A THEORY AND METHODOLOGY OF INDUCTIVE
LEARNING

R. §. Michalski

Readings in Knowledge Acquisition and Learning: Automating the Construction and
Improvement of Expert Systems, B. G. Buchanan and D. C. Wikms (Eds.), San Mateo,
CA, Morgan Kaufmann, 1993.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

READINGS 1IN

i
knowledge

®
acqguisition
52
and learning
-

AUTOMATING THE
CONSTRUCTION AND
IMPROVEMENT OF

EXPERT SYSTEMS

Ok

Edited by Bruce G. Buchanan e3 David C. Wilking

MORGANMN KAUFMANN PUBLISHERS

SAN MATEO, CALIFORMNIA

A Theory and Methodology of
Inductive Learning

Ryszard S. Michalski

Department of Computer Science, University of Hlinois,
Urbana, IL 61801, U S.A.

Recommended Bruce Buchanan

ABSTRACT
A theory of inductive leaming is presented thai characierizes it ay o hewristic search through a space
of symbolic descriptions, genevased by an applicalion of cenain inference rules 1w he initial
observational siatements {the weacher-provided exampies of some comcepts, or facis about a class of
objects or a phenomenon). The inference rules include generalization nudes, whick perform generaliz-
ing ransformations on descriptions, and conveniional truth-preserving dedwuctive rules (specialization
and reformulanion rules). The applicalion of the inference rules 1w descriptions is constrained by
probiem backgrond knowledge, and guided by criteria evaluating the ‘quality” of generased indiscrive
assErons.

Based on this theory, a general methodology for leaming soructwal descriptions from exampies.
called STAR, is described and iflustraied by a problem from the area of conceprual daia analysis.

“...scientific knowledge through demonstration’
is impossible unless a man knows the primary
immediate premises...." "...we must get

to know the primary premises by induction;

for the method by which even sense-

perception implants the universal is inductive . ..
{circa 330 B.C))

Asisiotic, Posterior Analytics, Book II, Ch. 19.

1. Introduction
The ability of people to make accurate generalizations from few scattered facts

or to discover patterns in seemingly chaotic collections of observations is a

'1.e.. whai we now call "deduction’.

Artificial Inielligence 28 {1983) 111~ 161
0004-3702/83/0000-0000/$03.00 © 1983 North-Holland

This paper originally appeared in the journal, Artificial Intelligence, Vol. 20, No.
2, and is reprinted here with penmission of the publisher, Elsevier, Amsterdam.

£ce

fascinating research topic of long-standing interest. The understanding of this
ability is now also of growing practical importance, as it holds the key to an
improvement of methods by which computers can acquire knowledge. A need
for such an improvement is evidenced by the fact that knowledge acquisition is
presently the most limiting ‘bottleneck’ in the development of modern know-
ledge-intensive artificial intelligence sysiems.

The above ability is achieved by a process called inductive leaming i.c.,
inductive inference from facts provided by a teacher or the environment. The
study and modeling of this form of learning is one of the ceniral 1opics of
machine learning. This paper outlines a theory of inductive learning and then
presents a methodology for acquiring general concepts from examples,

Before going further into this 10pic, let us first discuss the potential for
applications of induclive learning systems. One such application is an
aulomated consiruction of knowledge bases for expert systems. The present
approach to constructing knowledge bases involves a tedious process of for-
malizing experts’ knowledge and encoding il in some knowledge representation
system, such as production rules [75,17] or a semantic network [7,24]. In-
ductive learning programs couid provide both an improvement of the current
techniques and a basis for developing alternative knowledge acquisition
methods.

In approprialely selected small domains, inductive programs are already able
to determine decision rules by induction from examples of expert decisions.
This process greatly simplifies the iransfer of knowledge from an expert into a
machine. The feasibility of such induclive knowledge acquisition has been
demonstrated in the experst system pLanT/ds, for the diagnosis of soybean
diseases. In this system, the diagnostic rules were developed in two ways: by
formalizing experts’ diagnostic processes and by induction from examples. In
an experiment where both types of diagnostic rules were tested on a few
hundred disease cases, the inductively derived rules outperformed the expert-
derived ones {51}. Another example is an inductive acquisition of decision rules
for a chess end-game [53, 61, 63].

A less direct, but potentially promising use of induclive learning is for the
refinement of knowledge bases initially developed by human experts. Here,
inductive learning programs could be used 10 detect and rectify inconsistencies,
to remove redundancies, to cover gaps, and to simplify expert-derived decision
rules. By applying an induclive inference program to the data consisting of
original rules and examples of correct and incorrect results of these rules’
application to new situations, the rules could be incrementally improved with
hittle or no human assistance. |

Another important application of inductive programs is in various experi-
meninl sciences, such us biology, chemistry, psychology, medicine, and

genetics. Here they could assisi a user in detecting interesting conceplual
patterns or in revealing structure in collections of observations. The widely
used traditional mathematical and statistical data analysis 1echnigues, such as
regression analysis, numerical taxonomy, or factor analysis, are nol sufficiently
powerful for this task. Methods for conceprual data analysis are needed, whose
results are not merely mathemalical formulas but logic-style descriptions,
characterizing data in terms of high-level, human-onented concepts and rela-
tionships. An early example of such an application is the Meta-Dendral
program |9] which infers cleavage rules for mass-specirometer simulation (see
its analysis in [20]).

There are two basic modes in which inductive programs can be utilized: as
interactive tools for acquisition of knowledge from specific facts or examples,
or as parts of machine-learning systems. In the first mode, a user supplies
learning examples and exercises sirong control over the way the program is
used (e.g., [51, 70]).

In the second mode, an inductive program is a component of an integrated
learning system whose other components generale the needed learning
examples [10]. Such examples—positive and negative-—consiilute the feedback
from the system's attempts to perform a desired task. An example of the
second mode is the learning systemn LEX for symbolic integration [57], where a
‘generalizer’ module performs induclive inference on instances provided by a
‘cntic’ module.

From the viewpoint of applications, such as aiding the construction of expen
sysitems or concepiual analysis of experimenial data, the most relevant is
conceprual inducrive learning. We use this term to designate a type of inductive
learning whose final products are symbolic descriptions expressed in high-level,
human-oriented terms and forms (more details are given in Section 3.1). The
descriptions typically apply to real world objects or phenomena, rather than
absiract mathematical concepts or computations. This paper is concerned
specifically with conceptual inductive learning.

The most frequently studied type of such learning is concept learning from
examples (called also concepr acquisition), whose task is to induce gencral
descriptions of concepts from specific instances of these concepts. The early
studies of this subject go back to the fifties, e.g., those by Hovland [33|, Bruner,
Goodnow and Austin [8], Newell, Shaw and Simon{60], Amarel|1],
Feigenbaum {21], Kochen|38], Banerii{2], Hunt[34], Simon and
Kotovsky {76], Hunt, Marin and Stone [35], Héijek, Havel and Chytil [26] and
Bongard [6]. Among more recent contributions there are those, for instance, by
Winston [87). Waterman [86], Michalski [45], Hayes-Roth {28], Simon and Lea
|77). Stoflel [BI], Vere [8S], Lurson [40], Larson and Michaiski [41]. Muchell |56},
Quinlan |70} and Moraga [58]. An important vanant of concept learning from

reg

buiuwiea; aAnonpul 1o Abojopoyiew pue Aioey} v

examples is the incremenmial concept refinement, where the input information
includes, in addition to the training examples. previously learned hypotheses,
or human-provided initial hypotheses thal may be partially incorrect or incom-
pleie (e.g., [52]). The paper by Dienterich and Michalski [20] discusses various
evaluation criteria and several methods for concept learning from examples.

Another 1ype ol concepiual inductive learning is concept learning from
observation (or descriptive generalizaiion), concerned with establishing new
concepts or theories characterizing given facts. This area includes such topics as
automaled theory formation (e.g., {9, 42, 43]), discovery of relationships in data
(e.g., [27, 66, 39]}, or an automatic construction of taxonomies (e.g., |50, 54)).
Diflerences beiween concept learning from examples and concept learning
from observation are discussed in more detail in the next section.

Conceptual induclive learning has a sirong cognitive science flavor. Its
emphasis on inducing human-oriented, rather than machine-oriented descrip-
tions, and ils primary inlerest in nonmathematical domains distinguishes it
from other types of inductive learning,’ such as grammaiical inference and
program synthesis. In grammatical inference, the task is to determine a formal
grammar thal can generate a given set of symbol strings (¢.g., [80, 4. 89, 23]). In
program synihesis the objective is to consiruct a computer program from 1/0
pairs or computational traces, or to transform a program from one form to
another by applying correctness-preserving transformation rules (e.g., [74. 11,
3, 13, 36, 79, 63]). The final result of such learning is a computer program, in an
assumed programming language, destined for machine rather than human
‘consumption’. For example, the method of ‘model inference’ by Shapiro [73]
constructs a PROLOG program characterizing a given set of mathematical facts.

Recent years have witnessed the development of a number of task-oriented
inductive learning systems that have demonstrated an impressive performance
in their specific domain of application. Major weaknesses, however, persist in
much of the research in this area. Most systems lack generality and exten-
sibitity. The theoretical principles upon which they are built are rarely well
explained. Lack of common terminology and an adequate formal theory makes
it difticult 1o compare different learning methods. _

In the following sections we formulate logical foundations of inductive
learning, define various types of such learning, present inference rules for
generalizing concept descriptions, and finally describe a general methodology,
called sTag, for learning structural descriptions from examples. To improve the
readubility of this chapter, below is presented a 1able of used symbols.
Appendix A gives the details of the description language used (the annotated
predicate calculus).

1.1. Symbols and notation

~ negation,
& conjunction (logical product),

disjunchion {logical sum),
implication,
logical equivalence,
Lerm rewriling,
exception (symmetric difierence),
a set of facis (formally, a predicate thai is true lor all the facts),
a hypothesis {an inductive asserlion},
specialization,
genesalization,
reformulation,
v existentiai quantifier over v,
A(Noy, numerical quantifier over u; (I is a set of integers),
¥Yv, universal quantifier over v,
D, a concept descniption,
K, a predicate asserting a concept name (a class) of objects,
1> the implication linking a concept description with a concept name,
¢, an evenl (a description of an object),
E, a predicate that is true only for the training events of the concept,
x, an attribute {zero or one argument descriptor),
LLEF a lexicographic evaluation functional,
DOM(p) the domain of descripior p.

rTARvImc Y-

2. Types of Inductive Learning

2.1. Inductive paradigm

As mentioned before, inductive learning is a process of acquiring knowledge by
drawing inductive inferences from teacher- or environment-provided facts.
Such a process involves operations of generalizing, transforming, comecting
and refining knowledge representations. Although it is one of the most com-
mon [orms of learning, it has one fundamental weakness: except for special
cases, the acquired knowledge cannot, in principle, be completely validated.
This predicament, observed early on by Scottish philosopher David Hume
{18th century), is due to the fact that inductively acquired assertions are
hypotheses with a potentially infinite number of consequences, while only a
finite number of confirming tests can be performed.

Traditional inquiries into inductive inference have therefore dealt with
questions of what are the best criteria for guiding the selection of inductive
assertions, and how can these assertions be confirmed. These are difficult
problems, permeating all scientific activities. The scarch for answers has turned
inductive inference into a battlefield of philosophers and logicians. There was
even doubt whether it would ever be possible to formalize inductive inference
and perform it on a machine. For cxample, philosopher Karl Popper [68)
believed that inductive inference requires an irrational element. Bertrand

DISeUYIIN 'S Y

see

Russell in *History of Western Philosphy” [71] stated: *. .. so far no method
has been found which would make it possible 10 invent hypotheses by rule™.
George Polya[67] in his pioneering and now classic treatise on plausible
inference (of which inductive inference is a special case) observed: "' A person
has a background, a machine has not; indeed, you can build a machine to draw
demonstrative conclusions for you, but [think you can never build a machine
that will draw plausible inferences'.

The above pessimisiic prospects are now being revised. With the develop-
ment of modern computers and subsequent advances in artificial intelligence
research, it is now possible 1o provide a machine with a significant amount of
background information. Also, the problem of automating inductive inference
can be simplified by concentrating on the subject of hypothesis generation,
while ascnbing to humans the question of how to adeguately validate them.
Some successful inductive inference systems have already been built and a
body of knowledge is emerging about the nature of this inference. The rest of
this section will analyze the logical basis for inducuve inference, and then
Section S will present variocus generalization rules, which can be viewed as
inductive inference rules,

In contrast to deduction, the starting premises of induction are specific facts
rather than general axioms. The goal of inference is to formulate plausibie
general assertions that explain the given facts and are able 10 predict new facts.
In other words, inductive inference attempts 10 derive a complete and correct
description of a given phenomenon from specific observations of that
phenomenon or of parts of it. As we mentioned earlier, of the two aspects of
inductive inference—ithe generation of plausible hypotheses and their valida-
tion {the establishment of their truth status)—wenly the first is of primary
interest to inductive learning research. The problem’ of hypothesis validation, a
subject of various philosophical inguiries (e.g., {12]) is considered to be of
lesser importance, because it is assumed that the generated hypotheses are
judged by human experts, and tested by known methods of deductive inference
and statistics.

To understand the role of inductive inference in learning, let us consider
several different ways in which a system can acquire a description of a class of
objects (situations, decisions, ¢tic.).

(1) By receiving the description from a teacher and incorporating it within the
sysiem’s existing knowledge structures {(e.g., [25]). This way is called ‘leaming by
being 1old’, '

" {2) By inferring the description from characteristics of a superset of the object
class. This way is called 'learming by deductive inference’.

{3) By modifying the description already possessed about a similar class of
objects {e.g., [88]). This way is called ‘leamning by analogy’.

{4) By generalizing teacher-provided examples and counter-exampies of
objects from this class. This way is called 'learning from examples’.

(5) By experimenting, discovering regularities, formulating useful concepts
and structuring observations about the objects. This way is called ‘leaming
from observation’ (or ‘learning by discovery’).

Although all of these ways, except for the first one, involve some amount of
inductive inference, in the last two, i.c., in leamning from examples and in
learning from observation, this inference is the central operation. These two
forms are therefore considered 1o be the major forms of inductive learning. In
order 1o explain them, let us formulate a general paradigm for inductive
inference.

Given:

(a) observational statements (facis), F, that represent specific knowledge
about some objecis, situations, processes, etc.,

» {b) a tentative inductive assertion (which may be null),

(¢} background knowledge ihat defines the assumptions and constraints
imposed on the observational statemenis and generated candidate inductive
assertions, and any relevant problem domain knowledge. The last includes the
preference criterion characterizing the desirable properties of the sought in-
ductive assertion.

Find:
An inductive assertion (hypothesis), H. that tautologically or weakly implies
the observational statements, and satisfies the background knowledge.

A hypothesis H tautologically implies facts F if F is a logical consequence of
H, i.e., if the expression H 3> F is irue under all interpretations (‘=" denotes
logical implication). This is expressed as follows.

HPF (read: H sptci'an'zes to F) (1}
or
FkH (rcad: Fgeneralizes 1o H). 2)

Symbols p and k are called the specialization and generalizarion symbols,
respectively. i H= F is valid, and H is true, then by the law of detachment
{modus ponens) F must be true. Deriving F from H (deductive inference), is,
therefore, truth-preserving. In contrast, deriving H from F (inductive in-
ference) is not truth-preserving, but falsity-preserving, i.e., if some facts talsify
F then they also must falsify H. (More explanation on this lopic is given in
Section 5.) _

The condition that H weakly implies F means that facts F are not certain but
only plausible or partial consequences of H. By allowing weak implication, this
paradigm includes methods for generating ‘soft’ hypotheses, which hold only
probabilistically, and partial hypotheses, which account for some but not all of
the facts (e.g., hypotheses representing ‘dominant patierns’ or characterizing
inconsistent data). In the following we will limit our attention to hypotheses
that tautologically imply facts.

9ce

Buiures; aanonpur jo ABojopoyiew pue A10ay} v

For any given set of facts, a potennially inhnite number of hypotheses can be
generated that imply these facis. Background knowledge is therefore necessary
to provide the constraints and a preference criterion for reducing the infinite
choice to one hypothesis or a few most preferable ones.

A 1typical way of defining such a criterion is to specify the preferable
properties of the hypothesis—for exampile, to require that the hypothesis is the
shoriest or the most economical descnption consistent with all the facts (as,
e.g., in [46]). Such a ‘biased choice’ criterion is necessary when the description
language is complele, i.c., able to express any possible hypothesis. An alter-
native is to use a ‘biased language’ criterion [57], restricting the description
language in which hypotheses are expressed (i.e., using an incomplete descrip-
tion language). Although in many methods the background knowledge is not
explicitly stated, the authors make implicit assumptions serving the same
purpose. More details on the criteria for selecting hypotheses are given in

Section 4.7.

2.2. Concept acquisition vs. descriptive generalization

As mentioned in the introduction, one can distinguish between two major types
of inductive learning: learning from examples {concept acquisition) and learning
from observation (descriptive generalizartion). In concepl acquisition, the obser-
vational statements are charactierizations of some objects (situations, processes,
eic.) preclassified by a teacher into one or more classes (concepts). The induced
hypothesis can be viewed as a conceplt recognitian rule, such that if an object
satisfies this rule, then it represents the given concept. For example, a recog-
nition rule for the concept ‘philosopher’ might be: ' A person who pursues wisdom
and gains the knowledge of underlying reality by intellectual means and moral
self-discipline is a philosopher’.

In descriptive generalization the goal is to determine a general description (a
law, a theory) characterizing a collection of observations. For example, observ-
ing that philosophers Aristotle, Plato and Socrates were Greek, but that
Spencer was British, one might conclude: ‘Most philosophers were Greek'.

Thus, in contrast to concept acquisition that produces descriptions for
classifying objecis into classes on the basis of the objects’ properties, descrip-
tive generalization produces descriptions specifying properties of objects
belonging to a certain class. Here are some example problems belonging to the
above two categories:

Concept acquisition

(a) Leaming characteristic descriptions of a class of objects, which specify
onc or more common properties of all known objects in the class. A logical
product of all such properties defines the class in the context of an unlimited
number of other object classes (e.g., [6, 87, 83, 85, 15, 29, 56, 82, 49, 20)).

(b) Learning discriminant descriptions of a class of objects that singly dis-
tinguish the given class from a limited number of other classes (¢.g., [35, 6, 46-49,
5.

(¢} Inferring sequence extrapolation rules (e.g., {76. 19]) are able 10 predict
the next element (a symbol, & number, an object, e1c.) in a given sequence.

Descriptive generalization

{(a} Formulating a theory characterizing a collection of entilies (e.g., chemical
compounds, as in {9}, or numbers, as in |42, 43]).

{b} Dnscovering patterns in observational data (e.g.. [26, 81, 27, 39, 66, 90)).

(c) Determining a taxonomic description {a classification) of a collection of
objects {e.g., {49, 54)).

This paper is concerned primarily with problems of concept acquisition. In
this case, the set of observational statements F can be viewed as a collection of
implications:

F:le.: > K}, i€l, 3)

where e, (a raining event) denotes a description of the kth example of concept
(class) asserted by predicate K, (for shorl, class K,) and [is a set indexing
classes K. It is assumed here that any given event represents only one concepl.
Symbol ::> is used here, and will be used henceforth, 10 denote the im-
plication linking a concept description with a predicate asserting the concept
name (in order to distinguish this implication from the implication beiween
arbitrary descriptions). The inductive assertion, H, can be characterized as a set
of concept recognition rules: |

H:{D,::>K)}), i€l, (4)

where D, is a concept description of class K, i.e., an expression of conditions
such that when they are satisfied by an object, then this object is considered an
insiance of class X,

According to the definition of inductive assertion, we must have

HPF. (3)

By substituting (3) and {4) for F and H, respectively, in (5), and making

appropriate transformations, onc can derive the following condilions 10 be
satisfied in order that (5) holds

Viel(E= D) (6)
and
VijE I(D>~E), if ji, (7)

where E, i € I, is a description satisfied by all training events of class K, and
only by such events (the logical disjunction of training events).
Expression (6) is called the completeness condiiion, and (7) the consistency

DISTBUIIN 'S 'Y

ZCE

condition. These 1two conditions are the requirements that must be satisfied for
an inductive assertion to be acceptable as a concept recognition rule. The
compieteness condition states that every training event of some class must
satisfy the description D, of the same class (since the opposile does not
have to hold, D, is equivalent to or more general than E.). The consistency
condition states that if an event satisfies a description of some class, then it
cannol be a member of a training se1 of any other class. In Jearning a concept
from examples and counterexamples, the laller constitute the ‘other’ class.

The completeness and consislency conditions provide the logical foundation
of algorithms for concept learning from examples. We will see in Section 4 that
to derive D, satisfying the completeness condition one can adopt some in-
ference rules of formal logic.

2.3. Characieristic vs. discriminant descriptions

The completeness and consisiency conditions allow us to clearly explain the
distinction between lhe previously mentioned characteristic and discriminant
descriptions. A characteristic description of a class of objects (also known as
conjunctive generalization) is an expression that satisfies the compleleness
condition or is the logical product of such expressions. It is typically a
conjuncilion of some simple properties commeon to ali objects in the class. From
the applications viewpoint, the most inmteresting are maximal characleristic
descriptions (maximal conjunctive generalizations or MCG) that are the most
specific (i.e., longest) logical products characterizing ali objects in the given
class, using terms of the given language. Such descriptions are intended 1o
discriminate the given class from all other possible classes (for illustration see
Section 7).

A discriminant deseription is an expression that satisfies the compleleness
and consistency condition, or is the logical disjunction of such expressions. h
specifies a single way or various alierninive ways to distinguish the given class
from a fixed number of other classes. The most interesling are »unimal
discriminant descriptions that are the shortest (i.e., with the minimum number
of descriptors) expressions distinguishing all objecis in the given class from
objects of the other classes. Such descriptions are iniended 10 specify the
minimum information sufficient 1o identify the given class among a fixed
number of other classes (for illusiration see Section 7).

2.4. Single- vs. multiple-concept leurning

It is instructive to distinguish between learning a single concept, and learning a
collection of concepts. In single-concepi learning, one can distinguish two cases:
{1) when observational statements are just examples of the concepl 1o be
learned {learning from positive’ instances only), and (2) when they are exam-
ples and counter-examples of the concept (learning from ‘positive” and ‘nega-
live” instances).

In the first case, because of the lack of counier-examples, the consistency
condition (7) is not applicable, and there is no natural limit to which description
D, (here, i = 1) can be generalized. One way 10 impose such a limit is 10 specify
restrictions on the form and properiies of the sought descriplion. For example,
one may reguire that it be the longest (most specific) conjunctive statement
satisfying the compietness condition (e.g., {85, 29]). Another way is 10 require
that the description not exceed a given degree of generality, measured, for
example, by the ratio of the number of all distinct events which could
potentially satisfy the description to the number of training instances [82].

In the second case, when the teacher also provides counter-examples of the
given concept, the learning process is considerably simplified. These counter-
examples can be viewed as representing a “different class’, and the consistency
condition (7) provides an obvious limit on the exient to which the hypothesis
can be generalized. The most useful counter-examples are the so-called ‘near
misses’ that only slightly differ from positive examples [87, 88]. Such examples
place stronger consiraints on the generalization process than randomly
generated examples.

In muiltiple-concept learning one can also distinguish two cases: (1) when
descriptions D, of different classes are required to be mutually disjoint, i.e., no
event can satisfy more than one description, and (2) when they are overlapping.
In an overlapping generalization an event may satisfy more than one descnip-
tion. In some situations this ts desirable. For example. if a patient has two
disecases. his symptoms should satisfy 1he descriptions of both diseases. and in
this case the consistency condition is not applicable.

An overlapping generalization can be interpreted in such a way that it always
indicates only one decision class. In this special case, the concept recognition
rules, D, ::>K, are applied in a linear order, and the first rule satisfied
generates the decision. In this case, if a concept descripion D, for class K,
contains a conjunctively linked condition A. and precedes the rule for class K,
that contains condition ~ A, then the condition ~ A is superfious and can be
removed. As a result, the linearly ordered recognition rules can be significantly
simplified. For example, the set of lincarly ordered rules

D1:1>K|, Dgi '.>K1. D]Z '.}K].
is logically equivalent to the set of (unordered) rules
D.::fﬂ-K., "“D|&D;::>K:. "‘*D;&“’DADJ:.':’H).

There are also other ways for deriving a single decision from overlapping rules
{e.g.. {17]). The above forms of multiple-concept learning have been im-
plemented in inductive programs aqvarn [46] and aqn [52].

82t

Burures; anjponpui jo Abojopoyew pue Aiosy) v

3. Description Language

J.1. Bias toward comprehensibility

In concept acquisition, the main interest is in derivalion of symbolic descrip-
tions that are human-oriented, i.c., that are easy to understand and easy 10 use
for creating mental models of the information they convey. A tentative
criterion for judging inductive assertions from such a viewpoint is provided by
the following comprehensibiliry posiulate. '

The results of computer induction should be symbolic descrip-
tions of given entities, semantically and structurally similar to
those a human expert might produce observing the same entities,
Companents of these descriptions should be comprehensible as
single ‘chunks’ of information, directly interpretable in natural
language, and should relate quantitative and qualitative concepts
in an integrated fashion.

As a practical guide, one can assume thar the components of descriptions
(single sentences, rules, labels on nodes in a hierarchy, etc.) should be expres-
sions that conlain only a few (say, less than five) conditions in a conjunction,
few single conditions in a disjunction, at most one level of bracketing, at most
onc implicalion, no more than two quantifiers, and no recursion (the exact
numbers may be disputed,’ but the principle is clear). Sentences are kept within
such limits by substituting names for appropriate subcomponents, Any opera-
tors used in descriptions should have a simple intuitive interpretation. Concep-
tually related sentences are organized into a simple daia struciure, preferably a
shallow hierarchy or a linear list, such as a frame |55, 42).

The rationale behind this postulate is to ensure that descriptions generated
by induciive inference bear similarity 10 human knowledge
representations [31), and therefore, are easy to comprehend. This requirement
is very important for many applications, For example, in developing knowiedge
hases for expert systems, it is important that human experts can easily and
reliably verify the inductive assertions and relate them to their own domain
hnowledge, Satisfying the comprehensibility postulaie will aiso facilitate
debugping or improving the inductive programs themselves. When the com-
plexity of problems undertaken by computer induction becomes very great, the
comprehensibility of the generated descriptions will likely be a crucial criterion.
This research orientation fits well within the role of artificial intelligence
envisaged by Michie [44] to study and develop methods for man-machine
conceptual interface and knowledge refinement.

The numbers mentioned seem to apply 10 the majority of human descriptive sentences.

3.2. Language of assertions

One of the difficulties with inductive inference is its open-endedness. This
means thal when one makes an inductive assertion about some aspect of reality
there is no natural limit 1o the level of detail in which this reality may be
described, or (o the richness of forms in which this assertion can be expressed.
Consequently, when conducting research in this area, it is necessary 1o circum-
scribe very carefully the goals and the problem to be solved. This includes
defining the language and the scope of allowed forms in which assertions will
be expressed, as well as the modes of inference which will be used. The
description language should be chosen so that crucial features are easily
representable, while peripheral or irrelevant information are ignored.

An instructive criterion for classifying inductive learning methods is there-
fore the type of Janguage used to express induclive assertions. Many authors
use a restricted form of predicate calculus or closely related aotation (e.g., [65,
22, 59, 85, 3, 50, 90, 72]). Some other formalisms include decision trees |35, 70),
production rules {(e.g., [86, 30]), semantic neis {e.g.. {25]). and frames [42]. in
earlier work (e.g., {45-48]} this author used a multiple-valued logic propositional
calculus with typed variables, called VL, {the variable-valued logic system one).
Later on an extension of the predicate calculus, called VL;, was developed that
was especially oriented 10 facilitate inductive inference [49).

Here we will use a somewhat modified and extended version of the lauer
language, to be called the annoraled predicaie calculus (APC). The APC adds
10 predicate calculus additional forms and new concepis thal increase its
expressive power and facilitate inductive inference. The major diflerences
between the annotated predicate calculus and the conventional predicale
calculus can be summarized as follows.

(1) Each predicate, variable and function (referred 10 coliectively as a
descriptor) is assigned an annotation that contains relevant problem-orienied
information. The annotation may contain the definition of the concept
represented by a descriptor, a characterization of its relationship to other
concepts, a specification of the set over which the concept represenied by a
descriptor, a characterization of its relationship to other concepts, a
specification of the set over which the descniptor ranges (when it is a variable or
a function) and a characterization of 1he structure of this set, etc. {see Section
4}, '

(2} In addition to predicates, the APC also includes compound predicates.
Arguments of such predicates can be compound terms, composed of two or
more ordinary terms.

(3) Predicates that express relations =, ¥ |, », >, & and < between terms or
between compound terms are expressed explicitly as refational statemenis, also
called seleciors.

(4) In addition 10 the universal and existential quantifiess, there is also a

PISIEYIIN °S Y

62t

numerical quaniifier that expresses quantitative information about the objects
satisfying an expression.

The concepi of annotation is explained more fully in the nex1 section. Other
aspects of the language are described in Appendix A. (The reader interesied in
a thorough understanding of this work is encouraged to read Appendix A at
this point.)

4. Problem Background Knowledge

4.1. Basic components

As mentioned earlier, given a set of observational statements, one may
construct a potentially infinite number of inductive assertions that imply these
statemenis. It is therefore necessary to use some additional information,
problem background knowledge, to constrain the space of possible inductive
asseriions and locate the most desirable one(s). In this section we shall look at
various components of the problem background knowledge employed in the
inductive learning methodology called star, described in Section 6. These
compoanents include the following,
- Information aboul descriptors {i.e., predicates, variables, and functions) used
in observational statements. This information is provided by an annoation
assigned to each descriplor (Section 4.3).
- Assumptions about the form of observational and inductive assertions.
- A preference criterion thal specifies the desirable properties of inductive
assertions sought.
- A variety of inference rules, heuristics, and specialized procedures, general
and problem-dependent, that allow a learning sysiem to generate logical
consequences of given assertions and new descriptors.

Before we examine these components in greater detail, let us first consider
the problem of how the choice of descriptors in the observational statemenis
affects the generated inductive assertions.

4.2. Relevance of the initial descriptors

A fundamental problem underlying any machine inductive learning task is that
of what information is provided to the machine and what information the
machine is expecied to produce or learn. As specified in the inductive
paradigm, the major component of the input to a learning system is a set of
cbservational statements. The descriptors used in those statements are observ-
able characieristics and available measurements of objects under consideration.
These descriptors are selected as relevant to the learning 1ask by a teacher
specifying the problem. .
Determining these descriptors is a major part of any inductive learning
problem. If they capture the essential properties of the objects, the role of the
learning process is simply to arrange these descriplors into an expression

constituling an appropriate inductive assertion. If the selecied descriptors are
complelely trrelevant 10 the learning task (as the color, weight, or shape of men
in chess is irrelevant to deciding the right move), no learning system will be
able to construct a meaningful inductive assertion.

There is a range of intermediate possibilities beiween the above two
extremes, Consequently, iearning methods can be characterized on the basis of
the degree 10 which the initial descriptors are relevani 10 the leaming problem.

Three cases can be distinguished.

(1) Compleie relevance. In this case all descriptors in the observational
statemenis are assumed to be direcily relevant to the learning task. The task of
the learning sysiem is to formulate an inductive assertion that is a mathematical
or logical expression of some assumed generai form that properly relaies these
descniptors (e.g., a regression poiynomial}.

(2) Paniial relevance. Observational slatements may contain a large number
of irrelevant or redundani descniptors. Some of the descriptors, however, are
relevant. The task of the learning system s to select 1he mosl relevani ones and
consiruct from them an appropriale inductive assertion.

(3) Indirect relevance. Observational statements may contain no directly
relevant descriptors. However, among the initial descriptors there are some
that can be used to construct derived descriptors that are directly relevant. The
task of the leamning sysiem is to construct those derived descnpilors and
formulate an appropriate inductive assertion. A simple form of this case occurs,
e.g., when a relevan) descriptor is the volume of an object, but the observational
statements contain only the information aboul the object’s dimensions (and
various irrelevant facts).

The above three cases represent problem statements that put progressively
less demand on the relevance of the initial deseriptors {i.e., thal require less
work from the person defining the probiem) and more demand on the learning
system. Early work on adaptive control systems and concept formation
represents case {1). More recent research has dealt with case (2). which is
addressed in selective inductive learning. A method of such learning must
possess efficient mechanisms for determining combinations of descriptors that
are relevant and sufficient for the learning task. Formal logic provides such
mechanisms, and therefore it has become the major underlying formalism for
selective methods. ;

An example of a selective learning method is the one implemented in
program aQi: [52] that inductively determined soybean disease diagnostic rules
for the system pLANT/ds, mentioned in the introduction. A difierent type of
selective method was implemented in program 13 [70] that determines a
decision tree for classifying a large number of events. A comparison between
these two programs is described by O'Rorke [63].

Case (3) represents the task of consiructive inductive learming. Here, a
method must be capable of formulating new descriplors (i.e., new concepts,
new vanables, eic.), of evalualing 1heir relevance to the learning task, and of

0Ee

buiusesr eajonpur Jo Abojopoyiaw pue Aiody) vy

using them to construct inductive assertions. There has heen relatively litle
done in this arca. The ‘automated mathematician® program am [42] can be
classified as a domain-specific system of this category. Some constructive
learning capabilities have been incorporaied in system sacon that automatic-
ally formulates mathematical expressions encapsulating chemical and other
laws {39]. The general-purpose INDUCE program for learning structural descrip-
tions from examples has implemented several general purpose constructive
generalization techniques [40, 49). Section 5 and 6 give more details on this
subject.

4.3. Annotation of descriptors

An annotation of a descriptor (i.¢., of a predicate, a variable or a function) is a
store of background information about this descriptor tailored 1o the learning
problem under consideration. It may include:
- a specification of the domain and the 1ype of 1he descriptor (see below),
- a specification of operators applicable 10 it,
- a specification of the constraints and the relationships between the descriptor
and other descriptors,
- for numerical descriptors, the mean, the variance, or the complete probability
distnbution of values for the problem under consideration,
-a characterization of objects to which the descriptor is applicable {i.e., a
characterization of its possible arguments), '
- a specification of a descriptor class coniaining the given descriptor that is the
parent node in a generalization hierarchy of descriptors {for example, for’
descriptors ‘length’, ‘width’ and *height’, the parent node would be the ‘dimen-
sions’),
- synonyms that can be used to denote the descriptor,
- a definition of a descriptor (when it is derived from some other descriptors),
- if a descriptor denotes a class of objects, typical examples of this class can be
specified.

Let us consider some of the above components of the annotation in greater
detail.

4.4. The domain and type of a descriptor

Given a specific problem, it is usually possible to specify the set of values each
descriptor could potentially adopt in characterizing any object in the popu-
lation under consideration. Such a set is called the domain (or the value sety of
the descriptor. The domain is used 1o constrain the extent to which a descriptor
can be generalized. For example, the information that the temperature of a
iiving human being may very, say, only between 34°C and 44°C prevents the
system from considering inductive assertions in which the descriptor ‘body
temperature’ would assume values beyond these limits.

Other important information for conducting the generalization process is
concerned with the structure ol the domain, that is, with 1he relauonship
existing among the elements of the domain. For numerical descriptors, such
relationships are specified by the measurement scale. Depending on the siruc-
ture of the descriptor domain, we distinguish among three basic types of
descriptors.

(1) Nominal (categorical) descriptors. The value set of such descriptors con-
sists of independent symbols or names, i.¢., no structure is assumed 10 relate
the values in the domain. For example, ‘blood-type(person)’ and
‘name{person)’ are unary nominal descriptors. Predicales, i.e., descriptors with
the value set {True, False}, and n-ary functions whose ranges are unordered
sets, are also nominal descriptors. An example of a 1wo-argument nominal
descriptor is ‘license-plate-number{car, owner), which denoles a function
assigning 1o a specific car of the given owner a license plate number.

(2} Linear descripiors. The value set of linear descriptors is a totally ordered
set. For example, a person’s military rank or the temperature, weight or
number of items in a set is such a descripior. Variables measured on ordinal,
interval, ratio, and absolute scales are special cases of a linear descriptor.
Functions that map a set into a totally ordered set are also linear descriptors,
¢.g., ‘distance(P,, P,)'.

(3) Structured descriptors. The value set of such descriptors has a tree or
oriented graph structure that reflects the generalization relation between the
values, i.e., is a generalization hierarchy. A parent node in such a structure
represents a more general concept than the concepts represented by its
children nodes. For example, in the value set of descriptor ‘place’, ‘U.S.A.’
would be a parent node of the nodes ‘Indiana’, ‘lllinois’, ‘lowa’, eic. The
domain of structured descriptors is defined by a set of inference rules specified
in the problem background knowledge (see, eg., descriptor ‘shape(B,). in
Section 6).

Structured descriptors can be further subdivided into ordered and unordered
structured descriptors. Sometimes descriptors themselves can also be organized
into a generalization hierarchy. For example, descriptors’ length, width, and

depth belong 10 a class of ‘dimensions’. Information about the type of a |

descriptor is useful, as it determines the operations applicable to a descriptor.

4.5. Constraints on the description space

For a given induction problem there may exist s variety of constraints on the
space of the acceptable concept descriptions, due to the specific properties and
relationships among descriptors. Here are 8 few examples of such relationships.
- Interdependence among values. In many practical problems some variables
specify a state of an object, and some other variables characterize the siate.
Depending on the values of the state-specifying variables, the variables charac-

YSFEYIIW 'S H

(XX

terizing a state may be needed or not. For example, if a descriptor
‘state(plant’s leaf)’ takes on value ‘diseased’, then a descriptor ‘leaf dis-
coloration’ will be used to characterize the change of the leaf’s color. When the
descriptor ‘state{plant’s leaf)' 1akes on value ‘normal’, then obviously the ‘leaf
discoloration’ descriptor is irrelevant. Such information can be represented by
an implication:

[state{plant’s leal) = normal} = [discoloration{plant’s leaf) = NA].

where NA is a special value meaning *not applicable’.

- Properties of descriptors. Descriptors that are relations between objects may
have certain general properties—they can be reflexive, symmetric, transitive,
etc. All such properties are defined as assertions in the annotated predicate
calculus (see Appendix A). For example, the transitivity of relation
‘above({P,.P;)' can be defined as

VP, P, Py, (above(P, P:)) & above(P;, P))=> above(P,, P,).

- Interrelationships among descriptors. In some problems there may exist rela-
tionships between descriptors that constrain their values. For example, the
length of an object is assumed always to be greater than or equal to its width:

vP, lengith{P)z= width(P).

Also, descriptors may be related by known equations. For example, the area of
a rectangle is the arithmetic product of its length and width:

VP, ([shape(P)= reciangie] 3> [area(P) = length{P)- width(P)]).

(The infix operalor
ply(iength(P), width(F)).)

is used to simplify notation of the term multi-

4.6. The form of observational and inductive assertions

The basic form of assertions in the star methodology is a c-expression, defined
as a conjunclive statement:

{quantifier form){conjunction of relational statements), (8)
where {(quantifier form) stands for zero or more quantifiers, and {relational

statements) are predicates in a special form, as defined in Appendix A. The
following is an example of a c-expression;

3.Py, P, P, P(contains(Py, Py, P;, Py} [ontop(P, & P,, P;)]
{length(P)) = 3 .. B]{weight(P)) = weight(P;)]
[color{P,) = red v blue]|shape(P; & P & Ps) = box])

that can be paraphrased in English as follows.

An object F, contains parts P,, P, and P, and only these parts.
Pants P, & P, are on top of pant P, length of P, is between 3 and
8, the color of P, is red or blue, the weight of P, is greater than
that of Py, and the shape of all three parts is box.

An imporant special case of a c-expression is an a-expression (an atomic
expression), in which there is no 'internal disjunction’ {see Appendix A).

Note that due 10 the use of internal disjunciion a c-expression represents a
more general concept than a universally quantified conjunction of predicates,
used in typical production rujes. ‘

Progressively more complex forms of expressions are described below.

- A case expression is a logical product of implications:

[L=a]>Exp, i=1.2,...

where a, are single elements or disjoint subsels of elements from the domain of
descriptor L. and Exp, are c-expressions.

A case expression describes a class of objects by splitting it into separate
cases. each represented by a different value of a centain descripior.
-~ An implicative expression (i-expression)

C&(Ci=2), 9

where C, C| and C; are c-expressions.

This form of description is very useful when the occurrence of some
properties (defined in C3) depends on the occurrence of some other properties
(defined in C\). Typical production rules used in expert systems are a special
case of (9), where C is omitted and no internal logical operators are used.
When (C,> () is omitted, then the conditional expression becomes a c-
expression.

- A disjunctive expression (d-expression) defined as a disjunction of implicative
£XPressions.
- An exception-based expression (e-expression).

In some situations it is simpler to formulate a somewhat overgeneralized
statement and indicate exceptions than to formulate a4 precise statement. The
following form is used for such purposes:

Dy Ds

where Dy and D, are d-expressions. This expression is equivalemt to
(~Dh= Dl]‘ & [DJ-'-}’ "’DJ)-
Observational assertions are formulated as a set of rules

{a-expression : ;> K} . (10)

cEt

Guiwres| aanonpui jo ABojopoyiew pue Aioay) v

Inductive assertions are expressed as a set of rules
{EXP : ;> c-expression], (11)

where EXP is a c-expression or any of the more complex expressions described
above. It is also assumed that the left side and the right side of (11) salisfy the
principle of comprehensibility described in Section 2.

4.7. The preference criterion

In spite of the constraints imposed by the above componentis of the background
knowledge, the number of inductive assertions consisient with observational
statements may still be unlimited. The problem then arises of choosing the
most desirable inductive assertion(s). In making such a choice one musi take
into consideration the aspects of the panticular inductive learning problem, and
therefore the definition of a ‘preference criterion’ for selecting a hypothesis is a
part of the problem background knowledge. Typically, the inductive assertions
are chosen on the basis of some simplicity crilerion (e.g., [37, 69]).

In the contexi of scientific discovery, philosopher Karl Popper [68] has
advocated constructing hypotheses that are both simple and easy to refute. By
generating such hypotheses and conducting experiments aimed at refuting
them, he argues, one has the best chance of ultimately formulating the true
hypothesis. In order to use this criterion for automated inductive inference it is
necessary to define it formally. This. however, is not easy because there does
not seem 10 exist any universal measure of hypothesis simplicity and refu-
tability. '

Among more specific measures for evaluating the ‘quality’ of inductive
assertions one may list:

- An overall simplicity for human comprehension, measured, for exampie, by
the number of descriptors and number of operalors used in an inductive
assertion.

-The degree of ‘fit’ between the inductive and observationa! assertions
(measured, for example, by the degree of generalization, defined as the amount
of uncertainty that any given description salisfying the inductive assertion
corresponds to some observational siatement [49]).

- The cost of measuring values of descriptors used in the inductive assertion.

- The computational cost of evaluating the inductive assertion.

- The memory required for storing the inductive assertion.

- The amount of information needed for encoding the assertion using a priori
defined operators [16).

The importance given to each such measure dependis on the ultimale purpose
of constructing the inductive assertions. For that reason, the sTar methodology
allows a user 1o build a global preference criterion as a function of such
measures, 1ailored 1o a specific inductive problem. Since some of the above

measures are computationally costly, simpler measures are used, called ele-
mentary criteria. Among such crileria are the number of c-expressions in the
assertion, the total number of relational statements, the ratio of possible but
unseen events implied by an assertion 10 the total number of training events (a
simple measure of generalization [50]), and the total number of different
descriptors. The global preference criterion is formulated by selecting from the
above list those elementary criteria that are most relevant to the problem, and
then arranging them into a lexicographic evaluation functional (LEF). A LEF is
defined as a sequence of crilerion-tolerance pairs

LEF: (c), n) {ca. 12} - - -, {12)

where ¢, is an elementary criterion selected from the available ‘meny’, and 1, is
a tolerance threshold for criterion ¢, (v, € [0 .. 100%]).

Given a set of inductive assertions, the LEF determines the most preferable
one(s) in the following way.

In the first siep, all assertions are evaluated from the viewpoint of criterion
;. and those which score best, or within the range defined by the threshold 7,
from the best, are retained. Nexi. the retained assertions are evaluated from
the viewpoint of criterion ¢; and reduced similarly as above. using tolerance 7,.
This process continues until either the subset of retained assertions contains
only one assertion (the ‘best’ one) or the sequence of crizerion-tolerance pairs
is exhausied. In the laner case, the retained set contains assertions that are
equivalent from the viewpoint of the LEF.

An important and somewhal surprising property of such an approach is that
by properly defining the preference criterion, the same learning system can
generate either characteristic or discnminant descnptions of object classes (see
Section 7).

5. Generalization Rules

5.1. Definitions and an overview

Constructing in inductive assertion from observational statements can be
conceptually characterized as a heuristic state-space search [62], where
- states are symbolic descriptions; the initial state is the se1 of observational
slalements;
- operators are inference rules, specifically. generalization, specialization and
reformulation rules, as defined below;
-1he goal state is an inductive assertion that implies the observational state-
ments, satisfies the problem background knowledge and maximizes the given
preference criterion.

A generalization rule is a transformation of a description into a more general
description, one that tauologically implies the initial description. A specializa-

DSeYOIN °S Y

ECE

tion rule makes an opposile transformation: given a description, it generates a
logical consequence of it. A reformulation rule transforms a description into
another, logically equivalent description. A reformulation rule can be viewed
as a special case of a gencralization and a specialization rule.

Specialization and reformulation rules are the conventional truth-preserving
inference rules used in deductive logic. In contrast to them, the generalizalion
rules are not truth-preserving but falsity preserving. This means that if an event
falsifies some description, then it also falsifies a more general description. This
is immediately seen by observing that H 5 F is equivalent 10 ~ F=> ~ H (the
law of contraposition). To illustrate this point, suppose that a statement ‘some
waier birds in this lake are swans' has been generalized to ‘all water birds in
this lake are swans". If there are no water birds in the lake that are swans, then
this fact falsifies not only the first statement but also the second. Falsifying the
second statement, however, does not imply the falsification of the first.

In concepl acquisition, as explained in Section 2, transforming a rule
E::> K into a more general rule D::> K means that description £ must
imply description D:

E>D (13)

(recall expression (6)). Thus. to obtain a generalization rule for concept
acquisition, one may use a tautological implication of formal logic. The premise
and consequence of such an implication must, however, be interpretable as a
description of a class of objects. For example, the known law of simplification

P& Q=P (14)
can be turned into a generalization rule:
P&EQ::> KK P.:>K. (15)

I P stands for ‘round objects’, @ for ‘brown objects’ and K for ‘balls’, then
rule (15) states that the expression ‘round and brown objects are balls’ can be
generalized to ‘round objects are balls’. Thus, in concept acquisition, the
generalization operation has a simple set-theoretical interpretation: a descrip-
tion is more general if it is satisfied by a larger number of objects. (Such an
interpretation does not apply, however, to descriptive generalization, as shown
below.)

In order to obtain a rule for descriptive generalization, implication (14) is
reversed, and P and Q are interpreted as properties of objects of some class K

P(K) k P(K)& Q(K). (16)

If P(K) stands for ‘balls are round’ and Q(K) for ‘balls are brown’, then

according to rule (16}, the statement ‘balls are vound and brown’ i5 a general-
ization of the statement ‘balls are round’ (because from the former one can
deduce the laler). We can see that the notion “the number of objects satisfying
a description’ is not applicable here. Generalizing means here adding (hypo-
thesizing) properties that are ascribed 1o a class of objects.

After this informal introduction we shatl now preseat various 1ypes of
generalization rules, concentrating primarily on the rules for concept acquisi-
tion. These rules will be expressed using the notation of the -annotated
predicate calculus (see Appendix A). The reverse of these rules are specializa-
lion rules or reformulation rules in special cases. With regard 10 other speci-
alization and reformulation rules we shali refer the reader to a standard book
on predicate calculus (e.g., [84]). Some reformulation sules of the annotated
predicate calculus that do not occur in ordinary predicale calculus are given in
Appendix A.

We will restrict our attention to generalization rules that transform one or
more statements into a single more general stalement:

{D,::>Kler kD> K. (17)

Such a rule states that if an event (a symbolic description of an object or
situation) satifies any description D,, i € I, then it also satisfies description D
{the reverse may not be true). A basic property of the generalization trans-
{ormation is that the resulting description has ‘unknown’ fruth-siatus, i.e., is a
hypothesis that must be tested on new data. A generaiization rule does not
guarantee that the obtained description is useful or plausible.

We distinguish between twe types of generalization rules: selective and
constructive. 1f every descriptor used in the generaied concepi description D is
among descriptors occurring in the initial concept descriptions D, i =1, 2,. ..,
then the rule is sclective, otherwise it is constructive.

5.2. Selective generalization rules

In the rules presented below, CTX, CTX, and CTX; stand for some arbitrary
expressions (conlexi descriptions) that are augmented by additional com-
ponents to formulate a concept description.

- The drapping condition rule is a generalized version of the previously des-
cribed rule (15)

CTX&S::>K k CTX::> K, (18}

where S is an arbitrary predicate or logical expression.

This rule states that a concept description can be generalized by simply
removing a conjunctively linked expression. This is one of the most commonly
used rules for generalizing information.

peEE

Sunuea; eanonpu jo Abojopoyew pue Aiosy} v

- The adding alternative rule
CTX,: > K [CTX, vCIX;::> K. {19)

A concept description can be generalized by adding, 1through the use of
logical disjunction, an alternative to it. An especially useful form of this rule is
when the alternative is added by extending the scope of permissible values of
one specific descriptor. Such an operation can be expressed very simply by
using the internal disjunction operalor of the annotated predicate calculus. For
example, suppose that a concept description is generalized by allowing objects
10 be not only red bul also blue. This can be expressed as follows.

CTX &fcolor=red]::> K k CTX & |color = red v blue}: :> K (20)

(forms in brackets are selectors; the expressions on the right of * =’ are calied
references (see Appendix A)).

Because of the imponance of this special case, it will be presented as a
separate general rule,
- The extending reference rule

CTX&|L=R)]::>K f CTX&[L=R)}::> K, 21)

where R, C R. C DOM(L) and DOM(L) denotes the domain of L.

In this rule, L is a term, and R, and R, (references) are internal disjunctions
of values of L. References R, and R, can be interpreted as sets of values that
descriptor L can take in order to satisfy the concept description,

The rule states that a concept description can be generalized by enlarging the
reference of a descriptor (R; D R,). The elements added to R; must, however,
be from the domain of L.

If R; is extended to be the whole domain, i.c., R, = DOM(L), then the selector
[L = DOM(L)) is always true, and therefore can be removed. In this case, the
extending reference rule becomes the dropping condition rule. They take into
consideration the type of the descriptor L (defined by the structure of DOM(L})).
They are presenied as separate rules below.

- The closing interval ruie

CTX&H-*GIH‘—‘-‘K}-:c*rx&uﬁa..b]:::rx, (22)

where L is a linear descriptor, and a and b are some specific values of
descriptor L. The two premises are assumed (o be connected by the logical
conjunction (this convention holds for the remaining rules, as well}.

The rule states that if two descriptions of the same class (the premises of the

rule) differ in the values of only onc linear descriptor, then the descriptions can
be replaced by a single description in which the reference of the descriptor is
the interval linking these two values,

To illustrate this rule, consider as objects two states of a machine, and K as a
class of normal states. The rule says that if 2 machine is in the normal state for
two different temperatures, say, a and b, then a hypothesis is made that all
states in which the temperature falls into the interval [a, b] are abo normal.
Thus, this rule is not only a logically valid generalization rule, but expresses
also some aspect of plausibiiity.

- The climbing generalization tree rule

CTX&[L=a]::>K
CTX&[L=b)::>K
(one or more ‘ ;K CTX&[L=3s]::> K, (23)

statements)

CTX&[L=i]::>K

where L is a structured descriptor, and s represents the lowest parent node
whose descendants include nodes a, b, ... and i in the generalization tree
domain of L.

The rule is applicable only to descriptions involving structured descriptors,
and is used in various forms by, e.g., Winston {88], Hedrick [30], Lenat [42],
Michalski [49), Michalski, Stepp and Diday |54], Mitchell [S6, 57]. The following
example illustrates the rule

AP, CTX & |shape(P)=triangle]: : >K 3P CTX &
{shape(P)=polygon}: : >K.

3P, CTX & [shape(P) = pentagon]: : > K

Paraphrasing this rule in English: if an object of class K is triangular and
another object of this class is pentagonal, then the rule gencrates a statement
that objects of class K are polygonal.

- The turning constanis into variables rule is best known for the case of
descripiive generalization

Fla]
(one or more Fib}

stalements) < Yo Flo], (24)

Fli]

where F{v] stands for some description (formula) dependeni on variable v, and
a, b, ... are constants,

INSEYOIN S 'H

SEE

some description F|u] holds for ¢'s being a constant a or constant b, eic,,
then the rule generalizes these observations into a statement that Fv] holds
for every value of v. This is the most olten used rule in methods of inductive
inference employing predicate calculus,
A corresponding rule for concepl acquisition is

Fja)& Fb)&--- ::> K ¥ 3u, Fjo}::> K. (25)

To illustrate this version, assume thai a, b, etc. are parts of an object of class
K that have a property F. Rule (25) generalizes these facts inlo an asser-
tion that if any part of an object has property F, then the object belongs 10
class K.

- The turning conjunction into disjunction rufe

Fi&F1:1>Kl‘F|VF32:>K, (26)

where F, and F, are arbitrary descriptions.

A concept description can be generalized by replacing the conjunction
operator by the disjunction operator.
- The exiending the quantification domain riele, in the simplest case, changes the
universal guantifier into the exislential quantifier

Yo Flx}:: > K k 3. Fle]: :> K. (27)

This rule can be viewed as a generalization of the previous rule (26). Using
the concept of numerical quantifier {see Appendix A) this rule can be expres-
sed in an even more general way:

F(w, Flv)::> K k (L, Flo) > K, (28)

where 1, I, are the quantification domains (sets of integers) satisfying relation
LI,

For example, the statement “if an object has two parts {1, = {2}) with
propenty F, then it belongs 10 class K' can be generalized by rule (28} t0 a
statement 'if an object has two or more parts {I; = {2, 3,...}) with property F,
then it belongs to class K.

- The inductive resolution rule:

{a) As applied 10 concept acquisition. The deductive inference rule, catled
the resolution principle, widely used in automatic theorem proving, can be
adopted as a rule of generalization for coacept acquisition. In propositional
form, the resolution principle can be expressed as

(P> F)&{(~ P F)k AL v F, (29)

where P is a predicate and F, and F; are arbitrary formulas. By interpreting
both sides of (29) as concept descriptions. and making appropriate trans-
formations, we obtain

P&F|11}K .. .
__P&FZ:::)KFF,\;FI..:-J&.. (30)

To illustrate this rule, assume that K is the set of situations when John goes
10 a mavie. Suppose that it has been observed that he goes 1o a movie when he
has company (P) and the movie has high rating (F.), or when he does nal have
company {~P), but has plenty of time (F). Rule (30) generalizes these two
observations 10 a stalement 'John goes to a movie either when the movie has
high rating or he has plenty of time’.

(b) As applied to descriptive gencrahzauon By applying the logical
equivalence (Qp P)e(~ P$ ~ Q) (the law of coniraposition) to expression
(29), then reversing the obtained rule and substituting the negative literals by
the positive, we obtain

P&F;V"‘P&F]kFl&on (3”

This version has been formulated by Morgan [59].

Both versions. (a} and (b), can be peneralized by applying the full-Redged
resolution principle that uses predicates with arguments, and the unification
algorithm to unify these arguments (e.g.. [14]).

- The extension against rule

CTX|&IL=R‘I
CTXIL = RY: 5~k [1L R K, 02)

where sets R, and R, are assumed to be disjoint,

Given a description of an object belonging 1o class K (a posilive example),
and a description of an object not belonging 10 this class (a negative example),
the rule produces the most general statement consistent with these two
descriptions. I is an assertion thai classifies an object as belonging to class K if
descriptor L does not take any value from the set R;, thus ignoring context
descriptions CTX; and CTX,;. This rule is the basic rule for learning dis-
criminant descriptions from examples used in the previously mentioned in-
ductive program aoui [52}. Various modifications of this rule can be obtained
by replacing reference R; in the outpul assertion by some superset of it (that
does not intersect with R,).

5.3. Constructive generalization rules

Constructive generalization rules generate inductive assertions that use des-
criptors not presen in the original observational statements. This means that

See

Buiuses) eananpur jo ABojopoyiew pue Aody} v

the rules perform a transformation of the original representation space. The
following is a general constructive rule that makes such a transformation by
applying the knowledge of a relationship between diflerent concepts. It is
assumed that this relationship is known 10 the learning system as background
knowledge, as a previously learned concept, or that it is computed according to
user-defined procedures.

m& F,) i K ..
FI¢F1|<crx&5..>x (33)
The rule states that if a concept description contains a part F; (a concept, a
subdescription, etc.) that is known to imply some other concept F3, then a more
general description is obtained by replacing F, by F;. For example, suppose a
learning system is told that if an object is black, wide, and long, then it belongs
1o class K (eg. is a blackboard). This can be expressed in the annotated
predicate calculus:

AP, [color{ P} = black}{width(P) & lengih{P}) = large] : :> K.
Suppose the learner already knows that
¥ P, (width(p) & length(P) = large] => [area(P) = large]) .
Then rule (33) produces a generalization
3P, |[color{P) = black] [area{P) = large] : :> K.

As another example, suppose the system is given a description of an object
classified as an arch. This description states that a harizontal bar is on top of
iwo equal objects pluced apart, B, and B;, having certain color, weight, shape,
etc. Suppose now that characlerizations of B, and B, in this description satisfy
a previously jearned concept of a block. Then rule (33) generates an assertion
that an arch is a bar on 10p of two placed-apart blocks. This rule is the basis for
an interactive concept learning system developed by Sammut [72].

Specific constructive generalization rules can be obtained from (S5) by
evoking procedures computing new descriptors in expression F, as functions of
initial or previously derived descriptors (contained in F,). Here are some
examples of rules for generating new descriptors.

. - Counting arguments rules.

(a) The CQ ruie (count quantified variables). If a concept description is in

the form

3, 0y, ..., 0 Flon s ..o,

then the rule generates descriptors “#u_COND' representing the number of
»'s that satisfy some condition COND. This condilion expresses selected
properties of v,’s specified in the concept description. Since many such CONDs
can usually be formulated, the rule allows the system to generate a large
number of such descriptors.

For example, if the COND is ‘'[attribute,(v;)= R]', then the generated
descriptor will be *#,_attribute, R' counting the number of v,’s that satisfy this
condition. If the attribute, is, for instance, length, and R is [2.. 4], then the
derived descriptor is ‘#p,_length.2..4" (i.e,, it measures the number of v,’s
whose length is between 2 and 4, inclusively).

(b) The CA-rule (count arguments of a predicate). If a descniplor in a
description is a relation with several arguments, REL{v,, ©,...), the rule
generates descriptors ‘#p_COND’, measuring the number of arguments in
REL that satisfy some condition COND. Similar to the above, many such
descriplors can be generated, each with different COND.

The annotation of a descriptor provides information aboul its properties.

Such a property may be that a descriptor is, for example, a transitive relation,
such as relations "above’, ‘inside’, "lefi-of’, and 'before’. For example, if the
relation is ‘contains(A, B,, B, ...), stating that object A contains objects B,,
B;, ..., and COND is ‘large and red’, then the derived descripior ‘#8_large.
red_A_contains' measures the number of B,'s contained in A that are large
and red.
- The generating chain praperties rule. 1f the arguments of diflerent occurrences
of a transitive relation in a concept description form a chain, that is, form a
sequence of consecutive ohjects ordered by this relation, the rule generates
descriptors characterizing some specific objects in the chain. Such objects may
be

LST-objeci—the ‘least object’, i.e.. the object at the beginning of the chain
(e.g., the botiom object in the case of the relation “above’},

MST-object—the object at the end of the chain (e.g., the 10p object),

MID-object—the objects in the middie of the chain,

Nth-object—the object at the Nth position in the chain (starting from
LST-object).

After identifying these objects, the rule investigates all known properties of
them (as specitied in the observational statements) in order to determine
potentially relevant new descriptors. The rule also generales a descriplor
characterizing the chain itself, namely, REL-chain-length—the length of the
chain defined by relation REL.

For example, if the REL is ON-TOP, then descriptor ON-TOP-chain-length
would specify the height of a stack of objects. When a new description is
generated and adopted, an annotation for it is also generated and filled out, as
in Lenat [42}. This rule can be extended 10 a partial order relation. In such a
case it becomes the “find extrema of a parlial order’ rule.

DISIBUYIIN 'S Y

et

The delecting descriptor interdependence rule. Suppose that given is a set of
objects exemplifying some concept, and that attribute descriptions are used 1o
characterize these objects. Such descriptions specify only atiribute values of the
objects; they do not characterize the objects’ structure. Suppose that the values
a linear descriptor x takes on in all descriptions (events) are ordered in
increasing order. If the corresponding values of another linear descriptor y
exhibit an increasing or decreasing order, then a two-place descriptor M(x, y)
is created, signifying that x and y have a monoionic relationship. This descriptor
has value 1 when y values gre increasing and value | when they are
decreasing.

The idea of the above M-descriptor can be extended in two directions. The
first is 10 create M-descriptors dependent on some condition COND that must
be satisfied by the events under consideration:

M{x, y).COND.
For example, descniptor
M(length, weight)_red

states that length and weight have a monolonic relationship for red objects.

The second direction of exiension is to relax the requirement for the
monotonic relationship. i.e.. not to require that the order of y values is strictly
increasing {or decreasing), but only approximaiely increasing (or decreasing).
For example, the coeflicient of statistical correlation between x and y can be
measured, and when its absolute value is above a certain threshold, a descnp-
tor R(x, y) is created. The domain of this R-descriptor can also be {1, |},
indicating the positive or negative correlation. respectively, or it can have
values representing several subranges of the correlation coeflicient. Similarly,
as in the case of M-descriptors, R-descriptors can be extended to R-COND
descriptors.

The M- or R-descripiors can be used to gencrate new descriptors. For
example, if [M(x, y)= 1], then a new descriptor z = x/y can be generated. ¥f z
assumes a constant or & nearly constsni vaiue, then an imporiant relationship
has been discaovered. Similarly, if [M(x, y}= 1], then a new descriptor 2 = x - y
can be generated. These two techniques for generating new descriptors have
been successfully used in the Bacon system for discovering mathematical
expressions representing physical or chemical laws {39].

The above ideas can be exiended to structural descriptions. Such descriptions
involve not only global properties of objects, but also properties of objects’
parts and the relationships among the parts. Suppose that in a structural
description of an object, existentially quantified variables P,, P, . .., P. denote
s parts. If x(P,) and y(P) and y(P,) are linear descriptors of P, (e.g.,

numerical attributes characterizing parts P, i = 1, 2,...), the above described
techniques for generating M- and R-descriptors can be applied.

6. The starn Methodology

6.1. The concept of a star

The methodology presented here for learning structural descriptions from
examples receives its name from the major concept employed in it, that of a
star. In the most general sense, a star of an event ¢ (a description of a single
object or situation) under constraints F, is a set of all possible alternative
nonredundant descriptions of event ¢ that do not violate constraints F. A
somewhat more restrictive definition of a star will be used here. Let e be an
example of a concept to be learned and F be a set of some counterexamples of this
concept. A star of the event e against the event set F, denoted Ge|F),is defined as
the set of all maximally general c-expressions that cover (i.c., are satisfied by)
event e and that do not cover any of the negative events in F.

The c-expressions in a star may contain derived descriptors, i.e.. descriptors
not presen in the observational statements. In such a case, testing whether
evenl ¢ satisfies a given description requires thal appropriate transformations
be applied 10 the event. Such a process can be viewed as proving thal the event
implies the description, and therefore methods of automatic theorem proving
could be used.

In practical probiems, a star of an event may conlain a very large number of
descriptions. Consequently, such a theoretical star is replaced by a reduced star
RG{e|F, m) that conlains no more than a fixed number, m, of descriptions.
These m descriptions are selected as the m most preferable descriptions among
the remaining ones according to the pseference criterion defined in the prob-
lem background knowledge. Variable m is a parameter of the learning pro-
gram, defined either by the user or by the program itself. as a function of the
variable computational resources.

Papers [50, 54] give an illustration and an algorithm for generating a reduced
star with c-expressions restricted to atiribute expressions (i.c., expressions
involving only object attributes). Section 6.3 presents an algorithm for gencrating
a reduced star consisting of regular c-expressions. The concept of a star is useful
because it reduces the problem of finding a compleie description of a concept to
subproblems of finding consistent descriptions of single positive examples of the
concepl. '

Since any single example of a concept can always be characterized by a
conjunctive expression (a logical product of some predicates), elements of a
star can always be represented by conjunctive descriptions. One should also
notice that if the concept to be learned is describable by a c-expression, then
this description clearly will be among the elements of a (nonreduced) siar of any

gee

Buiwrea) aanonpul 1o Abojopoyisw pue Aioay) v

single positive example of the concepl. Consequently, if there exists a posilive
example not covered by any description of such a star, then the complete
concept description must be disjunctive, i.e., must include more than one
C-EXPression.

6.2. Outline of the general algorithm

It is assumed that every observational statement is in the form
a-expression : > K, (34)

where a-expression is an atomic expression describing an object {recall Section
4.6) and K is the concept exemplified by this object.

It is also assumed that: inductive assertions are in the form of » single
c-expression or the ‘disjunction of c-expressions. For simplicity we will restricl
our attention to only single-concept learning. In the case of multiple-concept.
learning, the algorithm is repeated for each concept with maodifications
depending on the assumed interdependence among the concept descriptions
(Section 2.3).

Let POS and NEG denote seis of evenis representing positive and negative
examples of a concept, respectively. A general and simplified version of the
sTAR algorithm can be described as follows.

Step 1. Select randomly an event ¢ from POS,

Siep 2. Generate a reduced star, RG(e|[NEG, m), of the event e against the
set of negative examples NEG, with no more than m-elements. In the process
of star generation apply generalization rules (both selective and constructive),
task-specific rules, and heuristics for generating new descriptors supplied by
problem background knowledge, and definitions of previously learned
concepts.

Step 3. In the obtained star, find a description D with the highest preference
according to the assumed preference criterion LEF.

Step 4. I description D covers set POS completely, then go to Step 6.

Siep 5. Otherwise, reduce the set POS 1o contain only events not covered by D,
and repeat the whole process from Step 1.

Step 6. The disjunction of all generated descriptions D is a complete and
consistent concept description. As a final step, apply various reformulation
rules {defined in the problem background knowledge) and ‘contracting’ rules
((A.8) and {A.9)) in order to obtain a possibly simpler expression.

This algorithm is a simplified version of the general covering algorithm A?
{47, 48]. The main difference is that algorithm A* selects the initial events {if
possible) from events not covered by any of the descriptions of generated siars,
rather than not covered by only the selected descriptions D. This way the
algorithm is able 10 detérmine a bound on the maximum number of separate

descriptions in a disjunction needed to define the concept. Such a process may,
however, be computationally very costly.

The above algorithm describes only single-step learning. If afier gencrating a
concept description, a newly presented training event contradicts it, specializa-
tion or generalization rules are applied to generate a new, consistent concept
description. A method for such incremental learning is described by Michalski
and Larson [52].

The central step in the above algorithm is the generation of a reduced star.
This can be done using a variety of methods. Thus, the above sTAR algonthm
can be viewed as a general schema for implementing various learning methods
and strategies. ‘The next section describes one specific method of star gencra-
tion.

6.3, Star generation: the nouce method

This method generates a reduced star RG(¢|NEG, m) by starting with a set of
single selectors, which are either extracted from the even for which the star is
generated or inferred from the event by applying constructive generalization
rules or inference rules provided by background knowledge. These seiectors
are then specialized by adding other selectors until consistency is achieved {i.e.,
until each expression does not inlersect with set NEG). Next, the obtained
consistent expressions are generalized so that each achieves the maximum
coverage of the remaining positive training examples. The best m so-obtained
consistent and generalized c-expressions {if some are also compleie, then they
are alternative solutions) constitute the sought reduced star RG(e|NEG, m).
Specifically, the steps of the procedure are as follows.

(1) In the first step individual selectors of event £ are put on the hist called
ps. This list is called a partial star, because its elements may cover some events
in NEG. These initial elements of s (single selectors from ¢) can be viewed as,
generalizations of cvent e obtained by applying in ali possible ways the
dropping condition generalization rule (cach application drops all selectors
except one). Elements of the partial siar ps are then ordered from the most to
the least preferred according to a preference criterion

LEF, = {(—negcov, 1,), (poscav, 1)}, (35)

where negcov and poscov are numbers of positive and negative examples,
respectively, covered by an expression in the star, and T,, v; are tolerances
(recall Section 4.7). The LEF, minimizes the negcov (by maximizing the
~negcov) and maximizes poscov.

(2) The list ps is then expanded by adding new sclectors obiained by
applying the following inference rules to the event ¢:

(a) the constructive generatization rules (Section 5.3),

(b) the problem-specific heuristics defined in the background knowledge,

MRy 'S H

6€€

{c) the definitions of the previously learned concepts {(to determine whether

parts of e satisfy some aiready known concepis).

{3) Each new selecior is inseried in the appropriate place in list ps, according
to preference criterion LEF,. The size of ps is kept within the limit defined by
parameter m by removing from ps all but the m most preferred selectors.

(4} Descniptions in ps are tested for consistency and completeness. A des-
cription is consistent if negcov = 0 {i.e., if it covers no evenis in NEG), and is
complete if poscov is equal to the 1otal number of positive examples. Con-
sistent and complete descriptions are removed from ps and put on the list called
soLumions. If the size of the list soLuTIONS is grealer than a parameter #soL,
then the aigorithm stops. Parameter #soL determines the number of desired
alternative concept descriptions. Incomplele butl consistent descriptions are
removed from the list s and put on the lisi called consisTENT. If the size of the
CONSISTENT list is greater than a parameter #cons, then control is transferred 10
Siep 6.

(5) Each expression in ps is specialized in various ways by appending to it a
single selector from 1he original list ps. Appended selectors must be ol lower
preference than the last selecior in the conjunctive expression (initially. the
expression has only one selector). Parameter %BRANCH specifies the percentage
of the selectors ranked lower (by the preference criterion) than the last selector
in the current conjunction. Il %srancH = 100%, all lower preference selectors
are singly appended—that is. the number of new expressions generated from
this conjunction will be equal to the total number of seiectors having lower
preference than the last selector in the conjunction. All new obtained expres-
sions are ranked by LEF, and only the m best are retained. This "expression
growing' process is illusirated in Fig. 1.

Steps 4 and S are repeated until the consisTent list contains the number of
expressions specified by parameter #cons, or until the time allocated for this
process is exhausted.

(6) Each expression on the consistent list is generalized by applying the
extension against, closing the interval, and climbing generalization tree
generalization rules, An efficient way to implement such a process is 10
transform the original structural description space into an attribute description
space. Attributes (i.e., descnplions with zero arguments) defining this space are
created from the descriptors in the given expression on the consisTeENT list in a
manner such as that described in [20). The generalization of the obtained attribuie
descriptions is accomplished by the attribute star generation procedure, analo-
gous to the one described by Michalski, Stepp and Diday {54]. Details of this
process of transforming structural descriptions into attribute descriptions are
described by Larson [40]. The reason for such a transformation is that structural
descriptions are represented as labeled graphs, while artribute descriptions are
represenied as binary strings. It is compulationally much more economical to
handle binary strings than labeled graphs.

u

|

& - a disregarded rule

® - an active Tule

B - & terminal node denoting a consistent c-expression
@ - 2 terminal node denoting & consistent and complete

c-expresaion (a solution)

FiG. |. [Hustration of the process of generaling a reduced siar RG(e/NEG, m). The nodes in the first
column are seleciors exiracted from the event ¢ or denved from ¢ by applving inference rules.
Each arc represemis an operation of sdding & new selector 10 the current c-expression.

(7) The obtained generalizations are ranked according 10 the global pref-
erence criterion LEF defined in the background knowledge. A 1ypical LEF is
to maximize the number of events covered in POS sel and 10 minimize the
complexity of the expression {measured, for example, by the number of seleclors
it contains). The m besl expressions so determined constitute the reduced siar
RG(e|NEG, m).

A somewhat restricted version of the above-described inouce method and
stag algorithm has been implemented in various versions of the INDUCE
leamning program [40, i8, 49, 32].

7. An Example

To itlustrate the inductive learning methodology just presented, let us consider
a simple problem in the area of conceptual data analysis. Supposc we are given
cxampies of ‘cancerous’ and ‘normal’ cells, denoted DNC and DNN respec-
tively, in Fig. 2, and the task of the analysis is

org

Buiwes) eailonput jo ABojopotjaw pue Aioay) v

(1) to determine properties diflerentiating the two classes of cells (i.e., to
find discriminant descriptions of each class),

{2) to determine important common properties of the cancerous and the
normal celis {i.e., to find a characteristic description of each class).

An assumpiion is made that the properties to be discovered may involve
both quantitative information about the cells and their components, and
qualitative information, which includes nominal variables and relationships
existing among the components.

The solution to the problem posed (or similar problems} can be obtained by
a successive repelition of the ‘focus altention — hypothesize —1est’ cycle des-
c¢nbed below.,

The ‘focus attention' phase is concerned with defining the scope of the
problem under consideration. This includes selecting descriptors appearing to
be relevant, specifying underlying assumptions, and formulating the relevant
problem knowledge. This first phase is performed by a researcher; it involves
his/her technical knowledge and informal intuitions. The third, the ‘test’ phase,
examines the hypotheses and tests them on new data. This phase may require
collecting new samples, performing laboralory experiments. and/or critically
analyzing the hypotheses. This phase is likely 10 involve knowledge and
abilities that go beyond currently feasible computer systems.

It is the second, the ‘hypothesize’ phase, in which an inductive learning
system may play a useful role: the role of an assistant for conducting a search
for the most plausible and/or most interesting hypotheses. This search may be a
formidable combinatonial task for a researcher, if the data sample is large and
if each item of the data (in this case, a cell} is described by many variables
andfor relations.

Individual steps are as follows.

{1) The user determines the set of initial descriptors and provides an
annotation for each descriptor. We will assume that the annotation specifies the
type, the domain, and any special properties of each descniptor (e.g., the
transitivity of a relation). In the case of structured descriptors, the annotation
also specifies the structure of the domain. The specification of the annotation
constitutes the first part of the problem background knowledge.

Supposc that for our simple example problem, the following descriptors are
sclecied.

Global descriprors {(descriptors characterizing a whole cell):

- circ: the number of segments in the circumference of the celt,
type: linear,
domain: {1. .10},

(11) - pplasm: the type of protoplasm in the cell (marked by encircled capital

letters in Fig. 2),
type: nominal,

domain: {A, B, C, D},

DISePYIN 'S 'H

347

(I1) Local descriptors {those characterizing cell bodies and their relation-
ships:
- shape(B;): the shape of body B,
type: structured,
domain: a tree structure with a set of leaves {triangle, circle, ellipse,
heptagon, square, boat, spring},
nonleaf nodes are defined by rules:

{shape =.circle v ellipse]> [shape = oval],

[shape = triangle v squaré v heptagon]=> {shape = polygon],
[shape = oval v polygon)=) [shape = regular],

[shape = spring v boai]=p [shape = irregular] ;

- texture(B,): the texture of body B,
type: nominal,
domain: {blank, shaded, crossed, wavy, solid-black, solid-grey, stripes};
- weight(B;): the weight of body B,
type: linear,
domain: {1, 2,...,5}
- orient{B;): the orientation of B,
type: linear-cyclic (the last element is foliowed by the first),
domain: {N, NE, E, SE, 5, SW, W, NWj},
condition of applicability: if [shape(B,)= boat];
-contains (C, B, B;,...)— C contains B, B,, ...
type: nominal,
domain: {True, False},
properties: transitive relation,
- hastails(B, L,, L,,...): abody B hastails L,, L;,...
type: nominal,
domain: {True, False},
condition of applicability: if {shape{B} = boat}.

Note that the descriptors *contains’ and ‘hastails’ are predicates with variable
number of arguments. Descriptor ‘conlains’ is characierized as a transitive
relation. Descriptors ‘hastails’ and “orient’ are applicable only under a certain
condition. |

(2) The user formulates observational statements, which describe cells in
terms of selecied descriptors and specify the class to which each cell belongs.
For example, the following is an observational statement for the DNC cell 1.

3. CE]..I..,. Bh B;, SEp B¢ lmntaiHS(CELLh B, B;, SRy Bg,}]
[circ{CELL,) = 8}[pplasm(CELL,) = A){shape(B,) = ellipse] &
[texture(B,) = stripes] [weight(B,) = 4] [orient(B,) = NW] &
[contains(B,, B,)]{texture(B,) = blank] [weight(B;) = 3] - - - &
[shape(B) = circie}texture(B,) = shaded] [weight(B,) = 5]

: :>[class = DNC].
(3) To specify the second part of the problem background knowledge the

user indicates which general rules of constructive induction {Section 5.3) are
applicable, and also formulates any problem-specific rules.
The constructive sules will generate various new derived descriptors. For
example, the counting rule CQ will generate, among others, a descriptor:
- #B-black-boat: the number of bodies whose shape is ‘boal’ and texture is
‘solid-black’, i.e., assuming COND

[shape(B) = boat] [texture(8) = solid-black].

(For simplicity of notation, the name of this descriptor, as well as other
descriptors below, has been abbreviaied, so it does not follow sirictly the
naming convention described in Section 5.3.) The counling rule CA will
generate such descriptors as
- total-B: the total number of bodies in a cell (no COND is used);
- indep-B: the number of independent bodies in a cell, assuming the COND
‘bodies not contained in another body';
. #contained-in-B: the number of smaller bodies contained in the body B.
- #tails-boat-8: the number of tails in a body B, whose shape is “boat’.
As advice to the sysiem, the user may formulate arbitrary arithmeltic expres-
sions for genecrating possibly relevant descriptors. For example, the user may
suggest a descrnipior:

weight(CELL) = 2 weight(B),

where B, i= 1, 2,... denote bodies in a cell.

The background knowledge may also contain special concepts—even or odd
number, the definitions of the area and perimeter of a circle or rectangle, eic.

{4) Finally, as the last part of the background knowledge, the user specifies
the type of description sought and the hypothesis preference cniterion. Let us
assume that both maximal characieristic descriptions and minimal discriminant
descriptions are sought. We therefore choose as the preference cniesion for
constructing characteristic descriptions: ‘maximize the length of generated
complete c-expressions’, and for consiructing discriminant descriptions:
‘minimize the length of consistent and compleie c-expressions’.

For illustration, we shall present here samples of discriminant descriptions
and selected components of a characteristic description of the DNC ‘cells’,
obtained by the npuce program®.

Discriminant descriptions of DNC cells. Each of these descriptions is sufficient
to discriminate all DNC cells from DNN cells. A concept description for class
DNC can thus be any one of these descriptions or the disjunction of two or
more of these descriptions.

3(1)B [texture(B) = shaded][weight(B) > 3] .

It may be instructive to the reader to try st this point to formulate his/her own descriptions.

crt

Buiuses; eAnonpul jo ABojopotjiews pue Aoyl v

‘Every DNC cell, as opposed to DNN, has exactly one body with ‘shaded’
texture and weight at least 3." (Paraphrasing in English.)

Icirc = even}.

*The number of segments in the circumference of every DNC cell is even’. (The
concept of ‘even’ was determined by ‘climbing the generalization tree’ rule.)

(= 1)B {shape(B) = boat][orient(B)= N v NE] .

‘Every DNC cell has at least one ‘boat’ shape body with orientation N or NE'.

3[:- 1)B[#tails-boat-B = 1] .
‘Every DNC cell has at least one body with number of tails equal to 1.

3(1)Blshape(B) = circle)[#contains-B = 1].

‘Every DNC cell has a circle containing a single object.” (A related and
somewhat redundant description is that every cell contains a circle that has
another solid black circle inside it.)

Underscored descriptors are derived descriptors obtained through con-
structive generalization rules.

Characteristic descriptions of DNC celis. Every description below is a charac-
terization of some pattern common to all DNC cells. Some of these patterns
taken separately may cover one or more DNN cells (unlike the discriminant
descriptions). In contrast to discriminant descriptions, the length of each
description has been maximized rather than minimized.

V(1)B [weight(B) = 5}.

‘In every DNC cell there is one and only one body with weight 5.° (Paraphras-
ing in English.)

3.(2)B,, B, [contains(B,, B:)]{shape(B,)shape(B,) = circle]
{texture(B,) = blank][weight(B,) = odd]
{texture(B,) = solid_black}[weight(B;) = even)
[#contained in B, = 1].

‘In every cell there are two bodies of circle shape, one contained in another, of
which the outside circle is blank, and has ‘odd’ weight, the inside circle is solid
black and has ‘even’ weight. The number of bodies in the outside circle is only
one’. (This is also a discriminant description but is not minimal.)

3(1)B {shape(B) = circle]{texture(B) = shaded]{weight{B) > 3] .

‘Every cell contains a circie with ‘shaded’ texture, whose weight is at ieast 3",
(This is also a non-minimal discriminant description.)

A(>1)B [shape(B) = boat][orient(B) = N v NE]{sails-boat(B) = 1].

‘Every cell has at least one body of ‘boat’ shape with N or NE orientation,
which has one tail.’ {This is also a non-minimal discriminant description.)

F(2)B [shape(B) = circle][texture(B) = solid_black)
or alternatively

{#B_circle_solid_black = 2} .
‘Each cell has exactly two bodies that are solid black circles.’

[pplasm = A v D]

“The protoplasm of every cell is of type A or D’

The above example is too simple for really unexpected patterns 10 be
discovered. But it illustrates well the potential of the learning program as a tool
for searching for patterns in complex data, especially when the relevant
properties involve both numerical and structural information about the objects
under consideration. An application of this program to a more complex
problem [49] did generale unexpected patterns.

8. Conclusion

A theory of inductive learning has been presented that views such learning as a
heuristic search through a space of symbolic descriptions, gencrated by an
-application of certain inference rules to the initial observational statements
(teacher-gencrated examples of some concepts or environmens-provided facts).
The process of generating the goal description—the most preferred inductive
assertion—reties on the universally intertwined and complementary operations
of specializing or generalizing the currently held assertion in order to accom-
" modate new facis. The domain background knowledge has been shown 10 be a
necessary component of inductive leaming, which provides constraints, gui-
dance and a criterion for seiecting the most preferred inductive assertion.
Such characterization of inductive leaming is conceptually simple, and con-
stitutes a theoretical framework for describing and comparing leaming
methods, as well as developing new methods. The star methodology for

DISPUYOIN 'S 'Y

EYe

leamning structural descriptions from examples, described in the second part of
the chapter, represents a general approach to concept acquisition which can be
implemented in a variety of ways and applied to different problem domains.

There are many impornant topics of inductive learning that have not been
covered here. Among them are learning from incomplete or uncertain in-
formation, multistage leaming, learning from descriptions containing errors,
learning with a multitude of forms of given observational statements, as well as
multimodel-based inductive assertions, and learning general rules with excep-
tions, The problem of discovering new concepis, deseripiors and, generally,
various many-level tsunslormations of the initial description space (the problem of
constructive inductive learning) has been covered only very superficially.

These and related topics have been given little attention so far in the field of
machine learning. There is no doubt, however, that as the understanding of the
fundamental prablems in the field matures, these challenging topics will be
given increasing attention.

Appendix A. Annotated Predicate Caleulus (APC)

This appendix presents definitions of the basic components of the annotated
predicate calculus and some rules for equivalence-preserving transformations
of APC expressions (rules that are nonexistent in the ordinary calculus) follow.

A.l. Elementary and compound terms

Terms can be elementary or compound. An elemeniary term {an e-term) is the
same as a lerm in predicate calculus, i.e., a constant, a variable, or a function
symbol followed by a list of arguments that are e-terms. A compound term
{c-term) is a composite of elementary 1erms or is an e-term in which one or
more arguments are such composites. The composite of e-terms is defined as
the internal conjunction (&) or iniernal disjunction {v) of e-terms. (The
meaning of these operators is explained later.) The following are examples of
compound terms:

RED v BLUE (A.1)
height(BOX, & BOX,), (A.2)

where RED, BLUE, BOX,, BOX; are constants. Expression (A.1) and the
form in parentheses in (A.2) are composites. Note that expressions {(A.1) and
(A.2) are not logical expressions that have a truth staws (i.c., that can be true or
false); they are to be used only as arguments of predicates. A compound term in
which arguments are composites can be transformed {(expanded) into a composite
of elementary terms. Let £ be an n-argument function whose n - 1 arguments are
represented by list A, and iet 1, and 1, be elementary terms. The rules for

performing such a transformation, expressed as term-rewriting rules, are

f(fl L A]”f"ll A) v f(‘!- A) ' (A3)
fin& b, Ay f(, A)& fl, A). (A.4)

il hist A itself contains composites, then it is assumed that the internal
disjunction is expanded first, followed by the inlernal conjunction {i.e., the
conjunction binds stronger than the disjunction). Thus, term (A.2) can be
transformed into a composite

height(BOX;)& height(BOX;) . (A.5)

A.2. Elementary and compound predicates

Predicates also can be elementary or compound. An elementary predicate is the
same as a predicate in the predicate calculus, i.e., a predicate symbol followed
by a list of arguments that are ¢-terms. in a compound predicate one or more
arguments is a compound term. For example, the following are compound
predicates

Went{Mary & Mother{Stan), Movie v Theatre), {A.6)
Inside(Key, Drawer(Desk, v Desk,}}. (A.7)

The meaning of a compound predicate is defined by rules for transforming it
Into an expression made of elementary predicates and ordinary ‘external’ logic
~ operators of conjunction (&) and disjunction { v). We denote the internal and
external operators identically, because they can be easily distinguished by the
context (note that there is no distinction between them in natural language). If
an operator connects predicates, then it is an external operator; if it connects
terms, then it is an internal operator.

Let ! and y; be e-terms and P an n-ary predicate whose last n — 1 arguments
are represented by a list A. We have the following reformulation rules (i.e.,
equivalence preserving transformations ol descriptions)

Pt v i3, A)eP(1,, A) v P(n, A), {(A.B)

Pl &1, AP, A)& P(12, A). (A.9)

If an argument of a predicate is a compound term thai is not a composite of
elementary terms, then it is transformed first into a composile by rules {A.3)
and {A 4). If A contains a composite of terms, then the disjunction is expanded
first before conjunction (similarly as in expanding compound terms).

ree

buiurea) eAnanpu jo ABojopoyiew pue L0ey) vy

Rules (A.3), (A4), (A8) and (A.9) can be used as bidirectional trans-
formation rules. By applying them forward (from ieft to right), a compound
predicate can be expanded into an expression containing only eiementary
predicates, and by applying them backward, an cxpression with elementary
predicates can be contracted into a compound predicate.

For example, by applying forward rule (A.8) and then (A.9), one can expand
the compound predicate (A.6) into

Went(Mary, movie) & Went{Mother(Stan), movie) v
Went(Mary, theatre) & Went{Mother(Stan), theatre). (A0}

Comparing logically equivalent expressions (A.6) and (A.10), one can notice
that (A.6) is considerably shorter than {A.10), and in contrast lo {A.10}, represents
explicitly the faci that Mary & Mother(Stan) went to the same place. Also, the
structure of (A.6) is more similar to the structure of the comresponding natural

language expression.

A.3. Relational statements

A simple and often used way of describing objects or situations is 1o state the
values of sclected attributes applied 1d these objects or situations. Although
such information can be represented by predicates, this is not the most
readable or natural way. The APC uses for this purpose a statement

eterm; = a, (A.11)

stating that e-1erm, evaluates 10 a constant a. Such a statement is called an atomic
relational siatement (or an atomic selector). Expression {A.11)is a special case of a
relational statement (also called selector), defined as

Term, rel Term; , {J‘t.lZ)

where Term,; and Term, are elementary or compound terms, and rel stands for
one of the relational symbols: =, &, >, <, =,
If Term,; and Term; are both elementary, then (A.12) states that the value of

the function represented by Term, is in relation rel to the value of function
represented by Term,. For example, the expression

distance(Boston, Tampa) = distance(Washington, Dallas) (A.13)
states that the distance between Boston and Tampa is the same as the distance

between Washington and Dallas. If Term; is a constant, then it evaluales to
itself.

Expression (A.12) can be represented by & predicate
rel(Term,, Term,) . (A.14)

If Term, or Term; is compound, or if both are, then the meaning of (A.12) is
defined by expanding it into a form containing only relational statements with
elementary terms. The expansion is performed by transforming (A.12) into
(A.14), applying transformation rules (A.3), (A.4), (A.6) and {A.9), and then
converting the elementary predicates into relational statements.

For example, a relational statement

color{P, v) > Red v Blue (A.15)

can be expanded into an expression
{color{P,) = Red v Blue) v {color(P;) = Red v Blue) (A.16}
and finally 1o an expression consisting of only atomic selectors:

{color(P;) = Red v color(P,) = Blue) v

(A.17)
(color{F;) = Red v color{P;) = Blue).
The two selectors in the disjunction {A.16) are examples of a referential
selector, defined as a form

Term, rel Term,, {A.18)

where Term, (called referee) is a nonconstant clementary term and Term;
(called reference) is a constant or the disjunction of constants from the domain
of Term,. ¥ relation rel is ‘=' and Term; is the disjunclion of some constants,
then the referential selector (A.18) states that the function represented by
Term, evaluates to one of the constants in Term,. The referential selector is
very useful for representing concept descriptions.

If the reference of a referential selector contains a sequence of consecutive
constants from the domain of a linear descriptor, then the range operator *. " is
used to simplify the expression. For example,

size(P)=2v3ivd
can be written

size(P)=2..4.

Sre DISfeUdIN °S 'H

The negation of a selector,

~{Term,; = Termy), (A.19)
can be equivalently writlen
Term, # Term; . {A.20)

An arbitrary predicate P(1), f;,. ..} can be written in the form of a referential
selector

P, b, ...)=True.

Therefore, for the uniformity of terminology, a predicate will be considered a
special form of a selector.

To facilitate the interpretation and readability of individua! selectors in
expressions, they are usually surrounded with sguare brackets and their con-
junction is expressed by concaienating the bracketed forms (see Section 7).

APC expressions are created from selectors (relational statements) in the
same way as predicte calculus expressions are created from predicates, i.e., by
using logic connectives (~, &, v, =, <) and quantifiers. One additional useful
connective is the exceprion operation (.), defined as

S\N-S: F(~85:2~8), (A.21)

where §) and §; are APC expressions. (S, °S5; reads: S, except when
S;). It is easy to see that the exception operator is equivalent 1o the sym-
metrical difference. In addition to ordinary quantifiers there is also a numerical
quantifier, expressed in the form

A, Sjv], {A.22)

where I, the index set, denotes a set of integers, and S{v) is an APC expression
having v as a free variable.

Sentence (A.22) evaluates as true if the number of values of v for which
expression Sfv] is true is an elemeni of the set I For example, formula

3(2.. 8)u, S[v] (A.23)

states that there are two to eight values of v for which the expression S[v] is
true. The following equivalences hold

- 3, S[v] is equivalent to I(=1)p, S|v})

and

Vu, S[v] is equivalent to 3A(k)w, S|v],

where k is the number of possible values of variable v.
To state that there are & and only &k distinct values for variables v, 03, ..., &3
for which expression 5(v,, v;, ..., 1} Is true we wrile:

B‘UII_ ..., Un S(vh “ .y uﬁ}‘ {A‘z‘)
For example, the expression

3.P,, P,, P, [contains(Py, Py, & P3)) & [color(P; & P;) = red}
= {two_red_pans{Py)]

states that predicate 1wo_red_parts{F,) holds if P, has two and only two distinct
parts in it that are red.

Section 7 presents an example of the usage of the APC for formulating
ovservalional statements and concept descriptions.

ACKNOWLEDGMENT

In the development of the ideas presented here the suthor benefiled from discussions with Tom
Dienterich and Robert Siepp. Proofreading and comments of Jaime Carbonell, Bill Hol, and Tom
Mitchell were helpful in shaping up the final version of Ihe paper. |

The author gratefully acknowicdges the panial support of the research by the Nationa) Science
Foundasion under granis MCS 79-06614 and MCS B2-05166.

REFERENCES

1. Amarel, F., An approach to sutomatic theory formation, in: von Foersier, H.. Ed.. Minois
Symposium on Principles of Seif-Organization {1960).
. Banerji, R.B., The description list of concepts, Comm. ACM § (1962) 426-431,
. Banerji, R.B., Anificial Inielligence: A Theoretical Perspeciive (Nonh-Holland, Amsterdam.,
1980). .
4. Bierman, A.W. and Feldman, J., Survey of results in grammaiical inference, in: Frongers of
FPanern Recognition (Academic Press, New York, 1972) 32-54.
3. Bierman, A.W., The inference of regular LISP programs from examples, IEEE Trans. Systems
Man Cybemei. B(8) {1978) S85-600,
6. Bongard, M.M., Pagerm Recognition {(Spartan Books, Washingion, DC, 1970) |in Russian].
2. Brachman, R.T., On the epistomological status of semantic networks, Repl. No. 3807, Al
Department. Boli, Beranek snd Newman, 1978,
8. Bruner, 1.S., Goodnow, 1. and Austin, G., A Sndy of Thinking (Wiley, New York, 1956).
9. Buchanan, G.B. and Feigenbsum, E.A., “Dendral snd Meta-Dendral, theis applications
dimension, Artificial Inielligence 31 (1978) 5-24.

e b

ore

busres; eanonput jo ABojopoyiew pue A108y) v

10. Buchanan, B.G., Miichell, T.M.. Smith, R.G. and Johnson, C.R., Jr.. Models of learning
sysiems, Tech. Rept. STAN-CS-79-692, Compuier Science Depaniment, Stanford University,
1979.

11. Burstall, R M. snd Darlington, J., A tansformation sysiem lor developing recursive progrums,
J. ACM 28(1) (1977) 4447,

12. Camap, R., The sim of inductive logic, in: Nagel. E.. Suppes. P. and Tanki, A.. Eds., Logic,
Methodology and Philosophy of Science {Stanford University Press, Sianford, 1962) 303-318.

13. Case 1. and Smith, C., Comparisos of identificsion criteria lor mechanized inductive inference,
Tech. Rept. No. 154, State University of New York at Bulfalo, 1979,

14. Chang. C. wnd Lee, R.C., Symbolic Logic and Mechanical Theorem Proving (Academic Press,
New York, 1973).

15. Coben, B.L., A powerful and cfficical siructural paliern recognition sysiem, Adificial In-
selligence 9(3) (1977) 233-255.

16. Coulon, D. and Kayser, D., Leamning criterion and inductive behavior, Padern Recognition
(1) (1978) 19-25.

17. Davis. R. and Lenat, D., Knowiedge-based Sysiems in Anificial Inselligence (McGraw-Hill,
New York, 1982).

18. Dietterich, T.. Description of inductive program INDUCE 1.1, Internal Rept., Deparument of
Computer Science, University of Illinois at Urbana-Champaign, 1978,

19. Dietierich, T.. A methodology ol knowledge layers lor inducing descriprions of sequentially
ordered evenis, Rept. No. B0-1024, Deparimeni of Computer Science, University of blinois a1
Usbana-Champaign, 1980,

2. Dietierich, T. and Michakski, R.S., Inductive learning of structural descriptions: cvaluation
critenia and comparative review of sclected methods, Anificial Inselligence 18(3) (1981) 257-

21. Feigenbaum. E.A., The simulation of verbal leaming behavior, in: Feigenbsum, E.A, and
Feldman, J., Eds., Compusers and Thought (McGraw-Hill, New York, 1963).

22. Fikes, R.E., Han, R.E. and Nilzson, N.1., Leaming sad executing generalization robot plans,
Anificial Ineiligence 3 (1912) 151-288, ’

3. Gaines, B.R., Marysnaki's grammatical inferences, JEEE Trans. Comput. 28 (1979) 62-64.

24. Gaschaig, J.. Development of ursnium exploration models for prospecios consuliani sysiem.
Antificial Intelligence Center, SRL intemn., 1980

25. Hass, N. and Hendrix, G.G.. An approach to applying and scquiring knowledge, Proc. First Amer.
Axac. for Al Conference (1980) 235-239.,

26. Héjek, P.. Havel, |. and Ohytil, M., The GUHA method of sutomaiic hypothesis deter-
mination. Compuning 1. (1966) 293-308.

27. Hijek, P. and Havrinek, T., Mechanizing Hypothesis Formation, Mashemanical Foundaons for
a Genera! Theory (Springer, Berlin, 1978). _

28 Hayes-Roth, F., A siructural approach 10 petiern leaming and the scquisition of classihcaiory
power, Proc. First Internat Joint Conference on Panern Recognision, Washington, DC, October
J0-November 1 (1973) 343-335.

'29. Hayes-Roth, F. and McDermott, J., An interference matching technique for inducing sb-
siractions, Comm. ACM 21(S) (1978} 401411

30. Hedrick, CL., A compuier program 10 leam production sysicms using a semaptic net, Ph.D.
Thesis, Department of Compuiter Science, Camegie-Mellon University, Pitisburgh, PA, 1974,

n I-::Blimn. D.1l., The Psychology of Learning and Memory (Ereeman, San Francico, CA,
1 :

32. Hol, B., Michaiski, RS. and Stepp, R., INDUCE 21— program for lcarning structural
descriptions from cxamples, Intelligeni Systens Group Rept. No. B3-1, Department of
Computsr Science, University of Tllincis at Urbana-Champaign, 1983,

13. Hoviand, C 1., A ‘communication anslysis’ of concept leaming, Fsychol. Rev. (1952) 461-4T2,

34. Hunt, E.B., Conceps Leaming: An Information Processing Problem (Wiicy, New York, 1962).

35
36.

4].

43

3 3

472,

51.

Huni. E.B., Mann, J. and Stone, P.T., Experiments in Induction (Acadcmic Press. New York,
1966).

Jouannaud, J.P. and Kodratofl, Y., An sutomatic construction of LISP programs by Lrans-
lormations of functions synihesized from their inpul-outpst behavior, Insowat. J. Policy Anal.
inform. Sysiems 4{4) {1980) 331-3S8.

. Kemeni, T.G., The use of simplicity in induction, Pyychol Rev. 623) {1933} 391400

Kochen, M., Experimenial study of hypoihesis-formation by computer, is: Charvy, C., Ed.,
Informadon Theory, 4th London Symposium {Butierworth, Loadon, 1961)

. Langley, P., Neches, R., Neves, D. and Anzsi, Y., A domain-independent tramework for

learning procedures, Iniernas. J. Policy Anal. Inform. Sysiems &(2) (1980) 143-198.

. Larson, 1.. Inductive infereace in the variable-valuod predicaie logic sysiem VL3, methodology

and compuler implemeniation, Ph.D. Thesis. Repi. No. 869, Depanment of Compuiter Sciencs,
University of lllinots, Urbana, lilinois, 1977,

Larson.). and Michakki, R.S., Inductive inference of VL decision rules, Proc. Workshop on
Panern-Direcied Inference Sysiems, Honolulu, Hawaii, May 23-27, 1977, SIGART Newsleter
&3 (1977).

. Lenst, D.. AM: an antificial intelligence approach to discovery in mathemalics a5 heunistic

search, Computer Science Departmend, Repi. STAN-CS-76-570, S:aaford Liniversity, Stanford,
CA, 1976.

Lenat, D. and Harris, G., Designing a rule sysiem that scarches for sciemtific discovery, in:
Waierman D.A. and Hayes-Roih, F., Eds., Possern - Direcacd Inference Sysuems (Academic Press.
New York, 1978) 25-51.

. Michie. [).. New [ace of antificial intelligence, Informancs 3 {1977) 5-11.
. Michalski. R.5.. A variable-valued logic sysiem as applied 10 picture descnption and recog-

nition, in: Nake F. and Roscnleld, A., Eds.. Graphic Languages (Nonkh-Holland, Asnsicrdam
1972) 20-47.

Michalski, R.S.. AQVAL/l—computer impiemeniation of a variable-valued logic sysiem and
its application to patlern recognition, Proc. First Iniermal. Janu Conf. on Pauern Recogrtion,
Washingion. DC, Ociober 33-November | (1973).

Michalski. R.S.. Vanabie-valued logic and i1s applications 10 patieen recogaition and machine
leamming, in: Rine, D., Ed., Muliple-Valued Logic and Compuser Science {North-Holland,
Amsterdam. 1975).

Michaiski, R.S.. Synthesis of oprimal aad quasi-optimal varisbie-vaued logic fonmulas. Proc.
1975 Iniern. Sympozium on Muliiple- Valued Logic. Bloomingion, IN, May 13-16, (1975) 76-47.

. Michalski, R.S., Patiern recognition as rule-guided inductive inference. IEEE Trans. Pasern

Anal. Machine Inselligence (1980),

. Michalski. R.S.. Knowiedge acquisition through concepiunl clusiering: s theoretical framework

and an algorithmn for partitioning dala inte conjunclive concepis, Inicrase. J. Policy Anal.
Inform. Sysems 4(3) {1980} 219-244.
Michalski, R.S. and Chilausky, R.L.. Leaming by being wld sad icaming irom saamples,

nsernal. J. Policy Anal. Inform. Sysiems 42) {1980) 125-160).

Michalski. R.S. and Lerson, J.B., Sclection of mosl represenislive (raining czamples snd
incremental genesation of VL, hypotheses: the uaderlying methodology sad the description of
programs ESEL and AQ11, Rept. No. 78-867, Depanmenl ol Compuier Science, University of
Winois & Urbans-Champaign, 1978,

Michalski, R.S. and P. Negri, As expenment on inductive lcaming in chess end games, .
Ekcock, E.W. and Michie D.. Eds., Machine Represesianon of Knowisdge, Maechine inlligence B
{Ellis Horwood, 1977} 175--192.

. Michalski, R.S.. Sicpp, R. and Diday, E.. A recent advance in dats analysis: clusieriag abjects

into classss characterized by conjunclive concepis, in: Kanal, L. and Rossalald, A.. Eds., Progress
in Panem Recognision, Vol. | (North-Holland, Amsierdam, 1981)

. Minsky, M., A Iramework for representing knowledge. MIT Al Memo 306, 1974,

NS Y

LyE PfS

36.

3.

Miichell, T.M., Version spaces: an approach to concepl fleaming, Ph.D. Thesis. Stanford
University, Stanford, CA 1978,

Mitchell, T.M.. Generalization as search, Asificial Inselligence 18 (2) (1982) 203-226.

38. Morags, C., A didactic experiment in paitern recognition, Repl. AIUD-PR-810}, Depanment

5.
L

81,

al. _
6). O'Rorke, P, A comparative sludy of inductive learning sysems AQ1) and ED3, Enielligen

of Informatics, Dartmund University, 1981.

Mocgan, C.G., Automated hypothesis generation using exvended inductive resolution, Adusnce
Papers &h Iniemal. Joint Conf. on Amificial Inwiligence, Toilisi, G.A., Vol. | (1973} 352- 336,
Newell, A, Bhaw, 1C anil Nimon, LA, A vasssty of intelligans lsarning in the genersl
probiem solver, Hand Corp. Tach. Rept. {1939} 191

Nibleal, T. and Shapiro, A., Automatic induciion of classification rules for » chess cndgame,
MIP-R-129, Machine Intelligence Research Unit, Univensity of Edinburgh, 1981,

Nilsaon, N.T., Principles of Anifcial Inseliigence (Tioga, Palo Ao, CA, 1980).

Systems Group Rept. No. 81-14, Depanment of Compuler Scieace, University of IRinois a1
Urbana-Champaign, 1981,

. Pettorossd, A., An slgosithm for reducing memory requiremenis in recursive programs using

annotations, Iniernat. Workshop on Program Conmiruction. Booas, Sepiember 8-12, 1980.

&3. Platkin, G.D., A turther note on inductive generalization, in: Belizer, B. snd Michie, D.. Eds..

3

2EE

.

o

Machine Inslligence 6 (Elsevies, New York, 1971).
Pokorny, D., Knowledge acquisition by the GUHA method, Inmat. J. Policy Anal. Inform.
Sysiems 4{4) (1980) I79-290. ’

. Polys, G., Mathematics and plausible ressoning. vol. L induction and analogy in mathcmatics,

Vol. I1: patierms of plausible inference, (Princeron University Press, Princeton, NJ, 1954).

. Popper, K.R., The Logic of Scientific Discovery {Bagic Books, New York, 1959).
. Post, H.R.. Simplicity of scientific theories, Brirish J. Philos. Sci. 11(41) (1960).
. Quinlan, LR., Discovering rules by induction from large collections of examples, in: Michie.

D.. Ed.. Expert Syssiems in the Microelecranic Age (Edinburgh University Press, Edinburgh,
1919}

Russeil. B., History of Wesiern Philosopky (Allen and Unwin, London, 1946) 566,

Sammui, C., Leaming concepts by performing experiments, Ph.D. Thesis, Department of
Compuler Science, Univertity of South Wales. Ausiralia, 1981.

. Shapiso, E.Y., Inductive inferences of theories from facis, Rescarch Rept. 192, Department of

Comnpuier Science, Yale Universily, New Haven, CT, 1081,

. Shaw, D.E., Swariout, W.R. and Green, C.C., Inferring LISP programs from examples, Proc. 4ih

Iniernal. Joint Cony. on Artificial Inelligence. Toilisi. GA, Vol. 1 {1973} 351-356.

. Shonlifle. EH., Compusr-based Medical Consuliations: MYCIN {American Elsevies, New

York, IWW).

. Simon, H.A. sad Kotovaky, Human acquisition for sequential patterns, Psychol. Rev. 1(6)

(1963) 534-540.

Simon, H. A. and Lea, G., Problem solving and rule induction: a unified view, in: Gregg, 1. W,
Ed., Knowlsdge and Cognirion, Erlbaum, Potomas, MD, 1974),

Simon, H.A., Models of Discovery (Reidel, Dordrecht, 1977).

. Senith, D.R., A survey of the synthesis of LISP programs from examples, Internat. Workshop

oa Program Conatruction, Bonas, September 8-12, 1080,
Solomonodl, R.)., A formal theory of inductive inference, Inform. and Conmol 7, {1964) 1-22,
LA-254.

. Solowsy, EM. and Riseman, EM., Levels of pattem description in learning, Papers 5ih

Iniermal. Joint Conf. on Arificial Intelligence, Cambridge, MA {1977) 801-811.

. Stepp. R., The investigation of the UNICLASS inductive program AQ7UNI and user's guide,

Repe. No. 49, Departmeni of Compuier Science, University of Illinois a1 Usbans-Champsign,
19078,

- Stoffel, J.C., The theory of prime events: data analysis for sample vectors with inherently

thscrete varisbics, Information Processing 74 (North-Holland, Amsierdam, 1974) 702-706.

84. Suppes, P., fawoducsion 10 Logic (Van Nostrand, Princeion, NJ, 1957),

85. Vere, 5.A., Induciion of concepts in the predicate calculus, Advance Papers 4ch Insermat Jount
Conf. on Amificial Inselligence, Toilisi, GA, Vol. I (1975) 151-236.

Watenmnan, DA., Generalization learning tochniques for sutomating the leansing of bewristics,
Artificial Inselligence 1(172) (1970) 121-170.

Winston, P.H., Leaming siructural descriptions from examples, Tech. Rept. Al TR-231, MIT
Al Lab, Cambridgs, MA, 190,

Winsion, P.H., Anificial lnseliigence (Addison-Wesley, Reading, MA, 1977)

Yau K.C. and Fu, KS., Syntactic shape recognition using siirbuted grammars, Proc. Sk
Annual EIA Symposium on Aulomatic Imagery Pattern Recognition, 1978.

90. Zagoruiko, N.G., Methods for revealing regularities in data, Izd Nouke (1981) jin Russian].

Received Augusi 1980; revised version received July 1962

-l - - -!

ert

bunumee) eajponpu! jo Abojopoyiew pue Aoey] v

