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Abstract

This report covers initial research on
learning in vision conducted at the GMU
Center for Artificial Intelligence. The
research is currently conducted by two
faculty members and one research
assistant. The report describes our research
goals, general approach, several developed
methods, and results from experiments
with implemented systems. The research
has been concerned primarily with the
development of efficient methods for
inductive learning of texture descriptions
from texture samples. The following
methods (and implemented systems) are
briefly described: Textral (employing
multilevel symbolic image transformations
and the AQ15 inductive learning
program), PRAX (using a “principal
axes” representation of texture
descriptions), AQ-NT (oriented toward
learning from noisy inputs), AQ-GA
(combining inductive rule leaming with a
genetic algorithm based rule
enhancement), and Chameleon (based on
“model evolution” approach).

1 Introduction

The goal of this research is to explore the
applicability of machine learning methods to
problems of computer vision. The underlying
premise is that computer vision will ultimately
need to exhibit learning capabilities in order to
be fully successful.

This research was supported in part by the Defense
Advanced Research Projects Agency under the grant No.
F49620-92-J-0549, administered by the Air Force Office
of Scientific Research, and the grant No. N00014-91-J-
1854, administrated by the Office of Naval Research, in
part by the Office of Naval Research under the grant No.
N00014-91-J-1351, and in part by the National Science
Foundation under the grant No. IRI-9020266.

The reasons for this view are based on the
following observations:

« The world changes in unpredictable ways,
therefore it is impossible, in principle, to pre-
program in the vision systems all the
knowledge necessary for image
understanding.

« Handcrafting the knowledge needed for
image understanding into computer vision
systems is a difficult and time-consuming
process; learning provides a fundamental
vehicle for simplifying this process.

+ In biological vision systems, many aspects of
image perception are genetically
preprogrammed, but many are learned.
Similarly, computer vision systems should be
able to acquire some capabilities through
learning.

An important result of our initial research is a
demonstration that symbolic learning methods
can be successfully applied to selected problems
of low-level vision, in which nonsymbolic
methods have been traditionally employed.
Specifically, the results obtained demonstrate
that these methods have been very useful for
creating descriptions of textures from their
samples, obtained from the original camera-
generated images.

2 General Approach

The developed approach, called “Multilevel
Logical Templates” (MLT) aims at
automatically determining texture class
descriptions (“texture signatures”) from texture
samples. The basic step in this process is an
iterative (multilevel) application of symbolic
inductive learning to generate texture rules.
These rules serve as “logical templates™ that are
matched against window-size samples of texture
classes.



The approach was originally proposed by
Michalski [1973], and initially applied using the
ILLIAC III image recognition computer
facilities.

The research at the GMU Center for Artificial
Intelligence has developed a variety of novel
extensions and new directions stemming from
the above general approach. The novelty is in
utilizing new types of image transformations,
self-improvement of the representation space
(constructive induction), advanced noise-tolerant
learning techniques, and new multistrategy
learning techniques.

The basic idea behind the MLT approach can be
explained as follows (Figure 1). Given an image
with labeled samples of different textures, the
learning system determines a sequence of
operators that transform this image to a
“symbolic” image, in which picture elements
are labels of corresponding texture areas.
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Figure 1.

The sequence of operators that produces such a
labeling serves as a texture description (“texture
signature’). The basic operator in this process is
an application of a set of logic-style rules to
transformed texture samples. The rules can be
applied in parallel, and serve as “logical
templates” that are applied to “events”
(attribute vectors) representing texture samples.

To recognize an unknown texture sample, the
system matches it with all candidate texture
descriptions. This is done by applying decision
rules to the events in the sample. For each event,
the class membership (texture class) is
determined.

The assignment of the sample to a given
decision class (texture) is based on determining
which of the candidate classes gets the majority
(or) plurality of votes. Thus, even if some events
in the sample are incorrectly recognized, the
classification of the sample may be correct.
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An illustration of the MLT approach to texture leamning and recognition.



The process of learning such texture
descriptions consists of the following phases
(Figure 1):

1) Image preprocessing (volume reduction).

(2) Training events generation (selection of
texture samples, determining attributes, and
formulating training examples)

(3) Inductive learning of texture rules (“logical
templates™), and

(4) Texture rule optimization.

The above process may be repeated iteratively
until a desired image transformation is obtained.

The first phase of the process adapts the “image
volume” to the texture classes characterized by
training samples.

This is done by modifying the spatial resolution
and a gray-level resolution of the image so that
the similarities between samples of the same
texture and dissimilarities between samples of
different textures are increased. In the initial
experiments, the events were extracted from the
second or third level of the Gaussian pyramid.
The typical resolution of camera-acquired
images was 512 by 512 image elements.

The second phase extracts a set of spatial texture
samples, called events, from classified texture
regions (Module 2 in Figure 1). An event is a
vector of attribute values that represent different
image (texture) features. Initial attributes are
predefined. Additional attributes can be
determined through the process of constructive
induction [Wnek and Michalski, 1991].

There are many possible attributes that could be
determined to characterize textures. The most
desirable are those that define a description
space in which points corresponding to the same
texture class constitute easily describable
clusters.

The attributes generated by different systems
described in this report fall into one of three
categories: neighboring gray-level values,
statistical measurements, and convolution filter
outputs. Sets of events extracted from texture
classes to be learned are used as training
examples.

Texture rules are determined using the AQ-15
method for inductive concept leaming from
examples ([Michalski, 1986]). The rules
learned by the AQ method are represented in
VL1 (Variable-Valued Logic System 1);
[Michalski, 1972]). Advantages of this
representation are that it is amenable for parallel
execution, and easy to interpret conceptually.

In the machine learning method described here,,
a concept corresponds to a single texture class.
A concept description is a logical expression in
disjunctive normal form associated with a
decision class (here, a texture class).

Each conjunction in this expression together
with the associated decision class can be viewed
as a single decision rule.

The conjunctions (serving as condition parts of
the rules) are logical products of elementary
conditions in the form:

[L #R]
where:

L, called the referee, denotes an attribute.

R, called the referent, is a subset of values from
the domain of the attribute L.

# is one of the following relational symbols:

=, <, >, >=, <=, <>

Each rule is assigned two parameters: “t” (for
“total weight”)—measuring the total number of
positive training examples covered by the rule,
and “u” (for “unique weight”)—measuring
the number of positive examples covered by the
given rule and not covered by any other rule for
the given decision class.

Here is an example of an AQ-15 decision rule:
[Class=1]¢=[x2=1][x4>3][x6=1..7]: (t=6, u=2)
This rule covers 6 examples of Class 1, out of
which 2 are covered only by this rule, and not
by any other rule for this class. In the case of
texture rules, xj are attributes characterizing a
texture sample (in our experiments we used
primarily 8x8 windows). The above rule is
satisfied, if attribute x2 takes value 1, attribute x4
has value greater than 3, and attribute x6 takes
value between 1 and 7.

As mentioned earlier, a description of a texture
class can be viewed a set of such rules (a
“ruleset”). In such a ruleset, individual rules are
ordered according to the decreasing values of
the t-weight. The following is an example of a
texture description:

[Texture class = sweater surface] <
[x1=7.9,121& [x2>]1&[x3=0..4)& [x4=0..5]&[x5=0..3]
[x6=0..7] [x7=2..4] [x8=0..3] (t:28, u:21)

OR

[x1=5,7.9] [x2>2] [x3=0..2] [x4=0..4] [x5=1.4]
[x6=0..6] [x7=0..2] [x8=0..4] (t:27, u:20)

OR

[x1=2,5,71&[x2=1..12]&[x3=1..2]
[x4=2..6)&[x5=3..4]&[x6=0..4]&[x7=1..3,5,7]
[x8=0..1,3..4] (1:16, u:11)

OR

[x1=5..14]1& [x2>6] & [x3=0..2,4..5]& [x4=2..5] (t:5, u:3)

where x1 is the Laplacian edge operator, x2 is the
Frequency spot, x3 is the horizontal edge



operator, x4 is the vertical edge operator, x5 is
the horizontal V-shape operator, x6 is the vertical
V-shape operator, x7 is the vertical line operator,
and x8 is the horizontal line operator.

The method uses “truncated” descriptions of
texture classes. A truncated description is
obtained by the removing from the initially
generated rules the ones with a very low t-
weight. The reason for this is that rules with a
low t-weight can be viewed as insignificant, or as
representing noise.

We have discovered experimentally that so
truncated descriptions often give a higher
texture recognition performance than non-
truncated descriptions. Since truncated
descriptions are also simpler, then such a
truncation process is highly desirable. A detailed
study of this phenomenon (in the context of
non-vision applications) have been described in
[Bergadano et al., 1992].

The learned texture descriptions are
generalizations of the observed texture events
(i.e., attribute-value vectors characterizing
window-size texture samples). Therefore, they
can be used to classify unobserved texture
samples. There are two methods for applying
the descriptions for recognizing the class
membership of an event: the strict match and the
flexible match.

In the strict match, the system tests whether an
event strictly satisfies (the condition part of) a
rule. The satisfied rule determines the
classification decision. In the flexible match, the
system computes a degree of match between the
event and candidate rules. The degree of match
can vary in the range from 0. (no match) to 1.0
(complete match). The rule with the highest
degree of match determines the classification
decision.

To explain the calculation of the degree of
match, assume that a recognition rule contains a
condition [x = ak]. If the domain of the attribute
X is a set of numerical values <at,a2, ...,an>, and
an event includes the statement [x=aj], the
normalized degree of match between the rule
and the condition in the event is defined:
1-(Iaj-akI/n)

If the condition has several values in the referent
(on its right-hand-side), the value closest to ak is
used. The degree of match between a rule
containing several conditions and an event was
computed as the average of the degrees of match
between the conditions and the event conditions.
The degree of match between a class description
(which may have several rules) and a given
testing event (an example) is determined as the

maximum of the degrees of match between
individual rules in the description and the event.
The description with the highest match among
classes determines the recognition decision. The
measure of recognition accuracy of a rule when
applied to a set of testing events is the
percentage of the number of correctly classified
test events to the total number of testing events
in the set.

3 Implemented Systems
3.1

Learning Texture Signatures:
TEXTRAL

The TEXTRAL system implements a version of
the MLT approach (“Multiple Logical
Templates™). The system generates multiple
level of descriptions (rulesets) by applying the
same leamning process to images generated at
each level. The first level ruleset relates to the
original camera-acquired image. The next level
ruleset relates to a ‘“symbolic image” that
consists of numerical labels associated with the
texture classes. These labels are generated by the
application of the first level ruleset, and
represent texture classes assigned to texture
events in the original image [Bala and Michalski,
1991]. Subsequent levels of rulesets are
generated by reapplying this same process to the
symbolic images generated at the previous step..

Here is a more detailed description of the
algorithm:

« Step 1 extracts a random set of training events
from the training areas in the original images by
applying various local operators (such as Law
masks, statistical measures, convolution
operators, etc.), and learns the “first-level”
texture of rules;

« Step 2 determines rulesets generalizing the
training events. These rulesets are applied to the
training areas of the original image, and a new
image (a “symbolic image™) is created. The
pixels of the new image (the next level image)
are numerical labels of texture classes assigned
by the ruleset to corresponding events in the
original (previous level) image.

« Step 3 determines the match between the
texture training areas labeled by the teacher and
the corresponding areas in the symbolic image.
If the match is sufficiently high (or the system
reaches a designated number of levels) then the
process stops. Otherwise, the control is passed to
the step 1. The events are extracted from the
symbolic image (the last level image) and
assigned classes corresponding to the training
assignment of pixels in the original image (i.e.,
representing the “correct” partitioning of the
image into texture classes done by the teacher).



We have performed a number of experiments
with the system for various numbers of texture
classes (between 4 and 16), representing fined-
grained textures, such as sand, paper, pebbles,
etc. Training events were determined from
texture samplings using 8x8 windows, and
selected from texture training areas. The texture
training and testing areas for each texture class
was determined by a teacher.

Table 1 and 2 show the confusion matrices
characterizing the system’s recognition rates (in
%) for individual texture events (using 8x8
windows) selected from testing areas of four
texture classes, C1, C2, C3 and C4. Table 1
shows the recognition rate for first level rules,
and Table 2—for the second level rules. Recall
that the conditions of the second level rules
apply not to properties of the original image, but
to the distribution of texture labels generated by
the first level rules.

Recognized texture class

IC1 C2 C3 C4

84 15 16 23
10 78 20 10
7 14 79 27
26 17 27 67

Recognition rates using the first level rules.
Table 1.

Recognized texture class

C1 Cc2 C3 C4

94 3 6
96 4
9 88 12
3 7 12 80

Recognition rates using the second level rules.
Table 2.

The average correct recognition rate of
individual events for the 4 class experiment was
77% when using the first level rules, and 89.5%
when using the second level rules. At the same
time, the average misclassification rate decreased
from 17.6% to 6.6%, respectively. Thus, the

experiment has demonstrated that multilevel
learning (using higher level rules) can increase
the system’s recognition of individual events.

It should be clearly noted, however, that to
recognize a given sample of a texture, one would
extract from the unknown texture not just single
event (representing an 8x8 window), but also
several neighboring events. In such a case, the
texture identification decision will be based on
the majority of class assignments of individual
events in the neighborhood.

Therefore, even when there is a relatively low
recognition rate of individual events, one can
achieve 100% recognition rate of the sample (it
is sufficient that the plurality of events in the
sample are recognized correctly). A problem
may occur mainly when a sample is taken from
a border area between different textures, or
includes events characterizing rare local texture
distortions.

Figure 2 presents the recognition rate of
individual events on leaming of 12 textures,
using rules of level 1, 2, 3 and 4.
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Figure 2: An increase of the system
performance with the rule level.

Figure 2A shows the increase of the recognition
rate of individual events from 12 texture classes
with the rule level. Figure 2B shows the
corresponding decrease of the standard
deviation (in %) of the recognition rates with the
rule level. The average recognition rate of
individual events increased from 48% with level
one rules to 58% with level four rules. At the
same time, standard deviation (of correct
recognition values) decreased from above 20 to
15, respectively. The minimum recognition rate
increased from 21% to 36%.



The TEXTRAL method represents an extension
and improvement of our -earlier method
implemented in the TEXPERT system [Channic,
1989]. TEXPERT used our earlier inductive
learning system GEM (“Generalization of
Examples by Machine;” also called AQ14)
[Reinke, 1984]. TEXPERT was applied to the
problem of recognizing faults in laminated
aircraft materials using ultra-sound images

3.2 Learning Large Number of
Classes: PRAX

In the TEXTRAL system, each texture class is
represented by a ruleset [Bala et al., 1992]. If
there are very many texture classes, there will be
correspondingly many rulesets, and the learning
and recognition process may become complex.
The PRAX system represents an alternative
approach to the problem of learning a large
number of concept descriptions (in our
application, texture classes).

The basic idea is to designate some concepts o
be basic, and describe the remaining concepts in
terms of the relations to the basic concepts. This
idea can be simply illustrated by the example in
Figure 3.

If the system already knows the concept of
“orange” (Desl) and “lemon” (Des2), then it
can learn the concept of “grapefruit” by
relating properties of the grapefruit to those of
the lemon and the orange (Des3"), rather than in
terms of original properties (Des3").

Phase 1. Learning Basic Concepts

ORANGE LEMON

Des1= F(color, taste, ec) Des2 = Ficolor, tade, d¢)

Description of basic concepts

Phase Il. Learning New Concept
GRAPEFRUIT

Des3' = F{color, taste, eic) Des3" = F{ Des1, Desd

Figure 3: A simple illustration of the PRAX
method.
In the PRAX method, descriptions of the basic
concepts are called “principal axes.” They are
learned in the similar way as in the TEXTRAL
system.

To learn a new, non-basic concept, the system
determines a similarity matrix (SM) for that
concept. The SM specifies the average degrees
of similarity between the training examples of
the new concept and all the principal axes.

The degree of similarity between an event and
each principal axis is determined according to a
procedure called ATEST [Michalski, et al,
1986]. The procedure determines the
accumulated difference between the attribute
values in the event and the conditions in each
rule in the principal axis. To obtain a uniform
representation of all class descriptions, the
similarity matrix is also computed for all basic
concepts.

These degrees of similarity can be viewed as
values of the new constructed attributes. Thus,
this method represents a special case of
constructive induction. (The general concept of
constructive induction includes any method that
self-modifies the concept representation space
during the induction process. Generating
additional, problem oriented attributes is an
important form of such self-modification of the
representation space [Michalski, 1978; Wnek &
Michalski, 1991)).

To recognize an unclassified event, the method
creates an SM for it, that is, determines a matrix
of similarities between the event and the
principal axes. Subsequently, the system
determines the best match between the SM of
that event and SMs of all candidate concepts.
The best match indicates the class membership.

The method was empirically evaluated by
applying it to the problem of leaming 24 texture
classes from examples ( Table 3). Each example
was described in terms of eight multivalued
attributes (representing detectors of various basic
geometrical concepts, such as the presence of
lines, edges, V-shapes, etc.). The performance of
the PRAX-derived descriptions was compared
with the performance of the k-NN classifier.
Different level of misclassification noise were
added to test the robustness of the method.

The main strength of the method lies in a
problem-relevant transformation of the
descriptor space. The new descriptors form
generalized sub-spaces of the initial, training
space. In addition, the method uses a non-linear
distance metric to calculate values of constructed
attributes. The distance metric based on the idea
of flexible matching is less sensitive to noise,
then traditional Euclidean distance metric often
used by pattern recognition methods.



The Recognition Rate
(in %) of Examples
from Unknown
Texture

100%
100%
100%

96%
92%
87%

Table 3: The results from comparing PRAX with
the K-NN method.

The current problem with the method is that it
does not have a mechanism for deciding how to
choose basic concepts. Choosing the minimal
subset of concepts to be used for principal axes
generation is important for method to be
efficient. This problem will be a subject of
future research. Another weakness is that the
similarity matrix is a relatively complex
representation.

3.3 Learning From Noisy Data:
AQ-NT

The AQ-NT method represents a novel way of
handling problems of learning from noisy real-
world data [Pachowicz and Bala, 1991]. It is
based on the idea that events covered by rules
with a low t-weight may be representing noise in
the data. The assumption is that the system
learning from a dataset that does not contain
such events has a greater chance to produce
correct concept descriptions than when learning
from the original events.

The process of learning concept descriptions (in
the form of a ruleset) is done in the following
two phases:

Phase 1: Performs a rule-based “filtration” of
the noise from the training data. This is done in
the following way:

1. Induce decision rules from a given dataset
using the AQ learning program.

2. Truncate concept descriptions by removing
“the least significant” rules, defined as rules
that cover only a small portion of the training
data (have small t-weight relative to the t-
weight of other rules).

3. Create a new training dataset that includes
only training examples covered by the
modified concept descriptions.

4. If the size of the dataset falls below an
assumed percentage of the training data
(which reflects an assumed error rate in the
data), then go to Phase 2. Otherwise, return to

step 1.

Phase 2: Acquire concept descriptions from the
reduced training dataset using the AQ
learning program.

Figure 4 shows results from one run of the AQ-
NT system for six texture classes.
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Figure 4: The AQ-NT results.

Figure 4A shows the increase of the recognition
accuracy (in %) of individual events with the
number of iterations. After 12 iterations, the
recognition accuracy reached 95.3%. Figure 4B
shows the average number of rules for each
iteration. An average number of rules can be
viewed as a.measure of description complexity.
Figure 4B shows a significant decrease in the
average number of rules (from 37 to 3). This
result is a significant indication of the
advantages of the proposed approach.

3.4 Rule Improvement by Genetic
Algorithm: AQ-GA

The size, complexity, variability and an inherent
noise in the vision data pose significant
difficulties in developing a reliable concept
learning system. The AQ-GA multistrategy
system was developed to address some of these
issues [Bala et. al., 1993]. This system integrates
two forms of learning, symbolic inductive
generalization and genetic algorithm based
learning. The integration is done in a closed-



loop fashion in order to achieve robust concept
learning capabilities.

The learning process cycles through two phases
(Figure 5).

Training Data Set
Tuning Data AQ Training Data

Y \P
Data-driven o = Model-driven
Learning 2 S Learning
(Performance- 2 (Cognitively-
oriented) g oriented)

=

(e.g. GAs) —_— |(e.g. AQ)

Y ¢

Control of Learning and

Apportionment of Training Data Set

Final Learned Description
Figure 5: The AQ-GA architecture.

In the first phase, initial concept descriptions are
acquired by running a noise-tolerant extension
of the AQ15 rule induction system. The
resulting concept descriptions may not be,
optimal from the performance viewpoint, due to
the AQ bias to generate simple, cognitively-
oriented descriptions. Therefore, in the second
phase, the system attempts to improve the
performance of the descriptions by employing a
genetic algorithm (GA).

The descriptions obtained from AQ15 are semi-
randomly modified, using basic genetic
operators: mutation and crossover. The resulting
descriptions are evaluated according to a
performance criterion. The criterion was the
recognition accuracy of the descriptions on the
“tuning” data (a subset of the training set of
events). The best performing descriptions are
selected from the population, and a new
generation is repeated. The process stops when a
desirable performance level is achieved, or the
number of generations exceeds some limit.

The effectiveness of this multistrategy approach
was tested on several texture recognition
problems.

Genetic algorithms typically represent
individuals in a population (here, concept
descriptions), using fixed-length binary strings.
However, if the effective cooperative leaming A
novelty of this method is that it uses, instead of
binary strings, concept descriptions (formally,
VL1 “expressions) produced by AQ15. To this
end, a special mutation operator was designed to
introduce small changes to selected condition
parts of the rules in each concept description.
The condition parts are selected by randomly
generating two pointers: the first selects a rule,
and the second one selects a condition in this
rule.

The most-left or the most-right values of the
referent in this condition are slightly modified..
For example, the condition [x1= 10..23] might
be mutated to any of the following: [x1 =
10..20], [x1 = 10..24], [x1 = 12..23] or [xl =
8..23], as well as others. Such a mutation process
samples the space of possible concept
description boundaries to improve the
performance criteria. The mutation process can
be viewed as equivalent various transmutations
(knowledge transformations; Michalski, 1993)
of the conditional part of a rule.:

« specialization: [x5 = 3, 10..23]= [x5 =3, 10..20]
« generalization: [x5 =3, 10..23]= [x5 =3, 10..24]
« variation: [x5 = 3, 10..23]= [x5 = §, 10..23]

The crossover operation is performed by
splitting concept description into two parts,
upper rules and lower rules. These parts are
exchanged between parent concept descriptions
to produce new child concept descriptions. Since
the degree of match of a given tuning event
depends on the degree of match of this event to
each rule of concept description, this exchange
process enables inheritance of information about
strong rules (strongly matching) in the
individuals of the next evolved population. An
example of crossover applied to short, four rules
description is depicted below:

Parent description 1

1 [x1=7..8] [x2=8..19] [x3=8..13] [x5=4..54]

2 [x1=15..54] [x3=11..14] [x6=0..9] [x7=0..11]
POSItion —=-eessmmmeseeemmn

3 (x1=9..18] [x3=16..21] [x4=9..10]

4 [x1=10..14] [x3=13..16] [x4=14..54]

Parent description 2

1 [x1=16..54] [x5=0..6] [x7=5..12]

2 [x1=8..25] [x3=8..13][x4=9..11] [x5=0..3]
-aseemensm=-CTOSSOVET POSItiON ------—-snmmmmmem -

3 [x4=0..22] [x5=8..9] [x6=0..7] [x7=11.48]
4 [x2=5.8] [x3=7.8] [x4=8..11] [x5=0.3]



The result of the crossover operation (one of two
child descriptions) is the following:

1 [x1=7..8] [x2=8..19] [x3=8..13] [x5=4..54]

2 [x1=15..54] [x3=11..14] [x6=0..9] [x7=0..11]
3 [x4=0.22] [x5=8.9] [x6=0..7] [x7=11.48]

4 [x2=5.8] [x3=7.8] [x4=8.11] [x5=0.3]

The performed experiments, involving learning
rules for describing texture classes, demonstrated
that the classification results obtained with the
hybrid learning algorithm (Figure 5) ( AQ
Training Data -> AQ and Tuning Data ->
GAs ) exceed the performance of the AQ
algorithm used alone (AQ Training Data +
Tuning Data -> AQ). Figure 6 presents
recognition rates from one of the experiments.
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Figure 6: Recognition accuracy during the GA
generations.

The result shows the recognition rates for the
class that was optimized by the GA. White marks
on the diagrams represent results obtained for
tuning data and black marks represent
recognition results for testing data.

3.5 Texture Recognition Under
Varying Perceptual Conditions:
Chameleon

In recognizing natural objects outdoors we have
to deal with a great variability of perceptual
conditions that influence changes in object
visual characteristics. Most vision research on
object recognition in outdoor environments,
however, has been focused on recognizing
objects under stationary conditions rather than
dynamic conditions (varying resolution, lighting,
pose, and state). Object models, particularly
texture models, when learned under a given

conditions are not effective in recognizing
objects under different perceptual conditions.

To develop robust object recognition systems,
we have to implement system adaptation
capabilities that can mitigate influence of
changing perceptual conditions on the
effectiveness of object recognition. Our ultimate
goal is to integrate leaming and vision modules
in such a way that learning functions can
support adaptation functions of the vision
system.

The variability of texture characteristics under
changing resolution, lighting and pose has been
investigated. It was found that texture attribute
distribution (for different attribute extraction
methods) can vary significantly when these
conditions are changed. The shape of the
distribution often contains a multimodality of
texture characteristics. In most cases studied,
the distribution cannot be determined a-priori.
We also observe that the variability of perceptual
conditions causes a significant translation of the
attribute distribution within the attribute space.

Relatively little has been done on the application
of machine learning methods to the adaptability
of vision systems to the dynamic environment.
Bhanu et al. [1989, 1990] apply genetic
algorithms to image segmentation problems with
an extension towards segmentation under
variable perceptual conditions.

The variability of object appearance
(particularly texture characteristics) requires the
development of system capabilities that will
dynamically reconfigure and update object
models (knowledge). In our approach
[Pachowicz, 1991], system adaptation is applied
to recognize objects on images acquired over
time.

In order to recognize an object on images
sequentially, the system has to iteratively update
the object model with regard to changes in
object characteristics. In this approach, a time
sequence of images monitors slight changes in
resolution, lighting and surface positioning from
one image to the next one -- a sequence of
images is affected by continuous changes in
perceptual conditions.

We integrate the learning and recognition
processes within a closed loop to update texture
models. Analysis of system recognition
effectiveness, performed over a sequence of



images, detects changes in textures. If this
effectiveness decreases then the system activates
incremental learning processes of model
modification to improve the model
discriminating power. The system leamns initial
texture models from teacher-provided examples.
Then, the system updates these descriptions
automatically without teacher help.

Two systems were developed: CHAMELEON 91
and CHAMELEON '92. The first system had
only some of the adaptability functions
implemented [Pachowicz et al., 1992, Pachowicz,
1992]. In this system, a teacher segments each
image in a sequence. The system was useful for
investigating stability problems and for the
modification of object models performed on-
line. The second system is more autonomous,
and needs much less help from a human
operator. The underlying methodology, system
architecture, and experimental results are
presented in a separate paper in the Proceedings
[Pachowicz, 1993].

4 Summary

We have presented a general approach, called
Multilevel Logical Templates (MLT), and several
implemented systems for inductive learning
descriptions of texture classes from texture
samples. These systems represent different
variations and extensions of the general
approach oriented toward various types of
learning problems:

« TEXTRAL —for multilevel learning to
maximally improve the recognition accuracy
of new textures,

» AQ-NT—for learning from data with noise,

+ PRAX — for learning from large numbers of
texture classes,

« AQ-GA — for automatic tuning and
enhancement of concept descriptions
obtained by a standard AQ inductive learning
method,

« Chameleon — for model evolution under
changing perceptual conditions.

The systems have been tested on several texture
recognition problems, and the results were very
encouraging. The recognition rates for even
relatively high number textures (36) were
frequently near 100%

The developed methodology is quite general
and can be potentially applied not only to the

problem of learning of the texture descriptions,
but also to other types of problems in vision.

There are several limitations of the current
methods. We have not investigated issues of the
robustness and the sensitivity of the methods to
various invariant texture transformations (e.g., a
significant changes in the illumination). Also, it
is unclear how the performance of the methods
depends on the number of texture classes.

There are several other major topics to be
investigated in future research:

(i) the enhancements to the current learning
methodology to include capabilities for
automatically generating higher level
problem-relevant attributers (constructive
induction)

(ii) the applicability of multistrategy learning
(e.g., combining symbolic rule learning
with neural network learning; the issue of
representing and learning of imprecisely
defined visual concepts).

(iii) the extensions of the methodology to other
problems in vision, e.g., learning of shape
classes.

(iv) learning new visual concepts in terms of
differences and similarities form known
concepts, and developing a calculus for
representing symbolic differences between
visual concepts.
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