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Chapter 1

LEARNING = INFERENCING + MEMORIZING

Basic Concepts of Inferential Theory of Learning and Their
Use for Classifying Learning Processes

Ryszard S. Michalski
Center for Artificial Intelligence
George Mason University
Fairfax, VA 22030

ABSTRACT

This chapter presents a gencral conceptual framework for describing
and classifying leaming processes. Thec framework is based on the
Inferential Theory of Learning that views lcamning as a scarch through a
knowledge space aimed at deriving knowledge that satisfies a learning
goal. Such a process involves performing various forms of inference, and
memorizing results for future use. The inference may be of any type—
deductive, inductive or analogical. It can be performed explicitly, as in
many symbolic systems, or implicitly, as in artificial neural nets. Two
fundamental types of leamning are distinguished: analytical leaming that
reformulates a given knowledge to the desirable form (e.g., skill
acquisition), and synthetic learning that creates new knowledge (e.g.,
concept learning). Both types can be characterized in terms of knowledge
transmutations that are involved in transforming given knowledge (input
plus background knowledge) into the desirable knowledge. Several
transmutations are discussed in a novel way, such as deductive and
inductive generalization, abductive derivation, deductive and inductive
specialization, abstraction and concretion. The presented concepts are
used to develop a general classification of leaming processes.

Key words: learning theory, machine leamning, inferential theory of
learning, deduction, induction, abduction, generalization, abstraction,
knowledge transmutation, classification of learning.
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INTRODUCTION

In the last several years we have been witnessing a great proliferation
of methods and approaches to machine learning. Research in this field
now spans such subareas or topics as empirical concept learning from
examples, explanation-based leamning, neural net leaming, computational
learning theory, genetic algorithm based learning, cognitive models of
learning, discovery systems, reinforcement learning, constructive
induction, conceptual clustering, multistrategy leaming, and machine
learning applications. In view of such a diversification of machine
learning research, there is a strong need for developing a unifying
conceptual framework for characterizing existing learning methods and
approaches.

Initial results toward such a framework have been presented in the
form of Inferential Theory of Learning (ITL) by Michalski (1990a,
1993). The purposc of this chapter is to discuss and claborate sclected
concepts of ITL, and usc them to describc a general classification of
lcamning processes.

The ITL postulates that leaming processes can be characterized in
terms of operators (called *“knowledge transmutations”—see ncxt
section) that transform input information and initial leamer’s knowledge
to the knowledge specified by the goal of leaming. The main goals of the
theory are to analyze and explain diverse learning methods and
paradigms in terms of knowledge transmutations, regardless of the
implementation-dependent operations performed by different learming
systems. The theory aims at understanding the competence of learning
processes, i.e., their logical capabilities. Specifically, it tries to explain
what type of knowledge a system is able to derive from what type of input
and leamner’s prior knowledge, what types of inference and knowledge
transformations underlie different leaming strategies and paradigms, what
are the properties and interrelationships among knowledge transmutations,
how different knowledge transmutations are implemented in different
learning systems, etc. The latter issue is particularly important for
developing systems that combine diverse learning strategies and methods,



because different knowledge representations and computational
mechanisms facilitate different knowledge transmutations.

Knowledge transmutations can be applied in a great variety of ways to
a given input and background knowledge. Therefore, the theory
emphasizes the importance of learning goals, which are necessary for
guiding leaming processes. Leaming goals reflect the knowledge needs of
the learner, and often represent a composite structure of many subgoals,
some of which are consistent and some may be contradictory. As to the
research methodology employed, the theory attempts to explain leamning
processes at the level of abstraction that allows it to be relevant both to
cognitive models of leaming, and those studied in machine leaming.

The above research issues make the Inferential Theory of Leaming
different from and complementary to Computational Leaming Theory
(e.g., Warmuth and Valiant, 1991), which is primarily conccrned with the
computational complexity or convergence of lecarmning algorithms. The
presentcd work draws upon the ideas described in (Michalski, 1983 &
1990a; Michalski and Kodratoff, 1990b; and Michalski, 1993).

LEARNING THROUGH INFERENCE

Any act of learning aims at improving lcamner's knowledgc or skill by
interacting with some information source, such as an environment or a
teacher. The underlying tenet of the Inferential Theory of Leaming is that
any leaming can be usefully viewed as a process of creating or modifying
knowledge structures to satisfy a leaming goal. Such a process may
involve performing any type of inference—deductive, inductive or
analogical.

Figure 1 illustrates an information flow in a general learmning process
according to the theory. In each leaming cycle, the leamner generates new
- knowledge and/or a new form of knowledge by performing inferences
from the input information and the learner's prior knowledge.

When obtained knowledge satisfies the leaming goal, the knowledge is
assimilated into the leamer’s knowledge base. The input information to a
learning process can be observations, stated facts, concept instances,



previously formed generalizations or abstractions, conceptual hierarchies,
information about the validity of various pieces of knowledge, etc.

E xternal Input

Internal

Output
P Input

Figure 1. A schematic characterization of leamning processes.

Any learning process needs to be guided by some underlying goal,
otherwise the proliferation of choices of what to learn would quickly
overwhelm any realistic system. A learning goal can be general (domain-
independent), or domain-dependent. A general learning goal defines the
type of knowledge that is desired by a leamner. There can be many such
goals, for example, to determine a concept description from examples, to

- classify observed facts, to concisely describe a sequence of events, 10
discover a quantitative law characterizing physical objects, to reformulate
given knowledge into a more efficient representation, to leamn a control
algorithm to accomplish a task, to confirm a given piece of knowledge,
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etc. A domain-specific goal defines a specific knowledge needed by the
learner.

At the beginning of a learning process, the learner determines what
prior knowledge is relevant to the input and the learning goal. Such goal-
relevant part of leamer's prior knowledge is called background knowledge
(BK). The BK can be in different forms, such as declarative (e.g., a
collection of statements representing conceptual knowledge), procedural
(e.g., a sequence of instructions for performing some skill), or a
combination of both. Input and output knowledge in a learning process
can also be in such forms. One way of classifying learning processes is
based on the form of input and output knowledge involved in them
(Michalski, 1990a).

The Inferential Theory of Learning (ITL) states that learning involves
performing inference (“inferencing™) from the information supplicd and
the lecamner’s background knowlcdge, and memorizing its results that arc
found to be uscful. Thus, onc can write an “cquation’:

Learning = Inferencing + Memorizing (1)

It should be noted that the term “infercncing” is used in (1) in a very
general scnse, mcaning any type of knowledge transformation or
manipulation, including syntactic transformations and random scarching
for a specified knowledge entity. Thus, to be able to lcarn, a system has to
be able to perform inference, and to have a memory that supplics the
background knowledge, and stores the results of inferencing.

As mentioned earlier, ITL postulates that any learning process can be
described in terms of generic units of knowledge change, called
knowledge transmutations (or transforms). The transmutations derive one
type of knowledge from another, hypothesize new knowledge, confirm or
disconfirm knowledge, organize knowledge into structures, determine
properties of given knowledge, insert or delete knowledge, transmit
knowledge from one physical medium to another, etc. Transmutations
may performed by a learner explicitly, by well-defined rules of inference
(as in many symbolic learning systems), or implicitly, by specific
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mechanisms involved in information processing (as in neural-net leamning
or genetic algorithm based learning). The capabilities of a learning system
depend on the types and the complexity of transmutations a learning
system is capable of performing.

Transmutations are divided to two classes: knowledge generation
transmutations and knowledge manipulation transmutations. Knowledge
generation transmutations change the content of knowledge by
performing various kinds of inference. They include, for example,
generalization, specialization, abstraction, concretion, similization,
dissimilization, and any kind of logical or mathematical derivation
(Michalski, 1993). Knowledge manipulation transmutations perform
operations on knowledge that do not change its content, but its
organization, physical distribution, etc. For example, inserting a learned
component to a given structure, replicating a given knowledge segment in
another knowledge base, or sorting given rules in a ccrtain order are
knowlcdge manipulation transmutations.

This chapter discusses two imporiant classes of knowledge gencration
transmutations {gencralization, spccialization}, and {abstraction,
concretion}. These classes are particularly relevant to the classification of
learning processes discussed in the last section.

Because Inferential Theory views leaming as an inference process, it
may appear that it only applies to symbolic methods of learning, and does
not apply to “subsymbolic” methods, such as neural net learning,
reinforcement learning or genetic algorithm-based learning. It is argued
that it also applies to them, because from the viewpoint of the input-output
transformations, subsymbolic methods can also be characterized as
performing knowledge transmutations and inference. Clearly, they can
generalize inputs, determine similarity between inputs, abstract from
details, etc.

From the ITL viewpoint, symbolic and subsymbolic systems differ in
the type of computational and representational mechanisms they use for
performing transmutations. Whether a learning system works in parallel
or sequentially, weighs inputs or performs logic-based transformations



affects the system’s speed, but not its ultimate competence (within limits),
because a parallel algorithm can be transformed into a logically
equivalent sequential one, and a discrete neural net unit function can be
transformed into an equivalent logic-type transformation. These systems
differ in the efficiency and speed of peforming different transmutations.
This makes them more or less suitable for different learning tasks.

In many symbolic learning systems, knowledge transmutations are
performed in an explicit way, and in conceptually comprehensible steps.
In some inductive leamning systems, for example, INDUCE, gencralization
transmutations are performed according to well-defined rules of inductive
generalization (Michalski, 1983).

In subsymbolic systems (e.g., neural networks), transmutations are
performed implicitly, in steps dictated by the underlying computational
mechanism (sce, e.g., Rumclhart ct al., 1986). A ncural nctwork may
generalize an input cxample by performing a scquence of small
modifications of the weights of internode conncctions. Although these
weight modifications do not dircctly correspond to any cxplicit inference
rules, the cnd result, nevertheless, can be characterized as a ccrtain
knowledge transmutation.

The latter point is illustrated by Wnek et al. (1990), who described a
simple mecthod for visualizing generalization operations performed by
various symbolic and subsymbolic leaming systems. The method, called
DIAYV, can visualize the target and learned concepts, as well as results of
various intermediate steps, no matter what computational mechanism is
used to perform them.

To illustrate this point, Figure 2 presents a diagrammatic visualization
of concepts leammed by four leaming systems: a classifier system using
genetic algorithm (CFS), a rule learning program (AQ15), a neural net
(BpNet), and a decision tree learning system (C4.5). Each diagram
presents an “image” of the concept learned by the given system from the
same set of examples: 6% of positive examples (5 out of the total 84
positive examples constituting the concept), and 3% of negative examples
(11 out of possible 348).
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Target concept + Positive training example

777 Learned concept - Negative training example

The cell A corresponds to the description:

HEAD-SHAPE =R & BODY-SHAPE=R & SMILING = Yes &
HOLDING = F & JACKET COLOR =B & Tie= N

Figure 2. A visualization of the target concept and concepts
learned by four leaming methods. '



In the diagrams, the shaded area marked *“Target Concept”
represents all possible instances the concept to be learned. The shaded
area marked “Leamed concept” represents a generalization of training
examples hypothesized by a given learning system. The set-theoretic
difference between the “Target concept” and the “Leamed concept”
represents errors in learning (an “Error image”). Each instance
belonging to the “Learned concept” and not to the “Target concept,” or
to the “Target concept” and not to “Leamed concept” will be
incorrectly classified by the system.

To understand the diagrams, note that each cell of a diagram
represents a single combination of attribute values, e.g., an instance of a
concept. A whole diagram represents the complete description space (432
instances). The attributes spanning the description space characterize a
collection of imaginary robot-like figurcs. Figure 3 lists the attributes and
their value sets.

ATTRIBUTES LEGAL VALUES

Head Shape  R- round, S- square, O- octagon
Body Shape  R- round, S-square, O-octagon

Smiling Y-yes, N- no

Holding S- sword, B- balloon, F- flag

Jacket Color  R- red, Y- yellow, G- green, B- blue
Tie Y-yes, N-no S

Figure 3. Auributes and their value sets.

To determine a logical description that corresponds to a given cell (or
a set of cells), one projects the cell (or a set of cells) onto the ranges of
attribute values associated with the scales aside of the diagram, and “reads
out” the description. To illustrate this, the bottom part of Figure 2
presents a description of the cell marked in the diagram as A.

By analyzing the images of the concepts learned by different
paradigms, one can determine the degree to which they generalized the
original examples, can “see” the differences between different
generalizations, determine how new or hypothetical examples will be
classified according to the leamed concepts, etc. For more details on the
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properties of the diagrams, on the method of “reading out” descriptions
from the diagrams, and on the implemented diagrammatic visualization
system, DIAV, see (Michalski, 1978, Wnek et al., 1990; Wnek and
Michalski, 1992.)

The diagrams allow one to view concepts as images, and thus to
abstract from the specific knowledge representation used by a leaming
method. This demonstrates that from the epistemological viewpoint taken
by the ITL, it is irrelevant if knowledge is implemented in the form of a
set of rules, a decision tree, a neural net or some other way. For example,
in a neural net, the prior knowledge is represented in an implicit way,
specifically, by the structure of the net, and by the initial settings of the
weights of the connections. The leamed knowledge is manifested in the
new weights of the connections among the net's units (Touretzky and
Hinton, 1988). The prior and leamed knowledge incorporated in the net
could be re-rcpresented, at least theoretically, in the form of images, or, as
éxplicit symbolic rules or numerical cxpressions, and then dealt with as
any other knowledge. For cxample, using the diagrams in Figure 2, one
can easily “read out” from them a sct of rules cquivalent to the concepts
lcarned by the ncural network and genctic algorithm.

The central aspect of any knowledge transmutation is the type of
underlying inference, which characterizes a transmutation along the truth-
falsity dimension. The type of inference thus determines the truth status
of the derived knowledge. Therefore, before we discuss transmutations
and their role in leaning, we will first analyze basic types of inference.

BASIC TYPES OF INFERENCE

As stated earlier, ITL postulates that learning involves conducting
inference on the input and current BK, and storing the results whenever
they are evaluated as useful. Such a process may involve any type of
inference, because any possible type of inference may produce
knowledge worth remembering. Therefore, from such a viewpoint, a
complete learning theory has to include a complete theory of inference.
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Such a theory of inference should account for all possible types of
inference.

Figure 4 presents an attempt to schematically illustrate all basic types
of inference. The first major classification divides inferences into two
fundamental types: deductive and inductive. The difference between them
can be explained by considering an entailment:

PUBKI=C (2)
where P denotes a set of statements, called premise, BK represents the
reasoner's background knowledge, and C denotes a set of statements,
called consequent. Deductive inference is deriving consequent C, given
premise P and BK. Inductive inference is hypothesizing premise P, given
consequent C and BK. Thus, deductive inference can be viewed as
“tracing forward” the relationship (2), and inductive inference as
“tracing backward” such a relationship. Because of its importance for
characterizing inference processes, relationship (2) is called the
Sfundamental equation for inference. '

CONCLUSIVE

Conclusive Deduction Conclusive Induction

Contingent Deduction Abduction

CONTINGENT

DEDUCTIVE INDUCTIVE

Truth-preserving Falsity-preserving

Figure 4. A classification of basic types of inference.

Inductive inference underlies two major knowledge generation
transmutations: inductive generalization and abductive derivatior_z. They
differ in the type of BK they employ, and the type of premise P they
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hypothesize. Inductive generalization is based on tracing backward a
tautological implication, specifically, the rule of universal specialization.,
i.e., Vx, P(x) = P(a), and produces a premise P that is a generalization of
C, i.e., is a description of a larger set of entities than the set described by C
(Michalski, 1990a, 1993). In contrast, abductive derivation is based on
tracing backward an implication that represents a domain knowledge, and
produces a description that characterizes reasons for C. Other, less known,
types of inductive inference are inductive specialization and inductive
concretion (see section on lnductiye Transmutations).

In a more general view of deduction and induction that also
captures their approximate or commonsense forms, the entailment
relationship *“I=* may also include a “plausible” entailment, i.e.,
probabilistic or partial. The difference between the “conclusive™ (valid)
and “plausible” entailment leads to another major classification of
inference types. Specifically, inferences can be divided into those based
on conclusive or domain-independent dcpendencies, and those based on
contingent or domain-dependent dependencics.

A conclusive dependency between statements or scts of statements
rcpresents a necessarily true logical rclationship, i.e., a rclationship that
must be true in all possible worlds. Valid rules of inference or universally
accepted physical laws represent conclusive dependencies. To illustrate a
conclusive dependency, consider the statement “All elements of the set X
have the property q.” If this statement is true, then the statement “x, an
element of X, has the property q” must also be true.

The above relationship between the statements is true independently
of the domain of discourse, i.e., of the nature of elements in the set X, and
thus is conclusive. If reasoning involves only statements that are assumed
to be true, such as observations, “true” implications, etc., and conclusive
dependencies (valid rules of inference), then deriving C, given P, is the
conclusive (or crisp) deduction, and hypothesizing P, given C, is
conclusive (or crisp) induction.

For example, suppose that BK is “All elements of the set X have the
property q,” and the input (premise P) is “x is an element of X.”
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Deriving a statement “x has the property q” is conclusive deduction. If
BK is “x is an element of X" and the input (the observed consequent )]
is “x has the property g, then hypothesizing premise P “All elements of
X have the property q" is conclusive induction.

Contingent dependencies are domain-dependent relationships that
represent some world knowledge that is not totally certain, but only
probable. The contingency of these relationships is usually due to the
fact that they represent incomplete or imprecise information about the
totality of factors in the world that constitute a dependency. These
relationships hold with different “degrees of strength.”

To express both conclusive and contingent dependencies within one
formalism, the concept of mutual dependency is introduced. Suppose S1
and S2 are sentences in PLC (Predicate Logic Caiculus) that are either
statements (closed PLC sentences; no free variables) or tcrm expressions
(open PLC sentences, in which some of the arguments arc frece variables).
_If there are free variables, such scntences can be interpreted as
representing functions, otherwisc they are statements with a truth-status.
To state that there is a mutual dependency (for short, an m-dependency)
between sentences S1 and S2, we write

S1 &82: a,p 3

where a and B, called merit parameters , represent an overall forward
strength and backward strength of the dependency, respectively. If S1
and S2 are statements, then an m-dependency becomes an m-implication.
Such an implication reduces to a standard logical implication if a is 1, and
B is undetermined, or a is undetermined and B is 1, otherwise it is a bi-
directional plausible implication.. In such an implication, if S1 (S2) is
true, than o (B) represents a measure of certainty that S2 (S1) is true,
assuming that no other information relevant to S2 (S1) is known. If S1
and S2 are term expressions, then a and B represent an average certainty
with which the value of S1 determines the value S2, and conversely.

'An obvious question arises as to the method for representing and
computing merit parameters. We do not assume that they need to have a
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single representation. They could be numerical values representing a
degree of belief, an estimate of the probability, ranges of probability, or a
qualitative characterization of the strength of conclusions from using the
implication in either direction. Here, we assume that they represent
numerical degrees of dependency based on the contingency table (e.g.,
Goodman & Kruskal, 1979; Piatetsky-Shapiro, 1992), or estimated by an
expert. :

Another important problem is how to combine or propagate merit
parameters when reasoning through a network of m-dependencies. Pearl
(1988) discusses a number of ideas relevant to this problem. Since the
certainty of a statement cannot be determined solely on the basis of the
certainties of its constituents, regardless of its meaning, the ultimate
solution of this open problem will require methods that take into
consideration both the merit parameters and the meaning of the sentences.

A special case of m-dependency is determination, introduced by
Russell (1989), and used for characterizing a class of analogical
inferences. Determination is an m-dependency between term cxpressions
in which a is 1, and B is unspecified, that is, a unidirectional functional m-
dependency. If any of the parameters o or B takes value 1, then an m-
dependency is called conclusive, otherwise is called contingent. The idea
of an m-dcpendency stems from research on human plausible reasoning
(Collins and Michalski, 1989).

Conclusions derived from inferences involving contingent
dependencies (applied in either direction), and/or uncertain facts are thus
uncertain. They are characterized by “degrees of belief” (probabilities,
degrees of truth, likelihoods, etc.). For example, “If there is fire, there is
smoke” is a bi-directional contingent dependency, because there could be
a situation or a world in which it is false. It holds in both directions, but
not conclusively in either direction. If one sees fire, then one may derive a
plausible (deductive) conclusion that there is smoke. This conclusion,
however, is not certain. Using reverse reasoning (“tracing backward” the
above dependency), observing smoke, one may hypothesize, that there is
fire. This is also an uncertain inference, called contingent abduction. It



may thus appear that there is no principal difference between contingent
deduction and contingent abduction.

These two types of inferences are different if one assumes that there is
a causal dependency between fire and smoke, or, generally, between P and
C in the context of BK (i.e., P can be viewed as a cause, and C as its
consequence). Contingent deduction derives a plausible consequent, C, of
the causes represented by P. Abduction derives plausible causes, P, of the
consequent C. A problem arises when there is no causal dependency
between P and C in the context of BK. In such a situation, the distinction
between plausible deduction and abduction can be based on the reclative
strength of dependency between P and C in both directions (Michalski,
1992). Reasoning in the direction of stronger dependency is plausible
deduction, and reasoning in the weaker direction is abduction.. If a
dependency is completely symmetrical, e.g., P & C, then the difference
between deduction and abduction ccascs 10 cxist. ’

- In sum, both contingent deduction and contingent induction arc bascd
on contingent, domain-dependent dependencics. Contingent deduction
produces likely conscquences of given causcs, and contingent abduction
produces likely causes of given conscquences. Contingent deduction is
truth-preserving, and contingent induction (or contingent abduction) is
falsity-preserving only to the extent to which the contingent dependencies
involved in reasoning are true. In contrast, conclusive deductive inference
is strictly truth-preserving, and conclusive induction is strictly falsity-
preserving (if C is not true, then the hypothesis P cannot be true either). A
conclusive deduction thus produces a provably correct (valid) consequent
from a given premise. A conclusive induction produces a hypothesis that
logically entails the given consequent (though the hypothesis itself may
be false).

The intersection of the deduction and induction, i.e., an inference that
is both truth-preserving and falsity-preserving, represents an equivalence-
based inference (or reformulation). Analogy can be viewed as an
extension of such equivalence-based inference, namely, as a similarity-
based inference. Every analogical inference can be characterized as a
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combination of deduction and induction. Induction is involved in
hypothesizing an analogical match, i.e., the properties and/or relations that
are assumed to be similar between the analogs, whereas deduction uses the
analogical match to derive unknown properties of the target analog.
Therefore, in Figure 4, analogy occupies the central area.

The above inference types underlie a variety of knowledge
transmutations. We now turn to the discussion of various knowledge
transmutations in leaming processes.

TRANSMUTATIONS AS LEARNING OPERATORS

Inferential Theory of Learning views any learning process as a search
through a knowledge space, defined as the space of admissible knowledge
representations. Such a space represents all possible inputs, all learner’s
background knowledge, and all knowledge that the learner can potentially
generate. In inductive leaming, knowledge space is usually called a
description space.

The theory assumecs that scarch is conducted through an application
of knowlcdge transmutations acting as operators. Such operators take
some component of the current knowledge and some input, and gencrate
a new knowledge component. A learning process is dcfined as follows:

Given e Input knowledge @M
» Goal (¢))
 Background knowledge (BK)
« Transmutations (T)
Determine

« Output knowledge O, satisfying goal G, by applying transmutations
T to input I and background knowledge BK.

The input knowledge, I, is the information (facts or general
knowledge) that the learner receives from the environment. The learner
may receive the input all at once or incrementally, Goal, G, specifies
criteria that need to be satisfied by the Output, O, in order that leamning is
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accomplished. Background knowledge is a part of learner’s prior
knowledge that is “relevant” to a given learning process.

Transmutations are generic types of knowledge transformation for
which one can make a simple mental model. They can be implemented
using many different computational paradigms. They are classified into
two general categories: knowledge generation transmutations, which
change the content or meaning of the knowledge, and knowledge
manipulation transmutations, which change its physical location or
organization, but do not change its content.

Knowledge generation transmutations represent patterns of inference,
and can be divided to synthetic and analytic. Synthetic transmutations are
able to hypothesize intrinsically new knowledge, and thus are fundamental
for knowledge creation (by “intrinsically new knowledge” we mean
knowledge that cannot be conclusively deduced from the knowledge
already possessed). Synthetic transmutations include inductive
transmutations (thosc that cmploy some form of inductive inference), and
analogical transmutations (those that cmploy somc form of analogy).
Analytic (or dcductive) transmutations arc thosc cmploying somc form
deduction.

This chapter concentrates on a few knowledge genceration
transmutations' that are particularly important for the classification of
learning processes described in the last section. A discussion of scveral
other knowledge transmutations is in (Michalski, 1993).

In order to describe these transmutations, we need to introduce
concepts of a well-formed description, the reference set of a description, -
and a descriptor. A set of statements is a well-formed description if and
only if one can identify a specific set of entities such that this set of
sentences describe. This set of entities (often a singleton) is called the
reference set of the description. Well-formed descriptions have truth-
status, that is, they can be characterized as true or false, or, generally, by
some intermediate truth-value.



For the purpose of this presentation, we will make a simplifying
assumption that descriptions can have one of only three truth-values:
“true,” “false,” or “unknown.” The “unknown” value is attached to
hypotheses generated by contingent deduction, analogy, or inductive
inference. The “unkown” value can be turned to true or false by
subjecting the hypothesis to a validation procedure. A descriptor is an
auribute, a function, or a relation, whose value or status is used to
characterize the reference set.

Consider, for example, a statement: “Elizabeth is very strong, has
Ph.D. in Astrophysics from the University of Warsaw, and likes soccer.”
This statement is a well-formed description because one can identify a
reference set, {Elizabeth}, that this statement describes. This description
uses three descriptors: a one-place attribute “degree-of-
strength(person),” a binary relation “likes(person, activity),” and a four
place relation, “degree-received(person, degree, topic, University). The
truth-status of this description is true, if Elizabcth has the properties stated,
false it she docs not, unknown, if it is not known to be true, but there is no
evidence that it is false.

Consider now a sentence: “Robert is a writer, and Barbara is a
lawyer.” This sentence is not a well-formed description. It could be split,
however, to two sentences, each of which would be a well-formed
description (one describing Robert, and another describing Barbara).
Finally, consider a sentence “George, Jane and Susan like mango,
political discussions, and social work.” This is a well-formed description
of the reference set {George, Jane, Susan}.

Knowledge generation transmutations apply only to well-formed
descriptions. Knowledge manipulation transmutations apply to
descriptions, as well as entities that are not descriptions (e.g., terms, Or Sets
of terms). Below is a brief description of four major classes of knowledge
generation transmutations. First two classes consists of a pair of opposite
transmutations, and the third one contains a range of transmutations.
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1. Generalization vs. specialization

A generalization transmutation extends the reference set of the input
description. Typically, a generalization transmutation is inductive, because
the extended set is inductively hypothesized. A generalization
transmutation can also be deductive, when the more general assertion is a
logical consequence of the more specific one, or is deduced from the
background knowledge and/or the input. The opposite transmutation is
specialization transmutations, which narrows the reference set. A
specialization transmutation usually employs deductive inference, but, as
shown in the next section, there are also inductive specialization
transmutations.

2. Abstraction vs. concretion

Abstraction reduces the amount of detail in a description of a
reference sct, without changing the reference set. This can be done in a
varicty of ways. A simple way is by replacing onc or more descriptor
values by their parents in the gencralization hicrarchy of values. For
example, suppose given is a statcment “Susan found an apple.”
Replacing “apple” by “fruit” would be an abstraction transmutation
(assuming that background knowledge contains a generalization
hierarchy in which “fruit” is a parent node of “apple”). The underlying
inference here is deduction. The opposite transmutation is concretion,
which generates additional details about a reference set.

3. Similization vs. dissimilization

Similization derives new knowledge about some reference set on the
basis of detected partial similarity between this set and some other
reference set, of which the reasoner has more knowledge. The similization
thus transfers knowledge from one reference set to another reference set,
which is similar to the original one in some sense. The -opposite
transmutation is dissimilization, which derives new knowledge from the
lack of similarity between the compared reference sets.

The similization and dissimilization are based on analogical inference. -
They can be viewed as a combination of deductive and inductive
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inference (Michalski, 1992). They represent patterns of inference
described in the theory of plausible reasoning by Collins and Michalski
(1989). For example, knowing that England grows roses, and that
England and Holland have similar climates, a similization transmutation
might hypothesize that Holland may also grow roses. An underlying
packground knowledge here is that there exists a dependency between
climate of a place and the type of plants growing in that location. A
dissimilization transmutation would be to hypothesize that bougainvillea,
which is widespread on the Caribbean islands, probably does not grow in
Scotland, because Scotland and Caribbean islands have very different
climate.

4. Reformulation vs. randomization

A reformulation transmutation transforms a description into another
description according to equivalence-based rules of transformation (i.e.,
truth- and falsity-preserving rulcs). For example, transforming 2
statement: “This set contains numbers 1,2,3,4 and 5" into “This sct
contains integers from 1 to 5" is a reformulation. An opposite
transmutation is randomization, which transforms a description into
another description by making random changes. For example, mutation
in a genctic algorithm represents a randomization transmutation.

Reformulation and randomization are two extremes of a spectrum of
intermediate transmutations, called derivations. Derivations employ
different degrees or types of logical dependence between descriptions o
derive one piece of knowledge from another. An intermediate
transmutation between the two extremes above is crossover, which is also
used in genetic algorithms. Such a transmutation derives new knowledge
by exchanging parts of two related descriptions.

INDUCTIVE TRASMUTATIONS

Inductive transmutations, i.c., knowledge transformations employing
inductive inference have fundamental importance to learning. This is due
to their ability to generate intrinsically new knowledge. As discussed
earlier, induction is an inference type opposite to deduction. The results
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of induction can be in the form of generalizations (theories, rules, laws,
etc.), causal explanations, specializations, concretions and other. The usual
aim of induction is not to produce just any premise (“‘explanation”) that
entails a given consequent (“observable”), but the one which is the most
“justifiable.” Finding such a “most justifiable” hypothesis is important,
because induction is an under-constrained inference, and just “reversing”
deduction would normally lead to an unlimited number of alternative
hypotheses.

Taking into consideration the importance of determining the most
justifiable hypothesis, the previously given characterization of inductive
inference based on (2) can be further elaborated. Namely, an admissible
induction is an inference which, given a consequent C, and BK, produces a
hypothetical premise P, consistent with BK, such that

PUBKI=C 4)
and which satisfics the hypothesis selection criterion.

In different contexts, the selection criterion (which may be a
combination of several elementary criteria) is called a preference criterion
(Popper, 1972; Michalski, 1983), bias (c.g., Utgoff, 1986), a comparator
(Poole, 1989). These criteria are nccessary for any act of induction
because for any given consequent and a non-trivial hypothesis description
language there could be a very large number distinct hypotheses that can
be expressed in that language, and which satisfy the relation (4).

The selection criteria specify how to choose among them. Ideally,
these criteria should reflect the properties of a hypothesis that are
desirable from the viewpoint of the reasoner's (or learner's) goals. Often,
these criteria (or bias) are partially hidden in the description language
used. For example, the description language may be limited to only
conjunctive statements involving a given set of attributes, or determined
by the mechanism performing induction (e.g., a method that generates
decision trees is automatically limited to using only operations of
conjunction and disjunction in the hypothesis representation). Generally,



these criteria reflect three basic desirable characteristics of a hypothesis:
accuracy, utility, and generality.

The accuracy expresses a desire to find a “true” hypothesis. Because
the problem is logically under-constrained, the “truth” of a hypothesis
can never be guaranteed. One can only satisfy (4), which is equivalent to
making a hypothesis complete and consistent with regard to the input facts
(Michalski, 1983). If the input is noisy, however, an inconsistent and/or
incomplete hypothesis may give a better overall predictive performance
than a complete and consistent one (¢.g., Quinlan, 1989; Bergadano et al.,
1992). The utility requires a hypothesis to be computationally and/or
cognitively simple, and be applicable to performing an expected set of
problems. The generality criterion expresses the desire to have a
hypothesis that is useful for predicting new unknown cases. The more
general the hypothesis, the wider scope of different new cases it will be
able to predict. Form now on, when we talk about inductive
transmutations, we mean transmutations that involve admissible inductive
inference.

While the above described view of induction is by no means
universally accepted, it is consistent with many long-standing discussions
of this subject going back to Aristotle (e.g., Adler and Gorman, 1987; see
also the reference under Aristotle). Aristotle, and many subsequent
thinkers, e.g., Bacon (1620), Whewell (1857) and Cohen (1970), viewed
induction as a fundamental inference type that underlies all processes of
creating new knowledge. They did not assume that knowledge is created
only from low-level observations and without use of prior knowledge.

Based on the role and amount of background knowledge involved,
induction, can be divided into empirical induction and constructive
induction. Empirical induction uses little background knowledge.
Typically, an empirical hypothesis employs the descriptors (attributes,
terms, relations, descriptive concepts, etc.) that are selected from among
those that are used in describing the input instances or examples, and
therefore such induction is sometimes called selective (Michalski, 1983).
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In contrast, a constructive induction uses background knowledge
and/or experiments to generate additional, more problem-oriented
descriptors, and employs them in the formulation of the hypothesis. Thus,
it changes the description space in which hypotheses are generated.
Constructive induction can be divided into constructive generalization,
which produces knowledge-based hypothetical generalizations, abduction,
which produces hypothetical domain-knowledge-based explanations, and
theory formation, which produces general theories explaining a given set
of facts. The latter is usually developed by employing inductive
generalization with abduction and deduction.

There is a number of knowledge transmutations that employ
induction, such as empirical inductive generalization, constructive
inductive generalization, inductive specialization, inductive concretion,
abductive derivation, and other (Michalski, 1993). Among them, the
empirical inductive generalization is the most known form. Perhaps for
this reason, it is somectimes mistakenly viewed as the only form of
inductive inference.

Constructive inductive gencralization creates general statements that
use other terms than those used for characterizing individual obscrvations,
and is also quite common in human reasoning. Inductive specialization is
a relatively lesser ‘known form of inductive inference. In contrast to

inductive generalization, it decreases the reference set described in the
input.

Concretion is related to inductive specialization. The difference is that
it generates more specific information about a given reference set, rather
than reduces the reference set. Concretion is a transmutation opposite to
abstraction. Abductive explanation employees abductive inference to
derive properties of a reference set that can serve as its explanation.

Figure 5 gives examples of the above inductive transmutations.



Input: “A girl's face” and “Lvow cathedral™ are beautiful paintings.
BK: _“A girl's face” and “Lvow cathedral” are paintings by Dawski.
Hypothesis: All paintings by Dawski are beautiful.

4+
Input: “A girl's face” and “Lvow cathedral” are beautiful paintings.
BK: “A girl's face” and “Lvow cathedral” are paintings by Dawski.

Dawski is a known painter. Beautiful paintings by a known painter
are expensive.

Hypothesis: All paintings by Dawski are expensive.

iz
Input: There is high-tech industry in Northern Virginia.
BK: __ Fairfax is a town in Northem Virginia,
Hypothesis: There is high-tech industry in Fairfax.

D.Inductive C .

Input: John is an expert in some formal science.

BK: John is Polish. Many Poles like logic, Logic is a formal science,
Hypothesis: John is an cxpert in logic.

E. Abductive derivati
Input: There is smoke in the house.
BK: ___Fire usually causes smoke.
Hypothesis: There is a fire in the house.

jon (generalization plus abductive
derivation)

Input: Smoke is coming from John's apartment.

BK: Fire usually causes smoke, John's apt. is in the Hemingway building.
Hypothesis: The Hemingway building is on fire.

Figure 5. Examples of inductive transmutations.
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In Figure 5, examples A, C and D illustrate conclusive inductive
transmutations (in which the generated hypothesis conclusively implies
the consequent), and examples B, E and F illustrate contingent inductive
transmutations (the hypothesis only plausibly implies the consequent).In
example B, the input is only a plausible consequence of the hypothesis
and BK, because background knowledge states that “Beautiful paintings
by a known painter are expensive.” This does not imply that all paintings
that are expensive are necessarily beautiful.

The difference between inductive specialization (Example C) and
concretion (Example D) is that the former reduces the set being described
(that is, the reference set), and the latter increases the information about
the reference set. In example C, the reference set is reduced from Virginia
to Fairfax. In example D, the reference set is John; the concrection
increases the amount of information about it.

HOW ABSTRACTION DIFFERS FROM GENERALIZATION

Generalization is sometimes confuscd with abstraction, which is oftcn
employed as part of the process of crcating gencralizations. These two
transmutations are quite diffcrent, however, and both arc fundamcntal
operations on knowledge. This section provides additional explanation of
abstraction, and illustrates the differences betwecn it and generalization.
As mentioned earlier, abstraction creates a less detailed description of a
given reference set from a more detailed description, without changing the
reference set. The last condition is important, because reducing
information about the reference set by describing only a part of it would
not be abstraction. For example, reducing a description of a table to a
- description of one of its legs would not be an abstraction operation.

To illustrate an abstraction transmutation, consider a transformation of
the statement “My workstation has a Motorola 25-MHz 68030
processor” to “My workstation is quite fast.” To make such an
operation, the system needs domain-dependent background knowledge
that “a processor with the 25-MHz clock speed can be viewed as quite
fast,” and a rule “If a processor is fast then the computer with that
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processor can be viewed as fast.” Note that the more abstract description
is a logical consequence of the original description in the context of the
given background knowledge, and carries less information.

The abstraction operation often involves a change in the
representation language, from one that uses more specific terms to one
that uses more general terms, with a proviso that the statements in the
second language are logically implied by the statements in the first
language. A very simple form of abstraction is to replace in a description
of an entity a specific attribute value (e.g., the length in a centimeter) by a
less specific value (e.g., the length stated in linguistic terms, such as short,
medium and long). A more complex abstraction would involve a
significant change of the description language, €.g., taking a description
of a computer in terms of electronic circuits and connections, and
changing it into a description in terms of the functions of the individual
modules.

In contrast to abstraction, which reduces information about a
reference sct but does not change it, generalization extends the refercnce
set. To illustrate simply the differcnce between generalization and
abstraction, consider a statement d(S,v), which says that attribute
(descriptor) d takes value v for the set of entities S. Let us write such a
statement in the form:

dS)=v &)

Changing (5) to the statement d(S) = v', in which v' represents a more
general concept, e.g., a parent node in a generalization hierarchy of values
of the attribute d, is an abstraction operation. By changing v to v’ less
information is being conveyed about the reference set S. Changing (5).to0
a statement d(S') = v, in which §' is a superset of S, is a generalization
operation. The generated statement conveys more information than the
original one, because the property d is not assigned to a larger set.

For example, transferring the statement “color(my-pencil) = light-
blue” into “color(my-pencil)=blue” is an abstraction operation. Such an
operation is deductive, if one knows that light-blue is a kind of blue.
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Transforming the original statement into “color(all-my-pencils) = light-
blue” is a generalization operation. Assuming that one does not have
prior knowledge that all writing instruments that I posses are blue, this is
an inductive operation. Finally, transferring the original statement into
«color(all-my-pencils)=blue” is both generalization and abstraction.
Thus, associating the same information with a larger set is a generalization
operation; associating a smaller amount of information with the same set
is an abstraction operation.

In summary, generalization transforms descriptions along the set-
superset dimension, and abstraction transforms descriptions along the
level-of-detail dimension. Generalization often uses the same description
space (or language), abstraction often involves a change in the
representation space (or language). An opposite transmutation to
generalization is specialization. An opposite transmutation to abstraction
is concretion. Generalization is typically an inductive opcration, and
abstraction a deductive opcration.

As a parallel concept to constructive induction, which was discusscd
before, one may introducc the concept of constructive deduction.
Similarly to constructive induction, constructive deduction is a process of
deductively transforming a source description into a target description,
which uses new, more goal-relevant terms and concepts than the source
description. As in constructive induction, the process uses background
knowledge for that purpose. Depending on the available background
knowledge, constructive deduction may be conclusive or contingent.

Abstraction can be viewed as a form of constructive deduction that
reduces the amount of information about a given inference set, without
changing it. Such a reduction may involve using terms at “higher level of
abstraction” that are derived from the “lower level” terms. Constructive
deduction is a more general concept than abstraction, as it includes any
type of deductive knowledge derivation, including transformations of a
given knowledge to equivalent but different forms, plausible deductive
derivations, such as those based on probabilistic inferences (e.g., Schum,
1986; Pearl, 1988), or plausible reasoning (e.g., Collins and Michalski,
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1989). In such cases, the distinction between constructive induction and
constructive deduction becomes a matter of degree to which different
forms of reasoning play the primary role.

A CLASSIFICATION OF LEARNING PROCESSES

Leaming processes can be classified according to many criteria, such
as the type of the inferential learning strategy used (in our terminology,
the type of primary transmutation employed), the type of knowledge
representation (logical expressions, decision rules, frames, etc.), the way
information is supplied to a leaning system (batch vs. incremental), the
application area in which it is applied, etc. Classifications based on such
criteria have been discussed in Carbonell, Michalski and Mitchell (1983)
and Michalski (1986).

The Inferential Theory of Learning outlined above offers a new way
of looking at lcamning processcs, and suggests some other classification
criteria. The theory considers lcaming as a knowledge transformation
process whosc primary purposc may be cither to increase thc amount of
the learner's knowledge, or to incrcase the cffectiveness of the knowlcdge
alrcady possesscd. Therefore, the primary learning purpose can bc uscd
as a major criterion for classifying learning processes.

Based on this criterion, leaming processes are divided into two
categories—synthetic and analytic. The main goal of synthetic learning is
to acquire new knowledge that goes beyond the knowledge already
possessed, i.e., beyond its deductive closure. Thus, such learning relies on
synthetic knowledge transmutations. The primary inference types
involved in such processes are induction and/or analogy. (The term
“primary” is important, because every inductive or analogical inference
also involves deductive inference. The latter form is used, for example, to
test whether a generated hypothesis entails the observations, to perform an
analogical knowledge transfer based the hypothesized analogical match,
to generate new terms using background knowledge, etc. )

The main goal of analytic learning processes is to transform
knowledge that the learner already possesses into the form that is most
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desirable and/or effective for achieving the given leaming goal. Thus,
such leamning relies on analytic knowledge transmutations. The primary
inference type used is therefore deduction. For example, one may have a
complete knowledge of how an automobile works, and therefore can in
principle diagnose the problems based on it. By analytic learning, one can
derive simple tests and procedures for more efficient diagnosis.

Other important criteria for classification of leaming processes
include:

» The type of input information—whether it is in the form of (classified)
examples, or in the form of (unclassified) facts or observations.

» The type of primary inference type employed in a learning process—
induction, deduction or analogy.

» The role of the learner's background knowledge in the learning
proccss—whether lcamning relies primarily on the input data,
primarily on the background knowledge, or on somc balanced
combination of the two.

Figure 6 prescnts a classification of Icarning processes according to
the above critcria. A combination of specific outcomes along cach
criterion dectermines a class of learning methodologies. Individual
methodologics differ in terms of the knowledge representation employed,
the underlying computational mechanism, or the specific learning goal
(e.g., learning rules for recognizing unknown instances, learning
Classification structures, or learning equations). Such methodologies like
empirical generalization, neural-net leaming and genetic algorithm based
learning all share a general goal (knowledge synthesis), have input in the
form of examples of observed facts (rather than rules or other forms of
general knowledge), perform induction as the primary form of inference,
and involve relatively small amount of background knowledge. The
differences among them are in the employed knowledge representation
-and the underlying computational mechanism.

If the input to a synthetic leaming method are examples classified by
some source of knowledge, e.g., a teacher, then we have learning from
examples. Such leaming can be divided in tum into “instance-to-class”
and “part:to-whole” categories (not shown in the Figure).
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Figure 6. A general classification of learning processes.
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In the “instance-to-class” category, examples are independent entities
that represent a given class or concepts. For example, leaming a general
diagnostic rule for a given disease from characteristics of the patients with
this disease is an “instance-to-class” generalization. Here each patient is
an independent example of the disease.

In the *“part-to-whole” category, examples are interdependent
components that have to be investigated together in order to generate a
concept description. For example, a *“part-to-whole” inductive leamning is
to hypothesize a complete shape and look of a prehistoric animal from a
collection of its bones.

When the input to a synthetic leaming method includes facts that need
to be described or organized into a knowledge structure, without the
benefit of advise of a tcacher, then we have learning from observation.
The latter is exemplificd by learning by discovery, conceptual clustering
and theory formation catcgorics.

The primary type of inference used in synthetic leaming is induction.
As described carlicr, inductive inference can be empirical (background
knowledge-limited) or constructive (background knowlcdge-intensive).
Most work in cmpirical induction has been concerned with cmpirical
generalization of concept examples using attributes sclected from among
those present in the descriptions of the cxamples. Another form of
empirical leaming includes quantitative discovery, in which leamner
constructs a set of equations characterizing given data.

Empirical inductive learning (both from examples, also called
supervised learning, and from observation, also called unsupervised
learning) can be done using several different methodologies, such as
symbolic empirical generalization, neural net learning, genetic algorithm
leaming, reinforcement learning (“learning from feedback™), simple
forms of conceptual clustering and case-based learning.

The above methods typically rely on (or need) relatively small
amount of background knowledge, and all perform some form of
induction. They differ from each other in the type of knowledge
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representation, computational paradigm, and/or the type of knowledge
they aim to learn. Symbolic methods frequently use such representations
as decision trees, decision rules, logic-style representations (e.g., Hom
clauses or limited forms of predicate calculus), semantic networks or
frames. Neural nets use networks of neuron-like units; genetic algorithms
often use classifier systems. Conceptual clustering typically uses decision
rules or structural logic-style descriptions, and aims at creating
classifications of given entities together with descriptions of the created
classes. Reinforcement learning acquires a mapping from situations to
actions that optimizes some reward function, and may use a variety of
representations, such a neural nets, sets of mathematical equations, or
some domain-oriented languages (Sutton, 1992).

In contrast to empirical inductive learning, constructive inductive
lcamning is knowledge-intensive. It uscs background knowledge and/or
scarch techniques 1o crcate new attributes, terms or predicates that arc
more relevant to the lcaming task, and use them to dcerive
characterizations of the input. Thesc charactcrizations can be
gencralizations, explanations or both.

As described before, abduction can be viewed as a form of
knowledge-intensive (constructive) induction, which “traces backward”
domain-dependent rules to create explanations of the given input. Many
methods for constructive induction use decision rules for representing
both background knowledge and acquired knowledge.

For completeness, we will mention also some other classifications 0
synthetic methods, not shown in this classification. One classification is
based on the way facts or examples are presented to the learner. If
examples (in supervised learning) or facts (in unsupervised learning) are
presented all at once, then we have one-step or non-incremental inductive
learning. If they are presented one by one, or in portions, so that the
system has to modify the currently held hypothesis after each input, we
have an incremental inductive learning.

Incremental leaming may be with no memory, with partial memory, o1
with complete memory of the past facts or examples. Most incremental
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machine learning methods fall into the “no memory” category, in which
all knowledge of past examples is incorporated in the currently held
hypothesis. Human learning falls typically into a “partial memory”
“category, in which the learner remembers not only the currently held
hypothesis, but also representative past examples supporting the
hypothesis.

The second classification is based on whether the input facts or
examples can be assumed to be totally correct, or can have errors and/or
noise. Thus, we can have leamning from a perfect source, or imperfect
(noisy) source of information.

The third classification characterizes leamning methods (or processes)
based on the type of matching instances with concept descriptions. Such
matching can be done in a direct way, which can be complete or partial,
or an indirect way. The latter employs inference and a substantial amount
of background knowledge. For cxample, rulc-bascd lecarning may
employ a direct match, in which any cxample has to cxactly satisfy a
condition part of some rule, or a partial match, in which a dcgrec of match
is computed, and the rule that gives the best match is fired Advanced case-
based learning methods employ matching proccdurcs that may conduct
an extensive amount of infercnce to match a new example with past
~ examples (e.g., Bareiss, Porter and Wicr, 1990). Leaming methods based
on the two-tiered concept representation (Bergadano et al.,, 1992) also
use inference procedures for matching an input with the stored
knowledge. In both cases, the matching procedures perform a “virtual”
generalization transmutation. '

Analytic methods can be divided into those that are guided by an
example in the process of knowledge reformulation (example-guided),
and those that start with a knowledge specification (specification-guided).
The former category includes explanation-based learning (e.g., DelJong
et al., 1986), . explanation-based-generalization (Mitchell et al., 1986),
and explanation-based specialization (Minton et al., 1987; Minton,
1988). If deduction employed in the method is based on axioms, then it
is called axiomatic. A “pure” explanation-based generalization is an
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example of an axiomatic method because it is based on a deductive
process that utilizes a complete and consistent domain knowledge. This
domain knowledge plays the role analogous to axioms in formal theories.
Synthesizing a computer program from its formal specification is a
specification-guided form of analytic learning.

Analytic methods that involve truth-preserving transformations of
description spaces and/or plausible deduction are classified as methods of
“constructive deduction.” One important subclass of these methods are
those utilizing abstraction as a knowledge transformation operation.
Other subclasses include methods employing contingent deduction, e.g.,
plausible deduction, or probabilistic reasoning.

The type of knowledge representation employed in a learning system 4
can be used as another dimension for classifying learning systems (also
not shown in Figure 6). Lcaming systems can be classified according to
this criterion into those that use a logic-style representation, decision tree,
production rules, frames, scmantic nctwork, grammar, ncural nctwork,
classifier system, PROLOG program, etc., or a combination of different
representations. The knowledge representation used in a learning system
is often dictated by the application domain. It also depends on the type of
leamning strategy employed, as not every knowledge representation is
suitable for every type of leaming strategy.

Multistrategy learning systems integrate two or more inferential
strategies and/or computational paradigms. Currently, most multistrategy
systems integrate some form of empirical inductive learning with
explanation-based learning, e.g., Unimem (Lebowitz, 1986), Odysseus
(Wilkins, Clancey, and Buchanan, 1986), Prodigy (Minton et al., 1987),
GEMINI (Danyluk, 1987 and 1989), OCCAM (Pazzani, 1988), IOE
(Dietterich and Flann, 1988) and ENIGMA (Bergadano et al., 1990).
Some systems include also a form of analogy, e.g., DISCIPLE-1
(Kodratoff and Tecuci, 1987), or CLINT (Raedt and Bruynooghe, 1993).
Systems applying analogy sometimes is viewed as multistrategy, because
analogy is an inference combining induction and deduction. An advanced
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case-based reasoning system that uses different inference types to match
an input with past cases can also be classified as multistrategy.

The Inferential Theory of Learning is a basis for the development of
multistrategy task-adaptive learning (MTL), first proposed by Michalski
(1990a). The aim of MTL is to synergistically integrate such strategies as
empirical leaming, analytic learning, constructive induction, analogy,
abduction, abstraction, and ultimately also reinforcement strategies. An
MTL system determines by itself which strategy or a combination thereof
is most suitable for a given leamning task. '

In an MTL system, strategies may be integrated loosely, in which case
they are represented as different modules, or tightly, in which case one
underlying representational mechanism supports all strategies. Various
aspects of research on MTL have been reported by Michalski (1990c)
and by Tecuci and Michalski, (1991a,b). Related work was also recported
by Tecuci (1991a,b; 1992).

Summarizing, the theory postulates that lcamning processes can be
described in terms of generic patterns of inference, called transmutations.
A few basic knowledge transmutations have bcen discusscd, and
characterized in terms of three dimensions:

A. The type of logical relationship between the input and thc output:
induction vs. deduction.

B. The giircction of the change of the rcfercnce sct: generalization vs.
specialization.

C. The direction of the change in the level-of-detail of description:
abstraction vs. concretion.

Each of the above dimensions corresponds to a different mechanism
of knowledge transmutation that may occur in a leaming process. The
operations involved in the first two mechanisms, induction vs. deduction,
and generalization vs. specialization, have been relatively well-explored in
machine learning. The . operations involved in the third mechanism,

- abstraction vs. concretion, have been relatively less studied. Because these
three mechanisms are interdependent, not all combinations of operations
can occur in a leaming process . The problems of how to quantitatively
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and effectively measure the amount of change in the reference set and in
the level-of-detail of descriptions are important topics for future research.

The presented classification of learning processes characterizes and
relates to each other major subareas of machine learning. As any
classification, it is useful only to the degree to which it illustrates
important distinctions and relations among various categories. The
ultimate goal of this classification effort is to show that diverse learning
mechanisms and paradigms can be viewed as parts of one general
structure, rather than as a collection of unrelated components.

SUMMARY

The goals of this research are to develop a theoretical framework and
an effective methodology for characterizing and unifying diverse leaming
strategics and approaches. The proposed Inferential Theory looks at
leaming as a process of making goal-oricnted knowledge transformations.
Conscquently, it proposcs to analyze lcarning methods in terms of generic
types of knowledge transformation, called transmutations, that occur in
lcaming processes. Scveral transmutations have been discussed and
characterized along three dimensions: the type of the logical relationship
between an input and output (induction vs. deduction), the change in the
reference sct (generalization vs. specialization), and the change in the
level-of-detail of a description (abstraction vs. concretion). Deduction and
induction has been presented as two basic forms of inference. In addition
to widely studied inductive generalization, other form of induction have
been discussed, such as inductive specialization, concretion, and
abduction. Is has been also shown that abduction can be viewed as a
knowledge-based induction, and abstraction as a form of deduction.

The Inferential Theory can serve as a conceptual framework for the
development of multistrategy learning systems that combine different
inferential leaming strategies. Research in this direction has led to the
formulation of the multistrategy task-adaptive leaming (MTL), that
dynamically and synergistically adapts the learning strategy, or a
combination of them, to the learning task.
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Many of the ideas discussed are at a very carly state of development,
and many issues have not been resolved. Future research should develop
more formal characterization of the presented transmutations, and develop
effective methods for characterizing different knowledge transmutations,
and measuring their “degrees.” Other important research area is to
determine how various learning algorithms and paradigms map into the
described knowledge transmutations. :

In conclusion, the ITL provides a new viewpoint for analyzing and
characterizing leaming processes. By addressing their logical capabilities
and limitations, it strives to analyze and understand the competence
aspects of learning processes. Among its major goals are to dcvglop
effective methods for determining what kind of knowledge a leamer can
acquire from what kind of inputs, to determine the arcas of thc most
effective applicability of different lcarning mcthods, and to gain ncw
insights into how to devclop more advanced lcaming sysicms.
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