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A Knowledge Representation System Based on
Dynamically Interlaced Hierarchies:
Basic Ideas and Examples

Abstract

A new approach to knowledge representation is presented that is specifically designed for
supporting multistrategy leaming and multitype inference. The approach, called Dynamically
Interlaced Hierarchies (DIH), stems from research on cognitive modeling of human plausible
inference and semantic memory organization. In DIH, knowledge is divided into two parts: a
“static” part that represents stable knowledge consisting of concepts organized into
hierarchies of different kinds, such as type, part and precedence hierarchies; and a “dynamic”
part that represents knowledge that changes relatively frequently, consisting of fraces that
link concepts from different hierarchies. Parametric knowledge is represented as numeric
quantities characterizing structural elements of knowledge, such as various measures of
uncertainty. It is shown how the conceptual framework presented can represent diverse and
complex forms of knowledge and can support basic knowledge transformations. These
transformations are knowledge generation transmutations, as defined in the Inferential
Theory of Learning (ITL). Basic knowledge transmutations, such as generalization/
specialization, abstraction/concretion and similization are illustrated in DIH. Inference is
modeled as small perturbations of existing knowledge.

Key Words: multistrategy learning, inferential theory of learning, knowledge transmutation,
generalization, abstraction, similization.
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1. Introduction

This paper presents underlying ideas on a knowledge representation designed for inference
and learning. The motivation for research on Dynamicaily Interlaced Hierarchies (DIH) is to
provide an adequate knowledge representation for facilitating multitype inference in
multistrategy learning systems. A requirement for the development of multistrategy learning
systems is a flexible, expressive and easily modifiable system of representing knowledge. In
particular, muititype inference requires a conceptually simple representation that can
encompass many different forms of knowledge - facts, rules, dependencies, etc. These two
related ideas, multitype patterns of inference and multistrategy learning, are related in the
Inferential Theory of Leaming (Michalski, 1992).

The initial idea for DIH stems from the core theory of human plausible reasoning (Collins &
Michalski, 1989: Boehm-Davis, Dontas & Michalski, 1990). That theory presents a formal
representation of various plausible inference patterns observed in human reasoning. From the
core theory and the rudiments of the knowledge representation that was developed for
plausible reasoning, we design a more detailed system in order to accomplish the aims stated

above.

One goal of multistrategy learning systems is reasoning in a knowledge rich environment. In
order to perform this type of reasoning there must be a large, critical mass of background
knowledge with a representation efficient enough to deal with this amounts of knowledge.
We envision organizing this knowledge in generalization hierarchies. Research in
psychology postulates that this is a plausible structure for human semantic memory (Collins
& Quillian, 1972).

2. Underlying Ideas

The theory of plausible reasoning postulates that there are recurring patterns of human
plausible inference. Knowledge, stored in “dynamic hierarchies”, is modified in certain
characteristic ways during the process of human inference. Recent studies show that a
~ variety of operations upon these hierarchies are used in human reasoning (Boehm-Davis,
Dontas and Michalski, 1990). For a complete description of knowledge transmutations see
(Michalski, 1993). These patterns are represented in DIH in section IIL

A basic assumption of this method is that knowledge is structurally organized in hierarchies.
These hierarchies are dynamic in that they are always being updated, modified and expanded
as new experience (input) is integrated into the hierarchies (background knowledge).



2.1 Major Components in DIH Representation

The DIH approach partitions knowledge into a "static" part and “dynamic” part. The static
part represents knowledge that is relatively stable (such as established hierarchies of
concepts), and a "dynamic" part that represents knowledge that changes relatively frequently
(such as statements representing new observations or results of reasoning). The static part is
organized into fype hierarchies (TH), part hierarchies (PH) and precedence hierarchies. |
Precedence hierarchies include several subclasses, specifically, measure hierarchies (MH),
quantification hierarchies (QH) and schema hierarchies (SH). The dynamic part consists of
traces that represent knowledge involving concepts from different hierarchies. Each trace
links nodes of two or more hierarchies and is assigned a degree of belief.

These hierarchies are composed of nodes representing abstract or physical entities, and links
representing certain basic relationships among the entities, such as “type-of”, “part-of” or
“precedes”. In the “pure” form, these hierarchies are single parent, that is, no node can have
more than one parent. The root node is assigned the name of the class of entities that are

organized into the hierarchy from a given viewpoint.

A type (or generalization) hierarchy organizes concepts in a given class according to the
“type-of” relation (also called a “generalization” or “kind-of” relation). For example,
different types of “animals” can be organized into a “type” hierarchy.

A part hierarchy organizes entities according to a “part-of”’ relationship. For example, the
world, viewed as a system of continents, geographical regions, countries, etc., can be
organized into a part hierarchy. While properties of a parent node in the type hierarchy are
inherited by children nodes, this does not necessarily hold for a part hierarchy. There are
different part relationships which have different generalization characteristics. Part relations
include part-component, part-member, part-location and part-substance as well as several
others (Winston, Chaffin and Herrmann, 1987). In this initial report on DIH only part-
location hierarchies are utilized in inference, since this part relation has similar generalization
properties to a type hierarchy. Other part relations, such as part-component, do not have
satisfactory generalization properties.

To represent relationships among elements of ordered or partially ordered sets, a class of
precedence hierarchies is introduced. Hierarchies in this class represent hierarchical
structures of concepts ordered according to some precedence relation, such as “A precedes
B”, “A is greater than B”, “A has higher rank than B”, etc.

There are several subclasses of precedence hierarchies. One subclass is a measure hierarchy,
in which leafs stand for values of some physical measurement, for example, weight, length,
width, etc., and the parent nodes are symbolic labels characterizing ranges of these values,
such as “low”, “medium”, “high”, etc. Figure 1 shows a measure hierarchy of possible values
of people’s height. Dotted lines indicate a continuity of values between nodes. Arrows



indicate the precedence order of the nodes. Another subclass hierarchy is a belief hierarchy,
in which nodes represent degrees of an agent’s beliefs in some knowledge represented by a

trace.

Other subclasses of precedence hierarchies include a rank hierarchy and a quantification
hierarchy. A rank hierarchy consists of values representing the “rank” of an entity in some
structure, e.g., an administrative hierarchy or military hierarchy. A quantification hierarchy
consists of nodes that represent different quantifiers for a set (An example is shown in Figure
3). A quantification hierarchy that is frequently used in commonsense reasoning includes
such nodes as “one”, “some” (corresponding to the existential quantifier), “most”, and “all”
(corresponding to the universal quantifier).

Each hierarchy has a heading that specifies its kind (TH, PH, MH, QH or SH) and the
" underlying concept {or viewpoint) used for the creation of the hierarchy. In addition, the type
and part hierarchies also have a top node that in the type hierarchies stands for the class of all
entities in the hierarchical structure, and in the part hierarchies for the complete object.

Schema hierarchies (or schema) are structures that indicate which hierarchies are connected
in order to express multi-argument concepts or relationships. For example, the schema
hierarchy for the concept of "physical-object” can be <shape, size>. This states that an
attribute “shape” applies to any object that is a “physical-object” (a node in the “physical-
object” hierarchy), and produces a shape value, which is a node in the “shape” hierarchy. The
schema hierarchy for the concept of “giving” may be <giver, receiver, object, time> that
states that this concept involves an agent that gives, an agent that receives, an object that is
being given, and the time when the “giving” occurs. The agents, object and time are elements
of their respective hierarchies.

2.2 Structural vs. Parametric Knowledge

DIH also makes a distinction between structural and parametric knowledge. Structural
knowledge is assumed to be the basis of human reasoning. In DIH, structural knowledge is
represented as single parent hierarchies and the traces between them. Hierarchies are stable
groupings formed on the basis of experience and not often changed. This is not the case for
the traces between the hierarchies, which are easily formed and changed and are transient in
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Figure 1: A measure hierarchy of values characterizing people’s height.




nature. It is postulated that when people first reason about a problem or question, they first
look to these structural elements which comprise their knowledge. This knowledge is easily
and efficiently accessed and various inferences (primarily deductive) can be utilized with this
structural knowledge to yield satisfactory results.

Parametric knowledge, on the other hand, includes probabilistic knowledge about the
structural elements. In DIH, this knowledge is represented via precedence hierarchies of
merit parameters. that are applied selectively to different types of knowiedge structures.
People only resort to using this type of knowledge after they have attempted to reason using
the structural elements. People resist using uncertain knowledge and there is no normative
model that is widely accepted for this type of probabilistic or approximate reasoning.

DIH also makes a distinction between structural and parametric knowledge. The structural
knowledge is represented by hierarchies and traces that link nodes of different hierarchies.
Parametric knowledge consists of numeric quantities characterizing structural elements of
knowledge. The basic merit parameter is a belief measure that characterizes the “truth™
relationship of a given component of knowledge representation (a trace), as estimated by the
reasoning agent. Other merit parameters include the forward and backward strength of a
dependency, frequency, dominance, etc. (Collins and Michalski, 1989; Michalski, 1993). In
this paper, we will consider only one merit parameter, namely, the belief measure.

The theory of human plausible reasoning (Collins and Michalski, 1989) postulates that
people rely primarily on the structural knowledge, and resort to parametric knowledge when
the “structural” reasoning does not produce a unique result. They resist performing uncertain
inferences based on only parametric knowledge, and they are not good at assigning a degree
of certainty to a statement based only on the combination of the certainties of its constituents,
without taking into consideration the meaning of the whole sentence. A reason for this may
be that there does not exist a normative model for reasoning under uncertainty that is
independent of the structural aspects of knowledge, i.e., its meaning. Plausible reasoning
about a problem or question typically involves both structural and parametric knowledge
componeats.

Nodes of a hierarchy are elementary units of the DIH representation. Each node represents
some real or abstract entity—a concept, an object, a process, etc. A given entity can be a
node in multiple hierarchies, where each hierarchy structures a set of entities from a different
viewpoint. The relevant viewpoint is determined by the context of the discourse.

Nodes are the basic unit of representation in DIH. Each Node represents a single concept or
idea, but a single node can be represented in multiple hierarchies. In this case the node is
used in different contexts (is contained in different hierarchies). Because of this the
hierarchies can be intricately interlaced. One can view the representation space as three-
dimensional, with hierarchies having two dimensions, connected together by shared nodes, to
form the third dimension. An example of a node used in multiple hierarchies is the concept



of “turbine” as shown in Figure 2. This node can be simaltaneously in a part-component
hierarchy of “power plant” and in a type hierarchy of “rotary engine” .

In DIH a node represents either a class or an individual, where we view an ‘subnode’ as a
more specific set than the it’s parent.

M

Figure 2: Interlacing Hierarchies

As mentioned earlier, the basic structures in the DIH representation are hierarchies, nodes,
traces and schema. Our research on DIH demonstrates that these structures provide a very
natural environment for performing basic types of inference on statements. The subsequent
sections show how these inferences are performed using the DIH representation.

2.3 DIH Traces

A trace is a statement representing a path between nodes in different hierarchies. The
simplest traces consist of links that point from a node in one hierarcy to another node in a
second hierarchy via a descriptor.

Figure 3 peesents a statement — "It is certain that some power plants in New York have
mechanical failures” — as a trace connecting nodes of five hierarchies: “Process plants” and



The trace representing the sentence consists of nodes linked by dotted lines. The arrows in the
trace indicate the argument (reference set) that is being described by the sentence. The
interpretation of the trace is given by schema hierarchy SH1 in Figure 4.

Figure 3: A DIH trace representing the sentence “It is certain that some power plams in
New York have mechanical failures.”

"Failure”, both type hierarchies; “Quantification”, the quantification hierarchy; “Location”, a
part hierarchy; and “Belief measure” a measure hierarchy.

The interpretation of the trace is done on the basis of the schema hierarchy shown in Figure
4. The schema defines the universe of sentences that can be generated using concepts of these
hierarchies, ordered according to the schema.

The conveation for the direction of arrows in a trace is that they point from the nodes

ISH - Process Plants I

Figure 4;: Schema hierarchy SH1.



denoting descriptive concepts ( called reference nodes) to the argument node that stands for
the set (or individual) being described or refered to. In this example, the set being described
is “Power plant” in the hierarchy of Process Plants, thus the node representing it is the
argument node. Other nodes (reference nodes) linked by the trace represent descriptive
concepts for the argument node. The belief measure takes values from a belief hierarchy, and
refers to the entire trace rather than a single node, which is indicated by the schema.

Using the formalism of the annotated predicate logic (Michalski, 1983), this trace can be
interpreted as: "(Some)x, [type(x) = Power plant) & [location(x) = New York] & [failure(x) =
mechanical]: Belief = 1.0." This statement is a quantified conjunction of several elementary
statements. An elementary statement expresses one property of the reference node (set), for
example, “Location(Power plant) = New York.”

In a formal expression of an elementary statement, the reference set (“Power plant®) is called
an argument, the predicate (“Location”) is called a descriptor, and the value of the descriptor
(“New York™) is called the referens. Thus, an elementary statement is formally expressed in
the form “descriptor{argument) = referent". Predefined applicability conditions determine
which descriptors can apply to argument nodes.

In Figure 3, the square boxes contain the heading of the hierarchy. The concept specified in
the heading is the general descriptor for the hierarchy. The nodes in the hierarchy are possible

values of this descriptor.

The schema hierarchy, SH1, in Figure 4 is used for the interpretation of the trace represented
in Figure 3. The heading indicates the type of hierarchy (SH: Schema Hierarchy) and the
reference set of the trace. Since the schema hierarchy is a precedence hierarchy, a valid
interpretation of the schema requires each of the descriptors in order. Thus the first element
of the trace must be from the quantification hierarchy, the second from the failure hierarchy,
the third from the location hierarchy and the last from the hierarchy of belief measures. This
schema hierarchy is also utilized for examples in Section 4.

Adding knowledge to the DIH representation is done by creating hierarchies and specifying
traces that express statements involving nodes of different hierarchies. To allow proper
interpretation of a trace, the schema is also specified by indicating relevant descriptors and
their order.

2.4 Other Constructs in DIH

Besides the basic constructs of DIH, we have additional elements of complex traces and
merit parameters. Schema are ordered sets of traces. The merit parameters are
fundamentally different in form and function.



A complex trace is able to represent more complicated forms of knowledge, involving
predicates and various types of logical operators. Multiple links are used to form a statement
in DIH for a n-ary predicate. Complex traces may use traces as referents (forming nested
traces). Such a complex trace might be a generalized trace, where the trace is perhaps an
inference step that is verified by experience, or a higher order concept, such as a rule. It may
represent an implication, dependency, or any other type of casual association between traces.

An example of such a complex trace could be “A component failure of a power plant causes
a maintenance outage”. Here, cause is a 2 place predicate as in causes (input, effect). We
use the arguments of the predicate as the descriptor (“input(causes) = [failure(power plant) =
mechanical failure]” and “effect(causes) = maintenance outage”).

Merit Parameters represent numerical or qualitative properties of the association designated
by a trace or schema. These include:

* Certainty of Belief (applies to all traces and schema)
+ Conditional likelihood (applies to schema)

* Typicality (applies only to nodes)

* Frequency (applies only to traces)

« Dominance(applies only to nodes)

« Multiplicity (applies only to traces)

« Similarity (applies only to traces)

Merit parameters work to guide inductive inference in DIH. Most will be calculated when
needed, based upon the background knowledge. It is beyond the scope of this report to
further describe the merit parameters. The interested reader is referred to the “Logic of
Plausible Reasoning” (Collins & Michalski, 1989).

2.5 Learning in DIH

Learning in DIH can be represented as either structural or parametric changes in the
representation. If viewed as structural, learning can be either creating entirely new
knowledge or modifying existing knowledge. The creation of new knowledge in DIH is
performed by creating hicrarchies, adding nodes to hierarchies or creating traces between
nodes. ‘Fhe modification of knowledge in DIH is changing the placement of nodes in
hierarchies, or modifying traces or schema. If viewed as parametric, or dealing with the
certainty of knowledge, learning includes strengthening or weakening merit parameters.



3. Implementing Multiple Inference Types in DIH

The core theory of plausible reasoning introduced in (Collins & Michalski, 1989) gives four
knowledge transmutation operators (also called transforms) — generalization, specialization,
similization and dissimilization. The Inferential Theory of Learning (Michalski, 1993)
specifies several additional operators, of which abstraction and concretion are incorporated
into DIH. (In (Collins and Michalski, 1989), the abstraction and concretion transmutations
were called referent generalization and referent specialization, respectively.)

Generalization (specialization) transmutations extend (contract) the reference set. They are
done either by argument generalization (specialization) or by quantification generalization
(specialization). Argument generalization is accomplished by moving above the node
representing the reference set in a type hierarchy. Quantification generalization is
accomplished by moving up the quantification hierarchy.

Abstraction (concretion) transmutations decrease (increase) the amount of information about
the reference set. A way to accomplish such a transmutation is by moving above the node in
the type or part hierarchy that corresponds to a value of some descriptor in the sentence

represented by the trace.

Similization (dissimilization) transmutation is done by replacing a node corresponding to the
reference set (argument) or a descriptor value (referent) by a node at the same level of
hierarchy, which corresponds to a similar (dissimilar) concept within the context of the given
hierarchy. In the case of dissimilization, the resulting trace is linked with a negation node,
because the generated inference is a negation of the original sentence (Michalski, 1993).

These transmutations can be given a simple conceptual interpretation, if one assumes that
nodes at each level of hierarchy are ordered by the relation of similarity, that is, nodes that
correspond to similar concepts (in the context of the given hierarchy) are located near each
other, and nodes that correspond to dissimilar concepts are placed far away from each other.
Such an arrangement is natural for precedence hierarchies. In sum, similization and
dissimilization transmutations are performed by sideways node movemenis, while
generalization (specialization) and abstraction (concretion) are performed by upward
(downward) node movements.

Table 1 gives the basic knowledge transmutations possible in DIH and the kind of hierarchy
that they can operate on. Each of the transmutations is characterized according to inference
type. While Dissimilization operators are possible, they can be thought of as an “inverse”
Similization operator, and are not shown. While all of the other transmutations considered
here move up and down in the hierarchies, the Similization operator moves sideways among
the same level in the hierarchy and thus there is no clear way to distinguish Similization from
Dissimilization. The various kinds of part hierarchies are not shown, but are distinguished in



DIH. Additional constraints are necessary in some kinds of part hierarchies to maintain the

validity of the transmutation.

___ Trammutation | Symbol | Relevant Hierarchies | Inference Type _
‘| Argument Specialization Inductive
QGen Quantification Inductive

Quantification Specialization QSpe (Quantification Deductive
Abstraction Abs
Concretion Con Type, Part, Precedence Inductive
Argument Similization ASim Type, Part

Argument Dissimilization

Referent Similization
Referent Dissimilization

Type, Part | Analogical

Table 1: Basic DIH knowledge transmutations

Figure 5 shows diagrametrically how the knowledge transmutations ‘modify’ a trace. The
arrows mean that the trace is moving to a new argument or referent node, except for the
Quantification transmutations. The Quantification transmutations operate over the entire
trace, rather than on a single node. The thickness of the lines indicates the certainty of the
inference. It is assumed that the Argument Generalization/Specialization and
Abstraction/Concretion operations only move the trace one level up or one level down. In
contrast, the Quantification operations typically range from the extremes of the hierarchy
(from “every” to “one””). The Similization operator operates on the same level, and is
unrestricted except that it must operate on nodes at the same level of the hierarchy.

A dotted line represents a link in a trace. An arrow means that the trace is moving to a new
node in the indicated direction by performing the indicated transmutation. The merit
parameters transmutations operate over the entire trace, rather than on a single node, as can
the transformations involving the quantification hierarchy.

One form of generalization transmutation moves a node in the quantification hierarchy
upward, another form moves a node (argument) in the type hierarchy upward. The "+"
indicates a strengthening of a merit parameter, or the movement of the link to a node that is
"higher” in the particular merit parameter measure hierarchy. The "-" indicates a weakening
of the merit parameter, or the movement of the link down in the hierarchy.

Moving a node in a trace in a manner that corresponds to a deductive inference (Table 1)
produces a new trace (statement) with the same truth status as the original trace. In the case
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of node movement that corresponds to inductive or analogical inference, the smaller the node
movement (“perturbation”), the more plausible the resulting inference.

A argument (the set being described; the reference set)

R referent (value of the descriptor characterizing the argument)

D descriptor (relationship characterizing the argument)

Q quantification

MP one or more of the merit parameters

a link in a trace

moving a node in the direction of the arow performs the indicated transmutation

Figure 5: A schematic illustration of different types of knowledge transmutations in DIH

The Argument Generalization transmutation represents a deductive inference. The abstraction
operation is also deductive. In contrast, Argument Specialization, Quantification
generalization and Concretion are inductive, because they produce traces (statements) that
logically entail the original traces (statements).

The above transmutations can be usually done in a number of different ways, by moving to
different alternative nodes. The plausibility of the generated statements depends on additional
merit parameters.

These transmutations are illustrated through a series of examples concerning power plant
operation. Figure 6 illustrates the transmutations diagrametrically for the simple trace (input)
“location{power plant) = New York”. The resulting statements (output) show the results of

the given transmutation assuming that there are no merit parameters that assist in the
specialization and that the similization operator finds a single “most similar” node using the
stated context.

Figure 6 assumes the following background knowledge. Both Power plants and Chemical
plants are types of Process plants, and Nuclear, Oil and Hydro plants are types Power plants.
New York is the designation for the location bounded by the state of the same name, as 1s



furgummt '.Snnlutnnn Referent Similization in Context
n Cmmt wmﬂ. H 1 «mmnﬂ: L
WW - t location{power-plant) <- California
Argument Specialization: Referent Concretion:
location{nucisar-plant) < NewYork location{power-plant) <- Syracuse
looation{oil-power-plant) <- NewYork location{power-plant} < Buffalo
location{hydro-plant) <- NewYork location{power-plant) <- Oswego H
Y
Quantification Specialization:
sone:location{power-plant) <- NewYork

Figure 6: Diagram of example statement transmutations

~ California. New York and California are both parts of the USA, just as the regions Syracuse,
Buffalo and Oswego are parts of New York. The designation “#x:” indicates that the
quantity x is to be quantified over the entire trace. The absence of a designation indicates a
default quantification corresponding to “there exists”.

The deductive nature of the Argument Generalization transmutation is shown in the
following examples. There is only one node (the argument node’s parent) to generalize up
to. Thus, given that there exists a plant that is of type Power plant, and has the location of
New York, we can deductively assert that there is a plant of type Process plant that has the
location New York. The Abstraction process has the same deductive nature.

Argument Specialization, like Concretion, must have some additional criteria, learning goal
or bias to perform the selection of the output node. Unless there is only one child of the input
node, there is a selection process, which must be assisted by the parametric aspects of DIH,
the merit parameters. Such an output node may be more typical or dominant in respect to the
input node.

Table 2 gives a summary of 11 ransmutations performed on a single input statement with the
given background knowledge. The actual scenario is that two nuclear power plants in New
York are shut down due to mechanical problems with their turbine generators. Specifically,
their Westinghouse turbines have cracked blades due to a materials problem with the rotor

12



_ Input
Some power plants in New York have mechanical failures.

| Backeround Knowledge
Process Plant Type Hierarchy Quantity Hierarchy
Failure Type Hierarchy Location Part of Hierarchy

“Turbines are part of Airplanes™
“Bad design causes power plant mechanical failures.”
“Power plant mechanical failures cause expensive maintenance outages.”

Qutput
L. OGen:  All power plants in New York have mechanical failures.
2. QOSpec: A power plant in New York has a mechanical failure.
3. AGen: Some process plants in New York have mechanical failures. i
4, ASpec:  Some nuclear power plants in New York have mechanical failures.
S Abs: Some power plants in the United States have mechanical failures.
6. Abs: Some power plants in New York have a failures.
| 7. Con: Some power plants in Syracuse have a mechanical failure.
8. Con: Some power plants in New York have @ component defect.
9. ASim: Some chemical plants in New York have mechanical failures.
10. RSim::  Some power plants in California have mechanical failures.
11.  RSim: Some power plants in New York have system failures.
12. Anl: Some airplanes have mechanical failures.
13.  Pred: Some New York power plants have expensive maintenance outages.
14. Abd: Some power plants have a bad design.

Table 2 - Major transmutations of the statement:
“Some power plants in New York have mechanical failures.”

fabrication. Additional schema based inferences are represented by analogy (Anl), prediction
(Pred) and abduction (Abd).

Each of the eight basic transmutations are illustrated in DIH in Figures 8 through 14, in
conjunction with a formalization of the particular transmutation. Figure 7 shows a legend
used for interpretation of the following figures. The input statement can be thought of as a
conjunction of three traces, “quantity(power-plant) = some & location(power-plant) = New
York & failure(power-plant) = mechanical failure”. Thus, there are two referents, excluding
the special case of quantity, in the trace.



To characterize the transmutations, a convention is used where Nx y in H indicates node N at
the x level of a hierarchy H and at the y rank. The convention is only relative and does not
correspond to any ordering of the hierarchy.

m-1.n

N
| i

K mein
———————— L input to Transmutation
............................. i Output from Transmutation
o
// Direction of Transmutation

SEEE.

Figure 7 - Legend for Transmutations

The input statement is the same as that of Figure 3, without the belief measure hierarchy. All
of the examples are interpreted according to the schema SH1 shown in Figure 4.

There are two referents in the input statement. The resulting statements (output) show the
results of the given transmutation assuming that there are no merit parameters that assist in
the specialization or concretion and that the similization operator finds a single “most
similar’ node using the descriptors given. The Background Knowledge (BK) is the learner’s
prior knowledge that is relevant to the learning process.

The transmutations are characterized above in terms of Input, Qutput and Background
Knowledge (BK). Note that a range must be given to determine how far to generalize for the
Quantification operators. No context (or selection of the correct hierarchy, H, to utilize) is
necessary as the quantity hierarchy is specified implicitly. In all other cases, a context must
be specified, however, as a given node can be in multiple hierarchies.

14



I Quantification Generalization

Inpa :
BK

Some power plants in New York have mechanical failures.
Quantity hierarchy

Output :

All power plants in New York have mechanical failures.

lTH-Pm-lhn
-,

Input:
BK:

Output:

Figure 8: Inductive generalization based on quantification.

Trace “D{Node Am n)=QR; k", range
Quantity Hierarchy H containing QRj k
Trace “D{Am,n)=QRi-1 k"

15



Quantification Specinlization
&mmpmwnmmmnnNawYmthwemaﬂmwﬂﬁﬂmui

nmNﬂwYmthnanwdmmmﬂﬁMme

Input:
BK:
Output:

Figure 9: Deductive specialization based on quantification.

Trace “D(Node Am n)=QRj k", range
Quantity Hierarchy H containing QRj k
Trace “D(Am,n)=QRi+1 k"

16



Argument Generalization

Input:
BK:
Output:

Figure 10: Deductive generalization based on the argument.

! G lization T .
Trace “D(Node Am n)=Rj k"; Context
Hierarchy H containing Am n

Trace “D{(Am-1,n)=Rj k"

17



Argument Specialization
Inpat : Some power plants in New York have mechanical failures.
BEC A Nuclear power plant is a type of Power Plant,
Qutput : Some Nuclear power plants in New York have mechanical failures.

Figure 11: Inductive specialization based on the argument.

! Specialization T :
Input: Trace “D{Node Am n)=Rj k”; Context
BK: Hierarchy H containing Am n; merit parameters

Cutput: Trace “D{Am-1,n)=Ri k"
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Abstraction
Inpuat : Some power plants in New York have mechanical failures.
gf.tpm - WM.
TH - Procese Plants QH - Quantification

Figure 12: Abstraction transmutation

A} on T :
Input: Trace “D(Node Am, n)=Ri k"; Context
BK: Generalization Hierarchy H containing Rj k

Output: Trace “D(Am n)=Ri-1,k”
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Concretion

SouwpowerplanlsmNewYathavemnchmcalfulm

Input:
BK:

Figure 13: Concretion transmutation

C ion T, ;
Trace “D{Node Am n)=Rj k"; Context |

Generalization Hierarchy H containing Rj k; merit parameters
Trace “D(Am,n)=Ri+1 X"

20
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Argument Similization

SmnepowetplantsmﬂewYorkhavc mechmncalfaﬂm

Figure 14: Similization transmutation based on the argument

E Similization T :

Input: Trace “D(Node Am n)=Rj k" Context Set of relevant Descriptors
{Dp...Dg};

BK: Hierarchy H containing Am n; y Children of Am-1,n

Output: Trace “D{(Am n+x)=Ri k" wherex <Yy
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Referent Similization
SomepowerplamsmNeanrkhavemechanmalfaﬂms

Figure 15 - Referent Similization Transmutation

Ref Similization T .

Input: Trace “D(Node Am,n)=Rjk"; Context; Set of relevant
Descriptors {Dp...Dgl;

BK: Hierarchy H containing Rj k; y Children of Ri-1 k

Output: Trace “D(Am n)=Ri k+x” wherex s¥y



4. Relevant Research

Historically, the idea of plausible inference has been dwelt onby several philosophers, in
particular, Ajdukiewics (Ajdukiewics, 1965), Polya (Polya, 1968) and more recently, Rescher
(Rescher, 1976). They attacked the question of how people draw conclusions from uncertain

and possibly conflicting evidence using both structural and parametric knowledge, not only

parametric knowledge (eg. frequency-based probability theories). Polya in particular posits
that there are certain ‘patterns of inference’ that people utilize.

Other relevant past research includes the development of systems that can reason with
commonsense knowledge, as well as representations that are explicitly concerned with

multistrategy leaming.

One such system is Cyc, developed by Doug Lenat and his collaborators at MCC (Lenat &
Guha, 1990a; Lenat & Guha, 1990b). This system is designed to represent COMMmMONSENse
knowledge with the stated aim of developing a system that can understand newspaper
articles. This project is characterized by the design and construction of a very large
knowledge base that uses frames and predicate calculus for its basic representation. Cyc has
a wide variety of different forms of inference implemented. While controversial, the research
“on Cyc has raised many ontological issues which any commonsense reasoning system must
address.

While Cyc is the most ambitious of the projects that are mentioned here, it does not have any
unifying theoretical basis for its various learning methods. In addition, Cyc uses a
nonmonotonic logic scheme to deal with uncertainty, which is quite contrary to the theory of
plausible reasoning. Thus Cyc’s representation takes a quite different path to the goal of
knowledge rich reasoning then is taken by DIH.

Another relevant representation system is the Common Knowledge Representation Language
(CKRL), an ESPRIT project (Morik, Causse & Boswell, 1991). CKRL offers a canonical
form in which knowledge can be exchanged between machine learning tools. To this end the
- project has explored the issue of expressibility for each of the individual languages for the
various machine learning tools.

In this design, the representation is primarily used for communication between these tools.
In other words, CKRL sits between the human user and the machine learning tools. In the
most basic scenario, any input is given in CKRL, and then translated into the proper form for
the appropriate machine learning tool. When the learning algorithm has results to report,
these must be translated into CKRL and then given to the user or another learning algorithm.

While this project is explicitly dealing with the problem of accommodating many different
types of learning within a single multistrategy system, it adopts the practical aim of working
with existing systems, rather than designing an optimal representation. To be fair, the
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designers point out that is unlikely that any one representation is optimal for all learning
tasks. This is a possible objection to DIH, in that we present a canonical system. However,
we are looking ahead to new systems which are waiting to be built and not trying to mend
many different tools together. Our aims, stated above, are also concerned with inference.
Thus CKRL is valuable in that it shows one approach to designing a representation for
multistrategy learning. Also CKRL has analyzed what types of background knowledge are
necessary for different machine learning tasks.

A project very similar to CKRL is the Darpa Knowledge Representation Standards Effort
(Neches et al., 1991). This wide ranging research initiative has several components. The
Interlingua group has developed KIF, a Knowledge Interchange Format which is designed to
serve as a language for communicating knowledge between computer programs. It is similar
to CKRL in that it translates into and from a common, canonical language. It is, however,
not optimized for a small area of application (as CKRIL. was with machine learning), but is
intended to be a standard for many different systems. As with CKRL, a translator must be
written for each different language that is included -

A different group (Knowledge Representations System Specification Working Group) is
attempting to develop core Knowledge Representation Systems for each of the major
paradigms (e.g.. they are initially working on a language in the KL-One family), but the
group likens its effort to that of standardizing the different variants of a language. The
problem they face is specifying what inferences their core system will perform.

A knowledge structure named the PAR (Parameterized Association Rule) was proposed in
the Inferential Leamning Theory by (Michalski, 1990). This was an initial attempt 10 develop
a uniform, comprehensive knowledge representation for Multistrategy Task-adaptive
Learning as defined in the Theory. The PAR is frame-based, with merit parameters
characterizing the certainty of a relationship. The PAR has the ability to represent not only
rules but many other types of associations, such as dependencies and casual relationships. It
is expressly created for the purpose of representing any form of knowledge which might be
produced or needed by a multistrategy leamer.

While the PAR has many similarities with DIH, it does not include the basic structural
organization of hierarchies and is more suited for representing complex relationships than

general knowledge.

A confirmation of the ideas in DIH came from the WordNet project at Princeton (Beckwith et
~ al., 1991; Miller et al., 1990). WordNet is an enormous lexical database with approximately
50,000 different word forms. WordNet divides the lexicon into four categories: Nouns;
Verbs; Modifiers (adjectives and adverbs); and Function Words. We are concerned with the
first three categories (function words are considered special cases e.g.. “the” and “when”)
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Each of the categories are organized differently. Significantly, the nouns are stored in topical
hierarchies (both type and part), lending support to the DIH representation. Verbs are
organized according to different entailment relationships, however there is enough
information on the relationships between verbs to form generalization hierarchies.
Adjectives are stored in what is called “N-dimensional hyperspaces”. In DIH, any node can
be a descriptor of another node, given that it has a predefined applicability relationship. But
certain nodes may be only used as descriptors, and it may be useful to structure these
descriptor nodes to perform transmutations on them. The research on organization of
adjectives may provide useful insight into how to organize descriptors.(Gross, Fischer and
Miller, 1991)

The core theory of Plausible Reasoning presents a system that formalizes various plausible
inference patterns and “merit parameters* that affect the certainty of these inferences. This
system combines structural aspects of reasoning (determined by knowledge structures) with
parametric aspects that represent quantitative belief and other measures affecting the
reasoning process. |

Various components of the "Logic of Plausible Reasoning” have been implemented in several
systems (Baker, Burstein & Collins, 1987; Dontas & Zemakova, 1988; Kelly, 1988). These
implementations used various subsets of the inferences (“statement transforms‘) described in
the core theory to investigate the parametric aspects of the theory. The implementations
demonstrated how the core theory of plausible reasoning can be applied to various domains.
DIH specifies a broader set of knowledge transmutations in a general and well-defined
knowledge representation. These transmutations are part of a framework for both reasoning
and learning.

5. Summary and Open Problems

In this early stage of DIH, the investigation here may seem to raise more questions than it
answers. Many important problems remain to be addressed for DIH to emerge as a viable
form of representation and inference. These include the graphical depiction of DIH,
inferencing techniques, developing a way to treat context and relevancy, and determining
probability models for the merit parameters. -

Investigating the interactive display and modification of hierarchies is one area of current
research. Currently the visual display of inferences is only useful on a very simplified level,
as shown in the examples in this report. At any realistic level of complexity, the links
become too complex and lose the ability to indicate the knowledge transmutations performed.
One approach is to abstract the information contained in the inferences and only show this.
~ Experiments need to be carried out, however, since this is an domain where human
cooperation and user evaluation is essential.
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One of the most difficult problems is treating the context of a node properly. Certainly the
similarity-based transfers depend on identifying relevant attributes and determining the
context. As outlined above, the context is the viewpoint of the hierarchy or the organizing
principles of the hierarchy.

There has been no discussion of how to apply the inferencing capabilities described together
in a coordinated fashion, or indeed, what their control structure would be, although a
framework is outlined in a multistrategy task-adaptive learning (MTL) methodology (Hieb
and Michalski, 1993). |

Recently there has been much interest in building systems that reason plausibly. Kochen and
Resnick describe the design of PM, a plausible reasoner in the area of Mathematics (Kochen
& Resnick, 1987). They cite the need for a more efficient knowledge representation when
performing plausible inference. Several implementations have been made of the "Logic of
Plausible Reasoning” theory (Baker, Burstein, & Collins, 1987; Dontas & Zemakova, 1988;
Kelly, 1988). The most recent implementation was in the domain of music (Widmer, 1991).
All of these implementations have used different treatments of the merit parameters.

Currently there is no accepted probability model for the merit parameters, particularly the
parameter of certainty. (This can be seen from the various implementations referenced
above. Each of them uses a quite different probability model.) This parameter can be
interpreted in a Pascalian or Bayesian model (varying from 0-1 from disbelief to belief), a
Dempster-Shafer model using belief functions (capturing the states of doubt and ignorance)
or a “fuzzy probability” model (where we have gradations of truth values). Itis probable that
no one model will capture the necessary behavior for all of the parameters, but by a careful
analysis, we may determine which of the many various probability models are best for any
given parameter.

5.1 Advantages of DIH

In DIH, the system learns in terms of what you already know. The more you have learned,
the easier it is to learn. The more structures you have as background knowledge, the easier it
is to assimilate new knowledge or to plausibly explain input statements. DIH is an efficient,
representation, because most knowledge modifications consist of forming or changing traces,
without affecting the established hierarchies. Inferences are easily and efficiently performed
by changiag links between structures. Experience from the world is integrated and used to
strengthen associations and relationships.

Plausible reasoning is based on psychological evidence as outlined in the “Logic of Plausible
Reasoning” (Collins & Michalski, 1989). Knowledge transmutations in DIH are easily
understood and manipulated by humans.

A more flexible representation is needed to support multistrategy learning and inference. In
this report we have outlined the DIH system, and shown how various basic transmutations
can be represented. The results here support the Inferential Theory of Learning and provide a
basis for the implementation of MTL systems.
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