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Abstract 1. Introduction

This paper presents a method for multistrategfronventional concept learning techniques
constructive induction that integrates twogenerate hypotheses in the same representation
inferential learning strategies—empiricalspace in which original training examples are
induction and deduction, and twopresented. In many learning problems,
computational methods—data-driven anchowever, the original representation space is
hypothesis-driven. The method generatefhadequate for formulating the correct
inductive hypotheses in an iteratively modifiedhypothesis. This inadequacy can be evidenced
representation space. The operators modifyingy” 4 high degree of irregularity in the

the representation space are classified intQistiinution of instances of the same class in the
constructors,” which expand the space (b%riginal representation space

generating additional attributes) and
"destructors” which contract the space (byn 3 sjtuation, there exists a mismatch between
removing low relevance attributes oriyhe complexity of concept boundaries in the
abstracting attribute values). Constructor§pace and the capabilities of the descriptive

generate new dimensions (attributes) b -
analyzing original or transformed exampleg(:onstructs of the representation language to

(data-driven) and by analyzing the ru|esdescr|be_the boundques. Consequently, _|f the
obtained in the previous iteration (hypothesisPoundaries are highly irregular, typical
driven). Destructors detect the irrelevantconstructs used in learning systems will likely
components of the representation space by rul®€ inadequate for representing them. Such
based inference or statistical analysis. Thépical constructs include nested axis-parallel
method has been implemented in the AQ17hyper-rectangles (decision trees), arbitrary
MCI program. The preliminary results from axis-parallel hyper- rectangles (conjunctive
applying it to a problem with noisy training rules with internal disjunction, as used in
data and |al‘ge numbel‘ Of Il‘re|evant attl‘lbute$/|_1), hyperp'anes or h|gher degree surfaces

other constructive induction methods both ie”gtructures ( g?émmarg) etc. Y

terms of the predictive accuracy, as well as the
overall simplicity of the generated descriptions.

To address such problems, the idea of
Key words: multistrategy learning, constructive induction has been introduced

inductive inference, constructive induction, ,,,- . . .
representation space, concept learning. (Michalski, 1978; Watanabe and Elio, 1987,
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Matheus and Rendell, 1989; Rendell anatonditions,” "extension against,” "adding an

Seshu, 1990; Wnek and Michalski, 1991).alternative,” "closing interval,” and "climbing

Constructive induction can be viewed as a generalization tree."

"double-search” process, that searches both

for a hypothesis and for an adequatélhe representation space search operators

representation space in which to express thismodify the representation space. The AQ17-

hypothesis. MCI method uses both "constructors,” that
expand the space by adding new dimensions

Most constructive induction methods use gattributes), "destructors" that contract the

specific technique within one basicspace by removing less relevant attributes

computational method. Basic methods arand/or abstracting values of some attributes.

classified to data-driven, hypothesis-driven and

knowledge-driven (Wnek and Michalski, 1991, To perform a representation space search,

1993). Recently, there has been a trend towardeta-operators are introduced that allow the

"multistrategy” constructive induction system to suggest different representation space

approaches that integrate several techniques asdarch operators and methods ("constructive

methods. induction strategies”). Using the ITL
framework, the selection of constructive

This paper presents early results on thé&nduction strategies is done by applying the

development of anultistrategyconstructive operator selection rules based on the evaluation

induction system, AQ17-MCI, that aims atof hypotheses generated in consecutive

integrating a wide range of constructiveiterations i.e. by "exploring the learner's

induction techniques and methods. The basiexperience".

ideas and the architecture of the system are

based on the Inferential Theory of LearningThis paper describes several techniques and

(ITL), proposed by (Michalski, 1992). In ITL, methods for representation space search, their

learning is viewed as a "goal-directed processitegration in AQ17-MCI system, and the

of modifying the learner’'s knowledge by results from testing the system and comparing

exploring the learner’s experience." it with several other systems. The hypothesis
space search is assumed to be done by the

As mentioned above, a constructive inductiorstandard AQ-type algorithm.

learner performs two types of searches—a

search for an inductive hypothesis and a search Related Research

for an adequate representation space in which

the hypothesis is represented. These two typddie MCI method is relevant to both the

of searches require different types of searchesearch in constructive induction and
operators. multistrategy learning. Related work includes

the system LAIR (Watanabe and Elio, 1987),
The search for a hypothesis applies operato@nd "Principled Constructive Induction”
provided by the given inductive learning (Mehra, Rendell and Benjamin, 1989). LAIR
method. For example, the AQ17-MCI methoduses domain-specific background knowledge to
(briefly, MCI) uses operators employed in theConstruct new attributes. Principled
AQ-type learning systems, such as "dropping
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constructive induction uses geometrictextures or shapes), seems to require a number

interpretations of various constructors to guide of different techniques for the representation

their selection. Neither of these approachespace change.

however, possesses the wide range of

constructors and destructors available in MCI. Given several such techniques, a problem
arises of choosing the one that is most fit for a

Other related systems are STAGGER thagiven situation. This problem is somewhat

integrates techniques for Boolean, numericahnalogous to the problem of choosing an

and weight learning (Schlimmer, 1987).inductive learning method to fit the given

GABIL, for adaptive strategy selection, basedproblem at hand. Aha (1992) has proposed to

on classification performance (Spears andolve the latter problem by using meta-rules

Gordon, 1991), and MBAC, which usesthat link the properties of training datasets with

parabolic models of strategy performance fowarious empirical inductive learning methods.

strategy selection (Holder, 1991). The strategy

selection in MCI also draws inspiration fromTo choose among many representation space

research on the development of large scalmodification operators, the MCI method uses

inference systems, especially INLENmeta-rules that link the properties of the

(Kaufman, Michalski and Kerschberg, 1991).training datasets and properties of the

In INLEN, knowledge acquisition or discovery hypotheses generated from these datasets with

is based ohearning rules from expert-supplied the appropriate representation space

examples. The automated acquisition of rules imodification operators.

most suitable to areas where expertise is

difficult to quantify, or where rules may need3: The MCI Method

to be modified often, such as in the case of

strategy selection for constructive induction. 3.1 An Overview

Several systems have been developed thdfe MCI method integrates a large number of
exhibit constructive induction capabilities. different representation space modification
Some of the earliest were INDUCE (Michalski,techniques that are used to determine an
1980) and LEX (Mitchell, Utgoff and Banerji, @dequate representation space for concept
1983). Many systems are based either on dfarning. The process of concept learning itself
analysis of the training data, i.e., data-driverff done by an AQ-type inductive learning
systems (e.g., Schlimmer, 1987; Bloedorn anfnethod.
Michalski, 1991), or an analysis of
hypotheses, i.e., hypothesis-driven (Matheu4 general flow diagram for the MCI method is
and Rendell, 1989), (Pagallo and Haussleghown in Figure 1. The input data are initially a
1990), (Wnek and Michalski, 1991, 1993).  user-provided training dataset plus a
characterization of the initial representation

These techniques are not very useful irfPace, which includes a description of
situations requiring different types of attributes, their types and their domains. The
knowledge representation space change. F#@ining dataset is split into a primary and a
examp|e’ |earning from Comp|ex and noisysecondary dataset. The primary training set is
sensory data (e.g., learning to recognizgpputted to the Decision Rule Generation
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Figure 1. A functional diagram of the MCI method.

module, which uses an empirical inductivenext sections describe in greater detail various
learning program (AQ14) to generate generahspects of the above process.

concept descriptions (rulesets). The obtained

rulesets are evaluated in terms of thei8:2 Determining When to Modify the
complexity and their performance on the Representation Space

secondary training set. Based on the results gfhe representation space needs to be modified
this evaluation, the system decides either t§ there exists a mismatch between the
stop the learning process (the obtained rules agfstripution of examples in the space and the
outputted as the solution), or to move to thgapapility of the representation language to
Representation Space Modification moduleggequately describe this distribution. This
This demspn is based on spemal C(_)n_trol Metdnismatch can be removed either by developing
rules (Section 3.2.). The flngl decision rulesy learning algorithm capable of generating more
are evaluated on the testing examples tgomplex discrimination surfaces in the given
determlqg th_elr performgnce. Figure 2 Sr_‘OW?epresentation space, or by changing the
the partitioning of the input examples intorepresentation so that simple discrimination

different classes (primary and secondaryrfaces will do the job. For some problems,
training examples, and testing examples), anghe first approach is infeasible.
explains how they are used.

The constructive induction approach is to
The representation space modification is do”ﬁmdify the representation space to remove the
by an application of various constructivemismatch. An illustrative example of such a
induction operators, acting as constructors Ghismatch is the "bit parity detection” problem.
destructors. Once a new representation spage description of binary strings with this
has been determined, both the primary anfroperty in terms of the bit positions in the
secondary training dataset is reformulated im%tring is very complicated and long. If,

this space, and the process is repeated. Thewever, one generates an additional attribute
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Figure 2. Subsets of the examples and their role.

(a dimension in the representation spaces unsatisfactory, the method enters the

"mod2" of the sum of the bits in the string, theRepresentation Space Modification module.

problem becomes trivial. The MCI approach is

to apply a wide range of such operators foB-3 Determining How to Modify the

representation space change in order to  Representation Space

determine a description space in which it wouldy 3 1 Meta-attributes and Meta-rules

be easy to find the correct or approximately

correct decision rules. The representation space is modified by
applying a variety of operators. These

The problem arises of how to detect the neegperators include both constructors that expand

for representation space change. The MCe space and destructors that contract the space

method solves this problem on the basis of th?see Section 3.3.3). The choice of the

"quality” of descriptions (rulesets) generatethperators is guided by the meta-rules that relate

by the Decision Rule Generation Module. Thgpe properties of the example dataset and the

"quality” of the obtained ruleset is evaluated iny,je evaluation results on the secondary training

terms of its predictive accuracy on theget to the most appropriate operators. These

secondary training set and its complexity. If thgjes are initially provided by the user, and later

quality is "satisfactory”, according to the usefimproved through learning from the meta-
or some heuristic criterion, then the procesgyamples mentioned below.

stops. A description of the dataset of examples

in terms of certain meta-attributes is stored imMhe meta-examples are described in terms of
the system’s knowledge base to serve as meta-attributes. These meta-attributes are
"meta-training example." organized into four classes: those characterizing

types of the original attributes (numeric,
Meta-examples are used to represent datasefy|tivalued nominal, Boolean, etc.), those

that both require some kind or representatiopharacterizing the attribute quality, such as the
space modification and those that do not. Thesgripyteutility (Imam and Michalski, 1993) or
meta-examples are used to develop meta-rulgge entropy measure (Quinlan, 1983), those

guiding the decisions about the need for thgparacterizing the expected level of quality of
representation space change. If the rule quality



To appear in the Proceedings of the 2nd International Workshop on Multistrategy Learning, Harpers Ferry, VW, May, 1993

193

M eta-attribute Meta-attribute Values Explanation
category
Meta-attributes Numeric_attributes_preser|tYes, No | Yes, if data contains two mor

detecting the
presence of variou
types of attributes

\"2J

numeric attributes;
No, otherwise

D

Nominal_attributes_presentYes, No

True, if data contains two or
more multi-valued nominal
attributes;

False, otherwise

Boolean_attributes_presentYes, No

True, if data contains two or
more Boolean attributes;

False, otherwise

Meta-attributes
characterizing the
attribute quality

Irrelevant_attributes_prese

h¥Yes, No

Yes, If data contains any
irrelevant attributes;

No, otherwise

|2}

Attribute_group_quality | Sufficient, | Sufficient, if the minimum
Insufficient | quality of the set of attribute
Is above an assumed
threshold;
Insufficient, otherwise
Meta-attributes Overprecision Yes, No Yes, if an attribute in the give

estimating the
guality of examples

set is measured with an
excessive precision.

No, otherwise

-

Attribute_value_noise_leve

Error rate ir
percentage
(1..100%)

Teacher-estimated error rate
the measurement of the attrib
values in the examples

in
ite

Classification_noise_level

Error rate ir
percentage
(1..100%)

Teacher-estimated error rate
the assignment of examples t
classes by the teacher
("mislabeling™)

O S

Meta-attributes
estimating ruleset
performance

Performance_estimation

Accuracy in
percentage
(1..100%)

Predictive accuracy of the las
ruleset generated from the
primary training example set
and tested on the secondary
testing set.

Performance_change

Strongly
Up, Up,
No change
Down,
Strongly

Down

Measures the difference in
performance between thén

ruleset learned and the 8.1
ruleset learned

Table1l. Meta-attributes for characterizing datasets.
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the examples, and those characterizing theepresentation space operator (e.g., a ywdd
changes in the performance of the generatettie sum of the values of the attributes).

rules on the secondary training dataset. Table 1

presents a list of meta-attributes. With theThe contribution of an individual attribute in the
exception of Irrelevant_attributes_present, andontext of a set of attributes can be measured
Attribute_group_quality, which can be by analyzing rules generated from examples
automatically calculated in a manner describedescribed in terms of these attributes (Wnek
below, the values of these meta-attributes areand Michalski, 1993). The meta-attribute

provided by the user. "Irrelevant_attributes_present" views an
attribute as irrelevant if this attribute is not
a) Attribute Type present in the rules, or is present only in the

“light" rules (rules associated with low values

The applicability of theepresentatiorspace of t-weight parameter the coverage of training
modification operators (for short, RSM examples by a rule).

operators) depends on the type of the attributes.

For example, arithmetic operators apply toan alternative measure of the individual
numeric attributes, logical operators apply toattribute quality is thettribute utility (Imam
Boolean and multi-valued nominal attributes,and Michalski, 1993). An attribute utility is the
etc. The type of attributes for which differentsym of the class utilities of an attribute. The
RSM operators are available are currently|ass utility of an attribute is the number of
numeric, multi-valued nominal and Boolean. ¢|asses whose attribute value set has no
common values with the value set occurring in
b) Attribute Quality the given class. An attribute is considered
irrelevant if its attribute utility is low. Thus,
Attribute quality measures the ability of a singlejrrelevant_attributes_present is true if, for any

attribute to discriminate among given classes Odttribute present in the data, the utility of that
examples. An attribute may contribute gitribute is below threshold.

individually, or as part of an attribute group.
Individual attribute quality can be measuredc) Example Quality
statistically by calculating the ability of an

attribute to partition the example setThe quality of training examples is
appropriately. One such measure is th@naracterized in terms of three meta-attributes.
information gain used in ID3 (Quinlan, 1983). The first one, "Overprecision," tests if a given
attribute is measured with an excessive
The value of  the meta-attribute precision. In such a situation, the valueset of
"Attribute_group_quality” is "True" if each the attribute is reduced, and the values of this
attribute in the given group of attributes hasttribute in the examples are substituted by
gain greater than a user-defined minimum. Thighore abstract values. The second meta-
meta-attribute is useful for detecting situationsttripute, "Attribute value noise level"
in which each original attribute has somegxpresses a teacher-estimated error rate in the
relevance, but not very high, which may bemeasurement of the attribute values in the
suggestive of the need for some multi-argumerixamples. The third meta-attribute

"Classification_noise_level" expresses a
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Constructive Induction Operators

/\

Constructors Destructors

Dat a- based Rul e- based Logic-based Statistic-based

/\

Logical Arithmetic Condition- Attribute Attribute
grouping removing removing
Multi-valued Binary Value- Rule- Value- Instance- Value- Instance-
grouping grouping removing removing removing removing

Figure4. A hierarchy of constructive induction operators

teacher-estimated error rate in the assignment ahd their values. Operator selection is a
classes to examples to classes by the teach#eductive process of applying previously
("mislabeling"). learned representation space modification
operator rules to these meta-attribute vectors.
Overprecision is reduced by properThis matching procedure calculates a degree of
quantization of the attributes (e.g., Kerbermatch between the meta-example and the RSM
1992). Noise in the data is reduced by filteringjes using ATEST (Reinke, 1984).
training data through "heavy” rules (with high- Representation space modifiers are then ranked
weight) in the induced descriptionsin decreasing order of match. If no single RSM
(Pachowicz, Bala and Zhang, 1992). rule is the top rule, then the user is asked to
select. This selection may be based on the
user's preference for different types of

There are two meta-attributes in this Categorwodlflca}tlons such a_s arithmetic constructions
ver logical constructions.

"Performance_level" that measure the®

performance accuracy of rules on secondarM may occur that the same RSM operator is

training examples, and "performance chang repeatedly selected. In other words the search

that expresses the change in performance frogfagnates on a local maximum. MCI attempts to
one rule generation iteration to the next. ThesErevent this by updating the database

meta-attnbL_Jtes help gwde_ .the selection _0 haracterization after each ruleset evaluation.
representation space modifiers by detec“”%ince the meta-attributes are updated

V\{he_n_ successive |terat|or_13 are m_ak'n%ontinuously,
significant positive increases in rule quality, or

d) Rule Performance

the selection stage picks the
) , i operator that best matches thuerent database
when the change in quality has declined Otharacterization. If all available operators fail to
ceased. match the description (i.e., the degree of match
is below a threshold) then selection stops and
MCI evaluates the current ruleset on the testing
examples. At minimum the best performance of

MCI will be that which is achieved when no

Each example de_ltaset IS charactenze.d by Rodifications are made to the representation
vector of the previously listed meta-attributes

3.3.2 Applying Meta-rules for Operator
Selection
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space. In this case the performance of MCI wilcharacterization greater than threshold are
be equal to just selective induction. displayed to the user.

The set of constructive induction operators cdnici_numerid]

be organized hierarchically as shown in Figure [Numeric_attributes_present = Yes]&
4. This hierarchical organization captures thie [Attribute_value_noise_level = 0%)]
relationships between CI operators and allows
selection rules to provide better guidance WheQci poolean [
confronted with new domains. The current
MCI system has capabilities for both types @
constructors, logical attribute and logica
instance destructors, and statistical attribut
value removal.

[Numeric_attributes_present = NoJ&
[Nominal_attributes_present = No]&
[Irrelevant_attributes_present = No]

—

U

dci_nominald
[Nominal_attributes_present = Yes] &

The system was bootstrapped by providing [Attribute_value_noise_level = 0%]

meta-examples describing datasets for whigh
appropriate representgtlon space mOd'flcatlonﬁci_rule_groupin@

were already determined. This was done {0 : ,

confirm if the resulting meta-rules agree with [Attr|bute_valu.e_n0|se_level = 0%]
experience. Descriptions for seven domains [Irrelevant_attributes_present = Yes]
were provided including: two monk’s problemg _
(Thrun, et al., 1991). Congressional votingUleé_Pased_instance_remotal
records from 1984 (Bloedorn and Michalski [Overprecision = Yes] &

1991), texture data (Pachowicz, et al., 1992),  [Attribute_value_noise_level =5%]
artificially generated DNF4 functions and
multiplexer 11 (Wnek, 1993) and finally wind-|Stat_based_attribute_value_remdval

bracing data from a civil engineering domaim [Overprecision = Yes] &
(Arciszewski et al., 1992). [Attribute_value_noise_level = 5%]

The appropriate RSM operator for each domaliable 2. Examples of learned meta-rules fof
was found experimentally. These metak representation space modification
examples were given to AQ14_ classified by CI 3.3 Example Reformulation

method so that strategy selection rules could bé

learned. Table 2 shows the learnedyger the representation space modification has
representation space modification operatOpeen selected, the training data are reformulated
selection rules. Default rules are used in the, i4ig space. The generation module has a
case of RSM operators that do not yet havimper of fundamental Cl operators with
meta-examples in the knowledge base. which it can modify the primary and secondary
;{braining set. These operators include those used

a )
y a number of previous systems (Bloedorn

nd Michalski, 1991), (Pachowicz, et al.,
992), (Wnek and Michalski, 1993). Some of
hese fundamental operators have been reported

The degree of match between an example an
rule is calculated using the method of ATES
(Reinke, 1984). The degree of match for aIF1
meta-rules matching to the datase
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by others, notably Rendell and Seshu (1990)mportant for empirical induction methods that
The following MCI operators are equivalent toallow only small number of discrete attribute
the terms used in Rendell: attribute removaVvalues such as ID3 (Quinlan, 1983) and AQ
(projection), attribute-value removal (Michalski, 1983a). In MCI, statistic-based
(puncturing), and hypothesis-drivenattribute-value removal is performed by a chi-
constructive induction (superpositioning). square based method.

a. Attribute Removal c. Hypothesis-driven Cl

Attribute removal makes a selection of a set Xl'_| hesis-dri Cl (HCD) | hod f
of attributes from the original attribute set X. In ypot eSI.S- fiven (, ) is a method for
MCI, a logic-based attribute removal iSconstructlng new attributes based on an

performed based on the quality of an attributéemaIIySiS _Of inductive hypotheses. Useful
(as described by the meta-attributecOncepts in the rules can be extracted and used

"Irrelevant_attributes_present”). Th to defln(? rllt-i)w attrlbutes.lThclase new attrr:%létes
irrelevancy of an attribute is calculated byare useful because explicitly express hidden

analyzing rules generated by the Decision Ruléelationships in the data. This method of

Generation module. For each attribute, a sum Eypothesis analysis as a means of constructing

calculated of the total number of example?ew attributes is detailed in a number of places

covered by a discriminant rule which includesInCIUdIng (Wnek, 1993; Wnek and Michalski,

that attribute. Attributes that are irrelevant wiIIto appear 1993). Wnek and Michalski define a

be useful only to explain instances that aré‘_IerarChy of hypoth_e5|s patterns from the
distant from the majority of examples in theSIraneSt (vallue-groupllngs).to .the most comp!ex
distribution. Thus, these attributes will have(rule-groupmgs). which is implemented in

low total-weight sums. Logic-based attribute”"Q17-HCl. AQ1L7-HCl is u;ed n MC! to
removal is performed in MCI by AQ17-HCI perform rule-based constructions of attributes
" based on value-groupings, condition groupings

and rule-groupings, and attribute removal (see

b. Attribute-value Modification section a).

Attribute-value modification can be either theq, pata-driven Cl
addition, (concretion) of values to an existing

attribute domain, or the deletion (abstraction) oHata-driven (DCI) methods build new attributes
attribute values. Currently MCI implementshased on an analysis of the training data. One
only abstraction, based on the chi-squargych method is AQ17-DCI (Bloedorn and
correlation between an attribute-value intervajichalski, 1991). In AQ17-DCI new attributes
and the class. Using chi-square to quantize datge constructed based on a generate and test
was first proposed by Kerber (Kerber, 1992)method using generic domain-independent
Attribute value modification (AVM) selects a zrithmetic and boolean operators. In addition to
set V'O V (where V is the domain of A) of simple binary application of arithmetic
allowable values for attribute A. AVM can be operators including +, -, *, and integer
used to reduce multi-valued nominal domainsgivision, there are multi-argument functions
or real-valued continuous data into usefusuch as maximum value, minimum value,
discrete, values. Discretization is especiallyaverage value, most-common value, least-
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common value, and #VarEQ(x) (a cardinalitydetection step, the resulting classification rules
function which counts the number of attributeanust be evaluated. (Figure 1). Control is
in an instance that take the value x). Anothereturned to either the representation space
multi-argument operator is the booleanmodification module, or the process stops
counting operator. This operator takes a vectatependent upon rule quality. Rule evaluation is
of m boolean-valued attributes (m>=2) andbased on a number of criteria. As described in
counts the number of true values for aBergadano, et al., 1988) the quality of a
particular instance. This approach is able t@oncept description may be judged by three
capture m-of-n type concepts. Data-basedriteria: accuracy, simplicity and cost. In their
logical construction in MCI is performed by approach, as in MCI, the user selects the
AQ17-DCI using the multi-argument functions relative importance of each of these criteria.

of #VarEQ(x), most-common, least-common,

boolean counting, and binary booleanThe predictive accuracy of a rule set is a
operators. Data-based arithmetic construction isieasure of the ability of the rule set to correctly
performed by AQ17-DCI through maximum, classify examples that were previously unseen.
minimum, average, and +, -, * and integerdn MCI predictive accuracy is tested using a

division. secondary training set. The secondary set is
selected from the data the learner has not yet
e. Instance Removal seen. Both primary and secondary data are not

. used for testing. Rules learned from the
Instance removal (IR) methods detect and f'ltebrimary training set, but which perform well on

noisy, or misglassifieq trainipg examples. The[he secondary set, are also less likely to be
metrod useglp MACI Iil'? Iolglc-rt])asgd appm?c%verfitted to the original data. Predictive
Implemented in AQ- (Pachowicz, et a"accuracy is measured as the percentage of

1992). The IR operator removes instances frorQecondary training examples correctly
the training data if they are covered by '”ght'classified

disjuncts. Light disjuncts are those disjuncts in

the rule which cover only a small fraction of thecomplexity of a ruleset is evaluated by
total number of instances in the class. Thus igounting the number of rules in the ruleset and
the ratio of covered instances to total instancege total number of conditions.

in a class is below some threshold the covered

instances are removed from consideration bZost is a measure of the price of evaluating the
the training data. The relationship between thealues of variables used in the description.
weight of learned rules and the plausibleEach variable has an associated cost provided
prototypicality of examples was first describedby the user. A parameter within the rule-
in the AQ15-TRUNC method (Michalski, learning program, AQ, can be used to control
1983b). Other work, based on calculating théhe use of attributes in a description based on
statistical significance of individual instances iscost. For this reason cost is not included in the
done in (Holte, Acker and Porter, 1989) quality calculation presented here.

3.4 Rule Evaluation The final quality of the rule is evaluated
lexiographically. Rulesets are evaluated first

Once a CI operator has been selected angtcording to the accuracy criterion. If the
applied to the data, or as a part of the initial
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accuracy is within a user defined threshold ofsiven set of classified meta-examples, new

the goal accuracy, the ruleset is then furthemeta-rules can be learned or improved. Meta-
evaluated according to the complexity criterionrules are generated by AQ14. The new meta-
If, the ruleset does not meet the minimunrules generalize the previous meta-examples
standard for accuracy it is rejected and ndleta-rules will now be capable of classifying
further processing is done. The lexiographiainseen databases according their suitability to
evaluation permits the user to set a constraimepresentation space modification. Examples of
on the minimum allowable accuracy. learned meta-rules are presented in Table 2.

3.5 Storing Experience of Operator 4. EXxperiments
Selection: Meta-examples

The MCI method was tested in an artificial
Each time a strategy is selected, and evaluatéoblem, an extension of the difficult second
against the secondary training examples datd)onk’'s  problem in which both
the results of the modification must be storedmisclassification noise and irrelevant attributes
If the application resulted in an improvement in@re added. This problem, "Noisy and Irrelevant
rule quality, the meta-example characterizinglonk2" (NIM2), extends the difficulty of the
the dataset is inserted into the knowledge baggcond Monk's problem, by including 5%
under the class representing RSM operatd@ndom misclassification noise (9 training
which made the useful modification of the€xamples) and 7 irrelevant, randomly generated
representation space. If the quality remaine@ttributes to the original set of 6. The goal
constant or declined, the user determines if théoncept of the NIM2 problem, like the original
meta-example should be stored. The problef10nk 2, is: "exactly two of the 6 attributes take
of learning meta-rules which not only link atheir first value”. In the monk 2 problem, dci-
dataset to an operator, but also make theominal attribute construction modified the

selection in the context of previous selections i§aining data by adding a new attribute which
discussed in section 6. represented the number of values which take

their first value. This modification allowed AQ

Problem M ethod Accuracy Complexity
(Exact match
#Rules #Conds
Noi sy Monk2 |AQL4 (No data modifications) 47.2 % 37 327
5% noi se
(S%norse)  [AQ14 . 46.8 % 43 236
_ (with stat. attrib. value removal)
#dasses=2 AQ17-HCI (Rule-based attribut
- ule-based attribute
#At t ri but es=1/3construction and removal) 42.1% 13 55
AQ-NT
AVD Si ze=3 (Rule-based instance removal) 43.1% 19 125
AQ17-DCI (Data-driven 0 17
attribute construction) 8L1.5% 122
MCI 90.2 % 8 23

AVD - "attribute value domain”
Table 3. A performance comparison of the MCI method with several single strategy methods.
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to find the goal concept resulting in rules whichselection ceased when dci-nominal was selected
perfectly stated the goal concept. AQ17-HClagain, and no new attributes were constructed.
also solved this problem by constructing newlr'he combination of rule-based instance
attributes based on "xor-rule-patterns” (Wnekremoval (AQ-NT), Data-driven CI (dci-
1993). nominal) and Hypothesis driven Cl and
attribute removal, produced a ruleset which has
The NIM2 problem, however, is more gjgnificantly fewer total rules (8 vs. 17),
difficult. For this problem, dci-nominal sjgnificantly shorter rules (23 vs. 122 total
construction builds the same attribute, but th%onditions) and which are better performing
goal concept has been disrupted bygooy vs. 81%) than the next best single
misclassified examples. This results in fairlystrategy constructive induction method of
accurate, but complex rules (81% predictivenQ17-DCI. In table 4, MCI is compared to
accuracy, 17 rules). AQ14 which has not methods for data
modification, the results of AQl14 after
The MCI method was also applied to theprocessing the data with a chi-square based
problem. The detection step was performegyttripute value removal method, AQ17-HClI,
with AQ14 generating 37 rules with a AQ-NT and AQ17-DCI.
predictive accuracy of 47%. When presented
with NIM2, MCI first invoked rule-based The problem of determining the context of
instance removal. Using AQ-NT 5% of the gperator selection decisions is a matter of future
training examples were removed, and newyork. It is interesting to note that when
rules were learned. There were 19 new rulegjfferent meta-rules are used (characteristic vs.
with an accuracy of 43%. MCI next invoked discriminant), the MCI method selects only dci-
dci-nominal. dci-nominal constructed a newWngminal construction and then HCI. The
aftributed representing the number of attributegesylting ruleset is still superior, in predictive
which take their first value. With this new accuracy to any single strategy method, but is

attribute, AQ was able to generate 12 rules withhore complex (88.2% accuracy, 17 rules, 57
an accuracy of 86%. When the operatogonditions).

selection module was invoked again, the meta-

rule for dci-nominal construction continued o5, Summary

have the greatest match to the meta-example

describing the dataset. When dci-nominal waghis paper presented a methodology of

invoked again, no new attributes weremyjtistrategy constructive induction that
constructed-no representation spacentegrates two inferential learning strategies
modification was made-so the next bestempirical induction and deduction, and two
method, HCI was selected by the user. computational methods--data-driven and

hypothesis-driven. Empirical induction was

Ind(tjhlz third represquat|on moddlgc?tlor&, HCI performed in the Rule Generation module, and
added two new attributes and deleted sevep the search for appropriate Representation
features x2, x3, x6, x7, x8, x10 and x13

‘Space Modifications (the double search of

When AQ was invoked on the tr"’ms‘formedconstructive induction). Deduction was used in

database 8 rules with only 23 conditions werg, application of learned meta-rules to the
i 0
generated with an accuracy of 90%. MCIcharacterization of incoming datasets in order to
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select an appropriate representation spaamerators before this process can be completely

modification. MCI includes "constructor” and automated.

"destructor" modifiers. Modifier selection is

based on meta-rules learned from the results @onstructive induction is a knowledge

past applications of modifiers. intensive learning process. Further research
should provide even more advanced capabilites

The MCI approach was tested on a problenfor introducing and employing domain

the NIM2, characterized by misclassificationknowledge to guide constructive induction

noise and irrelevant attributes. The MCI(Ragavan and Rendell, 1991). For example,

method produced rules which surpassed ndhere should be a facility for a user to indicate

only traditional selective induction learning (nodifferent preferences for various types of

representational modifications), but also singleonstructive induction operators. Also, it

strategy methods in terms of the quality of ruleshould be easy to the user to give advice as to

produced. The quality of the resulting rulesethe use of some new type of operators.

was superior both in terms of predictive

accuracy on the testing examples, andhis raises a general issue of how to include

complexity. within a constructive induction system
sophisticated knowledge representation
6. Future Work capabilties. Consequently, there is a need for

developing a general method for what type of
One important area of improvement of theknowledge should be represented that might be
current method is the determination of a goodseful for creating a more adequate knowledge
criterion when to stop applying representatiomepresentation, and how it should be used.
space modification (RSM) operators. In
general, rule quality changes whenAQ17-MCl uses rule-based knowledge
representation space modifications are madeepresentation system. An interesting issue is to
Currently, RSM operator selection, applicationinvestigate how various ideas and operators
and evaluation is repeated until the user ignplemented in AQ17-MCI could be employed
satisfied with the current ruleset quality. But ifin learning systems using different knowledge
the user is not satisfied, and the change in thepresentation, e.g., decision tress, semantic
rule quality has been negative, the questionetwork, neural nets, etc. To employ any type
arises as to whether the system should natf modification operator withing another
recommend to the user some new ways akepresentation language will need to deal with
continuing the search process. the problems already addressed here, such as

detection and reduction of the overprecision of
Such a decision should be based on a new tygiata, noise in the training data, or low quality
of meta-knowledge that keeps track of whichdata (e.g., many irrelevant attributes). It is
RSM operators have been tried so far, antlelieved that the same cues used to select
which have not. The meta-attribute set mustransformations relevant to a rule-based
capture this knowledge, and the matchingepresentation will be useful for other
algorithm must support, a more sophisticatedepresentation languages.
concept of context and the sequence of RSM
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The above raises a general issue of developirﬁ

Lo : - older, L., "Selection of Learning Methods
a constructive induction learning system tha sing an Adaptive Model of Knowledge

employes multi-type representation languageytility,” Proceedings of the First International
This would allow the system to representWorkshop on Multistrategy Learning, pp. 247-

different types of knowledge in the form that is254, Harper's Ferry, WV, 1991.

most suitable to them. Holte, R.C., Acker, L.E., and Porter, B.W.,
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