 BpNet
100% —
95% —
0% —
CFS
85% —
80% f T T T T T T T
10% 30% 50% 70% 100%

Positive Training Examples

Figure 8. Leamning Curves for Concepts in the ROBOTS Domain for the Fixed Number of 10% of Negative Examples

interesting findings are that even with 100% positive
examples, the ncural net, the genctic algorithm, and to a
smaller degree the decision tree method, did not learn the
concepts preciscly. The CFS classifier system does not
secem to be well-suited for DNF-type problems. To further
test this finding, this paper reports results involving other
genctic algorithm based systems.

Table 2 gives the average R-complexity of the descriptions
learned from different training sets. This measure gives a
clear division between symbolic and subsymbolic methods.
The symbolic methods generate approximately ten times
simpler descriptions then the subsymbolic methods. The
results in this table are correlated with the results in Table
1. Methods that perform better in terms of predictive
accuracy consistently yield simpler concept descriptions.

As mentioned earlier, target concepts were generated by
human subjects, and therefore the study favored methods
that use symbolic representations, as such representations
are more closely related to human representations.
Studying how systems learn such human-generated
concepts is important for applications where knowledge
that needs to be acquired is in such forms, and/or
applications where the knowledge learned needs to be
understood by human experts. There are problem domains
in which these factors are not relevant. Next, two studies
present a wider range of problems involving both DNF-
type and non-DNF-type concepts.

16

Second Study: The MONK's Problems

This study reports results from a performance comparison
of different learning algorithms on three problems defined
in the ROBOTS domain [9]. The so called MONK's
problems address three machine lcaming problems.
Problem 1 is a DNF-type problem. Next is a "m-of-n,"
non-DNF-type problem. The concept to be leamed
requires a very complex DNF expression to describe it in
terms of the available attributes. Problem 3 is DNF-type,
but the learning data set contains noise.

Problem M1:
Head shape is the same as the body shape, or color
of the jacket is red.

Training set contains
examples. No noise,

124 randomly selected

Problem M2:
Exactly two of the six given attributes take their first
value.

For example, if attributes Head Shape and Body
Shape take value round , which is the first value in
their value set, then no other attribute may take the
first value in its value set. Training set contains 189
randomly selected examples. No noise.

The Journal of Knowledge Engineering

Problem M3:
Jacket is green and holding a sword, or jacket is not
blue and body is not octagonal.

Training set contains 122 randomly selected
examples. 5% noise in the data.

The tested algorithms fall into 4 categories:

+ Neural Networks (Backpropagation, Cascade
Correlation)

« Decision Trees (ID3, Assistant Professional, ID5R,
IDL, IDSR-hat, TDIDT, PRISM)

o Decision Rules (AQ17-DCI, -HCI, -FCLS,
AQ14-NT, AQ15-GA, AQR, CN2)

« Inductive Logic Programming-ILP (mFOIL).

Table 3 shows all reported results [9]. No one classifier
based on genetic algorithms was tested as a separate
program. In the AQ15-GA program, genetic algorithms are
used in conjunction with AQIS. Genetic algorithms are
used to explore the space of all subsets of a given attribute
set, and AQI15 is used to build concept descriptions. This
multistrategy approach improves performance accuracy of
the symbolic leaming system while learning the M3
problem.

* Programs compared in the first study. § Constructive induction programs. Experiments were performed at the following
laboratories: 1) School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA; 2) Al Laboratory,
Josef Stefan Institute, Ljubljana, Slovenia; 3) Institute for Real-Time Computer Control Systems and Robotics, and University
of Karlsruhe, Karlsruhe, Germany; 4) Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium; 5) Al-
Lab, Institutc for Informatics, University of Zurich, Switzerland; 6) Center for Artificial Intelligence, George Mason

PREDICTION ACCURACY
PARADIGM PROGRAM DNF-type | Non-DNF | DNF-type
{no noise) (m-of-n) (noise)
Neural Nets * (1)| Backpropagation 100% 100% 93%
(1) | Cascade Correlation 100% 100% 97%
Decision Trees (2) | Assistant Professional 100% 81% 100%
*(3)] ID3 99% 68% 94%
(3) | ID3 (no windowing) 83% 69% 96%
(3,4)] IDSR 82% 69% 95%
(4) | ID5R-hat 90% 66% —
(4| IDL 97% 66% —
4)| TDIDT 76% 67% —
(5) | PRISM 86% 73% 90%
Decision Rules (6) | AQI14-NT 100% T7% 100%
3)| AQR 96% 80% 87%
3)| CN2 100% 69% 89%
6)| AQ15 100% 77% 84%
6)| AQ15-GA 100% 87% 100%
96)| AQ17-DCI 100% 100% 97%
*q(6)| AQ17-FCLS 100% 93% 97%
q6)] AQ17-HCI 100% 93% 100%
(6)| AQ17 100% 100% 100%
Inductive Logic P. (2)| mFOIL 100% 69% 100%

Table 3. Summary of Results for MONK's Problems

University, Fairfax, Virginia, USA.

Volume §, Number 4 Winter 1992

Problem M1 is of similar complexity to C1-C5 ROBOTS
problems, and it is ecasily learned by decision rule
algorithms, AQI1S and AQ17-HCI ID3 cannot learn
concept M1 precisely; however, M1 was learned by
another decision tree algorithm: Assistant Professional
neural nets and decision trees paradigms, one can find
programs that correctly learned descriptions (Cascade
Correlation, Assistant Professional).

Problems M2 and M3 are difficult for selective decision
rule and decision tree algorithms AQ1S5, and ID3. The
learned descriptions have either high R-complexity
(problem M2) or contain rules that cover noisy examples
(problem M3). These problems were not learned as well
by a hybrid of decision rules and decision trees, i.e.,
decision lists (CN2 algorithm, [29]). This suggests that
techniques other then those implemented in these programs
are required to solve this kind of problem.

The hypothesis-driven constructive induction method

implemented in AQ17-HCI changes the representation
space by narrowing and/or expanding the inital set of
attributes. The method analyzes inductive hypotheses
generated by a selective program and removes and/or
generates new attributes. The new attributes are patterns
found either in conditions or in the rules. This is sufficient
to solve the M3 problem. Problem M2, however, still
remains hard. A solution lies in another type of change in
the representation, i.c., attribute generation based on
combining initial attributes using logical and/or algebraic
operators [30]. An initial integration of constructive
induction methods was done in the AQ17 program. The
multistrategy constructive induction program AQ17
learned all three MONK's problems.

Third Study: The nDmC
Learning Problems

This study uses another artificial domain to test twelve
DNF concepts and is based on the experiments conducted

Paradigm PREDICTION ACCURACY
(Program)
1DmC 2DmC 3DmC 4DmC
Genetic Alg.
(GABIL) 96% 93% 90% 89%
(Adptv GABIL) ¢ 97% 96% 95% 94%
Decision Trees
(C4.5) * 98% 95% 89% 84%
Decision Rules
(AQ14) * 99% 97% 96% 95%
Table 4. Prediction Accuracy in the Four DNF Categories
* Programs compared in the first study. § Multistrategy learning program.
Paradigm CONVERGENCE
(Program) (No examples needed to achieve 95% accuracy)
1DmC 2DmC 3DmC 4DmC

Genetic Alg.
(GABIL) 94 169 151 167
(Adptv GABIL) ¢ 63 83 84 88
Decision Trees
(C4.5) * 96 135 209 206
Decision Rules
(AQ14) ¥ 33 52 102 105

Table 5. Convergence to 95% in the Four DNF Categories
* Programs compared in the first study. { multistrategy leaming program.

18

The Journal of Knowledge Engineering

by Spears and Gordon {10]. The experiments involved
learning concepts in a designed domain defined by 4
nominal attributes, each having 4 distinct values. The
representation space consisted of 256 examples (vectors of
attribute values). There were twelve DNF-type target
concepts, differing from each other in the number of rules
(the number of disjunctions), and in the number of
conditions in disjunctions (the conjunctions in the rules).
All twelve concepts can be characterized by the formula
nDmC, in which n, the number of disjunctions, varied
from 1 to 4, and m, the number of conjunctions, varied
from 1 to 3. Spears and Gordon first compare three
learning methods. Two symbolic methods represented by
C4.5—a decision tree learning program and AQl4—a
decision rule learning program. Subsymbolic methods
were represented by GABIL—Genctic Algorithms Batch
Incremental Learner. They conclude that AQ14 is the best
performer and use some of AQ's strategies to improve
GABIL. The resulting multistrategy system, Adaptive
GABIL, is finally evaluated using the same problems.

Tables 4 and 5 show the results from testing the systems
- according to the prediction accuracy and the convergence
criteria. The prediction accuracy is an average aver all
values on a learning curve. The convergence criterion is
the number of cvents scen before a 95% prediction
accuracy is maintained [31]. The results in the tables were
averaged for cach DNF category over three cases (m =
1..3).

Problems labcled 1DmC and 2DmC arc similar to
problems C1-C5 defined in ROBOTS domain, as far as
the R-complexity of descriptions is concerned. In learning
such problems, the symbolic lcarning program AQl4
outperformed the other three programs, both in terms of
predictive accuracy and convergence to 95%. For the
remaining problems, 3DmC and 4DmC, AQ14 maintains
the best prediction accuracy. However, the Adaptive
GABIL algorithm -that combines symbolic™ and
- subsymbolic strategies outperformed the decision tree
learning algorithm.

Summary and Future Work

From the multistrategy lcarning point of view, it is
important that capabilitics and limitations of different
learning strategics and paradigms arc well understood. The
goal of this study was to make experiments that would
help 10 develop insights into the performance of diverse
learning approaches on selected classes of learning
problems.

Onc finding is that symbolic mcthods outperformed
subsymbolic methods in lcarning DNF-type problems. We

Volume 5, Number 4 Winter 1992

found that the performance accuracy of symbolic methods
was high, the convergence to the target concept fast, the
learned descriptions have matched or closely matched the
target concepts, and were easy to understand, In addition,
preliminary results show that the symbolic methods
performed very well with DNF-type problems with noise,
which contradicts a sometimes expressed belief that neural
nets are particularly good for such problems, and symbolic
methods are not. The most surprising result, however, was
that symbolic methods employing constructive induction
performed on par with neural nets on learning non-DNF-
type concepts, such as “m-of-n.” For such problems,
neural nets were supposed to be superior, as the problems
are easily representable by such nets. Multistrategy
methods, such as those implemented in AQ17 family and
Adaptive GABIL, although at an early stage of
development, have already shown an improved
performance over monostrategy methods.

The performance of the programs was analyzed using a
diagrammatic visualization system, DIAV. This system,
working on line with a learning program, turned out to be
a very uscful too! for visualizing leamed and target
concepts, comparing the learned concepts, and presenting
errors in learning (an “error image™). The method was
also exceptionally useful for visualizing concepts leamed
by subsymbolic methods, and comparing them with
concepts learned by symbolic methods, such as ncural net
learning and genetic algorithm lcamning. Concept images
helped comprehending knowledge encoded in a neural
network or in a population of classifiers. In addition, the
visualization method enabled us to determine the R-
complexity of the concepts learned by the subsymolic
methods.

Among important topics for the future is the application of
the methods to a wider range of non DNF-type problems,

-such as learning a text-to-speech mapping [6, 32], and to

randomly generated problems, in order to evaluate an
overall performance of the methods. Future research might
also compare the performance of the methods in learning
from noisy data, from inconsistent examples, and in
learning imprecisely defined or flexible concepts [7].

Acknowledgments

The authors thank Ken Kaufman, Gheorghe Tecuci and
Jianping Zhang for comments on earlier drafts of this
paper. They are grateful to Jayshree Sarma and Ashraf A.
Wahab for performing experiments with backpropagation
algorithm BpNet and genetic algorithm learning program
CFS, Ross Quinlan for providing a copy of C4.5 system,
and to Rick Riolo for providing a copy of his CFS-C
software.

19

This rescarch was done in the Center for Artificial
Intelligence at George Mason University. The Center's
research is supported in part by the National Science
Foundation under the grant No. IRI-9020226, in part by
the Defense Advanced Rescarch Projects Agency under
the grant administrated by the Office of Naval Research
No. N00014-91-J-1854, in part by the Office of Naval
Research under the grant No, N00014-91-J-1351, and in
part by the grant No. F49620-92-J-0549, administered by
the Air Force Office of Scientific Research.

References

1. Michalski, R.S. 1983. A Theory and Methodology of
Inductive Learning. In Machine Learning: An Artificial
Intelligence Approach, ed. R.S. Michalski, J.G. Carbonell
and T.M. Mitchell. Los Altos, CA: Tioga/Morgan
Kaufmann. :

2. Wnek, J. and Michalski, R.S. 1991. Hypothesis-Driven
Constructive Induction in AQ17 - A Method and
Experiments. In Proceedings of 1JCAI-91 Workshop on
Evaluating and Changing Representation in Machine
Learning. Sydney, Australia.

3. Fisher, D.H. and McKusick, K.B. 1989. An Empirical
Comparison of ID3 and Backpropagation. In Proceedings
of 1JCAI-89. Detroit, MI: Morgan Kaufmann.

4, Mooncy, RJ., Shavlik, J., Towell, G., and Gove, A.
1989. An Experimental Comparison of Symbolic and
Conncctionist Learning Algorithms. In Proceedings of
1JCAI-89. Detroit, MI: Morgan Kaufmann.

5. Weiss, S.M. and Kapouleas, 1. 1989. An Empirical
Comparison of Pattern Recognition, Neural Nets, and
Machine Learning Classification Methods. In Proceedings
of IJCAI-89. Detroit, MI: Morgan Kaufmann.

6. Dietterich, T.G., Hild, H. and Bakiri, G. 1990. A
Comparative Study of ID3 and Backpropagation for
English Text-to-Speech Mapping. In Proceedings of the
7th International Conference on Machine Learning.
Austin, TX: Morgan Kaufmann.

7. Bergadano, F., Matwin, S., Michalski, R.S., and Zhang,
J. 1992. Learning Two-tiered Descriptions of Flexible
Concepts: The POSEIDON System. Machine Learning 8,
5-43.

8. Whnek, J. and Michalski, R.S. 1992. A Diagrammatic
Visualization of Learning Processes. To appear in Reports
of Machine Learning and Inference Laboratory, George
Mason University.

20

9. Thrun, S.B., ‘et al. 1991, The MONK’s Problems: A
Performance Comparison of Different Learning
Algorithms. Computer Science Reports, Carnegie Mellon
University, CMU-CS-91-197, Camegie Mellon University.

10. Spears, W.M. and Gordon, D.F. 1991. Adaptive
Strategy Selection for Concept Learning. In Proceedings
of the First International Workshop on Multistrategy
Learning. Harpers Ferry, WV: Center for Al George
Mason University.

11. Quinlan, J.R. 1989. Documentation and User’s Guide
for C4.5. unpublished.

12. Quinlan, JR. 1986. Induction of Decision Trees.
Machine Learning 1, no.1, pp. 81-106.

13. Michalski, R.S. 1973, AQVAL/1 - Computer
Implementation of a Variable-Valued Logic System VL1
and Examples of its Application to Pattern Recognition. In
Proceedings of the First International Joint Conference on
Pattern Recognition. Washington, D.C.

14. Michalski, R.S., Mozetic, L., Hong, J. and Lavrac, N.
1986. The Multi-Purpose Incremental Learning System
AQ15 and Iis Testing Application to Three Mecdical
Domains. In Proceedings of AAAI-86. Philadclphia, PA:
Morgan Kaufmann.

15. Michalski, R.S. 1978. Pattern Recognition as
Knowledge-Guided Computer Induction. Technical Report,
927, Computer Science Dept., University of Illinois,
Urbana.

16. Pagallo, G. and Haussler, D. 1990. Boolean Feature
Discovery in Empirical Learning. Machine Learning 5,
no.l, pp. 71-99.

17. Rendell, L.A. and Seshu, R. 1990. Leamning Hard
Concepts Through Constructive Induction: Framework and
Rationale. Computational Intelligence 6, pp. 247-270.

18. Michalski, R.S. 1993. Inferential Leaming Theory:
Developing Foundations for Multistrategy Learning. In
Machine Learning: A Multistrategy Approach, Vol IV. ed.
R.S. Michalski and G. Tecuci. San Mateo, CA: Morgan
Kaufmann,

19. Wnek, J. 1992. Version Space Transformation with
Constructive Induction: The VS* Algorithm. Reports of
Machine Learning and Inference Laboratory, ML1-92-01,
Center for Al, George Mason University.

20. Rumelhart, D.E., Hinton, G.E., and Williams, R.J.

The Journal of Knowledge Engineering

1986. Learning Internal Representations by Error
Propagation. In Parallel Distributed Processing, ed. D.E.
Rumelhart and J.L. McClelland. Cambridge, MA: The
MIT Press.

21. McClelland, J. and Rumelhart, D. 1988. Explorations
in Parralel Distributed Processing. Cambrige, MA: MIT
Press.

22. DeJong, K.A. 1990. The Genetic Algorithm Approach
to Machine Learning. In Machine Learning: An Artificial
Intelligence Approach, ed. Y. Kodratoff and R.S.
Michalski. Palo Alto, CA: Morgan Kaufmann.

23. Holland, J.H. and Reitman, J.S. 1978. Cognitive
Systems Based on Adaptive Algorithms. In Pattern-
directed Inference Systems, ed. D.A. Waterman and F.
Hayes-Roth. New York: Academic Press.

24. Holland, J.H. 1986. Escaping Brittleness: The
Possibilities of General Purpose Learning Algorithms
Applicd to Parallel Rule-Based Systems. In Machine
Learning: An Artificial Intelligence Approach, ed. R.S.
Michalski, J.G. Carbonell and T.M. Mitchell. Los Altos,
CA: Morgan Kaufmann.

25. Riolo, R.L. 1988. CFS-C: A Package of Domain
Indcpendent Subroutines for Implementing Classifier
Systems ~ in Arbitrary, User-Defined Environments.
Technical Report, Logic of Computers Group, Division of
Computer Science and Engincering, University of Mich-

Volume 5, Number 4 Winter 1992

igan.

26. Kaufman, K.A., Michalski, R.S. and Schultz, A.C.
1989. EMERALD 1: An Integrated System of Machine
Learning and Discovery Programs for Education and
Research. User's guide MLI-89-12, Al Center, George
Mason University.

27. Hempel, C.G. 1965. Aspects of Scientific Explanation.
New York: The Free Press.

28. Kodratoff, Y. 1993. Induction and the Organization of
Knowledge. In Machine Learning: A Multistrategy
Approach, Vol. IV. ed. R.S. Michalski and G. Tecuci. San
Mateo, CA: Morgan Kaufmann.

29. Clark, P. and Niblett, T. 1989. The CN2 Induction
Algorithm, Machine Learning 3, pp. 261-284.

30. Bloedom, E. and Michalski, R.S. 1992. Data-driven
Constructive Induction in AQ17-DCI: A Method and
Experiments. Reports of Machine Learning and Inference
Laboratory, MLI-92-03, Center for Al, George Mason
University.

31. Valiant, L.G. 1984. A Theory of the Leamable.
Communications of the ACM 27, pp. 1134-1142.

32. Sejnowski, TJ. and Rosenberg, C.R. 1987. Parallel

Networks that Learn to Pronounce English Text. Complex
Systems 1, pp. 145-168.

21

