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1 Introduction

Cognitive scientists have been, for years, searching for essential ingredients
of intelligence. Although this issue may not be satisfactorily resolved for
quite some time, two abilities are clearly central to intelligent behaviour.
One is the ability to acquire knowledge or skill through experience; that
is, the ability to learn. The second is the ability to apply the knowledge
or skill possessed to solve new problems; that is, the ability to reason.
The new problems may concern actual events in the real world: for
example, when one has to react to a new external stimulus; or may be
imaginary, for instance, when one creates them for planning purposes.

A precondition for the above abilities is the capability to represent
diverse forms of knowledge. As our knowledge is built of individual
concepts, to represent knowledge one needs to represent concepts.
Consequently, understanding how concepts are represented is a fundamen-
tal problem underlying all efforts in the quest to understand intelligence.
Although cognitive scientists, psychologists, linguists, philosophers, and
artificial intelligence researchers have given considerable attention to this
problem, no conclusive solution of it exists.

Other chapters of this book have reviewed some of the most widely
known approaches to concept representation. These approaches include
the classical view, the probabilistic view, the prototype view, and the
frame view - see, e.g., Barsalou and Hale (Chapter 6), Hampton (Chapter
4), Murphy (Chapter 7). Although these views explain many aspects of
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concept representation, they do not provide a totally satisfactory and
conclusive solution.

The aim of this chapter is to explore a new approach that overcomes
some of the weaknesses of these well-known representations. The new
approach, called the two-tiered (TT) concept representation, considers
human concepts not as fixed, well-defined structures, but as flexible.
context-modifiable, and background-knowledge-dependent units of our
knowledge. To represent concepts so understood, the TT view recommends
splitting the total concept representation into two components (‘tiers’):
one that explicitly defines the most stable and common concept properties,
and the second that implicitly defines allowable concept modifications,
exceptional cases, and context-dependency. The latter component consists
of procedures for ‘flexible’ matching concept descriptions with instances,
and a body of inference rules for characterizing concept variability in
different contexts and situations.

As a background for the new approach, the following section outlines
our notion of concepts and categories. Later sections provide details
about the two-tiered representation, relate it to other views, and finally
discuss its application to data analysis.

2 The meaning of concepts and categories

Although everybody agrees that concepts and categories are fundamental
building blocks for our knowledge and thinking, there seem to be no
universal agreement as to their meaning and definition. There are
differences among the views of individual cognitive psychologists on these
issues, and differences between the views of cognitive psychologists and
researchers on formal theories of learning and artificial intelligence. These
issues, however, are important to the proposed two-tiered concept
representation, and therefore, we will attempt to clarify our view on
them here. We will present a view that appears to us most theoretically
satisfying, although it is somewhat different from the views often expressed
in cognitive science literature. The main advantages of the proposed view
is that it allows us to define more rigorously the meaning of concepts
and categories, to distinguish concepts from concept representations, and
to clarify the meaning of concept learning.

Let us start with views expressed recently by some of the most
prominent cognitive scientists. Barsalou (1992) states: ‘Whereas most
theorists would probably reserve “concept” for categorization rules, I will
also use “concept” for people’s conceptualization of categories.” Medin
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(1989) expressed the view that ‘a concept is an idea that includes all that
is characteristically associated with it' (p. 1469). He also suggests that ‘a
category is a partitioning or a class to which some assertion or set of
assertions might apply’ (p. 1469). Smith (1989) views a concept as a
‘mental representation of a class or individual and deals with whar is
being represented and how that information is typically used during the
categorization’ (p. 502).

The above characterizations are not all equivalent, and from a viewpoint
of a formalist call for some clarification. For example, if concepts are
people’s conceptualization (or mental representation) of categories, then
this implies that there are as many different concepts for the same
category as there are different cognitive representations of that category.
Everyone has an individual representation of a given category, since
people’s knowledge about concepts changes, as any new fact adds to the
representation. If a concept square is the same thing as a cognitive
representation of the class of squares, then we have so many concepts of
square as there are minds (or machines) that hold some representation
of square.

For similar reasons, one could argue with the view that identifies
concepts with a concept description or a classification rule. For any given
concept one can usually think of many different concept descriptions or
classification rules that specify how to distinguish between concept
instances and non-instances. To see this point, suppose that a concept
was defined as a certain classification rule, expressed in terms of specific
properties and/or relations linked by specific operators. If we were to
replace this rule by one syntactically different but logically equivalent
(that is, one that produces exactly the same classification), then we would
have a contradiction: since the initial and the newly created rule are
different from each other, then they would constitute different concepts;
yet, since they generate exactly the same classification of instances, they
would have to be viewed as the same concept. For example, there
can be many different medical procedures (classification rules) for
distinguishing a specific type of cancer from other types of cancer.
Although these medical procedures are different, the concept of cancer
is all the same. In short, identifying concepts with their classification rules
may lead to a contradiction.

Another concern is that the above views seem to disagree with the
view of concepts often expressed in artificial intelligence and formal
theories of concept learning (e.g., Fulk and Case, 1990; Sowa, 1984).
This view is that concepts are certain sets of entities (the entities are
called concept instances). A concept description is an expression that
characterizes this set. Thus, a human or machine can learn a concept, if
it can determine a representation that can be effectively used to recognize
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concept instances. Thus, a concept is not the same as its representation.
The formal status of concepts as sets seems also to be confirmed by our
linguistic expressions that use them. It is common to say, ‘This example
belongs to a concept’, or ‘The instances of the concept are . . .". Such
expressions seem to be more consistent with the usage of ‘concept’ as a
'set’ than as an ‘idea’, ‘conceptualization’, and so forth. The view of
concepts as sets has not been common in cognitive science, and therefore
may cause difficulties for cognitive psychologists. It allows one, however,
to define more rigorously the meaning of concept representation and the
similarity between concepts. Knowing a concept means to have a
representation of it that allows one to distinguish concept instances from
non-instances.

We will elaborate this view by stating that concepts are sets of entities
grouped together for some reason. The set constituting a concept may
consist of just one individual (e.g., the sun in our solar system; to be
sure, since the sun is a dynamic system changing in time, strictly speaking
it can be viewed also as a set of instances corresponding to different time
moments), a countable number of individuals (e.g., the set of students
taking Cognitive Science 101, or the set of birds called blue jay), or an
uncountable number of individuals (e.g., the concept of real number).
There can be many different reasons for grouping entities to a concept.
For example, a reason may be that entities have the same function or
purpose, have similar appearance, have similar physical, spatial, or
temporal characteristics. share the same abstract property (or properties),
have the same relation to other entities, or because of some combination
of these and/or other factors. Typically, concepts are sets with a name,
and are referred to through a name. There can be, however, concepts
without a name. For example, entities such as crowds, tanks, speeches,
white-red-and-blue flag, and broken monuments of formerly admired
communist leaders may constitute an unnamed concept of ‘things that
come to mind when thinking about the August 1991 revolution in the
(former) USSR’. Because different people may associate different objects
with this revolution, this concept is a personal construct.

The instances of a concept represent physical or abstract objects. These
objects are perceived (by human or machine) through their properties.
These properties can be values of certain attributes, relations among
objects components, relations among properties of the components, and
so on. From now on, attributes or relations used to characterize a set
will be called descriptors. Thus, every concept instance can be viewed
theoretically as a point in a concept description space spanned over the
descriptors through which the objects are perceived. Concept descriptions
then map entities into sets in certain description spaces. In the simplest
and the most common case, a concept description space is spanned over
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attributes only; that means, zero- or one-argument functions. In a more
general sense, a description space can be spanned over any type of
descriptors.

When viewing concepts as subsets of a description space, one can
characterize a concept instance as more or less typical, depending on the
relationship between the instance and other instances. For example, one
simple measure of typicality would be the ‘distance’ between an instance
to the “centre’ of the set in the description space. The similarity between
concepts can be defined by the ‘closeness’ between corresponding sets in
the concept description space. This definition implies that the similarity
between concepts is crucially dependent on what attributes/variables are
spanning the concept description space. Without defining the description
space, the similarity between two concepts cannot be determined. A
description space is often defined only implicitly; for example, via the
properties that humans measure through their senses. For example, an
orange and a tangerine are usually viewed as similar fruits. The implied
assumption is that they are similar in terms of the properties measured
by our unaided senses. However, one could think of a description space
in which these two entities would be very dissimilar, for example, in the
space spanned over specially selected atomic level attributes. In view of
these difficulties, the presented ‘two-tiered’ approach develops a new
view of concept typicality.

To recognize an instance of a concept is to identify an a priori known
concept (set) to which the given instance belongs. To do so, one always
needs to use some knowledge (explicit or implicit) about the concept and
about the instance. The knowledge about the concept is usually expressed
in the form of a ‘concept description’ or a ‘classification rule’. Such a
description or rule is supposed to capture the reason underlying the
concept.

The difficulty in understanding the meaning of a concept is that the
reason for creating a concept may be incorporated in a body of knowledge
that is encoded in the structure of an agent’s (concept bearer’s) mind as
a result of some learning or creative process. Such a body of knowledge
may, or may not, be precisely translatable into an effective classification
rule. It may be externalized only by the classifications one makes, for
example, one may not be able to tell why a given painting is beautiful,
but may be quite confident of this evaluation. In sum, the reason (or
principle) underlying a concept is not necessarily expressible linguistically,
and a concept (a set) should be distinguished from a classification rule
for that concept. One basic problem then is: what is the relationship
between a concept and a classification (or categorization) rule used for
its recognition? Another problem is: what is the relatiqgship between
concepts and categories? This section proposes a new view on these
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issues, somewhat different from the one currently used in cognitive
science literature.

A classification rule is an expression in some language (natural or
formal) that constitutes an effective procedure for telling which instances
belong to a concept and which do not. Such a procedure uses various
attributes and/or relations (that is, descriptors) that are measurable
directly or indirectly. As mentioned earlier, there may be many different
classification rules for recognizing instances of a given concept. For
many concepts, however, only approximate classification rules can be
constructed. As mentioned above, this is because the reason for grouping
entities to a concept may involve abstract notions expressed in terms of
other abstract notions, and these, in turn, may depend on the individual
experience of the agent holding the concept.

Consider, for example, the concept of friendship or revolution. The
meaning of such concepts changes with an agent’s experience, and thus
these concepts are living personal constructs. They are open-ended sets
of behaviours that this agent would classify as friendship or revolution.
Such concepts would usually be manifested by instances the agent may
generate rather than by any formal descriptions. To define a precise
classification rule for such concepts, even only for a specific agent and
for a specific time period, one would have to inspect all the different
concept instances that the agent could possibly generate. But this may
be impossible because the agent may not be able to classify some
instances, and/or because the number of instances may be too large.
Consequently, some human concepts cannot, in principle. be defined
precisely. Consequently, there cannot be precise classification-rules for
them. For such concepts there can only be approximate classification
rules derived from abstract linguistic or other descriptions, or inductively
learned from subsets of instances generated by a reasoning agent.

Concepts that were created by defining an a priori classification rule
(e.g., prime numbers), or for which an effective classification rule has
been developed (e.g., mammals) are called categories. Categories are
thus special kinds of concepts. An effective classification procedure for
a category must be expressed in terms that are either directly observable
or measurable, or themselves have an effective recognition procedure.
From this viewpoint, concepts such as peace or freedom are not categories,
because no effective recognition procedures for them have been developed.
On the other hand, concepts such as ‘students who received A in my
class’ or ‘GMU employees earning less than 35k in 1992’ are categories.

Some concepts are sets that are relatively ‘stable’, that is, they are
more or less permanently useful in describing our world, or our actions
in it. Therefore, we develop effective classification rules for them, and
they become categories. For example, animal species, plants, diseases,
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astronomical objects, and so on, are such concepts. We call them narural
categories. Other concepts represent sets that may have only temporary
utility, like, for example, the concept of ‘things to carry out of a burning
house’ (Barsalou, 1987), or ‘pins in my drawer’. Such concepts are not
natural categories, although they are or can be categories. As stated
earlier, for a given concept, there may be many different classification
rules. Some of them may be simple but only approximate (e.g., those
defining the animal species based on the animal’s physical appearance),
and some may be complex but precise (e.g., those defining the animal
species based on an animal’s genetic code). Depending on the need,
different types of rules are employed.

Concepts that are sets with precise boundaries that do not change with
the context or situation in which the concepts are used, are called crisp
(or classical). Crisp concepts occur primarily in science, where — whenever
it is useful — they are given a name (e.g., the concepts such as even
number or vertebrates). These concepts remain crisp usually and only if
used within the scope of a given scientific discipline; for example, a
triangle or rectangle in geometry, a group in mathematics, water in
chemistry. Outside of this discipline, however, they may represent
different sets of entities. For example, a triangle may mean an arrangement
of streets or cities; a group may mean a set of people, and so forth.
There are relatively few crisp concepts outside of science. For example,
kin relationships, such as father or grandmother, can be viewed as crisp.
But even these concepts are often used in a flexible manner. For example,
the founder of a scientific discipline may be called a ‘father of that
discipline’ (e.g., ‘Lukasiewicz is a father of multi-valued logic’). Here,
the original concept is extended to a larger set through an analogical
reasoning.

Concepts that intrinsically do not have precise boundaries, either
because they are open-ended and/or because they are context-dependent,
are called flexible. The boundaries of flexible concepts are imprecise and
may dynamically evolve with time, and/or change with the context in
which they are used. For example, the concept computer (that means,
the set of all entities called ‘computers’) does not have, in principle, a
well-defined and context-independent boundary. The entities called
computers have been rapidly evolving in time, and it would be unwise a
priori to limit the meaning of this concept.

In order to make the above notions clearer, one needs to explain what
is meant by context. Approximately, by context of a concept we mean a
set of concepts relevant to the intended meaning of the concept. What
concepts are relevant is specified by the agent’s background knowledge
(sometimes also cailed the agent’s theory). A context can be explicitly
specified by evoking the name of a more general concept that includes
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the concept discussed, or by providing a description characterizing relevant
concepts.

In different contexts, a flexible concept may stand for similar or quite
different sets of entities. For example, the concept printer would have a
different meaning in the context of ‘old-fashioned office equipment’ than
in the context of ‘modern office equipment’. As another example, consider
the concept key. In the context of doors, rooms, houses, buildings, and
so on, key would mean a set of entities that serve for opening door locks.
In the context of travel, suitcases, briefcases, and so on, the concept so
named would stand for a somewhat different set of entities, related only
at an abstract functionality level to the entities in the previous set. Finally,
in the context of problems, solutions, methods, and so on, the concept
key would stand for a quite different set, related only by analogy to the
previous sets, and could be considered as being a different concept. This
example suggests that sets associated with a given name of a flexible
concept consist of elements that may be bonded to one another by
different relationships, such as identity, surface similarity, analogy,
functionality, or just by a certain relationship to other concepts. The
context determines which sets are referred to in a given discourse.

Crisp concepts, by the very fact that they have precise boundaries, can
be represented by logical-style descriptions that evaluate to ‘true’ or
‘false’. Such descriptions may be logical expressions in disjunctive
normal form (DNF), sets of rules, decision trees, grammars, exemplars,
prototypes, and so on. These descriptions can always be transformed, by
the use of intermediate terms or relations, to a single conjunction of
single conditions. Consequently, crisp concepts can be defined by a set
of jointly sufficient and individually necessary conditions. Thus, the old
controversy associated with the classical view of concept (e.g., Smith,
1989; Smith and Medin, 1981; Sutcliffe, this volume, Chapter 3) can be
resolved through the idea of crisp concepts. The classical view simply
applies only to crisp concepts. If concepts have precise boundaries, then
they can be equally precisely described by a logical description, or by a
‘prototype-based’ description (but not with the same simplicity). Thus,
the prototype view of concepts makes a real difference only if one does
not assume that concepts have precise boundaries.

The majority of human concepts are not crisp, but flexible. For such
concepts, it may not be possible to construct precise logic-style classification
rules. The reason is that boundaries of such concepts — as mentioned
earlier — are intrinsicaily imprecise and/or dependent on the current and
future contexts in which the concept may be used. Thus, only approximate
classification rules are attainable for flexible concepts.

It should be noted, however, that instances of concepts, crisp or
flexible, may occur with different frequencies. One component of the
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‘typicality’ of a concept instance is associated with such a frequency of
occurrence. For example, there could be typical or atypical geometrical
triangles, in the sense that they occur frequently or infrequently. Since
a triangle in geometry is a crisp concept (with sharp boundaries), every
instance is a ‘prototype’ triangle. In other words, all geometrical figures
satisfying the definition of a geometrical triangle are ‘equally good’
triangles, although they can occur with different frequency. (Another
component is ‘closeness to BCR’; see below.)

A different situation is with flexible concepts. Since such concepts do
not have precisely defined boundaries, or different boundaries apply in
different contexts, to develop a classification rule for them one needs to
rely on the distributions of instances over a space of the observable
descriptors. If there are some instances that belong to the concept
frequently and in many situations and many contexts, then they can be
viewed as ‘highly typical’. Here, typicality can be measured by the degree
of similarity (defined in terms of the chosen observable descriptors)
between an instance and an ‘average’ instance in the space spanned over
these descriptors. Which descriptors are chosen to characterize an instance
depends on how relevant they are to the original principle underlying the
concept. A judgement of relevance of different descriptors depends on
the knowledge or experience that an agent has with the concept.

The prototype view of concepts (see, e.g., Hampton, this volume,
Chapter 4) concerns flexible concepts whose instances have a ‘well-
behaved’ distribution (just one or few modes) in the space spanned over
the chosen descriptors. However, for many concepts — for example, chair,
game, house, music, mechanism, and so on - it is very difficult to
determine a set of measurable descriptors that would produce a space in
which all their instances would be distributed in such a ‘well-behaved’
fashion. The key problem in representing such concepts lies in the
difficulty of describing all their possible manifestations and context-
dependency in terms of measurable properties. :

It is a remarkable challenge to understand how people can use and
communicate with such concepts without having a priori agreed-upon
classification rules or well-defined descriptions. If specifically asked,
different people usually produce different descriptions of such concepts.
The two-tiered representation proposed below aims at explaining this
phenomenon. It can handle both crisp and flexible concepts, but its
primary aim is to represent the latter ones.
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3 The two-tiered concept representation

The fundamental assumption underlying the two-tiered concept represen-
tation is that total classificatory information about a concept resides not
only in its explicit representation, but also in the inference and matching
procedures applicable to it. Through the application of these inference
and matching procedures the meaning of a concept can be extended,
modified, or adapted to various contexts. The two-tiered representation
thus constitutes a significant departure from the previous approaches,
which attempted to represent the complete meaning of a concept within
one explicit knowledge structure (a list of properties, a logical description,
a set of prototypes). Nevertheless, as explained later, the TT view builds
upon and relates in various ways to other views.

The TT view was originally proposed in Michalski (1986), and
subsequently applied to various problems in concept learning (e.g.,
Bergadano et al., 1988a, 1988b, 1992; Michalski, 1990). The original
formulation of this approach was based on an observation that, although
most human concepts lack precise definition when used outside of a
specific context, they acquire a precise meaning when used in a
combination with other concepts in a specific context. Consider, for
example, the statement: ‘This blonde woman near the centre of the room
is a student at GMU’. If there is only one woman with hair of lighter
colour than any other woman near the centre of the room, the statement
above precisely defines the person of interest (although the concepts
blonde, near, and room are imprecise by themselves, outside of a specific
context). Thus, statements made of imprecise concepts can convey precise
meaning. In other words, the fact that individual concepts are flexible
(that means, imprecise and context-dependent) does not prevent us from
communicating precise meaning.

The above example illustrates the basic supposition for the TT approach
(Michalski, 1986), that the imprecision of human concepts stems not from
an undesirable vagueness of our concept definitions, but rather from the
universal need for cognitive economy. By allowing individual concepts to
be imprecise and context-modifiable, the expressive power of concepts is
greatly enhanced. The latter means that one can employ fewer concepts
for expressing a greater set of meanings. This leads to a simplification of
descriptions of our immensely complex universe. Various experiments
reported here and elsewhere (e.g., Bergadano er al., 1988a, 1988b, 1992;
Michalski, 1990) have confirmed this idea in a microworld to which it
was applied.

The TT approach assumes that (flexible) concepts have a certain central
tendency and basic usage, which should be described explicitly, as the
‘first approximation’ of the concept meaning. The complete concept
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meaning, however, may vary significantly beyond the basic (or typical)
usage, especially in different contexts. The TT view postulates that this
variability and context-dependency is best represented implicitly - that
means. as results from an application of ‘flexible’ matching methods
and context- and background knowledge-dependent rules of inference.
Accordingly, a TT concept representation consists of two components
(tiers):

I The BCR, the base concept representation, that represents the basic
concept meaning explicitly. This basic meaning may be characterized by
specifying the typical function of the concept instances, their usual physical
properties and appearance, their structure and the components, their role
in a system of concepts by indicating ancestor and descendant concepts,
and so forth. (In the specific method used in the experiments mentioned
later, the BCR was expressed by a logical DNF description, or an
equivalent set of rules.)

II The ICI, the inferential concept interpretation, that consists of
inference rules and matching procedures, which modify the basic meaning
accordingly to any given situation or context. In matching an instance
with the concept representation, these inference rules and matching
procedures involve the agent’s background knowledge (BK) and the
context of discourse. The ICI may involve any type of inference —
deductive, analogical, or inductive.

Thus, the basic or typical concept meaning is expressed by the BCR,
and imprecision, exceptions, and the context-dependency are handled by
ICI. The ICI captures the allowabie transformations applicable to a
concept in different contexts. Entities that satisfy the BCR are called
typical, and those that do not are characterized by a degree of typicality.
Factors affecting the degree of typicality are the type and the amount of
transformation needed for matching the entity with the BCR. and the
frequency of the occurrence of an entity. Highly atypical entities are
called exceptions, and require ICI rules for identification (Bergadano
et al., 1992).

Figure 6.1 illustrates the relationship between the BCR and the ICI in
a TT concept representation. It shows that the ICI can, in general, extend
the concept meaning beyond the BCR in one area of the description
space, and reduce the meaning in another area.

Note that BCR is not a ‘prototype’, but a characteristic description of
a class of entities that are viewed as typical members of a given concept.
Such a description may be a disjunction of conjunctions (that means, a
DNF expression). A ‘prototype’ instance should satisfy the BCR, but
there could be a number of distinct ‘prototype’ instances that also satisfy
it. For example, a large numer of chairs can be viewed as typical of the
concept of chair. Also, a chair, a desk, or a bookshelf can be viewed as
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The concept explicitly defined by BCR The concept modified by applying ICI

Figure 6.1 An illustration of the relationship berween the Base Concept Represen-
tation (BCR) and the Inferential Concept Interpretation (ICI)

typical examples of the concept office furniture. The BCR can be
expressed at different levels of abstraction. For example. a BCR of the
concept table can include statements stating their typical function, typical
physical properties, the typical material they are made of, and so on. In
different situations different components of BCR can be used for concept
recognition. A method of ‘dynamic recognition’ that uses various subsets
of properties for recognizing a concept in different situations (a situation
is defined by the set of properties that have been observed or can be
observed) have been described in Michalski (1989).
Here is an example of a TT representation of the concept chair:

BCR: Function: To seat one person.

Structure: A seat supported by legs and has an attached
backrest from one side.

Physical properties: Made of wood or plastic. The seat is
flat and is located about 14-18 inches above the ground.
There are usually four legs which are located in the vertices
of an imaginary square, etc.

(BCR may also include pictures or 3D models of typical
chairs.)

Immediate ancestor (parent) concept: Furniture

Immediate descendants (children): Straight chair, armchair,
chaise longue, folding chair, high chair, lawn chair, rocking
chair, barber chair, throne, wheelchair.

ICI:  Possible variations of the properties in BCR: The number
of legs can vary from one to four. The legs may be replaced
by any support. The shape and the material of the seat, the
legs and the backrest are irrelevant, as long as the function
is preserved. The backrest may be very small or missing;
the seat may be closer to the ground or much higher above
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the ground than specified in BCR, and so on.

Situation or context-dependent variations:

Situation: If no typical chair is available — any object on
which a person can sit can be called chair.

Context = museum exhibit — an object matching the visual
characteristics of a chair is not used for seating persons (any
more).

Context = {toys, doll’s house, dolls, children playing, . . .}
— the size can be much smaller than stated in BCR. The
chair does not serve for seating persons, but correspondingly
small dolls.

Context = organizational structure, committee, positions of
responsibility, University department, etc. — chair means
a person being in charge.

To recognize a concept instance, the instance is matched against the
BCR of candidate concepts. This process first attempts to find a BCR
that directly matches the instance. A match is direct if the BCR’s
conditions are precisely satisfied by the instance. If there is no direct
match, or there are several direct matches, then the process employs the
ICI rules of inference and matching procedures. If there is no direct
match with any BCR, the system searches for a deductive match, that
means, tries to determine if the instance is a logical consequence of some
BCR. For example, if there is a BCR condition ‘X is a very good student’
and ICI has a rule that ‘a student who has a high grade average and gets
along well with most of the peers and teachers then that student is a very
good student’, then an instance ‘John has high grade average and gets
along with almost everyone’ deductively matches the BCR condition. If
there is no deductive match or there is more than one direct match, a
plausible match procedure is employed. Such a procedure determines the
degree to which an instance matches different concept candidates by using
matching procedures and rules contained in the ICI. The best matching
description defines the concept.

Most of the known concept representations, such as semantic network,
decision tree, and frame representation, usually employ a direct match.
Plausibility matching employs usually a method for determining some
degree of similarity or partial match. In a general case. a plausibility
matching may employ any type of plausible inference (e.g., approximate
deduction, analogy or induction; Collins and Michalski, 1989). [llustrative
examples of plausible matching are given in the next section. Performing
plausible inferences may involve concept meta-knowledge; for example.
the importance of concepts and their frequencies of occurrence, the
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relation to other concepts, and other relevant domain knowledge. Such
meta-knowledge is assumed to be a part of the second tier.

As mentioned earlier, the ICI includes the background knowledge
relevant to the proper interpretation of the concept. Since such background
knowledge (called by some authors ‘theory’, see, e.g., Murphy, this
volume, Chapter 7) grows with a person’s experience, the same concept
may have a different meaning for different people. For example, the
concept of a computer is quite different for a novice and a computer
expert, who witnessed the evolution of computers over many years. Thus,
the two-tiered view provides a simple model for explaining the observable
personal differences in concept meaning. In sum, by dividing the concept
representation into an explicit and implicit part, the TT view combines
elements of the classical representation, prototypical representation, and
other elements not present in other representations.

In the cognitively oriented form of the TT representation described
here, the distribution of the concept meaning between BCR and ICI is
relatively stable. The BCR expresses the general unifying idea, the typical
function, and/or measurable properties implied by or correlated with this
idea or function. Such a BCR can be viewed as representing the ‘first
approximation of the concept’. The ICI, in this case, defines the matching
procedures and inference rules for handling less typical instances and
context-dependency. In a general approach, the TT theory allows any
‘distribution’ of meaning between BCR and ICI (Michalski, 1990).

An advantage of distributing the concept meaning between the BCR
and the ICI is that it permits a learner flexibly to modify or extend the
concept meaning by varying matching procedures and inference rules,
and/or by changing the context of discourse. The concept meaning can
thus be changed without having to alter the BCR. As mentioned earlier,
by evaluating the type and the amount of inference involved in matching
the BCR with an instance, one may produce a qualitative or quantitative
estimation of the degree of typicality.

The ability to produce a measure of the degree of match indicates one
principal difference between this approach and the fuzzy set approach
(e.g., Zadeh, 1965, 1976). In the fuzzy set approach, a set defining a
concept is associated with a membership function, which needs to be
defined to the learner by a person. The influence of the context is hidden
in the definition of this membership function. In the proposed approach,
a concept is associated with interpretation procedures and context-
dependent rules, which implicitly define the membership of an instance
in a concept. These rules and procedures can be used to compute the
membership function in different contexts.
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4 Examples justifying the two-tiered approach

There are many examples that show that human concepts are not
characterized solely by explicitly stated properties, relations, or prototypes.
A full description of most concepts involves general and domain-specific
rules and background knowledge. in order to capture the concepts’
variations. and context-dependency. These rules tell us what transform-
ations of instances preserve or not their concept membership. which are
potentially feasible. and what transformations move them outside of
a concept. For example. repainting a chair preserves its membership in
the concept of chair, but shredding it does not. Consequently, to learn
a concept one needs to learn not only the BCR. but also the ICI. Let
us consider a few examples illustrating and confirming the ideas of the
two-tiered representation.

4.1 Example 1: A pizza or a coin?

This example is based on recent experiments by Rips (1989), which
involved concepts that can be characterized, using the TT terminology,
as having significantly different ICIs, and somewhat comparable values
of one attribute in their BCRs. Specifically, a subject was presented with
a partial description of an object that expressed only the value of one of
its attributes (e.g.. its diameter). Based on this description, the subject
was supposed to classify the object into one of the two categories. The
attribute-value given in the description was somewhere between the
subject’s average values of this attribute for the two categories. For
example. an object was described as ‘three inches in diameter’, and the
categories of choice were pizzas and quarters (25 cents). The results of
experiments were that the subjects consistently classified such an object
as likely to be a pizza, although the specified size was closer to the
quarter than to a typical pizza.

The two-tiered model explains this behaviour simply. The subjects do
not only hold the description of the typical values of objects in each class
(the BCR). but also have an understanding of the possible variability of
the objects in each category (the ICI). This understanding comes either
from a generalization of their observations, or from their relevant
background knowledge. for example, about the process that produces
objects of the two categories. Consequently, they could admit an object
to the category of pizzas, although unusually small for a pizza, but not
to the category of quarters, since quarters do not have a variable diameter.
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4.2 Example 2: The concept of sugar maple

Our prototypical image of a sugar maple is that it is a tree with three-
to five-lobed leaves that have V-shaped clefts. Some of us may also
remember that the teeth on the leaves are coarser than those of red
maple, that slender twigs turn brown, and that the buds are brown and
sharp-pointed. As a tree, of course, a maple has a root, trunk, and
branches.

Suppose that while strolling on a nice winter day someone tells us that
a particular tree is a sugar maple. A simple introspection tells us that the
fact that the tree does not have leaves would not strike us as a contradiction
of what we know about sugar maples. Yet, clearly, the presence of leaves
of a particular shape is deeply embedded in our typical image of a maple
tree. The two-tiered theory explains this phenomenon simply: the
inferential concept interpretation associated with the general concept of
deciduous trees evokes a rule ‘in winter deciduous trees lose leaves.
Since a maple is a deciduous tree, the rule would apply to the maple
tree. The result of this inference would override the stored standard
information about maple trees, and the inconsistency would be resolved.
Matching an instance with the concept requires in this case deductive
reasoning from the knowledge associated with a more general concept.

4.3 Example 3: A coffee pot used as a bird feeder

This example is taken from a study of children concepts performed by
Keil (1989). In this study, children were shown objects representing
some known concepts. These objects then underwent a sequence of
transformations that produced an object resembling an instance of a
different concept. In one experiment, the transformations were realistic,
that means, corresponded to changes that could be obtained by some
simple operations. In the other experiments, the transformations were
purely imaginary (they did not correspond to changes that would be
allowed by the ICI).

For example, in one case the initial object was a coffee pot. Subsequently,
the pot was punched full of holes, and its spout was removed. It was
then filled with bird feed and hung from a branch of a tree. In another
case, the initial object (presented as a picture) was a raccoon. It was then
presented as having been transformed to black with a white tail, and able
to produce a super smelly stuff from beneath its tail, like a skunk. The
children were then asked if the end result of these transformations was,
in the first case, a bird feeder or a coffee pot, or in the second case, a
raccoon or a skunk. The experiments thus can be interpreted as testing



6. Two-tiered Representation 161

the children's understanding of the feasibility of various transformations
of instances of different concepts.

The results of the first experiment were that all children (five to nine
years old) indicated that it was a coffee pot that was turned into a bird
feeder. In the second experiment, however, all children experienced a
difficulty in accepting the change of the raccoon into a skunk. These
experiments indicate that children knew not only physical characteristics
of the objects in the involved categories (here, the coffee pots and
raccoons), but also had the knowledge of transformations that are
applicable to objects in these categories (i.e., the ICI).

4.4 Example 4: The concept of a triangle

Let us consider the concept of triangle. In geometry, a triangle is a plane
figure consisting of three non-co-linear points connected by straight lines.
Using the notation of annotated predicate calculus (APC), which is like
predicate calculus, but employs more compact forms of some logical
expressions (Michalski, 1983), one can write:

Triangle(T, P,, P, P3)

« Consists(T, P, & P, & P3) &
Type(P, & P, & P53, point) &
Connected_by_straight-line(P2 & P1,P3 & P2,P1 & P3) &
Non-co-linear(P1, P2, P3)

In the above expression, symbol ‘&’ is used in two related meanings:
first, to denote an ordinary (external) conjunction connecting predicates;
and second, to denote an internal conjunction — that means, a conjunction
of terms, which is treated as a compound argument of a predicate. For
example, the predicate ‘Type(P1 & P2 & P3, point)’ states that Pl and
P2 and P3 are points, thus is equivalent to a conjunction of three
predicates: Type(P1, point) & Type(P2, point) & Type(P3, point).

Suppose that someone tells us that the tall towers in his/her hometown
form a big triangle. Obviously, the meaning of the triangle in this
statement differs from that in the formal geometrical description. To
match the statement with the concept of triangle, the following assumptions
and transformations need to be made:

I. In the context of describing a configuration of physical objects such
as towers, the individual objects play the role of points. Thus, the
statement implies that towers correspond to points, and that there are
three towers in the town. The matching operation involves drawing an
analogy between the abstract points and the towers, which can be
characterized as consisting of one step of generalization (GEN):
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Point —GEN— Object
and one step of specialization (SPEC):
Object —SPEC— Tower

II. In the context of towers, the presence of a ‘straight line' is
imaginary - that means, there is no physical connection - but one could
imagine a straight line between the objects (towers). The condition
‘Connected_by’ is then satisfied in such an abstract sense. This is an
operation of abstraction. Thus, matching the statement about a triangular
arrangement of towers with the definition of a triangle involves here a
generalization, specialization, and abstraction. (A reader interested in an
analysis of the differences between generalization and abstraction may
consult Michalski, 1991.)

The examples above show that relating a concept instance to a concept
representation is not just a straightforward comparison of attribute-values
in an instance with those in the concept representation, as done in various
mechanized decision processes. They show that such a process may
involve different forms of inference, as postulated in the two-tiered
representation.

5 Learning two-tiered concept representations

The essence of the two-tiered representation is a recognition that a
concept may have explicit and implicit properties. The explicit properties
are represented by logical-style expressions, and the implicit ones by a
set of rules and/or matching procedures. Consequently, to acquire a TT
concept representation, one needs to learn both the explicit (BCR) and
the implicit (ICI) components of a TT representation.

In general, each concept has a different BCR that has to be learned.
On the other hand, the ICI is often the same or very similar for various
classes of concepts. Consequently, it can be learned only once for a given
class of concepts. All concepts of this class, and/or descendent concepts
in the type hierarchy will share the same ICI. For example, all diseases
in the class of liver diseases may share the same flexible method for
matching the BCR descriptions with symptoms. By sharing the ICI among
concepts, a significant economy of the concept representation can be
achieved.

The two-tiered approach does not impose restrictions on what type of
language is used to represent BCR and ICI parts of a concept. Any type
of knowledge representation formalism could potentially be employed. It
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is assumed that the language employed should depend on the goal of the
concept representation. The goal implies the degree of abstraction with
which the concept needs to be represented, and this sets the criteria for
the representation language. For example, in a diagnostic situation, it
may be sufficient to represent a disease at a high level of abstraction,
like by an attributional description in the form of propositional calculus
rules. In a medical research situation, the representation may have to be
much more complex, and involve not only structural representations (e.g.,
using a predicate calculus language), but also images and drawings.

In most of the experiments done so far with the TT representation,
the representation language was an attributional calculus, called VL,. In
this calculus, descriptions are expressed in the form of decision rules. A
decision rule links a logical product of elementary conditions with a
decision (e.g., a class membership). The elementary conditions relate a
multiple-valued attribute to a value or a set of values. For example,
elementary conditions may be [sex = male], or [colour = blue or red]
or [weight 2 kg]. (See, e.g., Bergadano er al., 1992; Michalski, 1974, for
details on this representation.) In experiments in learning structural
descriptions, an extension of predicate calculus (called annotated predicate
calculus) was used (Bergadano et al., 1988a).

The rest of this section outlines an implemented method for learning
two-tiered concept representations from concept examples using the above
mentioned attributional calculus. It also presents results from comparing
the method with several other methods that use different concept
representations. Full details of the method and the experiments performed
are described in Bergadano et al. 1988a, 1988b; 1992).

In the method, the Base Concept Representation (BCR) is created in
two phases. In Phase I, a complete and consistent concept description is
induced from the supplied examples. This is done by an inductive learning
programme AQ-15 (Michalski er al., 1986). Such a description explains
(covers) all positive examples of the concept being learned, and none of
its counter-examples (negative examples). The description is in the form
of rules that link single conjunctive conditions with a concept name.

In Phase II, the obtained description is optimized according to a
description quality criterion. The criterion prefers the descriptions that
are computationally simple and at the same time have a high predictive
accuracy; that means, correctly classify new concept instances. The
optimization process involves making various changes in the original
description, such as removing a rule, removing a condition, or modifying
a condition in a rule. These changes correspond to either generalization
or specialization of the original rules.

For example, rule removal is a specialization operation, and condition
removal is a generalization operation. A condition modification can be
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either a specialization or generalization operation depending on the type
of modification. The rules obtained as a result of the optimization process
may be significantly simpler than the original rules.

The obtained rules, however, may not directly match all the positive
examples, that means, they may constitute an incomplete concept
description, and/or may directly match some negative examples (that
means, may constitute an inconsistent concept description). It turns out,
however, that the incompleteness and/or inconsistency is often well
compensated by the inferential concept interpretation (ICI), so that the
resulting rules may actually have a higher predictive accuracy than the
original rules.

Depending on the type of description learned, the ICI may consist of
just a procedure for flexible matching, or the procedure plus a set of rules
that capture the concept exceptions. In the latter case, the rules are
acquired through an interaction with a teacher.

The method has been implemented in POSEIDON (AQ16), and
experimentally tested on two real-world problems: learning the concept
of an acceptable union contract, and learning voting patterns of
Republicans and Democrats in the US Congress. For comparison, a few
other learning methods were also applied to the same problems. These
methods included simple variants of exemplar-based learning, an ID3-
type decision tree learning (ASSISTANT programme; Chestnik,
Kononenko, and Bratko, 1987), a method that utilizes complete and
consistent descriptions, and a method that uses a very simple BCR (the
‘Top rule’ description) and flexible matching.

To give the reader some sense of the results obtained, Table 6.1
presents a summary of the results from testing these methods (based on
Bergadano et al., 1988a, 1988b, 1992).

The ‘simple exemplar-based method’ illustrates the exemplar view of
. concepts; that means, represents concepts by sets of their examples. An
unidentified concept instance is recognized by determining examples that
are most ‘similar’ or ‘close’ to it. In the ‘k-nearest’ procedure, k most
similar examples are determined, and the concept associated with the
majority of them is assigned to the instance (in the experiments reported,
k was 1, 3 and 5).

The predictive accuracy of each description expresses the percent of
classification of testing examples that are evaluated as correct by an
expert. The complexity of the description was measured by the number
of rules in it, and the total number of elementary conditions in all the
rules.

The ‘complete and consistent’ concept description is a disjunctive
normal expression (equivalent to a set of rules) that describes all positive
examples, and none of the negative examples. The ‘top rule' description
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Table 6.1 Summary of the results for testing descriptions learned by different
methods

Problem
Labour contract Congress voting
Method Accuracy (%) Complexity* Accuracy (%) Complexity*
‘Simple exemplar-based
1-nearest neighbour 77 27/432 86 51/969
3-nearest neighbour 83 271432 84 51/969
S-nearest neighbour 80 27/432 84 51/969
Complete and consistent 80 11729 86 10/32
description (AQ1S without
rule truncation)
‘Top rule’ description (AQ15 83 2/6 85 26
with rule truncation)
Optimized two-tiered 90 9/12 92 10721

description (AQ16 or
POSEIDON with rule
truncation and condition
optimization)

* The complexity of each description is expressed as a pair (number of rules’/number of conditions).

represents a very simple variant of two-tiered representation. The BCR
is just a single rule that covers the largest number of examples among
all the rules in the consistent and complete description. Such a rule can
be viewed as representing the most typical concept examples. The ICI is
a procedure for flexible matching that determines a similarity between an
instance and the BCR of candidate concepts. The concept associated with
the most similar BCR is assigned to the unidentified instance. It is
interesting to notice that, although this form of two-tiered representation
is extremely simple, it still has a relatively high predictive accuracy.
The ‘optimized two-tiered’ description is a more advanced variant of
the TT representation. The BCR is a set of rules generated by removing
some rules and/or conditions from the consistent and complete description.
This is done by the so-called TRUNC/SG optimization procedure
(Bergadano et al., 1988a, 1988b, 1992). The procedure generalizes some
parts and specializes other parts of the consistent and complete description
in order to maximize a general description quality criterion. The ICI of
the concept was a set of expert-generated rules for covering exceptional
~ cases identified by the system. As shown in Table 6.1, the ‘optimized
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TT description had the highest predictive accuracy, and was also the
next simplest, after the ‘top rule’ description.

6 The tiered view versus other views

As mentioned earlier, cognitive science literature distinguishes among
several views of concept representation. The major ones are the classical
view, the prototype (or probabilistic) view, the exemplar view, and the
theory view (Allen, Brooks, and Norman, 1988; Medin and Smith, 1984;
Murphy and Medin, 1985; Nosofsky, 1988; Smith and Medin, 1981; and
in this volume: Barsalou and Hale — Chapter 5; Hampton — Chapter 4;
Murphy ~ Chapter 7). Some authors also distinguish between different
types of formalisms (or representation languages) employed in the concept
representation; for example, feature lists, decision trees, connectionist
models, predicate logic expressions, simple and complex frames (e.g.,
Barsalou and Hale, this volume, Chapter 5). The distinction between a
‘view' and a ‘representational formalism’ is usually not well explained in
the literature. Our interpretation is that a view of a concept concerns
inherent aspects of concepts as sets, while the representational formalism
is a language in which those aspects are expressed. In principle, a
sufficiently rich representational formalism - for example, predicate
calculus - with a proper interpretation, could be used for expressing any
of the concept views.

The classical view assumes that concepts have well-defined borders,
and can be represented by singly necessary and jointly sufficient conditions.
This implies that they can be represented by logic-style conjunctive
definitions. The inadequacy of this view has been widely recognized (e.g.,
Barsalou and Medin, 1986; Lakoff, 1987; McCloskey and Glucksberg,
1978: and Wittgenstein, 1922). To overcome the limitations of this view,
other views have been advanced, such as the prototype view and the
exemplar view (e.g., Allen, Brooks, and Norman, 1988; Medin and Smith,
1984; Nosofsky, 1988; Smith and Medin, 1981).

The prototype view represents concepts by prototypes, and uses the
so-called family resemblance principle (e.g., Rosch and Mervis, 1975).
Unlike the classical view, this view does not require that all concept
instances share the same properties. It can, therefore, explain the observed
phenomenon that instances of the same concept may differ in their
typicality. The exemplar view claims that concepts can be adequately
represented by their exemplars (e.g., Bareiss, Porter, and Craig, 1990
Smith and Medin, 1981). Both these views can aiso be criticized on
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various grounds. The prototype view, which formally is based on the idea
of linear separability, disregards the existence of correlations between
the attributes, the context-dependency, and other information that has
been shown to be relevant to human concept understanding (e.g., Estes,
1986; Flannagan, Fried, and Holyoak, 1986).

The exempiar view employs similarity-based and context-sensitive
matching, which has received support in the cognitive science literature.
It is also supported by an observation that people do store examples of
concepts, especially exceptional examples. This view disregards. however,
the importance of general concept descriptions that clearly play a role in
human concept representations. Such general descriptions are useful in
many ways; for example, for quickly identifying the differences between
concepts, for recognizing them from partial information, for handling
context-dependency, for efficiently storing invariant information about
concepts, and so on. The above operations would be difficult to perform
if concepts were represented only by examples. In some work using the
exemplar view, general aspects of concepts are captured under the idea
of ‘category structure’, which is a network of domain knowledge that
specifies the relevance of exemplars to the concept they define (Bareiss,
Porter and Craig, 1990).

Some recent work has advocated a theory view (or knowledge-based
view) which emphasizes the need to define concepts through their role
in theories in which they exist as interrelated components (Carey, 1985;
Hofstadter, 1985; Murphy, this volume, Chapter 7; Murphy and Medin,
1985; Schank, Collins, and Hunter, 1986).

The two-tiered (TT) view constitutes a departure from the existing
approaches, although it has a close relationship to most of them. It
assumes that concepts have a certain central tendency, and proposes to
describe this tendency explicitly, in the form of a logic-style description.
Such a description is the ‘first approximation’ of the cnncept. On the
other hand, it also assumes that concepts may have a great variability
and be context-dependent, and that these aspects are best handled not
explicitly, but implicitly, by a flexible matching method and context- and
background knowledge-dependent rules of inference.

Since the TT view proposes to represent basic concept properties
(BCR) in the form of explicit logic-style expressions, it is related to the
classical view (it admits, however, that the BCR can be in the form of
conjunctive descriptions, as well as disjunctive descriptions). It also
recognizes that most concepts have a central tendency, and therefore one
needs to distinguish between more or less typical concept examples. In
this sense, the TT view is similar to the probabilistic view and the fuzzy
set concept representation (e.g., Zadeh, 1965, 1976). Unlike these views,
it proposes to handle this aspect by the inferential concept interpretation



168 R. S. Michalski

(ICI) that employs a flexible concept matching procedure (Bergadano er
al., 1992).

The TT view has also a relationship to the exemplar view, as it
postulates the use of sophisticated matching procedures and inference
rules in classifying new instances. Also, the TT view recognizes the
usefulness of storing individual examples, especially in the case of
exceptions (e.g., Zhang, 1990a, 1990b). The TT approach is also closely
related to the theory view, as it stresses the role of background knowledge
and inference in concept representation, especially in the case of non-
typical or borderline instances. The main differences between the TT
view and the theory view are that the former makes a distinction between
the explicit and implicit representation, and postulates that the agent’s
knowledge or ‘theory’ plays a role primarily in the inferential concept
representation, rather than in the basic concept representation.

7 Summary and open problems

The most significant aspect of the presented two-tiered view is that it
represents concepts as a combination of an explicit and implicit
representations. This stands in contrast to other views that attempt to
compact concept representation into a single monolithic structure, either
as a conjunction of properties (as in the classical model), or as a linear
weighted function (as in the prototype model). In the two-tiered
representation, the first tier, the base concept representation (BCR),
captures the explicit and common concept meaning, and the second
tier, the inferential concept interpretation (ICI), defines allowable
modifications of the base meaning and exceptions. The typical concept
instances strictly match the BCR, and thus can be recognized efficiently.
The exceptional and/or context-dependent cases involve the ICI, which
takes more time, but is done relatively less often. Such a two-tiered
representation is particularly suitable for learning flexible concepts; that
means, concepts that inherently lack a precise definition and are context-
dependent. The TT view asserts that it is impossible, in principle, to give
such concepts a precise meaning in an explicit and context-independent
form. Therefore, it proposes to describe precisely only their central
tendency, and to use flexible matching procedures and inference rules to
characterize the concept’s variability, to resolve borderline cases, and to
express their context-dependency.

The TT view seems to be confirmed by an observation that people can
usually recognize rapidly and without any difficulty typical concept
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instances; for example, that chair is an example of furniture. When,
however, they need to decide about special borderline cases (for instance,
if a lamp or painting is an example of furniture), they try to resolve the
problem by reasoning and/or an evaluation of the similarity to the cases
with clear membership. This seems to contradict approaches that try to
resolve such cases by weighting features or statistical evaluation. In the
TT view, the reasoning and similarity evaluation is conducted by matching
procedures, inference rules and agent’s background knowledge residing
in the second tier of the concept representation.

The TT view also assumes that the imprecision of human concepts does
not stem from an undesirable vagueness of our concept definitions, but
rather from the universal need for cognitive economy. By allowing
concepts to have a context-modifiable meaning, and making them precise
only to the extent to which a given situation and/or context requires them
to be precise, the expressive power of concepts is greatly enhanced. This
means that one can employ fewer concepts for expressing more meanings,
and this helps us to simplify our descriptions of our immensely complex
universe. Thus, by compacting the variability of concepts into rules and
matching procedures, rather than trying to express it explicitly, one can
reduce the overall complexity and improve the effectiveness of concept
representation. The experiments on learning TT representations have
demonstrated that the obtained TT representations tend to be considerably
simpler and have better predictive accuracy than other representations.

The ideas of TT representation are recent, and many problems remain
unsolved. Among especially interesting and important problems is how
to represent not just one, but a complex system of concepts using the
TT representation. As indicated in this chapter, the ICI usually can be
shared or inherited from higher-level concepts. This problem is then how
to allocate different parts of the ICI within a structure of TT representation.
There is also a need for a clearer analysis of the relationship between
the TT view and other views, and experimental studies with human
subjects to determine the adequacy of the TT model as a cognitively
viable concept representation. There are also many problems related to
the development of systems capable of learning TT representations, and
efficiently using them for concept recognition processes. In particular, an
important problem is how people learn individual tiers of different
concepts.

Finally, a theoretical analysis and more experimental investigations are
needed to confirm or disconfirm the initial finding that the TT
representation can lead to significant memory savings and a simultaneous
improvement of the predictive accuracy of concept representations over
other representations.
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