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Abstract

This paper presents a method for multistrategy
constructive induction that integrates two
inferential learning strategies—empirical
induction and deduction, and two
computational methods—data-driven and
hypothesis-driven. The method generates
inductive hypotheses in an iteratively modified
representation space. The operators modifying
the representation space are classified into
"constructors,"  which expand the space (by
generating additional attributes) and
"destructors" which contract the space (by
removing low relevance attributes or
abstracting attribute values). Constructors
generate new dimensions (attributes) by
analyzing original or transformed examples
(data-driven) and by analyzing the rules
obtained in the previous iteration (hypothesis-
driven). Destructors detect the irrelevant
components of the representation space by rule-
based inference or statistical analysis. The
method has been implemented in the AQ17-
MCI program. The preliminary results from
applying it to a problem with noisy training
data and large number of irrelevant attributes
demonstrated a superiority of the method over
other constructive induction methods both in
terms of the predictive accuracy, as well as the
overall simplicity of the generated descriptions.
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1. Introduction

Conventional concept learning techniques
generate hypotheses in the same representation
space in which original training examples are
presented. In many learning problems,
however, the original representation space is
inadequate for formulating the correct
hypothesis. This inadequacy can be evidenced
by a high degree of irregularity in the
distribution of instances of the same class in the
original representation space.

In a situation, there exists a mismatch between
the complexity of concept boundaries in the
space and the capabilities of the descriptive
constructs of the representation language to
describe the boundaries. Consequently, if the
boundaries are highly irregular, typical
constructs used in learning systems will likely
be inadequate for representing them. Such
typical constructs include nested axis-parallel
hyper-rectangles (decision trees),  arbitrary
axis-parallel hyper- rectangles (conjunctive
rules with internal disjunction, as used in
VL1), hyperplanes or higher degree surfaces
(neural nets), compositions of elementary
structures ( grammars), etc.

To address such problems, the idea of
constructive induction has been introduced
(Michalski, 1978; Watanabe and Elio, 1987,
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Matheus and Rendell, 1989;  Rendell and
Seshu, 1990; Wnek and Michalski, 1991).
Constructive induction can be viewed as a
"double-search" process, that  searches both
for a hypothesis and for an adequate
representation space in which to express this
hypothesis.

Most constructive induction methods use a
specific technique within one basic
computational method. Basic  methods are
classified to data-driven, hypothesis-driven and
knowledge-driven (Wnek and Michalski, 1991,
1993). Recently, there has been a trend toward
"multistrategy" constructive induction
approaches that integrate several techniques and
methods.

This paper presents early results on the
development of a multistrategy constructive
induction system, AQ17-MCI, that aims at
integrating a wide range of constructive
induction techniques and methods. The basic
ideas and the architecture of the system are
based on the Inferential Theory of Learning
(ITL), proposed by (Michalski, 1992). In ITL,
learning is viewed as a "goal-directed process
of modifying the learner’s knowledge by
exploring the learner’s experience."

As mentioned above, a constructive induction
learner performs two types of searches—a
search for an inductive hypothesis and a search
for an adequate representation space in which
the hypothesis is represented. These two types
of searches require different types of search
operators.

The search for a hypothesis applies operators
provided by the given inductive learning
method. For example, the AQ17-MCI method
(briefly, MCI) uses operators employed in the
AQ-type learning systems, such as  "dropping

conditions," "extension against,"  "adding an
alternative," "closing interval," and  "climbing
a generalization tree."

The representation space search operators
modify the representation space. The AQ17-
MCI method uses both "constructors,"  that
expand the space by adding new dimensions
(attributes), "destructors" that contract the
space by removing less relevant attributes
and/or abstracting values of some attributes.

To perform a representation space search,
meta-operators are introduced that allow the
system to suggest different representation space
search operators and methods ("constructive
induction strategies"). Using the ITL
framework, the selection of constructive
induction strategies is done by applying the
operator selection rules based on the evaluation
of hypotheses generated in consecutive
iterations i.e. by "exploring the learner's
experience".

This paper describes several techniques and
methods for representation space search, their
integration in AQ17-MCI system, and the
results from testing the system and comparing
it with several other systems. The hypothesis
space search is assumed to be done by the
standard AQ-type algorithm.

2. Related Research

The MCI method is relevant to both the
research in constructive induction and
multistrategy learning. Related work includes
the system LAIR (Watanabe and Elio, 1987),
and "Principled Constructive Induction"
(Mehra, Rendell and Benjamin, 1989). LAIR
uses domain-specific background knowledge to
construct new attributes. Principled
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constructive induction uses geometric
interpretations of various constructors to guide
their selection. Neither of these approaches,
however, possesses the wide range of
constructors and destructors available in MCI.

Other related systems are STAGGER that
integrates techniques for Boolean, numerical
and weight learning (Schlimmer, 1987).
GABIL, for adaptive strategy selection, based
on classification performance (Spears and
Gordon, 1991),  and MBAC, which uses
parabolic models of strategy performance for
strategy selection (Holder, 1991). The strategy
selection in MCI also draws inspiration from
research on the development of large scale
inference systems, especially INLEN
(Kaufman, Michalski and Kerschberg, 1991).
In INLEN, knowledge acquisition or discovery
is based on learning  rules from expert-supplied
examples. The automated acquisition of rules is
most suitable to areas where expertise is
difficult to quantify, or where rules may need
to be modified often, such as in the case of
strategy selection for constructive induction.

Several systems have been developed that
exhibit constructive induction  capabilities.
Some of the earliest were INDUCE (Michalski,
1980) and LEX (Mitchell, Utgoff and Banerji,
1983). Many systems are based either on an
analysis of the training data, i.e., data-driven
systems (e.g., Schlimmer, 1987; Bloedorn and
Michalski, 1991), or an analysis of
hypotheses, i.e., hypothesis-driven   (Matheus
and Rendell, 1989), (Pagallo and Haussler,
1990), (Wnek and Michalski, 1991, 1993).

These techniques are not very useful in
situations requiring different types of
knowledge representation space change. For
example, learning from complex and noisy
sensory data (e.g., learning to recognize

textures or shapes), seems to require a number
of different techniques for the representation
space change.

Given several such techniques, a problem
arises of choosing the one that is most fit for a
given situation. This problem is somewhat
analogous to the problem of choosing an
inductive learning method to fit the given
problem at hand. Aha (1992) has proposed to
solve the latter problem by using meta-rules
that link the properties of training datasets with
various empirical inductive learning methods.

To choose among many representation space
modification operators, the MCI method uses
meta-rules that link the properties of the
training datasets and properties of the
hypotheses generated from these datasets with
the appropriate representation space
modification operators.

3. The MCI Method

3.1 An Overview

The MCI method integrates a large number of
different representation space modification
techniques that are used to determine an
adequate representation space for concept
learning. The process of concept learning itself
if done by an AQ-type inductive learning
method.

A general flow diagram for the MCI method is
shown in Figure 1. The input data are initially a
user-provided training dataset plus a
characterization of the initial representation
space, which includes a description of
attributes, their types and their domains. The
training dataset is split into a primary  and a
secondary dataset. The primary training set is
inputted to the Decision Rule Generation
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Figure 1.  A functional diagram of the MCI  method.

module, which uses an empirical inductive
learning program (AQ14) to generate general
concept descriptions (rulesets). The obtained
rulesets are evaluated in terms of their
complexity and their performance on the
secondary training set. Based on the results of
this evaluation, the system decides either to
stop the learning process (the obtained rules are
outputted as the solution), or to move to the
Representation Space Modification module.
This decision is based on special control meta-
rules (Section 3.2.). The final decision rules
are evaluated on the testing examples to
determine their performance. Figure 2 shows
the partitioning of the input examples into
different classes (primary and secondary
training examples, and testing examples), and
explains how they are used.

The representation space modification is done
by an application of various constructive
induction operators, acting as constructors or
destructors. Once a new representation space
has been determined, both the primary and
secondary training dataset is reformulated into
this space, and the process is repeated. The

next sections describe in greater detail various
aspects of the above process.

3.2 Determining When to Modify the
Representation Space

The representation space needs to be modified
if there exists a mismatch between the
distribution of examples in the space and the
capability of the representation language to
adequately describe this distribution. This
mismatch can be removed either by developing
a learning algorithm capable of generating more
complex discrimination surfaces in the given
representation space, or by changing the
representation so that simple discrimination
surfaces will do the job. For some problems,
the first approach is infeasible.

The constructive induction approach is to
modify the representation space to remove the
mismatch. An illustrative example of such a
mismatch is the "bit parity detection" problem.
A description of binary strings with this
property in terms of the bit positions in the
string is very complicated and long. If,
however, one generates an additional attribute
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Figure 2.  Subsets of the examples and their role.

(a dimension in the representation space)
"mod2" of the sum of the bits in the string, the
problem becomes trivial. The MCI approach is
to apply a wide range of such operators for
representation space change in order to
determine a description space in which it would
be easy to find the correct or approximately
correct decision rules.

The problem arises of how to detect the need
for representation space change. The MCI
method solves this problem on the basis of the
"quality" of descriptions (rulesets)  generated
by the Decision Rule Generation Module. The
"quality" of the obtained ruleset is evaluated in
terms of its predictive accuracy on the
secondary training set and its complexity. If the
quality is "satisfactory", according to the user
or some heuristic criterion, then the process
stops. A description of the dataset of examples
in terms of certain meta-attributes is stored in
the system’s knowledge base to serve as a
"meta-training example."

Meta-examples are used to represent datasets
that both require some kind or representation
space modification and those that do not. These
meta-examples are used to develop meta-rules
guiding the decisions about the need for the
representation space change. If the rule quality

is  unsatisfactory,  the method enters the
Representation Space Modification module.

3.3 Determining How to Modify the
Representation Space

3.3.1 Meta-attributes and Meta-rules

The representation space is modified by
applying a variety of operators. These
operators include both constructors that expand
the space and destructors that contract the space
(see Section  3.3.3). The choice of the
operators is guided by the meta-rules that relate
the properties of the example dataset and the
rule evaluation results on the secondary training
set to the most appropriate operators. These
rules are initially provided by the user, and later
improved through learning from the meta-
examples mentioned below.

The meta-examples are described in terms of
meta-attributes. These meta-attributes are
organized into four classes: those characterizing
types of the original attributes (numeric,
multivalued nominal, Boolean, etc.), those
characterizing the attribute quality, such as the
attribute utility  (Imam and Michalski, 1993) or
the entropy measure (Quinlan, 1983), those
characterizing the expected level of quality of
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Meta-attribute
category

Meta-attribute Values Explanation

Meta-attributes
detecting the
presence of various
types of attributes

Numeric_attributes_presentYes, No Yes, if data contains two more
numeric attributes;

No, otherwise

Nominal_attributes_presentYes, No True, if data contains two or
more multi-valued nominal
attributes;

False, otherwise

Boolean_attributes_presentYes, No True, if data contains two or
more Boolean attributes;

False, otherwise

Meta-attributes
characterizing the
attribute quality

Irrelevant_attributes_presentYes, No Yes, if data contains any
irrelevant attributes;

No, otherwise

Attribute_group_quality Sufficient,
Insufficient

Sufficient, if the minimum
quality of the set of attributes
is above an assumed
threshold;

Insufficient, otherwise

Meta-attributes
estimating the
quality of examples

Overprecision Yes, No Yes, if an attribute in the given
set is measured with an
excessive precision.

No, otherwise

Attribute_value_noise_level Error rate in
percentage
(1..100%)

Teacher-estimated  error rate in
the measurement of the attribute
values in the examples

Classification_noise_level Error rate in
percentage
(1..100%)

Teacher-estimated error rate in
the assignment of examples to
classes by the teacher
("mislabeling")

Meta-attributes
estimating ruleset
performance

Performance_estimation Accuracy in
percentage
(1..100%)

Predictive accuracy of the last
ruleset generated from the
primary training example set
and tested on the secondary
testing set.

Performance_change Strongly
Up, Up,
No change,
Down,
Strongly
Down

Measures the difference in
performance between the nth

ruleset learned and the n-1st
ruleset learned

Table 1.  Meta-attributes for characterizing datasets.
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the examples, and those characterizing the
changes in the performance of the generated
rules on the secondary training dataset. Table 1
presents a  list of meta-attributes. With the
exception of Irrelevant_attributes_present, and
Attribute_group_quality, which can be
automatically calculated in a manner described
below, the values of these meta-attributes are
provided by the user.

a) Attribute Type

The applicability of the representation space
modification operators (for short, RSM
operators) depends on the type of the attributes.
For example, arithmetic operators apply to
numeric attributes, logical operators apply to
Boolean and multi-valued nominal attributes,
etc.  The type of attributes for which different
RSM operators are available are currently
numeric, multi-valued nominal and Boolean.

b) Attribute Quality

Attribute quality measures the ability of a single
attribute to discriminate among given classes of
examples. An attribute may contribute
individually, or as part of an attribute group.
Individual attribute quality can be measured
statistically by calculating the ability of an
attribute to partition the example set
appropriately. One such measure is the
information gain  used in ID3 (Quinlan, 1983).

The value of  the meta-attribute
"Attribute_group_quality" is "True" if each
attribute in the given group of attributes has
gain greater than a user-defined minimum. This
meta-attribute is useful for detecting situations
in which each original attribute has some
relevance, but not very high, which may be
suggestive of the need for some multi-argument

representation space operator (e.g., a  modx of
the sum of the values of the attributes).

The contribution of an individual attribute in the
context of a set of attributes can be measured
by analyzing rules generated from examples
described in terms of these attributes (Wnek
and Michalski, 1993). The meta-attribute
"Irrelevant_attributes_present" views an
attribute as irrelevant if this attribute is not
present in the rules, or is present only in the
"light" rules (rules associated with low values
of t-weight parameter the coverage of training
examples by a rule).

An alternative measure of the individual
attribute quality  is the attribute utility  (Imam
and Michalski, 1993). An attribute utility is the
sum of the class utilities of an attribute. The
class utility of an attribute is the number of
classes whose attribute value set has no
common values with the value set occurring in
the given class. An attribute is considered
irrelevant if its attribute utility is low. Thus,
Irrelevant_attributes_present is true if, for any
attribute present in the data, the utility of that
attribute is below threshold.

c) Example Quality

The quality of training examples is
characterized in terms of three meta-attributes.
The first one, "Overprecision," tests if a given
attribute is measured with an excessive
precision.  In such a situation, the valueset of
the attribute is reduced, and the values of this
attribute in the examples are substituted by
more abstract values. The second meta-
attribute, "Attribute_value_noise_level"
expresses a teacher-estimated  error rate in the
measurement of the attribute values in the
examples. The third meta-attribute
"Classification_noise_level" expresses a
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Figure 4.  A hierarchy of constructive induction operators

teacher-estimated error rate in the assignment of
classes to examples to classes by the teacher
("mislabeling").

Overprecision is reduced by proper
quantization of the attributes (e.g., Kerber,
1992). Noise in the data is reduced by filtering
training data through "heavy" rules (with high-
weight) in the induced descriptions
(Pachowicz, Bala and Zhang, 1992).

d) Rule Performance

There are two meta-attributes in this category:
"Performance_level" that measure the
performance accuracy of rules on secondary
training examples, and  "performance change"
that expresses the change in performance from
one rule generation iteration to the next. These
meta-attributes help guide the selection of
representation space modifiers by detecting
when successive iterations are making
significant positive increases in rule quality, or
when the change in quality has declined or
ceased.

3.3.2 Applying Meta-rules for Operator
Selection

Each example dataset is characterized by a
vector of the previously listed meta-attributes

and their values. Operator selection is a
deductive process of applying previously
learned representation space modification
operator rules to these meta-attribute vectors.
This matching procedure calculates a degree of
match between the meta-example and the RSM
rules using ATEST (Reinke, 1984).
Representation space modifiers are then ranked
in decreasing order of match. If no single RSM
rule is the top rule, then the user is asked to
select. This selection may be based on the
user’s preference for different types of
modifications such as arithmetic constructions
over logical constructions.

It may occur that the same RSM operator is
repeatedly selected. In other words the search
stagnates on a local maximum. MCI attempts to
prevent this by updating the database
characterization after each ruleset evaluation.
Since the meta-attributes are updated
continuously,  the selection stage picks the
operator that best matches the current  database
characterization. If all available operators fail to
match the description (i.e., the degree of match
is below a threshold) then selection stops and
MCI evaluates the current ruleset on the testing
examples. At minimum the best performance of
MCI will be that which is achieved when no
modifications are made to the representation
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space. In this case the performance of MCI will
be equal to just selective induction.

The set of constructive induction operators can
be organized hierarchically as shown in Figure
4. This hierarchical organization captures the
relationships between CI operators and allows
selection rules to provide better guidance when
confronted with new domains. The current
MCI system has capabilities for both types of
constructors, logical attribute and logical
instance destructors, and statistical attribute-
value removal.

The system was bootstrapped by providing
meta-examples describing datasets for which
appropriate representation space modifications
were already determined. This was done to
confirm if the resulting meta-rules agree with
experience. Descriptions for seven domains
were provided including: two monk’s problems
(Thrun, et al., 1991). Congressional voting
records from 1984 (Bloedorn and Michalski,
1991), texture data (Pachowicz, et al., 1992),
artificially generated DNF4 functions and
multiplexer 11 (Wnek, 1993) and finally wind-
bracing data from a civil engineering domain
(Arciszewski et al., 1992).

The appropriate RSM operator for each domain
was found experimentally. These meta-
examples were given to AQ14 classified by CI
method so that strategy selection rules could be
learned. Table 2 shows the learned
representation space modification operator
selection rules. Default rules are used in the
case of RSM operators that do not yet have
meta-examples in the knowledge base.

The degree of match between an example and a
rule is calculated using the method of ATEST
(Reinke, 1984). The degree of match for all
meta-rules matching to the dataset

characterization greater than threshold are
displayed to the user.

 dci_numeric ⇐
[Numeric_attributes_present = Yes]&
[Attribute_value_noise_level = 0%]

dci_boolean   ⇐
[Numeric_attributes_present = No]&
[Nominal_attributes_present = No]&
[Irrelevant_attributes_present = No]

dci_nominal ⇐
[Nominal_attributes_present = Yes] &
[Attribute_value_noise_level = 0%]

hci_rule_grouping⇐
         [Attribute_value_noise_level = 0%]

[Irrelevant_attributes_present = Yes]

rule_based_instance_removal ⇐
[Overprecision = Yes] &
[Attribute_value_noise_level =5%]

stat_based_attribute_value_removal ⇐
[Overprecision = Yes] &
[Attribute_value_noise_level = 5%]

Table 2.  Examples of learned meta-rules for
representation space modification

3.3.3 Example Reformulation

After the representation space modification has
been selected, the training data are reformulated
in this space. The generation module has a
number of fundamental CI operators with
which it can modify the primary and secondary
training set. These operators include those used
by a number of previous systems (Bloedorn
and Michalski, 1991), (Pachowicz, et al.,
1992), (Wnek and Michalski, 1993). Some of
these fundamental operators have been reported
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by others, notably Rendell and Seshu (1990).
The following MCI operators are equivalent to
the terms used in Rendell: attribute removal
(projection), attribute-value removal
(puncturing), and hypothesis-driven
constructive induction (superpositioning).

a. Attribute Removal

Attribute removal makes a selection of a set X'
of attributes from the original attribute set X. In
MCI, a logic-based attribute removal is
performed based on the quality of an attribute
(as described by the meta-attribute
"Irrelevant_attr ibutes_present"). The
irrelevancy of an attribute is calculated by
analyzing rules generated by the Decision Rule
Generation module. For each attribute, a sum is
calculated of the total number of examples
covered by a discriminant rule which includes
that attribute. Attributes that are irrelevant will
be useful only to explain instances that are
distant from the majority of examples in the
distribution. Thus, these attributes will have
low total-weight sums. Logic-based attribute
removal is performed in MCI by AQ17-HCI.

b. Attribute-value Modification

Attribute-value modification can be either the
addition, (concretion) of values to an existing
attribute domain, or the deletion (abstraction) of
attribute values. Currently MCI implements
only abstraction, based on the chi-square
correlation between an attribute-value interval
and the class. Using chi-square to quantize data
was first proposed by Kerber (Kerber, 1992).
Attribute value modification (AVM) selects a
set V' ⊂ V (where V is the domain of A) of
allowable values for attribute A. AVM can be
used to reduce multi-valued nominal domains,
or real-valued continuous data into useful
discrete, values. Discretization is especially

important for empirical induction methods that
allow only small number of discrete attribute
values such as ID3 (Quinlan, 1983) and AQ
(Michalski, 1983a). In MCI, statistic-based
attribute-value removal is performed by a chi-
square based method.

c. Hypothesis-driven CI

Hypothesis-driven CI (HCI) is a method for
constructing new attributes based on an
analysis of inductive hypotheses. Useful
concepts in the rules can be extracted and used
to define new attributes. These new attributes
are useful because explicitly express hidden
relationships in the data. This method of
hypothesis analysis as a means of constructing
new attributes is detailed in a number of places
including (Wnek, 1993; Wnek and Michalski,
to appear 1993). Wnek and Michalski define a
hierarchy of hypothesis patterns from the
simplest (value-groupings) to the most complex
(rule-groupings). which is implemented in
AQ17-HCI. AQ17-HCI is used in MCI to
perform rule-based constructions of attributes
based on value-groupings, condition groupings
and rule-groupings, and attribute removal (see
section a).

d. Data-driven CI

Data-driven (DCI) methods build new attributes
based on an analysis of the training data. One
such method is AQ17-DCI (Bloedorn and
Michalski, 1991). In AQ17-DCI new attributes
are constructed based on a generate and test
method using generic domain-independent
arithmetic and boolean operators. In addition to
simple binary application of arithmetic
operators including +, -, *, and integer
division, there are multi-argument functions
such as maximum value, minimum value,
average value, most-common value, least-
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common value, and #VarEQ(x) (a cardinality
function which counts the number of attributes
in an instance that take the value x). Another
multi-argument operator is the boolean
counting operator. This operator takes a vector
of m boolean-valued attributes (m>=2) and
counts the number of true values for a
particular instance. This approach is able to
capture m-of-n type concepts. Data-based
logical construction in MCI is performed by
AQ17-DCI using the multi-argument functions
of #VarEQ(x), most-common, least-common,
boolean counting, and binary boolean
operators. Data-based arithmetic construction is
performed by AQ17-DCI through maximum,
minimum, average, and +, -, * and integer
division.

e. Instance Removal

Instance removal (IR) methods detect and filter
noisy, or misclassified training examples. The
method used in MCI is a logic-based approach
implemented in AQ-NT (Pachowicz, et al.,
1992). The IR operator removes instances from
the training data if they are covered by 'light'
disjuncts. Light disjuncts are those disjuncts in
the rule which cover only a small fraction of the
total number of instances in the class. Thus if
the ratio of covered instances to total instances
in a class is below some threshold the covered
instances are removed from consideration by
the training data. The relationship between the
weight of learned rules and the plausible
prototypicality of examples was first described
in the AQ15-TRUNC method (Michalski,
1983b).  Other work, based on calculating the
statistical significance of individual instances is
done in (Holte, Acker and Porter, 1989)

3.4 Rule Evaluation

Once a CI operator has been selected and
applied to the data, or as a part of the initial

detection step, the resulting classification rules
must be evaluated. (Figure 1). Control is
returned to either the representation space
modification module, or the process stops
dependent upon rule quality. Rule evaluation is
based on a number of criteria. As described in
(Bergadano, et al., 1988) the quality of a
concept description may be judged by three
criteria: accuracy, simplicity and cost. In their
approach, as in MCI, the user selects the
relative importance of each of these criteria.

The predictive accuracy  of a rule set is a
measure of the ability of the rule set to correctly
classify examples that were previously unseen.
In MCI predictive accuracy is tested using a
secondary training set. The secondary set is
selected from the data the learner has not yet
seen. Both primary and secondary data are not
used for testing. Rules learned from the
primary training set, but which perform well on
the secondary set, are also less likely to be
overfitted to the original data. Predictive
accuracy is measured as the percentage of
secondary training examples correctly
classified.

Complexi ty  of a ruleset is evaluated by
counting the number of rules in the ruleset and
the total number of conditions.

Cost  is a measure of the price of evaluating the
values of variables used in the description.
Each variable has an associated cost provided
by the user. A parameter within the rule-
learning program, AQ, can be used to control
the use of attributes in a description based on
cost. For this reason cost is not included in the
quality calculation presented here.

The final quality of the rule is evaluated
lexiographically. Rulesets are evaluated first
according to the accuracy criterion. If the
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accuracy is within a user defined threshold of
the goal accuracy, the ruleset is then further
evaluated according to the complexity criterion.
If, the ruleset does not meet the minimum
standard for accuracy it is rejected and no
further processing is done. The lexiographic
evaluation permits the user to set a constraint
on the minimum allowable accuracy.

3.5 Storing Experience of Operator
Selection: Meta-examples

Each time a strategy is selected, and evaluated
against the secondary training examples data,
the results of the modification must be stored.
If the application  resulted in an improvement in
rule quality, the meta-example characterizing
the dataset is inserted into the knowledge base
under the class representing RSM operator
which made the useful modification of the
representation space. If the quality remained
constant or declined, the user determines if the
meta-example should be stored. The problem
of learning meta-rules which not only link a
dataset to an operator, but also make the
selection in the context of previous selections is
discussed in section 6.

Given set of classified meta-examples, new
meta-rules can be learned or improved. Meta-
rules are generated by AQ14. The new meta-
rules generalize the previous meta-examples
Meta-rules will now be capable of classifying
unseen databases according their suitability to
representation space modification. Examples of
learned meta-rules are presented in Table 2.

4. Experiments

The MCI method was tested in an artificial
problem, an extension of the difficult second
monk's problem in which both
misclassification noise and irrelevant attributes
are added. This problem, "Noisy and Irrelevant
Monk2" (NIM2), extends the difficulty of the
second Monk's problem, by including 5%
random misclassification noise (9 training
examples) and 7 irrelevant, randomly generated
attributes to the original set of 6. The goal
concept of the NIM2 problem, like the original
monk 2, is: "exactly two of the 6 attributes take
their first value". In the monk 2 problem, dci-
nominal attribute construction modified the
training data by adding a new attribute which
represented the number of values which take
their first value. This modification allowed AQ

Noisy Monk2
(5% noise)

#Classes=2

#Attributes=13

AVD Size=3

Method Accuracy
(Exact match)

Complexity

AQ17-HCI (Rule-based attribute
construction and removal)
AQ-NT
(Rule-based instance removal)

AQ17-DCI (Data-driven
attribute construction)

MCI

Problem

42.1 %

43.1 %

81.5 %

90.2 %

AQ14 (No data modifications) 47.2 % 37

19

13

17

8

AQ14
(with stat. attrib. value removal)

46.8 % 43

327

55

125

122

236

23

#Rules #Conds

AVD -  "attribute value domain"
Table 3.  A performance comparison of the MCI method with several single strategy methods.



To appear in the Proceedings of the 2nd International Workshop on Multistrategy Learning, Harpers Ferry, VW, May, 1993200

to find the goal concept resulting in rules which
perfectly stated the goal concept. AQ17-HCI
also solved this problem by constructing new
attributes based on "xor-rule-patterns" (Wnek,
1993).

The NIM2 problem, however, is more
difficult. For this problem, dci-nominal
construction builds the same attribute, but the
goal concept has been disrupted by
misclassified examples. This results in fairly
accurate, but complex rules (81% predictive
accuracy, 17 rules).

The MCI method was also applied to the
problem. The detection step was performed
with AQ14 generating 37 rules with a
predictive accuracy of 47%. When presented
with NIM2, MCI first invoked rule-based
instance removal. Using AQ-NT 5% of the
training examples were removed, and new
rules were learned. There were 19 new rules
with an accuracy of 43%. MCI next invoked
dci-nominal. dci-nominal constructed a new
attributed representing the number of attributes
which take their first value. With this new
attribute, AQ was able to generate 12 rules with
an accuracy of 86%. When the operator
selection module was invoked again, the meta-
rule for dci-nominal construction continued to
have the greatest match to the meta-example
describing the dataset. When dci-nominal was
invoked again, no new attributes were
constructed-no representation space
modification was made-so the next best
method, HCI was selected by the user.

In this third representation modification, HCI
added two new attributes and deleted seven
features x2, x3, x6, x7, x8, x10 and x13.
When AQ was invoked on the transformed
database 8 rules with only 23 conditions were
generated with an accuracy of 90%. MCI

selection ceased when dci-nominal was selected
again, and no new attributes were constructed.
The combination of rule-based instance
removal (AQ-NT), Data-driven CI (dci-
nominal) and Hypothesis driven CI and
attribute removal, produced a ruleset which has
significantly fewer total rules (8 vs. 17),
significantly shorter rules (23 vs. 122 total
conditions) and which are better performing
(90% vs. 81%) than the next best single
strategy constructive induction method of
AQ17-DCI. In table 4, MCI is compared to
AQ14 which has not methods for data
modification, the results of AQ14 after
processing the data with a chi-square based
attribute value removal method, AQ17-HCI,
AQ-NT and AQ17-DCI.

The problem of determining the context of
operator selection decisions is a matter of future
work. It is interesting to note that when
different meta-rules are used (characteristic vs.
discriminant), the MCI method selects only dci-
nominal construction and then HCI. The
resulting ruleset is still superior, in predictive
accuracy to any single strategy method, but is
more complex (88.2% accuracy, 17 rules, 57
conditions).

5. Summary

This paper presented a methodology of
multistrategy constructive induction that
integrates two inferential learning strategies
-empirical induction and deduction, and two
computational methods--data-driven and
hypothesis-driven. Empirical induction was
performed  in the Rule Generation module, and
in the search for appropriate Representation
Space Modifications (the double search of
constructive induction). Deduction was used in
the application of learned meta-rules to the
characterization of incoming datasets in order to
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select an appropriate representation space
modification. MCI includes "constructor" and
"destructor" modifiers. Modifier selection is
based on meta-rules learned from the results of
past applications of modifiers.

The MCI approach was tested on a problem,
the NIM2, characterized by misclassification
noise and irrelevant attributes. The MCI
method produced rules which surpassed not
only traditional selective induction learning (no
representational modifications), but also single
strategy methods in terms of the quality of rules
produced. The quality of the resulting ruleset
was superior both in terms of predictive
accuracy on the testing examples, and
complexity.

6. Future Work

One important area of improvement of the
current method is the determination of a  good
criterion when to stop applying representation
space modification (RSM) operators. In
general, rule quality changes when
representation space modifications are made.
Currently, RSM operator selection, application
and evaluation is repeated until the user is
satisfied with the current ruleset quality. But if
the user is not satisfied, and the change in the
rule quality has been negative, the question
arises as to whether the system should not
recommend to the user some new ways of
continuing the search process.

Such a decision should be based on a new type
of meta-knowledge that keeps track of which
RSM operators have been tried so far, and
which have not. The meta-attribute set must
capture this knowledge, and the matching
algorithm must support, a more sophisticated
concept of context and the sequence of RSM

operators before this process can be completely
automated.

Constructive induction is a knowledge
intensive learning process. Further research
should provide even more advanced capabilites
for introducing and employing domain
knowledge to guide constructive induction
(Ragavan and Rendell, 1991).  For example,
there should be a facility for a user to indicate
different preferences for various types of
constructive induction operators. Also, it
should be easy to the user to give advice as to
the use of some new type of operators.

This raises a general issue of how to include
within a constructive induction system
sophisticated knowledge representation
capabilties. Consequently, there is a need for
developing a general method for what type of
knowledge should be represented that might be
useful for creating a more adequate knowledge
representation, and how it should be used.

AQ17-MCI uses rule-based knowledge
representation system. An interesting issue is to
investigate how various ideas and operators
implemented in AQ17-MCI could be employed
in learning systems using different knowledge
representation, e.g., decision tress, semantic
network, neural nets, etc. To employ any type
of modification operator withing another
representation language will need to deal with
the problems already addressed here, such as
detection and reduction of the overprecision of
data, noise in the training data, or low quality
data (e.g., many irrelevant attributes).  It is
believed that the same cues used to select
transformations relevant to a rule-based
representation will be useful for other
representation languages.
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The above raises a general issue of developing
a constructive induction learning system that
employes multi-type representation language.
This would allow the system to represent
different types of knowledge in the form that is
most suitable to them.
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