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Chapter 5

LEARNING FLEXIBLE CONCEPTS USING
A TWO-TIERED REPRESENTATION

R. S. Michalski, F. Bergadano!, S. Matwin2 and J. Zhang

Center for Arntificial Intelligence
George Mason University
Fairfax, VA 22030

ABSTRACT

Most human concepts are flexible in the sense that they inherently
lack precise boundaries, and these boundaries are often context-
dependent. This chapter describes ‘a method for representing and
inductively leaming flexible concepts from examples. The basic idea is to
represent such concepts using a two-tiered representation. Such a
representation consists of two structures (“tiers”): the Base Concep:
Representation (BCR), which capturcs explicitly the basic and context-
independent concept propertics, and /nferential Concept Interpretation
(ICI), which characterizes allowable concept modifications and context-
dependency. The proposed method has been implemented in the

POSEIDON?3 system (also called AQ16), and tested on various practical
problems, such as learning the concept of “Acceptable union contracts”
and “Voting patterns of Republicans and Democrats in the U.S.
Congress.” In the experiments, the system generated concept descriptions
that were both, more accurate and simpler than those produced by other
methods tested, such as methods employing simple exemplar-based

representations, decision tree leamning, and some previous methods for
rule leaming.

L On leave of absence from the University of Torino, Italy
2 On leave of absence from the Univerity of Ottawa, Canada.

3 The System is named after POSEIDON, the Greek god of the sea, water and
waves, which represent fluidity and changing aspects of nature.
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INTRODUCTION

Typical assumptions underlying a large part of machine learning
research are that concepts have precise boundaries, are context-
independent, and are representable by a single symbolic description. An
important consequence of this assumption is that recognizing instances of
such concepts, which we call crisp, is very simple: if an instance satisfies a
given concept description, then it belongs to the concept, otherwise it does
not. Another common assumption is that concept instances are equally
representative, that is there is no distinction in the typicality among
INStances.

In some methods, these assumptions are partially relaxed by assigning
10 a concept a fuzzy set membership function (e.g., Zadeh, 1974), or a
probability distribution (e.g., Cheeseman et al., 1988; Fisher, 1987).
However, once such a measure is defined explicitly for a given concept,
the concept has a fixed, well-defined mcaning. Morcover, these methods
remain unsatisfactory for coping with context-dependency, handling
cxceplional cases, or for capturing gradual changes of knowledge about
the concept propertics.

When one looks at human concepts, one can see that most of them
inherently lack precisely defined boundaries, and that their meaning is
often context-dependent, Although on the surface these properties can be
viewed as undesirable, one can argue that they contribute to a cognitive
economy of human'knowledge representations (Michalski, 1987). Our
view is that this imprecision and context-dependency can be more
adequately captured by rules of inference and flexible concept matching
than by a probability distribution or a numerical set membership
function. In other words, we postulate that the imprecision and context-
dependency has often a logical, rather than a probabilistic character. This
is confirmed by an observation that people usually decide about the
concept membership of borderline instances through inference—by
reasoning from general knowledge, drawing an analogy, or performing
induction, rather than by conducting a statistical analysis.

Examples of human concepts can often be characterized by a degree
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of typicality in representing the concept. For example, a robin is usually
viewed as a more typical bird than a penguin or ostrich. The typicality is
usually viewed as the degree to which an instance shares the common
concept properties. Another property of concepts is that in different
contexts they may have different meaning. For example, the concept
"bird" may apply to a live, flying bird, a sculpture, a chick hatching out of
the egg, or even an airplane. Thus, human concepts are flexible, as their
boundaries have certain degree of fluidity, and can change with the
context in which the concepts are used. It is clear that in order to leam
such concepts, machine learning systems need to employ richer concept
representations than are currently used.

This chapter describes an approach to learning flexible concepts
based on the idea of two-tiered representation (TT), proposed by
Michalski (1987). In this represcntation, a concept is described by two
structurcs (“tiers™), the base concept representation (BCR), and the
inferential concept interpretation (ICI). The BCR dcfines explicitly the
basic propertics of the concept, while the ICI describes implicitly, through
rules and matching proccdures, the allowed modifications of the cxplicit
mcaning, and its changes or extensions in different contexts. In the
general definition of the two-ticred representation, the "distribution” of the
meaning between the two tiers is not fixed, but dcpcnds on the properties
of the rcasoning agent, and on the criteria for evaluating the quality of
concept descriptions. In the instantiation of the two-tiered approach that
applies to modeling human concept representation, the BCR is assumed to
describe the most typical, common, and intentional meaning of a concept,
while the ICI would handle the exceptional or borderline cases, and
context dependency (Michalski, 1990). The ICI for specific concepts is
often inherited from more general concepts.

Early ideas, experiments and the first method for learning two-tiered
concept representations were presented in (Michalski et al.,, 1986;
Michalski, 1988; and Michalski, 1990). The general idea was to induce, in
the first step, a concept description that is a complete and consistent
characterization of all training examples. Such a description is often
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overly complex and performs poorly on new examples, if the concept has
flexible and/or complex porders, or examples are noisy. Therefore, in the
second step, such descriptions are simplified or optimized according to
some criterion of description "quality.” The method employed a simple
form of description simplification, called TRUNC, which removes those
parts of the description that cover only a small fraction of examples (the
so called light disjuncts, or light rules). Such a description change can be
logically interpreted as a specialization operation. As the I1C], the method
applied a ﬂexible' matching procedure. An intriguing result of that
research was that the description’s complexity was substantially reduced
without affecting its performance on new examples.

The new method, described here, significantly extends these early
ideas. One important advance is the development of a heuristic double-
level search procedure, called TRUNC-SG, which explores the space 0
two-tiered descriptions to derive a globally optimized description. The
search employs both gencralization and specialization operators, and is
guided by a ncw criterion, the general description quality measure
(GDQ). This measure considers the accuracy of the description, the
computational cost of both tiers - Base Concept Representation and
Inferential Concept Interpretation, and its cognitive comprehensibility
(Bergadano et al., 1988). By introducing such a general description
quality measure, any form of concept learning can be viewed as a process
of modifying the input concept description in order to maximize a given
description quality measure. Initial concept description can be in the form
of positive examples only, positive and negative examples, a complete
and/or consistent concept description, an initial description supplied by a
teacher, an abstract concept definition (as in the explanation-based
learning), or a combination of these forms.

Another advance is that flexible matching is used not only in the
recognition process, as in (Michalski et al., 1986), but also in the learning
process, i.e., in searching for high "quality” concept descriptions. This
feature also distinguishes the method from the related work described in
(Bergadano and Giordana, 1989), which does not involve deductive
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reasoning in the learning phase, and evaluates the performance of
generated descriptions solely on the basis of the coverage of examples.
These earlier approaches may be compared to using hands in leamning
how to row a boat, and then using oars in the performance phase.

The idea that learning is more effective if one uses the same
instruments for learning and for performance phases was also present in
some incremental leaming systems (e.g., Fisher, 1987). The work
described here represents also an important advance over tree-pruning
techniques (e.g., Quinlan, 1987). These techniques apply a much more
restrictive description reduction operator (a tree-pruning operator that
performs a generalization of the class replacing the pruned subtree, and
specialization of other classes), and do not use deductive matching or
flexible interpretation of the leamed descriptions. Other advances include
the ability to take into consideration the typicality of training instances
(when it is known), and the use of a rule base for the Infercntial Concept
Interpretation.

This chapter describes basic idcas of two-tiered rcpresentation, the
method proposed, and experimental results from comparing it with several
other methods, such as variants of exemplar-bascd lcaming, decision tree
learning, leaming complete and consistent descriptions, and the earlier
method using two-tiered representation based on the TRUNC procedure.
The experiments have shown that the proposed method compares
favorably with other methods. The descriptions learned by the method
were both simpler and had higher accuracy. in classifying testing
examples.

TWO-TIERED CONCEPT REPRESENTATION

Motivation and Definition

Traditional work on concept representation has assumed that the
whole meaning of a concept resides in a single structure, e.g., a semantic
network, a logic-based description, or a decision tree. Such a structure is
expected to capture all relevant properties of the concept(s) and define the
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concept boundary (e.g., Collins and Quillian, 1972: Minsky, 1975: Smith
and Medin, 1981; Sowa, 1984). When concepts have flexible boundaries,
or the learning examples have a considerable amount of noise, it may be
advantageous to construct a concept representation that is partially
inconsistent and/or incomplete with regard to the given examples. This
idea was confirmed by the work on pruning decision trees (Quinlan,
1987), in HILLARY system (Iba et al., 1988), and in the work on two-

tiered representation (Michalski, 1987; and this chapter).

In traditional approaches, the recognition of a concept instance is
doen typically by directly matching the instance description with the
stored concept representation. Such matching may include comparing
feature values in an instance with those in the concept description, or
tracing links in a semantic network, but is not assumed to involve any
complex inferential processes. More recently, researchers working on
exemplar-based reasoning (e.g., Bareiss, 1989; Kolodner, 1988 and
Hammond, 1989) have proposed various inference mechanisms in order
to classify ncw instances. In these me¢thods, however, the concept
representation consists of stored cxamples (cascs). Such a representation
taxcs memory, and makes it difficult to compare different concepts.

The two-tiered representation employs a general concept description
(BCR), and an inference mechanism (ICI) for matching the description
with instances. Such concept representation can be much simpler than the
one that stores individual examples, or their independent generalizations.
The BCR can be viewed as a characterization of the “central tendency”
of a concept; its contains the most relevant properties, and specifies the
basic intention behind the concept. The ICI handles special cases,
exceptions? and context-dependency. It treats them either by extending
the base concept representation (concept exrension), or by specializing it
(concept contraction). This process involves the background knowledge
and relevant inference rules contained in the ICL Inference allows the

4 The term "exceptions” is used here in its colloquial meaning. Subsection Types
of Match gives it a precise meaning.
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recognition, extension or modification of the concept meaning according
(o 1ts context.

When an unknown entity is to be recognized, it is first matched against
the Base Concept Representation. Then, depending on the outcome, the
entity may be related to the concept's inferential extensions or
contractions. A simple inferential matching can be merely a probabilistic
inference based on some measure of similarity, e.g., the flexible matching
method (Michalski et al., 1986). Advanced matching may involve any
kind of inference —deductive, analogical or inductive. Let us illustrate the
idea of two-tiered representation using the concept of “chair.”

BCR: Superclass: A piece of fumiture.
Function: To seat one person.

Structure: A seat supported by legs and a back rest attached from the side.

Physical properties: The number of legs is usually four. Often made of
wood. The height of the seat is usually about 14-18 inches from the end
of the legs, elc.

(BCR may also include a picture of 3D models of typical chairs)

1CL:  Possible variations of the properties in BCR: The number of legs can
vary from one to four. The legs may be replaced by any support. The
shape of the seat, the legs and the backrest, and the matenial of which they
are made are irrelevant, as long as the function is preserved. The backrest
may be very small or missing, etc.

Context dependency:
Context = museum exhibit --> chair is not used for seating persons any
more.

Context = toys --> the size can be much smaller than stated in BCR. The
chair does not serve for seating persons, but correspondingly small dolls.

Special cases:

If legs are replaced by wheels —> type(chair) is wheelchair

Chair without the backrest --> type(chair) = stool

Chair with the armrests --> type(chair) = armchair

This simple example illustrates several important features of two-tiered

representation. Commonly occurring cases of chairs match the BCR
completely, and the ICI does not need to be involved. For such cases, the
recognition time can thus be reduced. The BCR is not the same as a
description of a prototype (e.g., Rosch and Mervis, 1975), as it can be a
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generalization characterizing different typical cases or be a set of different
prototypes. The ICI does not represent only distortions or corruptions of
the prototype, but it can describe some radically different cases. When an
entity does not satisfy the base representation of any relevant concept
(which concepts are relevant is indicated by the context of discourse), or
satisfies the base representation of more than one concept, the ICI is
involved. The ICI can be changed, upgraded or extended, without any
change to Base Concept Representation. While the BCR-based recognition
involves just direct matching, the ICI-based recognition can involve a
variety of wransformations and any type of inference.

The ideas of two-tiered representation are supported by research on
the so-cailed transformational model (Smith and Medin, 1981). In this
model, matching object features with concept descriptions may transform
object features into those specified in the concept description. Such a
matching is inferential. Some recent work in cognitive linguistics also
scems {o support the ideas of two-tiered representation. For example,
Lakoff (1987), in his idcalized cognitive models approach, stipulates that
humans represent concepts as a structure, which includes a fixed part and
mappings that modify it. The fixed part is a propositional structure,
defined relative to some idealized model, The mappings are metaphoric
or metonymic transformations of the concept's meaning. |

As mentioned before, in the general two-tiered model, the distribution
of the concept meaning between BCR and ICI can vary, depending on the
criterion of the concept description quality. For example, the BCR can be
just concept examples, and ICI can be a procedure for inferential
matching, as used in the cased-based reasoning approach. Consequently,
the case-based reasoning approach can be viewed as a special case of the
general two-tiered representation.

Concept Representation Language

In the proposed method, the formalism used for concept
representation is based on the variable-valued logic system VL
(Michalski, 1975). This formalism allows us to express simply and
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implemented, F maps events from the set E, and concept descriptions
from the set D, into the degree of match from the interval [0..1];

F: ExD --> [0.1]

The value of F for an event ¢, and a concept description D, is
defined as the probabilistic sum of F for its rules. Thus, if D consists of
two rules, r1 and 2, we have;

F(e, D)=F(e,r;)+ F(e, r2)- F(e, r}) x F(e, r2)

A weakness of the probabilistic sum is that it is biased toward
descriptions with many rules. If a concept description D has a large
number of rules, the value of F(e, D) may be close to 1, even if F(e,r)
for each rule r, is relatively small (see Table 4). To avoid this effect, if the
value of F(e,r) falls below a centain threshold, then it is assumed to be 0 .
(In our method this problem does not occur, because concept
descriptions arc typically reduced to only few rules; sce the TRUNC-SG
procedure in the subscction Basic Algorithm).

The degree of match, F(e,r) between an event e, and a rule r, is
defined as the average of the degrees of fit for its constituent conditions,
weighted by the proportion of positive examples to all examples covered
by the rule:

Fle.r) = (3, Fle, ci/ n) x #rpos [(#rpos + #rneg)

where F(e, ¢j/n) is a degree of match between the event ¢ and the
condition ¢; inthe ruler, n is the number of conditions in r, and #rpos

and #rneg are the number of positive examples and the number of
negative examples covered by r, respectively.

The degree of match between an event and a condition depends on
the type of the attribute in the condition. Four types of attributes are
distinguished: nominal, structured-nominal, linear and structured-linear
(Michalski and Stepp, 1983).

Values of a structured-nominal (linear) attribute are nodes of an
unordered (ordered) generalization hierarchy. In an ordered hierarchy,
the children nodes of any parent node constitute a totally ordered set.
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In a nominal or structured-nominal condition, the referent is a single
value or an internal disjunction of values, e.g., [color = red v blue v
green]. The degree of match is 1, if such a condition is satisfied by an
event, and O otherwise. In a linear or structured-linear condition, the
referent is a range of values, or an interal disjunction of ranges, e.g.,
[weight = 1.3 v 6..9]. A satisfied condition returns the value of match 1.
If the condition is not satisfied, the degree of match is a decreasing
function of the distance between the value and the nearest end-point of
the interval. If the maximum degree of match between an example and all
the candidate concepts is smaller than a preset threshold, the result is "no
match."

Inferential Concept Interpretation: Deductive Rules

In addition to flexible matching, the Inferential Concept Interpretation
includes a set of deductive rules that allow the system to rccognize
exceptions and context-dependent cases. For example, flexible matching
allows an agent to recognize an old sequoia as a tree, although it does not
match the typical size rcquirements. Deductive reasoning is required to
recognize a tree without leaves (in the winter time), or to include in the
concept of tree its spct:ial instance (e.g., a fallen tree). In fact, flexible
matching is most useful to cover instances that are close to the typical
case, while deductive matching is appropriate to deal with concept
transformations necessary to include exceptions, or take into
consideration the context-dependency.

The deductive inference rules in the Inferential Concept Interpretation
are expressed as Hom clauses. The inference process is implemented
using the LOGLISP system (Robinson and Sibert, 1682). Numerical
quantifiers and internal connectives are also allowed. They are represented
in the annotated predicate calculus (Michalski 1983).

Types of Match. The method recognizes three types of match between an
event and a two-tiered description:

1. Strict match: An event matches the Base Concept
Representation exactly, and it said to be S-covered.
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2. Flexible match: An event is not S-covered, but matches the
Base Concept Representation through a flexible matching function.
In this case, the event is said to be F-covered.

3. Deductive match: the event is not F-covered, but it matches
the concept by conducting a deductive inference using the
Inferential Concept Interpretation rules. In this case, tlie event is
said to be D-covered. (In general, this category could be extended
to include also matching by analogy and induction; Michalski,
1989).

The above concepts provide a basis for proposing a precise definition
of classes of concept examples that are usually characterized only
informally. Specifically, examples that are S-covered are called
representative examples; examples that are F-covered are called nearly-
representative examples; and examples that are D-covered are called
exceptions.

As mentioned earlier, one of the major advances of the presented
method over previous methods using two-ticred representation  (c.g.,
Michalski et al., 1986) is that the Inferential Concept Interpretation
includes not only a flexible matching procedure, but also inference rules.
Thus, using our newly introduced terminology, we can say that the
method can handle not only representative or nearly representative
examples, but also exceptions.

AN OVERVIEW OF THE POSEIDON SYSTEM

Basic algorithm

The ideas. presented above have been implemented in a system called
POSEIDON (also called AQ16). Table 1 presents two basic phases in
which the system leams the Base Concept Representation.

The first phase generates a general consistent and complete concept

description, and the second phase optimizes this description according to
a General Description Quality measure. The optimization is done by

applying different description modification operators:
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Phase 1

Given:

Concept examples obtained from a some source

Relevant background knowledge

Determine:
Complete and consistent description of the concept

Phase 2

Given:
Complete and consistent description of the concept
A general description quality (GDQ) measure
Typicality of examples (if available)

Determine:

The Base Concept Representation that maximizes GDQ.

Table 1. Basic Phases in Generating BCR in POSEIDON.
The search process is defined by:

Segrch space: A tree structure, in which nodes are two-ticred concept
descriptions (BCR + ICI).

Operators: Condition removal, Rule removal, Referent modification.

Goal: Determine a description that maximizes the general
description quality criterion,

The complete and consistent description is determined by applying
the AQ inductive learning algorithm (using program AQ1S; Michalski et
al., 1986). The second phase improves this description by conducting a
"double level” best-first search. This search is implemented by the
TRUNC-SG procedure (“SG” symbolizes the fact that the method uses
both specialization and generalization operators). In this "double level”
search, the first level is guided by a general description quality measure,
which ranks candidate descriptions. The second level search is guided by
heuristics controlling the search operators to be applied to a given
description. The search operators simplify the description by removing
some of its components, or by modifying the arguments or referents of
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some of its predicates. A general structure of the system is presented in
Figure 1.

SOURCE OF EXAMPLES

Phase 2

Figure 1. Leaming Phases in POSEIDON.

The goal of the search is not necessarily to find an optimal solution, as
this would require a combinatorial search. Rather, the system tries to
maximally improve the given concept description by expanding only a
limited number of nodes in the search tree. The nodes 10 be expanded are
suggested by various heuristics discussed before.

The BCR is learned from examples. The Inferential Concept
Interpretation contains two parts: a flexible matching function and a rule
base. The rule base contains rules that explain exceptional examples, and
is acquired through an interaction with an expert. |
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Operators for Optimizing Base Concept Representation

A description can be modified using three general operators: rule
removal, condition removal and referent modification. The rule removal
operator removes one or more rules from a ruleset. This is a specialization
operator because it leads to "uncovering” some examples. It is the reverse
of the "adding an altemative” generalization rule (Michalski, 1983).
Condition removal (from a rule) is a generalization operator, as it is
equivalent to the "dropping condition” generalization rule.

The referent modification operator changes the referent in a condition
(i.e., the set of attribute values stated in a condition). Such changes can
either generalize or specialize a description. Consequently, two types of
referent modification operators are defined: condition extension, which
generalizes the description, and condition contraction, which specializes
the description.

To illustrate these two types of referent modification, consider the
condition: [size=1..5v 7).
Changing this condition to :

[size = 1..7]
represents a condition ¢xiension operator. Changing it to
[size = 1..5]

represents a condition contraction operator. On the other hand, if the
initial condition is [size # 1..5 v 7], then changing it to [size # 1..7],
represents a condition contraction operator. Similarly, changing it to [size
# 1..5] represents a condition extension operator. A summary of the
effect of different operators on a description is given in Table 2:

Search operator Type of knowledge modification
Rule removal (RR) Specialization
Condition removal (CR) Generalization
Condition extension (CE) Generalization
Condition contraction (CO) Specialization

Table 2. Search operators and their effect on the description
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Thus, applying the above search operators can either specialize or
generalize the given description. A generalized (specialized) description
covers potentially a larger (smaller) number of training examples, which
can be positive or negative, At any given search step, the algorithm
chooses an operator on the basis of an evaluation of the changes in the
coverage caused by applying the operator (see Basic Algorithm
subsection).

Learning the Inferential Concept Interpretation

As indicated above, by applying a search operator (RR, CR, CE or CC)
to the current Base Concept Representation, one can make it either more
general or more specific. If the modified representation is more specific,
some positive examples previously covered may cease to be S-covered.
These examples may, however, be still covered by the existing Infercntial
Concept Interpretation (and thus would become F-covered or D-covered).
On the other hand, if the modified base represcentation is more general
than the original one, some negative cxamples, previously uncovered, may
now become S-covered. They may, however, remain to be excluded by
the cxisting Inferential Concept Interpretation rules.

Consequently, two types of rules in the Inferential Concept
Interpretation can be distinguished: those that cover positive exampies left
uncovered by the base representation (“positive exceptions”), and rules
that eliminate negative examples covered by the base representation
("negative exceptions"). A problem then is how to acquire these rules.

The rules can be supplied by an expert, inherited from higher level
concepts, or deduced from other knowledge. If the rules are supplied by
an expert, they may not be operationally effective, but they can be made
So through analytic learning (e.g., Mitchell et al., 86: Prieditis and
Mostow, 1987). If the expert supplied rules are too specific or partially
correct, they may be improved inductively (e.g., Michalski and Larson,
1978; Dietterich and Flann 1988; Mooney and Ourston, 1989). Thus, in
general, rules for the Inferential Concept Interpretation can be developed
by different strategies.
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In the implemented method, the system identifies exceptions (i.e.,
examples not covered by the Base Concept Representation), and asks an
expert for a justification. The expert is required to express this
justification in the form of rules. The search procedure, shown in Fig. 1,
guides the process by determining examples that require justification.
This way, the role of the program is to leam the "core" part of the concept
from the supplied examples, and to identify the exceptional examples.
The role of a teacher is to provide concept examples, and to justify why
the examples identified by the leamming system as exceptions are also
members of the concept class.

QUALITY OF CONCEPT DESCRIPTIONS

Factors Influencing the Description Quality

The leamming method utilizes a general description quality measure
that guides the search for an improved two-tiered description. The
General Description Quality measure takes into consideration three basic
characteristics of a descritpion: its accuracy, comprehensibility, and its
cost. This section discusses these three components, and describes a
method for combining them into a single measure.

The accuracy expresses the description’s ability to produce correct
classifications. Major factors in estimating the description's predictive
power are its degree of completeness and consistency with regard to input
examples. When leaming from noisy examples, however, to achieve a
high degree of completeness and consistency may lead to an overly
complex and overspecialized description. Such a description may be well
tuned to the particular training set, but may perform poorly in classifying
future examples. For that reason, when leaming from imperfect inputs, it
may be better 10 produce descriptions that are only partially complete
and/or consistent.

If an intelligent system is supposed to give advice to humans,
knowledge used by such a system should be comprehensible to human
experts. A "black box" classifier, even with a high predictive power, is not
satisfactory in such situations. To be comprehensible, a description should
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involve terms, relations and concepts that are familiar to experts, and be
syntactically simple. This requirement is called the comprehensibility
principle (Michalski, 1983). Since there is no established measure of
description’s comprehensibility, we approximate it by the
 representational simplicity. Such a measure is based on the number of
different operators involved in the description: disjunctions, conjunctions,
and the relations embedded in individual conditions. In the case of two-
tiered representations, the measure takes into account the operators
occurring in both, the BCR and the ICI, and weighs the relative
contribution of each part to the comprehensibility of the whole
description.

The third criterion, the description cost, captures the cost of storing
the desription and using it in computations to make a decision. Other
things being equal, descriptions which are easier to store and easier to usc
for recognizing new examples arc preferred. When evaluating the
description cost, two characteristics arc of primary imporntance. The first is
the cost of measuring values of variables occurring in the description. In
some application domains, e.g., in medicine, this is a vcry important
factor. The second characteristic is the computational cost (time and
space) of evaluating the description. Again, in some real-time applications,
e.g., in speech or image recognition, there may be stringent constraints on
the evaluation time. The cost and the comprehensibility of a description
are frequently mutually dependent, but generally these are different
criteria. |

The criteria described above need to be combined into a single
evaluation measure that can be used to compare different concept
descriptions. One solution is to have an algebraic formula that, given
numeric evaluations for individual criteria, produces a number that
represents their combined value. Such a formula may involve, ¢.g., a
multiplication, weighted sum, maximum/minimum, or t-norm/t-conorm of
the component criteria (e.g., Weber, 1983).

Although the above approach is often appropriate, it also has
significant disadvantages. First, it combines a set of heterogeneous
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evaluations into a single number, and the meaning of this final number is
hard 10 understand for a human expert. Second, it usually forces the
system to evaluate all the criteria for each description, even if it is
sufficient to compare descriptions on the basis of just one or two most
important ones. The latter situation occurs when one description is so
much better than the other according to some important criterion, that it is
not worth to even consider the alternatives. To overcome these problems,
we use a combination of a lexicographic evaluation and a linear function-
based evaluation, which is described in the next section.

Combining Individual Factors Into a Single Preference Criterion

Given a set of candidate descriptions, we use the General Description
Quality criterion to select the "best” description. Such a criterion consists
of two measures, the lexicographic evaluation functiona! (LEF), and the
weighed evaluation functional (WEF). The LEF, which is computationally
less expensive than WEF, is used to rapidly focus on a subsct of the most
promising descriptions. The WEF is used 1o sclect the final description. A
general form of a LEF (Michalski, 1983) is:

LEF: <(Criteriony,t1), (Criterions,t3), ..., (Criteriony,ty)>

where Criterion), Criteriony, ..., Criteriong are elementary criteria
used to evaluate a description, and 71, 12, ... ,Tk are corresponding
tolerances, expressed in %. The criteria are applied to cvery candidate
description in order from the left to right (reflecting their decreasing
importance). At each step, all candidate descriptions whose score on a
given criterion is within the tolerance range from the best scoring
description on this criterion are considered equivalent with respect to this
criterion, and are kept on the CANDIDATE LIST; other descriptions are
discarded. If only one description remains on the list, it is chosen as the
best. If the list is non empty after applying all criteria, a standard solution
is to chose the description that scores highest on the first criterion. In
POSEIDON, we chose another approach in the latter case (see below).

The LEF evaluation scheme is not affected by the problems of using a
linear function evaluation, mentioned above. The importance of a
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criterion depends on the order in which it is evaluated in LEF, and on its
tolerance. Each application of an elementary criterion reduces the
CANDIDATE LIST, and thus the subsequent criterion needs to be applied
only to a reduced set. This makes the evaluation process very efficient. In
POSEIDON, the default LEF consists of the three elementary criteria
discussed above, i.e., accuracy, the representational simplicity and the
description cost, specified in that order. The next section describes them
in detail.

Tolerances are program parameters, and are set by the user. If the
tolerance for some criterion is too small, the chances of using the
remaining criteria decrease. If the tolerance is too large, the importance of
the criterion is decreased. For this reason, the LEF criteria in POSEIDON
are applied with relatively large tolerances, so that all the elementary
criteria are taken into account. If after applying the last criterion the
CANDIDATE LIST has still several candidates, the final choice is made
according to a weighed evaluation functional (WEF). The WEF is a
standard lincar function of clcmentary criteria. The description with the
highest WEF is sclected.

Thus, the above approach uses a computationally cfficient LEF to
obtain a small candidate sct, and then applies a more complex measurc to
select from it the best description.

Taking the Typicality of Examples into Consideration

Accuracy is a major criterion to determine the quality of a concept
description. In determining accuracy, current machine learning methods
usually assume that it depends only on the number of positive and
negative examples (training and/or testing) correctly classified by the
description. One can argue, however, that in evaluating accuracy one
might also take into consideration the typicality of examples (Rosch and
Mervis, 1975). If two descriptions cover the same number of positive and
negative examples, the one that covers more typical positive examples and
fewer typical negative examples can be considered more accurate.

For the above reason, we propose a measure of completeness and
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consistency of a description that takes into account the typicality of the
examples. In POSEIDON, the typicality of examples can be obtained in
one of two ways,

The first way is that the system estimates it by the frequency of the
occurence of examples in the data (notice that this is different from a
usual cognitive measure of typicality, which captures primarily the degree
to which an example resembles a prototypical example). The second way
Is that the typicality of examples is provided by an expert who supplies
training examples. If the typicality is not provided, the system makes the
standard assumption that the typicality is the same for all examples.

In the measures below, the degree of completeness of a description is
proportional to the typicality of the positive events covered, and the
consistency is inversely proportional to the typicality of the negative
events covercdd. Since the system is working with a two-tiered
description, other factors arc taken into account.

One is that according to the idca of two-tiered representation, a “high
quality” concept description should cover the typical examples explicitly,
and the non-typical oncs only implicitly. Thus, the typical examples
should be covered the Base Concept Representation, and non-typical, or
exceptional ones by the Inferential Concept Interpretation.

In POSEIDON, the Base Concept Representation is inductively leamed
from examples provided by a teacher. Therefore, the best performance of |
the system will be achieved if the training set contains mostly typical
examples of the concept being leamed. For the exceptional examples, the
teacher is expected to provide rules that explain them. These rule become
part of the Inferential Concept Interpretation. An advantage of such an
approach is that the system leamns a description of typical examples by
itself, and the teacher needs to explain only the special cases.

5 When negative examples are instances of another concept, as is often the case,
their typicality is understood as the typicality of being members of that other
concept.



165

In view of the above, the examples covered explicitly (strictly-covered,
or S-COV) are assumed to contribute to the completeness of a description
more than flexibly-covered (F-COV) or deductively-covered (D-COV).

General Description Quality Measure

This section defines the General Description Quality (GDQ) measure
implemented in POSEIDON. As mentioned above, the measure combines
the accuracy, representational simplicity and the cost of a description.

The accuracy is based on two factors, the typicality-based

completeness, T_COM, and the rypicality-based consistency, T-CON.
These two factors are defined for a two-tiered concept description, 2, as

follows:
Zws*’l‘yp (et) + wa*‘Iyp{eH + de*Typ (e+)

+ + +
e € S—cov e € F-cov e E D-cov

e € S-cov e € F~cov e € D-cov
T CON(D)) = ==

where POS and NEG are sets of positive and negative examples,
respectively, which are covered by the two-tiered concept description 2.

Typ(e) expresses the degree of typicality of example e of the given
concept. Weights wg wf and wq represent different significance of the

type of coverage (S-COV, F-COV, and D-COV). Thresholds tj, and o
reflect the desirability of a given type of coverage for the given degree of

typicality:
Wg! if Typ(e) 212, then 1, else w
wf.  ift2 > Typ(e) 211, then 1, else w
wd:  ift; > Typ(e), then 1, else w

where thresholds tjand t satisfy the relation 0 < tist2 <1, and O<w <1 .
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The role of w is to decrease the weight the examples that are covered in a
way (S, F or D) that is not compatible with their typicality.

Using the terms of T_COM and T_CON, the description accuracy 1s
defined as:

Accuracy =w1*T_COMPLETENESS +w2*T_CONSISTENCY

where wy+w2= 1. The weights w3 and w2 reflect the expert's
judgment about the relative importance of completeness and consistency
for the given problem. The default value of both is 0.5.

A measure of comprehensibility of a concept description is difficult to

define. As mentioned earlier, we approximate it by a representational
simplicity, defined as:

RepSimplicityD))= TC - (v1 = 2 Clop) + v2 = 2 C(op))
op € BCR(D)) op € ICI (D))

where TC is the sum of the complexities of all operators in the description
D.BCR(D)) is the sct of all operator occurrences in the BCR of the
description, and ICI (dsp) is the sct of all operator occurrences in the
ICI. C(op), the complexity of an operator, is a real function that maps
each operator symbol into a real number representing its complexity. The
complexities of the operators are chosen by an expert, assuming the
following constraints:

C(range) < C(intemal v ) < C(=) < {(<>) < C(&) < C(v) < C(=).

When the operator is a predicate, C InCreases with the number of the
arguments. Parameters v] and v2 represent relative weights of the
operators in BCR and ICI, respectively, assuming v]+v2 = L.

The Base Concept Representation is supposed to describe the general
and easy-to-define meaning of the concept, while the Inferential Concept
Interpretation is mainly used to handle rare or exceptional events. AS 2

consequence, the Base Concept Representation should be easier 10
comprehend than the Inferential Concept Interpretation, and thus V1

should be larger than v2. The cost of a description O depends on two
factors:
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« Measuring-Cost (MC) -- the cost of measuring variables used in the
concept description

MOD)= X 2, motv) | {/Pog +/Neg))
ecPos+Neg veVarse)
. Evaluation-Cost {(EC) -- the cost of evaluating the concept description

ECD) = X edfe) /(/Pos+/Neg))

eePos+Neg

where Vars(e) is the set of all variables occuring in the concept
description, mc(v) is the cost of measuring the value of the variable v, and
ede} is the computational cost of evaluating the concept description to
classify the event e. The latter depends on the computing time and/or on
the number of operators involved in the evaluation. We now define the

cost of a description:
Cost(D) = u1 *MC(D)) + u2*EC(D)

where ui and up arc weights defining the relative importance of the
measuring-cost and the cvaluation-cost for a given problem.

The general description quality (GDQ) measure is in the form of a
Lexicographic Evaluation Functional (LEF), in which thc above dcfined
concepts of accuracy, representational simplicity and the description cost
are used as elementary criteria. The tolerances and other parameters
defined above can be chosen by a user to reflect the problem domain, or
determined experimentally. They also have default values, so that the
user does not have to specify them. More dectails about the general
description quality measure are in (Bergadano et al., 1988).

'LEARNING BY MAXIMIZING DESCRIPTION QUALITY

As mentioned before, learning a base concept representation (BCR) of
a concept is performed in two phases. In the first phase, a complete and
consistent concept description is learned inductively from examples. In
the second phase, the obtained complete and consistent description is
optimized according to the general description quality criterion.

In POSEIDON, the first phase is done using the AQLS5 leaming
program, described in (Michalski et al., 1986a). The following subsections
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describe the second phase (the TRUNC-SG procedure).

Search Heuristics for Optimizing Base Concept Representation

The task of optimizing BCR by directly applying the General
Description Quality measure is computationally expensive. It requires that
every newly generated description is matched flexibly against all training
examples. To make this process more efficient, a double-level search
method is employed. The first level uses a simple heuristic to determine
which operator, RR, CR, CE or CC, is likely to improve the description,
and the second level actually applies the operator, and evaluates the
description according to the General Description Quality measure.

The first level applies the so-called Potential Accuracy Improvement
heuristic (PAI). The PAI is a function of the change in the coverage of
positive and negative examples by the description due to an operator
application. Specifically:

PAI = AP/TP - AN/TN

where AP (AN) is the change in the number of positive (ncgative)
examples that would be covered by the description after applying the
opcrator, and TP (TN) is the total number of positive (negative) examples.
For generalizing operators, SR and CE, AP and AN are non-negative, and
for specializing operators, CR and CC, AP and AN are non-positive.

The advantage of the Potential Accuracy Improvement measure is
that it can be computed much more efficiently than the General
Description Quality. For every condition in the current description, a list
of examples covered by it is maintained using bit vectors. The sets of
examples covered by a ruleset (representing a complete description) is
then obtained by intersection and union operations.

The matching time can be improved further by also maintaining bit
vectors for the examples covered by rules (the matching time trades off
with the memory for storing the bit vectors). Note that computing the
General Description Quality requires flexible matching, and thus cannot
be done by an intersection and union operations on bit vectors.

The above formula does not take into consideration the degree of
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reduction of the description complexity caused by applying an operator.
For example, removing a rule reduces complexity more than removing a
condition. To account for this, POSEIDON assigns a higher weight
(preference) to applying the RR operator (rule removal) than for applying
the CR operator (condition removal).

The condition removal operator generalizes the description, therefore,
the description (ruleset) resulting from its application may cover some
additional examples (positive or negative). Due to this, some rule(s) may
become redundant. If the CR operation produces a rule that differs from
another rule only in the value of one attribute, the two rules can be
merged into one, in which the attribute is related to the internal
disjunction of values (this is a case of the so-called "refunion” operation;
see Michalski and Stepp, 1983).

For example, the rules [shape = circle]&(size = 2..6] and [shapc =
squarc)&[size = 2..6] can be replaced by single rule [shape = circle v
squarc]&[size = 2..6].

It is worth noting that in the case of opecrators RR and CR, the
Potential Accuracy Improvement heuristic can be simplified by using an
approximation:

PAI’ = #P/TP - #N/TN

where #P (#N) is the number of positive (negative) examples covered
by the component (rule or condition) to be removed. Such a heuristic is
very efficient because it needs to be computed only once for every
condition and every rule in the initial description. This computation can
be done before the search starts, and does not need to be repeated for
every node in the search. The operator that produces the largest Potential
Accuracy Improvement is chosen, and applied to the description under
consideration. The descriptions so generated are then subjected to an
evaluation by the General Description Quality criterion.

The search algorithm (TRUNC-SG) is presented in Table 3. Let us
explain the motivation and individual steps of the algorithm. Step 1
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chooses the node (description) for expansion on the best-first basis, that is,
chooses the node with the highest General Description Quality.

This is not always an optimal choice, because "worse" nodes can

sometimes lead to better descriptions after a number of removals. Whether

the

search will behave in this manner will depend on the adequacy of the

General Description Quality as the measure of concept quality.

Search Algorithm (TRUNC-SG

Identify in the search tree the best candidate description D.

(Imitially, D is the complete and consistent description obtained by AQIS in
Phase 1. Subsequently, it is the highest ranked description according to the
General Description Quality criterion).

Apply to D that operator, selected from among the operators
RRj - Remove the i-th rule, or

CRjj - Remove the j-th condition from the i-th rule

CCi; - Contract the referent of the j-th condition in the i-th rule
CE;jj - Extend the referent of the j-th condition in the i-th rule
that maximizes the Potential Accuracy Improvement measure.

Compute the General Description Quality (GDQ) of the description obtained in
step 2. If the GDQ of this description does not exceed the GDQ of the original
D by more than D (an experimental threshold), then proceed to step 1.
(Compuung the description accuracy for GDQ employs flexibie matching).
Identify exceptional examples that are

(a) the positive examples that cease to be covered, and

{b) the negative examples that become covered.
Ask an expert to provide rules explaining these examples. If such rules are

obtained, add them to the Inferential Concept Interpretation; otherwise, add the
exceptional example(s) to it

Update the GDQ value of the new node by taking into account the added
Inferential Concept Interpretation.

If the stopping criterion is satisfied, then STOP, otherwise proceed to step 1.

Table 3. The algorithm for Optimizing a Concept Description.
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Step 2 chooses the "best" search operator according to the Potential
Accuracy Improvement heuristic, and applies it to the current description.
Step 3 computes the General Description Quality of the new node. It
should be noted that, in the General Description Quality measure, the
typical examples covered directly by the base representation can weigh
more than those covered through flexible matching. The examples
covered by Inferential Concept Interpretation rules weigh more than the

ones covered through flexible matching, but less than the ones covered by
the Base Concept Representation. A new description (node) is worth to

consider only if it "sufficiently" better (more than A) than the previous
one, otherwise the control goes to Step 1 (the reason for this is given
below).

Step 4 dctermines exceptional examples, and asks an expert for an
explanation of them. If the explanation is provided, appropriatc rules are
added to the Inferential Concept Interpretation. These rules may extend
or contract the Base Concept Representation. For example, the rule
rcmoval opecrator might uncover some positive examples, that were
previously covered. In this case, new rules added to the Inferential
Concept Interpretation would allow the system to reason about such
"special" positive examples, and explain why they should be classified as
instances of the concept being leamed. On the other hand, the condition
removal operator might cause some negative examples to be covered. In
this case, new Inferential Concept Interpretation rules would have to be
added to contract the Base Concept Représentation. An important issue
concerning step 4 is when an explanation should be required from an
expert ("explainer"). The problem is that in some cases the chosen
operator may not be appropriate, because it leads to a very poor
description. In such a case, it is not worthwhile to ask an expert for an
explanation, and search should continue in other direction.

The method employs the following strategy. Suppose that N is the
node (description) to be expanded, and M is the node obtained after
applying an operator, e.g., the condition removal. The effort to obtain an
explanation is made only if the General Description Quality of M is
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"significantly” better than that of N (above a certain threshold T). In this
case, the explainer 1s given the General Description Quality evaluations of
both descriptions, N and M, and asked for an explanation. These
evaluations give the explainer a sense of importance of the request. If the
explainer cannot provide an explanation, the exceptional examples are
directly added to the Inferential Concept Interpretation. Step 5 updates
the General Description Quality of the obtained two-tiered description by
taking into consideration the added Inferential Concept Interpretation
rules. Step 6 decides whether to stop or continue the search. The stopping
criterion is satisfied when the number of nodes explored exceeds value
k1, or when the General Description Quality is not improved after the
exploration of k2 nodes since the last improvement. The search
parameters kI and k2 have a default value, which is modifiable by the
user. When the scarch stops, the best node found until this point defines
the chosen two-tiercd concept description.

In conclusion, let us point out the main difference between the above
two-level scarch and the standard best-first search. The differcnce is that
only one opcrator is applicd to the (best-GDQ) node selected for
cxpansion, rather than all available operators, as in the standard search.
The operator applied is the "best" according to the PAI heuristic. Such a
procedure helps to avoid generating low quality nodes, and thus makes
unnecessary the computation of the General Description Quality for these
nodes. Other operators are applied only if the results obtained along this
branch of the search tree tum out to be unsatisfactory.

An Abstract Example

An abstract example of the search process is given in Figure 2.
Individual nodes represent both components of a two-tiered description
(BCR and ICI) generated at any given search step, and show the coverage
of training examples by the description. The rectangular areas represent
the coverage by the Base Concept Representation, and the curved lines
denote the coverage by the Inferential Concept Interpretation. In the
example, the accuracy is computed according to the formula described
before, assuming that all examples have the same typicality.



173

1.

S — D — P

BCR

el&e2

M o

Accuracy: 0.76
Complexity: 2 rules, 5 conds

Truncate ¢2 Truncate ¢5

e3d oy
Accuracy: 0.52 Accuracy:— 0.89
Complexity: 2 rules, 4 conds Complexity: 2 rules, 4 conds

Truncate l_:4

Accuracy: 0. 79 Accuracy: 0.92
Complexity: 2 rules, 3 conds Complexity: 1 rule, 2 conds

Figure 2. An Illustration of the Search Process.

The initial description is represented by node 1. The BCR contains
two rules represented by two rectangular areas, which cover five positive
examples out of eight, and one negative example out of five. The



174

Inferential Concept Interpretation extends this coverage by recognizing
one more positive example. Next nodes correspond to descriptions
obtained by an application of operators marking the branches of the
search tree. For example, node 3 is obtained by eliminating condition ¢ 5
in the second rule of the initial description. The new description is more
accurate because all positive examples are now covered, without changing
the coverage of the negative examples.

By truncating the first rule in node 3, node 5 is generated. The
description no longer covers negative examples, and is simpler. This node
is then accepted as the optimized description resulting from the search.
The other nodes lead to inferior concept representations with respect to
General Description Quality, and are discarded. The quality has been
computed with wl=w2=0.5. For simplicity, the cost is omitted, and the
complexity of the Infercntial Concept Interpretation is ignored. The
complexity of the Base Concept Representation is indicated by the
number of rules and the number of conditions.

EXPERIMENTS

The proposcd method was implemented in the POSEIDON system
(also called AQ16). To evaluate its performance, it was tested, together
with several other methods, in two problem domains. The other methods
tested included: simple forms of exemplar-based leaming, learning
consistent and complete descriptions (implemented in AQ15), generating
top rule descriptions (described by Michalski et al., 1986), and generating
pruned decision trees (implemented in the ASSISTANT program; Cestnik,
Kononenko & Bratko, 1987). All these methods were applied to the same
training data, and tested on the same testing data from the two problem
domains.

The first domain was labor-management contracts, and the problem
was to leamn a gereral description that discriminates between acceptable
and unacceptable contracts. The second domain was congressional voting,

and the problem was to characterize the voting behavior of Republicans
and Democrats in the US House of Representatives.
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Experimental Data

Labor-management contracts. The data regarding labor-
management contracts were obtained from Collective Bargaining, a
review of current collective bargaining issues published by the
Department of Labor of the Government of Canada. The data describe
labor-management Contracts negdtiated between various organizations
and labor unions with at least 500 members, and concluded in the second
half of 1987 or the first half of 1988. The experiments focused on the
personal and business services sector. This sector includes unions
representing hospital staff, teachers, university professors, social workers
and certain classes of administrative personnel.

The data involved multivalued attributes, and thus the VL1 language
was directly applicable. Each contract is described by sixteen attributes,
belonging to two main categories. One category concems issues related to
the salaries, e.g., pay increases in each year of the contract, the cost of
living allowance, a stand-by pay, ¢ic., and the second catcgory concems
icsues related to fringe benefits, e.g., different kinds of pension
contributions, holidays, vacation, dental insurance, etc. Positive examples
represent contracts that have been accepted by both parties. Negative
examples represent contracts deemed unacceptiable at least by one of the
parties. Here is an example of an acceptable labor-management contract.

Duration of the contract = 2 years
Wage increase in the first year = 1.5%
Wage increase in the second year = 3.5%
Cost-of-living-allowance = unknown
Hours of work/per week = 38
Pension offer = none
Stand-by pay = $0.12/hr
Shift differential = second shift is paid 25% more than first shift
Educational allowance is offered
Holidays per year= 11 days
VacLength = better than average in the industry
Long term disability insurance = offered by the employer
50% dental insurance cost = covered by the employer
Bereavement leave = available
- Employer-sponsored health plan = not mentioned
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The above description is represented as the following VL1 rule:

[Dur = 2] [Wagel = 1.5] [Wage2 = 3.5] {Cola = unknown] [Work-
hours = 38] [Pension = none] [StbyPay = 12] [ShiftDff = 25} [Educ-
allw = yes] [Hids = 11] {VacLen = better][LngTrmDisbll = true]
[Dntl-ins = half] [Bereavement = yes] [EmpHIthPIn= unknown] ::>
[Contract Class = acceptable]

In the rule above, and next rules, the following abbreviations were used.

SByPay for “Stand-by-pay”

Vacation for “Vacation length”

Hids for “Holidays per year,”

LngTrmDisbl “Long term disability insurance,”
EmpHIthPln for “Employer-sponsored health plan”
ShiftDff for Shift differential

Contract Class for “Contract classification”

Also, for simplicity, the conjunction is represented by concatenation.
The training set consisted of 18 positive and 9 negative examples of
contracts; the testing set consisted of 19 positive and 11 negative

examples.

US Congress Voting record. The data regarding the US Congress voting
rccord were the same as the ones used by Lebowitz (1987) in his
experiments on conceptual clustering. The data rcpresent the 1981 voting
records of 100 selected representatives (50 in the training set and 50 in
the testing sct). The problem was to learn descriptions discriminating
between the voting record of Democrats and Republicans. Below is an
example of the voting record of a Democrat in the US Congress:

Draft registration = no

Ban aid to Nicaragua = no

Cut expenditure on MX missiles = yes

Federal subsidy to nuclear power stations = yes

Subsidy to national parks in Alaska = yes

Fair housing bill = yes

Limit on PAC contributions = yes

Limit on food stamp program = no

Federal help to education = no

State = north east

Population = large

Occupation = unknown

Cut in Social Security spending = no

Federal help to Chrysler Corp. = vote not registered
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A Description of Experiments

For each problem domain, the experiments involved the following steps:

1. Learn a complete and consistent description from the training
examples (by the AQ15 program).

5 Determine the top rule description from the above description
using the TRUNC method (Michalski et al., 1986).

The top rule description consists of a single rule that covers the maximum
number of positive examples among all other rules in the complete and
consistent description. Such a description is easy 10 determine, because the
AQ15 generates rules together with measures indicating the number of
examples covered totally and uniquely by each rule, which are denoted the t-
weight and u-weight of a rule, respectively (see below). In the experiments,
one top rule description was generated for positive concept examples, and one
for the negative examples (the lauter one from a complete and consistent
description of the negative examples). An instance was classified as belonging
1o a concept, if it maiched best the top rule description of positive examples,
and was rejected if it matched the top rule description of the negative
examples. If both descripuions werc matched with roughly the same degree,
then the instance was classified as "no match." Learning the t(op rule
description, and using it with flexible matching, represcnts a simple, but
important version of the iwo-tiered concept Jcarming approach (Michalski,
1990).

3. Determine an optimized two-tiered description from the complete
and consistent description using the TRUNC-SG procedure.

4. Determine descriptions of the given concepts using other methods,
specifically, variants of the exemplar-based leamning approach, and
the decision tree leamning program ASSISTANT.

5. Test the performance of all generated descriptions on the testing
examples.

To illustrate the difference between the complete and consistent
descriptions, the top rule, and the optimized descriptions created by
POSEIDON, figures below a sample of these descriptions in the Labor

Management domain. Figure 3 shows a complete and consistent
description produced by AQ15.

In the Figure, t (t-weight) is the total number of examples covered by

a rule, and u (u-weight) is the number of examples uniquely covered by
the rule.
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[entret-dur> 1]& [wage_incr_yr2=>3.0%]&[#hlds >101: (¢ =11, u=11))

I or
{{wage_incr_yrl > 4.5%): (t=4,u=4)) or
([wage_incr_yrl > 4%] & (wage_incr_yr2 > 4.0%}: (t=1u=1)) or
([wage_incr_yrl > 4.5%) & [#hlds > 9]: (t=1u=1) of
[{wage_incr_yr} > 2%] & [vacation > average]: (t=1u=1)

::> [Contract Class = acceptable]

{[wage_incr _yrl=2..4%]&[#hlds<10]&[vacal.ion=AVG]: (t=3 u=23) of
([wage_incr_yr1< 4.5%) & [wage_incr_yr2 < 4.0%) &

[hids = 10] & [vacation £ AVG]: (t =2, u=2)} or
{{dur = 1] & [wage_incr_yrl < 4.0%)] & [#hlds < 10]&

{vacation £ AV G]: (t=1,u=1)) or
([wage_incr_yrl £4.0%] & [wage_incr_yr2 < 3.0%]) &

{vacation =AVG]: (¢t=l,u=1) or
([dur =1] & [wage_incr_yrl < 4 0%]&[vacation € AVG]: (t =1, u =1)} of

([wage_incr_yrl = 2.0%] & [wage_incr_yr2 < 3.0%]): (t=1,u=1))
> [Contract Class = unacceptable]

Figure 3. Complete and Consistent Descriptions Gencrated by AQ135.

By sclecting from cach descripion the rule with the largest t-weight,
the following top rule descriptions were obtained (Figure 4):

BCR:
{{dur >1]&[wg_incr_yr2 >3%])&[#hlds >10}: (¢t =11, u=10)

> [Contract Class = acceptable]

{{wg_incr_yrl = 2.4%]&[#hids < 10)&[vacation=AVG]: (¢ =3, u =3))

::> [Contract Class = unacceptable]

ICI: Flexible matching

Figure 4. Top Rule Descriptions Obtained by the TRUNC Method.
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By optimizing the complete and consistent description using the
TRUNC-SC method, and acquiring the ICI rules from an expert, the
following optimized two-tiered description was obtained (Figure 5).

BCR:

[wage_incr_ytl > 4.5%] or
[wage_incr_yr2 > 3.0%) or
(#hlds > 9] or
[vacation > AVG]
> [Contract Class = acceptable]

[wage_incr_yrl S 4.0%) & [#hlds < 10} or
fwage_incr_yr2 £ 4.0%) & [vacation < average] or
MDur=1] & [wage_incr_yrl < 4.0%] or
[wage_incr_yr2 £ 3.0%)]

.»> [Contract Class = unacceptable]

ICI:

Flexible matching plus deductive matching using rules:
[wage_incr_yr125.5%)&{vacation < avcrage]

.:> [Contract Class = acceptable]
[wage_incr_yrl £3%]) &[wage_incr_yr2 < wage_incr - yrl]
-»> [ContractClass = unacceptable]

[wage_incr_yr1<3%)&[wage_incr _31’253%]&[h0urs_work.>_40]&
[pension= empl_contr]
> [Contract Class = unacceptable]

Figure 5. Optimized Two-ticred Descriptions Obtained by POSEIDON.

During the BCR description optimization process, the system
determined the training events that were incorrectly classified by the base
representation. An expert was asked to formulate rules explaining these
examples (the ICI rules in Figure 5). For example, the first ICI rule for an
unacceptable contract (Figure 5) describes contracts with the wage
increase in the first year lower or equal 3%, and an even lower increase in
the second year. In such circumstances, the holiday and vacation time do
not matter, and the contract is classified as unacceptable (by the union).

As one can see, the optimized BCR descriptions are significantly
simpler than the complete and consistent descriptions generated by AQ1lS.
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They also seem to represent the most important characteristics of the
labor management contracts. Specifically, & contract is acceptable when it
offers a significant wage increase (the first two rules in Figure 5), or it
offers many holiday days, or the vacation time is above average.

Results From Testing POSEIDON and Other Methods

As mentioned earlier, experiments tested POSEIDON and three other
methods, specifically, variants of exemplar-based learning, the method for
learning consistent and complete descriptions, a method for generating
top rule descriptions, and a method for generating pruned decision trees.
All of these methods were employed to leam a concept description from
the same set of training examples. All the learned descriptions were then
applied to the same testing examples. The performance was evaluated by
counting the number of examples that were classified correctly,
incorrectly, or unclassificd.

Tables 4 to 7 present the results of different expenments. A summary
of all results is shown in Table 8. In all tables, columns "Correct” and
"Incorrect” specify the percentage of the testing events that were correctly
and incorrectly classified, respectively. The column No_Match specifies
the number unclassified examples (i.e., the examples that did not match
any description to a sufficient degree). To provide an estimate of the
complexity of descriptions learned, the tables also list the number of
conditions and rules in each description. In the case of pruned decision
trees, the table lists the number of nodes and leaves (the number of leaves
corresponds to the number of rules that can be directly determined from
the decision tree).

Experiment 1 (Table 4) tested 2 factual description, and variants of
the exemplar-based approach (1-, 3- and 5- nearest neighbor match). A
factual description is a disjunction of ail the training events, and, as such,
is obviously complete and consistent with regard to the training set. The
first part of Experiment 1 tested the factual description on the testing
examples using the strict match method. In such a method, a testing
example must match exactly one of the training examples to be classified.
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In this case, obviously, the description had no predictive power. It
produced No_Match answers for all testing examples of the labor contract
data, and for 96% testing examples of the congressional voting data (two
examples were the same in the training and testing sets).

o ’ Fise
Labor management problem (Labor): 27 rules and 432 conditions
Congress problem (Congress): 51 rules and 969 conditions
Correct No_Match
Labor Congress Labor Congress
Strict Match
Training Set 100% 100% 0% 0%
Testing Set 0% 4% 100% 96%
1-Nearest Neighbor
Training Set 100% 100% 0% 0%
Testing Set 77%  86% 0% 0%
3-Nearest Neighbors
Training Set 100% 100% 0% 0%
Testing Set 83% B84% 0% 0%
5-Nearest Neighbor
Training Set 100% 100% 0% 0%
Testing Set 80% 84% 0% 0%

Table 4. Results of Experiment 1.

Subsequent parts of Experiment 1 tested the factual description using
the k-nearest neighbor method with different k. The method involved
determining k closest (best "fitting") leamning examples to the one being
classified, and assigning to it the class of the majority of the closest
examples. Such a method is equivalent to simple forms of exemplar-based
learning. The I-Nearest Neighbor row lists results from applying the
factual description with- a matching method somewhat similar to the one
described in (Kibler and Aha, 1987). The only difference was that Kibler
and Aha's method uses the maximum function for evaluating a ruleset
(disjunction), while our flexible matching uses the probabilistic sum. The
method was also tested with k=3 and 3.
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The second experiment used concept descriptions generated by AQ15
without truncation (Table 5). Such descriptions are consistent and
complete with regard 10 the training examples, i.e., they classify all
training examples 100% correct when using the strict matching method.
The flexible matching method did not change this result.

Complete gnd Consistent Description (No truncation)
Labor-mgmt problem (Labor): 11 rules and 28 conditions
Congress problem (Congress): 10 rules and 32 conditions

Correct No_Match
Labor Congress Labor Congress

Strict Maich

Training Set 100% 100% 0% 0%

Testing Set 80% 86% 3% 0%
Flexible Match

Training Sect 100% 100% 0% 0%

Testing Sct 80% 86% 3% 0%

Table 5. Results of Experiment 2.

For the testing sct, the number of correct classifications was rclatively
high (80-86%), the same for the strict and flexible matching methods.
Flexible matching made no difference, probably due to two factors.
Firstly, the complete and consistent descriptions include many specific
rules, leaving little space for the "no match” cases (3%), in which flexible
matching could help. Secondly, the descriptions consisted only of disjoint
rules, as the program was run using the "disjoint cover” parameter. In such
a situation, the "multiple match” cases do not occuf, and flexibie
matching cannot help.

The above. results are similar to those obtained in the previous
experiment, which used an exemplar-based approach (Table 4). The
main difference is that the AQ descriptions are much simpler in terms of
the number of rules and the number of conditions involved (11 vs. 27
rules in the labor management problem, and 10 vs. 51 rules in the
congress voting problem). The simpler descriptions allow the system to
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be more efficient in the recognition mode.

The third experiment (Table 6) tested the rop rule descriptions
determined from the above complete and consistent descriptions. AS
shown in Table 5, the performance of these rules using flexible matching
was comparable to that of the complete and consistent descriptions, as
well as factual descriptions (compare with Tables 4 and 5).

The Top Rule Description (the TRUNC method)
Labor-mgmt problem (Labor): 2 rules and 6 conditions
Congress problem (Congress): 2 rules and 6 conditions

Correct No_Match
Labor Congress Labor Congress

Strict Maich

Training Sct 52% 62% 48% 38%

Testing Sct 63% 69% 30% 24%
Flexible Maich

Training Sct 81% 75% 0% 0%

Testing Set 83% 85% 0% 0%

Table 6. Results of Expcriment 3.

It may be surprising that the top rule descriptions performed better on
the testing set than on the training set. This is due to the fact that the
training set contained more exceptions than the testing set. The system
used the TRUNC method, in which the truncation process removes rules
that cover all except the most typical training examples.

The top rule descriptions consist of only one rule per concept, and
therefore they are significantly simpler than the factual, and consistent
and complete descriptions (they use only 2 vs.11 vs. 27 rules in the Labor
Management problem, and 2 vs. 10 vs. 51 rules in the Congress Voting
problem). It is quite revealing that such simple rules performed as well as
much more complex descriptions generated in previous methods. The
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fourth experiment (Table 7) tested optimized descriptions generated by
POSEIDON, i.e., derived by the TRUNC-SG method. The descriptions
were tested using flexible matching alone (Flexible Match), and in
combination with deductive matching (Deductive Maich).

Optimized Description (POSEIDON)
Labor-mgmt problem (Labor): 0 rules and 12 conditions
Congress problem (Congress): 10 rules and 21 conditions
Correct No_Match
Labor Congress Labor  Congress

Strict Match

Training Set 63% 84% 37% 16%

Testing Set 43% 13% 54% 23%
Flexible Match

Training Set 85% 100% 15% 0%

Testing Set 83% 92% 4% 0%
Deductive Match

Training Sct 9%6%  96% 4% 0%

Testing Set 90% 92% 0% 0%

Table 7. Results of Experiment 4.

For comparison, the performance of these descriptions was also tested
using strict match. The latter is rather an impractical combination. As
expected, these descriptions used with strict matching gave relatively poor
performance.

The optimized descriptions (BCR) combined with deductive matching
(ICI) gave the best performance (90-92% correct). When used with only
fiexible matching, the performance was slightly lower. The descriptions
are simpler than complete and consistent descriptions, although they
include the Inferential Concept Interpretation rules. They are, of course,
more complex than the top rule descriptions, which do not use any
interpretation rules.
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For the Labor data, descriptions applied with deductive matching
produced higher performance than when used with flexible matching
only (90 vs. 83%)6. For the Congress data problem, the performance was
the same for the two matching methods. This is because deductive rules
were acquired on the training set, in the specific testing set, the D-
covered events were the same as F-covered ones.

Table 8 summarizes the results of experiments, specifically, it
compares the performance and complexity of descriptions generated by
simple exemplar-based methods, the two-tiered descriptions generated by
POSEIDON, and pruned decision trees generated by ASSISTANT (a
descendant of the Quinlan's ID3 program; Cestnik et al., 1987).

ASSISTANT was applied to the same leamning and training data,
which were used in the previous experiments (whose results were
presented in Tables 4, 3, 6 and 7.) The decision trees obtained DY
ASSISTANT were optimized using a tree-pruning mechanism (Cestnik ct
al., 1987). This mechanism is compared with the TRUNC-SG method in
the next section.

The factual description was applied with the flexible matching function.
The complexity of a rule-based description was measured by stating the
number of rules (#Rules) and the number of conditions (#Conds). The
complexity of a decision trce was measured by the number of leaves
(#Leaves) and the number of nodes (#Nodes).

6 This difference, for the Labor Contract data, is not X2 significant. Nevertheless,
we think that there are other reasons o prefer deductive matching over flexible
matching. Deductive classification is based on rules and knowledge-based
inference, and is therefore easier to understand by humans. The rules may be
modified locally, while changing the flexible matching function is difficult and
produces uncontrolled, global consequences. In other words, examples that are
correctly recognized through ICI deductive rules are also explained ipso facto in
terms of domain knowledge. The same cannot be said of examples correctly
recognized by flexible matching, which is a knolwedge-independent distance
measure. To reflect this, the GDQ measure assigns a higher score to a description
with deductive matching than with flexible matching.
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imple_¢€X lar-
Performance (% Correct)
I-nearest neighbor
3-nearest neighbor
5-nearest neighbor
Complexity
I

Labor Contract Congress Voting

h
77% 86 %
83% 84%
80% 84 %
27 /432 - 51/96

p | decisi
(ASSISTANT + PRUNING)

Performance
(% Correct) 86% 86%
Complexity
29/33 19 /28
(AQ15 without rule truncation)
Performance
(% Correct) 80% 86%
Complexity
11 /29 10 [ 32
-tier
(AQ15 with rule truncation )
Performance
(% Correct) 83% 85%
Complexity
(4Rules /#Conds)  2/6 2/6
- ey T
(POSEIDON)
Performance
(% Correct) 90% 92 %
Complexity
9712 10 /21

Table 8. Summary of the Results of Testing Descriptions Generated
by Different Methods.
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In the above experiments, for both domain problems, the leaming
method implemented in POSEIDON produced descriptions that are
simpler (except for the top rule descriptions), and also perform better on
the testing data than other tested methods. Being simpler, these
descriptions are also easier 10 understand, and have a lower evaluation
cost. The meaning of the concept defined by such descriptions depends
on the base representation (i.c., a8 TRUNC-SG optimized description
learned from examples), and the inferential concept interpretation
(consisting of an apriori defined flexible matching procedure and a set of
deductive rules, formulated by the expert).

Using rules in the inferential concept interpretation has an advantage
that exceptional cases are casy to explain. In the current method, the
system determines which examples are exceptional (those that are
misclassified by the base represcntation). The expert analyzes them, and
determines the rules for ICL. The top rule descriptions were significantly
simpler than any other descriptions, but performed somewhat worse than
the optimized description and the decision tree. Depending on the desired
trade-off between the accuracy and simplicity, the top rule or the
optimized description can be taken as the base representation of the
concept being defined.

The Role of Parameters and Related Issues

POSEIDON has many parameters which can be controlled by a user.
On the surface, this might be considered as a disadvantage. In our view, a
learning system that allows the user to explicitly modify parameters that
affect learning processes (but which are not just method-dependent), is 10
be preferred over a system that does not explicitly define such parameters.
The point is that in the latter systems these parameters are defined only
implicitly, by the assumptions and the structure of the method. For
example, many systems do not take into consideration the typicality of
examples. In POSEIDON, this is equivalent to an assumption that the
typicality of all examples is equal to the default value 1. As another
example, consider the cost of measuring the value of attributes. If a
learning program does not have parameters representing such costs, then
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this is equivalent to an assumption that all costs are the same (which In
reality is often not true). By being able to control such learning
parameters, the user can produce results that better fit the task at hand. For
example, for some tasks, the accuracy of descriptions may be decisive
criterion, while for others the description simplicity may be of equal
concem.

An important problem to be investigated is the sensitivity of
POSEIDON to its various parameters. While a comprehensive answer to
this problem goes beyond the scope of this paper, we report below a
preliminary sensitivity analysis regarding the parameters controlling the
rrade-off between the description accuracy and simplicity. Such
parameters are considered to have the most important effect on the
performance of leamed descriptions. Specifically, they are the tolerances
in the lexicographic evaluation functional measuring the description
quality. To explain their role, let us bricfly review the description quality
measure. This measure combines several criteria, such as the accuracy, the
simplicity, and the cost. Each criterion is associated with a tolerance
interval such that differences within this intcrval are not considered
unimportant. Thus, if the tolerance interval of accuracy is very narrow,
then the accuracy becomes the prevailing criterion in quality evaluation.
On the other hand, if this tolerance interval is wide, the remaining criteria
become more significant.

An experiment was performed using the same Congress voting data,
as used in experiments reported in Tables 4-7. The training set had 51
examples, while the testing set had 49 examples. The concept to be
learmed was the voting record of Republicans in the US Congress. The
description tested in Table 7, had 10 rules and 21 conditions, and yielded
the accuracy of 100% on the training set, and 92% on the testing set. The
description was obtained using the accuracy tolerance (t1) value equal
0.05. To determine the method's sensitivity to this parameter, the accuracy
tolerance T] was set to values 0.55, 0.35, 0.02, 0.005, and for each value
the description accuracy was measured. For the above accuracy tolerances,
the system's performance on the testing set was 88%, 88%, 90%, and 92%,
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respectively. Thus, this experiment seems 10 indicate that the accuracy of
the descriptions slowly grows with the narrowing of the tolerance interval
on the accuracy in the description quality mcasure, which completely
confirms an intuitive expectation.

In general, when the accuracy tolerance interval is wide, the simplicity
of the description assumes an important role, yielding performances close
to the performance of the top rule in the two-tiered description.
Intermediate values, such as the one used in the experiments presented in
Table 7 (11 = 0.05) produced the best results, ¢.g., the performance of
02% on the testing set from the Congress data. In the case of the narrow
tolerance interval for accuracy, the simplicity has a lower impact on the
quality of the description. An interesting topic for future research is 10
systematically investigatc the influence of such parameter changes on the
performance of the descriptions’.

Another issue that should be explored more in the future is the role of
example typicality of lcamning examplcs. In the presented mcthod, if the
input examples arc assigncd typicality valucs, the gencrated basc concept
representation will tend to cover the most typical examples, while the
inferential concept interpretation will tend to cover less typical cxamples.
A problem for futurc investigation is to dctermine the effect of the
typicality on the overall quality of generated concept descriptions. When
the typicality information is unavailable, the system itself will assign
examples to differcnt classcs of typicality. The cxamples covered by the
~ base representation are classified as typical, those covered by flexible

7 In our experiment, for small values of T, = 0.02 and .005, which emphasize the

role of accuracy in the measured quality of a description, the performance on the
testing set was close or equal to the performance obtained for t, = 0.05, and

higher than performance of 86% for AQ15 in Table 7. The reason is that in the
last two experiments, as well as in the original experiment in Table 7, it was
always possible to find a description that was simpler than the one produced by
AQ15, but still 100% correct on the training data. Therefore, by giving more
importance to accuracy, the simpler description was preferred, and better
performance on the test sct was obtained.
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matching as nearly-typical, and those covered by the deductive rules as
ncn-typical.3 An interesting experiment would be to compare such
classifications with human classifications. Another interesting issue relates
to the noise in the data. The preliminary analysis indicates that the
proposed method has a significant ability for handling noisy data.
Experiments show that noisy examples are usually covered by the "light”
rules, i.e., rules that cover few examples. By removing such rules from the
description, the effect of noise can be significantly minimized (Zhang
and Michalski, 1989). Future research should investigate these aspects of
the method in greater detail.

RELATED WORK

The research presented here relates to various efforts on learning
imprecise concepts, in particular, to leamning methods generating pruned
decision trees (e.g., Quinlan, 1987, Cestnik, Kononenko & Bratko, 1987,
Fisher and Schiimmer, 1988). In these methods, a concept description (or
a sct of descriptions) is rcpresented as a single trce structure ("one tier")
that is supposed to account for all concept instances. An unknown
instance is classified by following the nodes of the decision tree from the
root to the leaf indicating the class. To avoid overfitting, some parts
(subtrees) of the originally generated decision tree are pruned away. As a
result, such decision trees do not cover some training examples. Since the
recognition process does not use flexible matching.r such pruned trees
must always produce some error on the training examples, although the
overall performance on new examples may increase.

The two-tiered method avoids overfitting by simplifying original
descriptions, yielding base concept representations that, in the formal
logical sense, are usually also incomplete and inconsistent. The two-tiered
method, however, can compensate for the lack of coverage or for an

8 This three-way classification of the examples can be viewed as a simple method of
learning typicality. A similar feature is available in Cobweb (Fisher, 1987). On
the other hand, if the typicality information is available, it is used by POSEIDON
to improve the quality of the leamed description.
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excessive coverage of the first tier (BCR), by the application of the second
tier (ICI). This can be done by flexible maiching and/or deductive
inference rules. The latter ones are nomally unaffected by noise, because
they depend on a deeper understanding of the domain. In addition, the
presented method takes into consideration the typicality of the examples
(if it is available). This feature gives the method an additional help for
handling noisy éxamples.

The method presented in (Quinlan, 1987) is based on a hill-climbing
approach that first truncates conditions, and then rules. No search is
performed, only one alternative truncation is tried at every step. The final
result might possibly be far from optimal. By avoiding the search, such a
procedure should, however, be significantly faster than the one
implemented in POSEIDON. If the speed of leaming and the simplicity of
descriptions are of central importance, then the TRUNC mcthod (that
detcrmines the top rule descriptions without search) should be appliced
rather than TRUNC-SG. In the same paper (Quinlan, 1987), other
mecthods for pruning dccision trees are also described. Some of these
mcthods rcquire a scparate testing set for the simplification phase, and
others use the same training set that was used in creating the tree. The
simplification phase in POSEIDON can also be done either using the
original training set, or using a separate set of examples.

The experiments by Fisher and Schlimmer (1988) on pruning
decision trees use a statistical measure to determine the attributes to be
pruned. Such measures require a rather large data sample, and thus do not
apply well to small training sets. In the two-tiered approach, training
events are analyzed logically, rather than statistically, both in the phase
creating a complete and consistent description, and in the optimization
phase. Consequently, the two-tiered approach seems to be more suited for
learning from a relatively small number of examples. An interesting
possibility for future research is to integrate a statistical measure, such as
used by Fisher and Schlimmer, or other, in the process of rule leaming
and truncating with large data sets.

The system developed by (Iba et al. 1988) uses a trade-off measure
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and truncating with large data sets.

The system developed by (Iba et al. 1988) uses a trade-off measure
that is somewhat similar to the general description quality (GDQ) measure
proposed in this paper. Our GDQ measure considers more factors. Besides
taking into account the typicality of the instances covered by the
description, it considers different types of matching between an instance
‘and a description. Moreover, the simplicity measured by GDQ depends
not only on the number of rules in the description as in (Iba et al., 1988),
but also on the different syntactic features in the description.

The inductive algorithm implemented in CN2 uses a heuristic function
to terminate search during rule construction (Clark & Niblett, 1989). The
heuristic is based on an estimate of the noise present in the data. Such
pruning of the search space of inductive hypotheses results in rules that
may not classify all the training examples correctly, but that perform well
on testing data. CN2 can be viewed as an induction algorithm that
includes pre-truncation, while the algorithm reported here is based on
post-truncation. CN2 applies truncation during rule generation, and
POSEIDON applics truncation after rule generation. The advantage of
pre-truncation is cfficiency of the learning process. On the other hand,
such an approach has difficulty with identifying irrelevant conditions and
redundant rules.

The two-tiered method described here can also be viewed as a kind of
constructive induction in the sense of (Michalski, 1983). In fact, the
whole learned description may include new terms, absent from the
examples used for leaming. This behavior is also encountered in several
other systems (e.g., Sammut and Banerji, 1986; Drastal, Czako & Raatz,
1989). However, constructive learning in POSEIDON is due to the
second tier based on domain knowledge characterizing non-typical
examples. This is different from using domain knowledge to rewrite or
augment the whole training set (e.g., Rouveirol, 1991), or to generate new
attributes by a data-driven approach (Bloedorn & Michalski, 1992), or a
hypothesis-driven approach (Wnek and Michalski, 1991).

The exemplar-based learning system PROTOS (Bareiss, 1989) is
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concept description and acquiring the matching knowledge via
explanations of training events provided by a teacher. There are, however,
major differences: 1) PROTOS stores exemplars as base concept
descriptions, whereas POSEIDON generates simple and easy-to-
understand generalizations as base concept descriptions, 2) PROTOS uses
domain knowledge in classifying all new cases, whereas POSEIDON uses
Inferential Concept Interpretation rules only for classifying exceptions, 3)
During the leaming process, PROTOS asks the teacher for explanations
for all exemplars, wherecas POSEIDON oﬁly asks for explanations of
exceptions.

The problem of using some typicality measure of examples has not so
far been given much atiention in machine leaming, although there were
attempts in this direction. For example, Michalski and Larson (1978)
introduced the idea of "outstanding representatives” of a concept to focus
the leamning process on the most significant examples. In cognitive
science, the concept of typicality of examples has been studied extensively
(e.g., Rosch and Mervis, 1975; Smith and Medin 1981). The concept of
two-tiered representation has naturally led us to the proposition of a
prccise definition of represcentative, nearly-representative and exceptional
cxamples, namely, as those that are covered by the first tier, the second
tier's procedure for flexible matching, and the second tier's inference
rules, respectively. The ideas of two-tiered representation are also
consistent with recent research on two-stage category construction (Ahn
and Medin, 1992).

To summarize, there are several major differences between the method
presented and related research described in the literature. First, the method
has the ability to recover from the loss of coverage due to the description
truncation by using the second tier. Specifically, the procedure of flexible
matching or deductive rules are used to cover examples not covered
explicitly. As has been demonstrated experimentally, this ability often
leads to a significant reduction of concept descriptions, and at the same
time, to an improvement of their predictive power. Second, the description
reduction is done by independently performing both generalization and
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specialization operators. Third, any part of the description may be
truncated in the simplification process, not just only specific pans (as, €.g.,
in decision tree truncation). Fourth, the method is able to take into
account the typicality of the examples. Finally, the method uses a general
description quality measure, which takes into consideration a number of
different aspects of a description.

To relate the presented two-tiered approach to other basic machine
leamning approaches, Table 9 characterizes them in terms of the type of
concept representation used and the kind of matching applied for
classification.

Simple Induction Exemplar-based Two-tiered
Representation General Specific General

Matching Precise Inferential Inferential

Table 9. A comparison of the two-ticred method with simple
inductive and cxemplar-bascd methods.

SUMMARY AND OPEN PROBLEMS

The most significant aspect of the prescnted method is that it
represents concepts in a two-tiered fashion, in contrast 10 traditional
lcaming methods that represent concepts by a monolithical structure. In
this representation, the first tier, the base concept representation (BCR),
captures the explicit and common concept meaning, and the second tier,
the inferential concept interpretation (ICI) defines allowable modifications
of the base meaning and exceptions. Thus, typical concept instances
match the BCR, and thus can be recognized efficiently. Such a two-tiered
representation is particularly suitable for learning flexible concepts, i.e.,
concepts that lack precise definition and are context-dependent.

In the POSEIDON system that implements the method, the BCR is
learned in two steps. First, a complete and consistent description is leamed
by a conventional learning program (AQ15). Next, this description is
optimized according to a general description quality measure. This is
done by a double-level search process that uses both generalization and
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optimized according to a general description quality measure. This 1s
done by a double-level scarch process that uses both generalization and
specialization operators. The General Description Quality takes into
account not only properties of BCR, but also of ICL. This is done by
measuring the complexity and accuracy of the total description.

The ICI has two components: one specifies a flexible matching
function, and the second specifies inference rules for handling exceptions
and context-dependency. The ICI rules can be of two types. The rules of
the first type extend the meaning of the concept, while the rules of the
second type contract this meaning. The first type rules are employed
when an instance is neither covered by the BCR (not S-covered), nor by
the flexible matching function (not F-covered). The second type of rules
are used when an unknown instance covers a base representation of more
than one concept, or when concept membership has to be confirmed. In
both cascs, the rules arc used deductively. An advantage of using rules for
matching over other matching mcthods is that they can scrve as an
explanation why a given instance docs or does not belong to thc concept.

The experimental results have strongly supported the hypothesis that
two-ticred concept descriptions can be simpler and casier to understand
than “single-tier" descriptions. In the experiments, these descriptions also
had greater prediction accuracy, i.e., performed better on new examples.
For example, the two-ticred descriptions obtained for the acceptable labor
management contracts gave a performance of over 90% correct using
only about 9 rules. In contrast, the best performance of a simple
exemplar based method gave the 80% correct predictions on new
examples, and used 27 rules, and the cormresponding pruned decision tree
performed at 86%, and had 29 leaves (each of which may be viewed as
corresponding to one rule). The system also performed better. than the
previous method based on the TRUNC procedure in terms of the
prediction accuracy (80%), but at the cost of a more complex concept
description. In addition, two-tiered descriptions are relatively easy to
understand, and can easily represent an explicit domain knowledge.

The presented method is different in several significant ways from the
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earlier method of leamning two-tiered representations (Michalski et al.,
1986). The flexible matching procedure is used not only in the testing
phase, but also in the learning phase. In addition to a flexible matching
function, the method employs rules for extending or contracting the
concept meaning. The earlier TRUNC method used only one
specialization operator (rule removal), while TRUNC-SG employed in
POSEIDON uses two generalization and two specialization operators. The
price for that is that the new method is significantly more complex.

There are many interesting problems for future research. An
especially interesting problem is how to integrate the description
optimization phase with the initial description generation phase (done by
AQ). Another interesting problem is how to leam second tier rules from
examples. In the initial method developed by (Plante and Matwin, 1990),
the inferential concept interpretation rules are leamed by a chunking
process 1n the situations when multiple explanations of positive or
negative training events arc provided. Future research should also address
the application of constructive induction (Michalski, 1983) in the process
of learning flexible concepts. In constructive induction, background
knowledge is used to construct new attributes and/or higher level
descriptors. As a result, produced descriptions can capture the salient
features of the concept, and can be simpler and more comprehensible.
The ideas of constructive induction seem to be very relevant to the
method proposed. For example, through constructive induction the
system may be able to fold several rules into a single one, or prevent the
removal of relevant rules.

The current system does not address the problem of dynamically
emerging hierarchies of concepts. The system only leams one concept at
a time, and concepts. do not change or split as new examples become
available. Another open issue is the ability of the system to reorganize
itself. The distribution of knowledge between the Base Concept
Representation and the Inferential Concept Interpretation should be
determined by the performance of the system on large testing sets. If it
turns out, for instance, that some inferential concept interpretation rules
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are used very often, then they could be compiled into the base
representation. Further research is needed on the role and the impornance
of different parameters used in the method, and on the trade-offs that
they can control.

This paper has focused on learning attributional descriptions that
characterize entities by attributes, and ignore their structural properties.
Although such descriptions are quite powerful and sufficient for many
practical problems, there are applications that require structural
descriptions that characterize entities as systems of components, and the
relationships among these components. Developing a method for learning
two-tiered structural descriptions is therefore an important topic for future
research. A relatively solution to the above problem would be to replace
the AQ15 program by a version of INDUCE (e.g., Michalski, 1983) for
lcarning the initial complete and consistent description. The basic scarch
procedure would esscntially be the same, but would dcal with a more
complex knowledge rcprescntation. A structural representation would
allow additional description modification opcrators, so thc descriptions
could be modified in more ways, so this would increase the flexibility and
the complexity of the search process. Also, the computation of the gencral
quality of descriptions would require propcr modification, and flexibic
matching would need to be extended to handle structural concept
descriptions.

As practical problems frequently require only attributional
descriptions, and the method is domain-independent, POSEIDON has a
potential to be useful for concept learning and knowledge acquisition in
a wide range of real-world applications.
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