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Abstract 

This paper presents an integrated heuristic ap­
proach to knowledge base refinement which 
is viewed as a supervised validation of 
plausible reasoning. The approach integrates 
multistrategy learning based on multitype 
inference, active experimentation, and guided 
knowledge elicitation. One of the main 
features of this approach is that once the 
knowledge base has been refined to deduc­
tivelyentail a new piece of knowledge, it can 
be easily funher refined to deductively entail 
many other similar pieces of knowledge. 

Keywords: multistrategy learning. knowl­
edge acquisition, plausible reasoning 

1. Introduction 
An expert system consisting of an incomplete 
and partially incorrect knowledge base (KB), 
and of a deductive inference engine, suffers 
from two major limitations: 

• it is not able to solve some problems from 
its domain of expertise (because the KB is 
incomplete); 

• the solutions proposed might 	be incorrect 
(because the KB is partially incorrect). 

The set of problems which such a system 
could solve is the deductive closure of the 
knowledge base (DC). In the case of a 
theorem prover, it is the set of facts which 
could be deductively inferred from the KB. 

That is, DC = { I : KB t= l} 

where" t=" means deductive entailment 

David Duff 
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George Mason University 
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and The MITRE Corp. AI Technical Center 
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Figure I shows the relationship between the 
deductive closure DC of the imperfect KB of 
an expert system and the set of true facts in 
the application domain (TC): 

• DC and 	TC are "crisp" sets, with cleanly 
defined borders. That is, the system has an 
algorithm for testing the membership of a 
statement in DC, and presumably a human 
expert can perfonn a similar test on TC. 

• 	DC(l TC represents the set of facts which 
are deductively entailed by the KB and are 
true. This shows that there is useful and 
correct knowledge encoded into the facts 
and the deductive rules of the KB. 

• 	DC - TC represents the set of facts which 
are deductively entailed by the KB but are 
false. This shows that there are errors in the 
set of facts and deductive rules. 

• 	TC - DC represents the set of facts which 
are true but are not deductively entailed by 
the KB. This shows that the set of facts and 
deductive rules is incomplete. 

Figure I: The relationship between 


DC and TC. 


The goal of KB refinement is to improve the 

mailto:duff@mitre.org
mailto:tecuci@aic.gmu.edu
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knowledge base so that DC becomes a good 
approximation of TC. As a result, the KB 
would become an almost complete and 
correct one, and the expert system would be 
able to correctly solve most of the problems 
from its domain of expertise. 

Many of the current KB refmement systems 
such as ANA-EBL (Cohen, 1991), CLINT 
(De Raedt and Bruynooghe, 1993), DUCTOR 
(Cain, 1991), EITHER (Mooney and Ourston, 
1993), FORTE (Richards and Mooney, 1993), 
SEEK (Ginsberg, Weiss, and Politakis, 1988), 
try to partially generalize the KB so as to 
cover more of TC, and to partially specialize 
it, so as cover less of DC - TC. In the case of 
a Prolog-like KB, this is accomplished by 
generalizing and/or specializing some of the 
rules, as well as by introducing new facts into 
the KB, and/or removing other facts. 

In this paper, we are also addressing the 
problem of correcting and extending DC so as 
to better approximate TC. However, our 
approach, as opposed to the approaches cited 
above, brings a new set into play, the 
plausible closure of a KB, and proposes a 
different perspective to the KB refinement 
problem. 

2. The plausible closure of the KB 
We are assuming that the initial incomplete 
and partially incorrect KB consists of facts 
and rules expressed in first-order logic. 
However, the rules are not restricted to be 
deductive. They might also be weaker 
correlations as determinations (Davies and 
Russell, 1987; Russell, 1989), mutual 
dependencies (Michalski, 1993), etc. This is 
so for allowing the introduction of all sorts of 
relevant knowledge into the KB. 

The plausible closure of the KB (PC) is de­
fined as the set of problems which a plausible 
inference engine could solve. In the case of a 
theorem prover, it is the set of facts which 
could be plausibly inferred from the KB. 

That is, PC = {I: KB F= /} 

where" F=" means plausible entailment 

One way to make plausible inferences is to 
use the rules from the KB not only 
deductively, but also abductively or 
analogically. 

Let us consider, for instance. the rule 

'Itx[P(x) ~ Q(x)]. 

If one knows that P(a) is true, then one may 
deductively infer Q( a): 

{P(a), 'ItAp(x) ~ Q(x)]} F= Q(a) 

If one knows that Q(a) is true, then one may 
abductively (Pople, 1973; Josephson, 1991) 
infer P(a): 

{Q(a), 'ItJP(x) ~ Q(x)]} 1= pea) 

If one knows that Pea) is true, and b is similar 
to a, then one may analogically (Carbonell, 
1986; Genmer, 1990; Kedar-Cabelli, 1988; 
Kodratoff, 1990; Winston, 1980) infer Q(b); 

{ 
'V AP(:)(~'Q(X)]'} 1= Q(b) 

("b 'similar' to a") 

Another way to make plausible inferences is 
to use weaker correlations between 
knowledge pieces (e.g. related facts, 
determinations, dependencies, "A is like 11' 
statements, etc.). 

Let us consider, for instance, that the KB 
contains the following related .facts (each set 
describing an object): 

P(c) A Q(c) A R(c) 

P(d) A Q(d) A Sed) 

P(e)A Q(e) 

Then one might empirically generalize 
(Mitchell, 1978; Michalski, 1983; Quinlan, 
1986) these sets of facts to the rule 

'It ..[P(x) ~ Q(x)] 

and might deductively use this rule with the 
fact P(a) to predict that Q(a) is also true. 

Analogical inferences could be made by em­
ploying plausible determinations (Russell, 
1989; Tecuci, 1993). Let us consider, for 
instance, the following determination rule 
stating that V plausibly determines V: 

V(x,y) >- V(x,z) 
Then one may make the following analogical 
inference: 

V(s,a) A V(s,b) A V(t,a) 1= V(t,b) 
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Another example of plausible inference is the 
"useful analogical inference", introduced by 
Greiner (1988). Let us suppose, for instance, 
that the system is told that Q(b) is true, and is 
gi ven the analo gical hint"b is like a", in 
order to show that KB t= Q(b). That is, 
without this analogical hint, the system is not 
able to show that KB t= Q(b). Based on this 
analogical hint. the system is looking for a 
feature of a (e.g. P(a) ) which, if possessed by 
b, would allow it to prove KB t= Q(b): 

KB 1= Pea) 

KB 1# PCb) 

KB 1# ...,P(b) 

(PCb), KB} 1= Q(b) 

As a result of this reasoning P(b) is asserted 
into the KB. 

Several other types of plausible derivations 
based on implications and dependencies are 
described in (Collins and Michalski. 1989). 

In order to show that a cenain fact, I, is 
plausibly entailed by the KB, a system is not 
restricted to making only one plausible 
inference. In general, it could build a plausible 
justification tree (Tecuci, 1993). A plausible 
justification tree is like a proof tree, except 
that the inferences which compose it may be 
the result of different types of reasoning (not 
only deductive, but also analogical, abductive, 
predictive, etc.). An example of such a tree is 
presented in Figure 5. 

One of the main reasons for illustrating the 
above plausible inferences was to show that, 
by employing a plausible inference engine, 
one could significantly extend the set of 
problems that could be solved by a system. 

Figure 2 presents our conjecture about the 
relationships between the plausible closure of 
the KB, the deductive closure of the KB, ana 
the set of true facts in the application domain: 

• PC is a "soft" set, the boundaries of which 
are not strictly defmed. Indeed, depending 
of the number and of the strength of the 
different types of plausible reasoning steps 
in a justification tree for a fact F, the 
plausibility of F is higher or lower. 

• 	 PC:::;) DC because the deductive proof 
trees are special cases of plausible 

justification trees. 

• 	PC (] TC represents the set of facts which 
are plausibly entailed by the KB and are 
true. 

• 	PC (] TC - DC represents the set of true 
facts which are plausibly entailed by the 
KB, but are not deductively entailed by the 
KB. Our hypothesis is that this is a 
significantly large set. 

• 	TC - PC represents the set of true facts 
that are not plausibly entailed by the KB. 
Although this set is not well defined, it 
expresses the intuition that there are true 
facts which even a plausible inference en­
gine could not derive from the current KB. 

Figure 2: The relationship 
between DC, PC, and TC. 

The deductive and plausible closures are two 
approximations of truth. In the approach we 
are proposing, we are considering DC as 
being an approximate lower bound for TC, 
and PC as being an approximate upper bound 
for T C. With this interpretation, the KB 
refinement problem reduces to one of 
determining the set TC in the plausible space 
defined by DC and PC. More precisely, 
during KB refinement, DC will be extended 
with a significant ponion of PC (l TC, and 
will also be corrected to remove from it most 
of DC - TC. Consequently, as a result of this 
process, DC will become a good approxi­
mation of TC. 

Otherwise stated. we propose an approach to 
KB refinement which is viewed as a transfer 
of knowledge form the plausible closure to the 
deductive closure. 

In this paper we are proposing a heuristic 
method which is an effective way of 
extending DC with a significant portion of 
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PC n TC. More precisely, during knowledge 
refinement, the sets D C and PC are 
transformed as follows: 

• 	DC is extended by acquiring new facts or 
rules, or by generalizing some of the rules; 

• 	DC is improved by specializing some of the 
deductive rules which could be partially 
incorrect; 

• 	PC is extended and/or improved by 
acquiring new facts or rules, or improving 
some of the existing rules. 

The next section contains a general presen­
tation of the proposed KB refinement method. 

3. General presentation of the KB 
refinement method 

The KB of the system is assumed to be 
incomplete and partially incorrect. The KB is 
improved during training sessions with a 
human expert who provides the system with 
new input information I. Each such input I is 
an example of an answer that the final expert 
system should be able to generate, that is, I 
should be in the deductive closure of the fmal 
expert system. The goal of KB refinement is 
to improve the KB of the system so that to 
answer questions as the human expert. 

If an input I is already in the plausible closure 
of the KB, then the system will be able to 
make a significant transfer of knowledge 
from the plausible closure to the deductive 
closure. More precisely, it will extend the de­

ductive closure with new hypotheses. H, so as 
to include a generalization I g of I, that is 

{H, KB} 1= Ig 

At the same time, it will extend the plausible 
closure of the KB, so as to include more of 
Te, and might also remove some 
inconsistencies from the deductive closure, 
reducing the size of the set DC - TC. 

If I is not in the plausible closure of the KB, 
then it will be simply asserted into the KB. 
This has the effect of extending both DC and 
PC. Indeed, the presence of I in DC may 
make it possible for the system to show that 
other facts (e.g. 11. 12) are deductively or 
plausibly entailed by the KB: 

KB ~ II' but {I, KB} 1= 11 

KB ",12 , but {I, KB } 1= I,! 

This also shows that during KB refinement, 
PC may grow to include facts from TC - PC. 

The main stages of the KB refinement process 
are presented in Figure 3. They are: 

• multitype inference and generalization; 

• experimentation, verification and repair; 

• goal-driven knowledge elicitation. 

In the first stage, the system analyzes the 
input in terms of its current knowledge by 
building a plausible justification tree which 
demonstrates that the input is a plausible 
consequence of the system's current 
knowledge. 

Human Expert 

Figure 3: The mam stages of the KB refmement process. 
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As a result of the analysis of the input via 
multitype inferences, new pieces of 
knowledge are hypothesized (through 
analogy, .ab~uction, inductive generalization 
and predICtIOn, etc.), and existing pieces of 
knowledge are improved so that the extended 
knowledge base to entail the input. By 
asserting these pieces of knowledge into the 
knowledge base, the system is able to 
deductively entail the input. The support for 
these new pieces of knowledge is that they 
allow building a logical connection (the 
justification tree) between a knowledge base 
that represents a part of the real world, and a 
piece of knowledge (the input) that is known 
to be true in the real world. 

Next, the system will generalize the plausible 
justification tree, by employing different 
types of generalizations (not only deductive 
or empirical, but also based on analogy and, 
possibly, on other types of inferences). By 
this, it will generalize the hypothesized 
knowledge, so that the resulting knowledge 
base will entail not only the received input [, 
but also a generalization of it [g. 

The generalized plausible justification tree 
shows how [g (a generalization of the input l) 
is entailed by the KB. However, this tree was 
obtained by making both plausible inferences 
and plausible generalizations. Consequently, 
both the tree and the corresponding 
knowledge pieces learned are less certain. 
One may improve them by performing 
experiments. This is the second stage of the 
KB refmement process. During this stage, the 
system will generate instances of [g and will 
ask the user if they are true or false. It will 
further improve the hypothesized knowledge 
pieces so that the updated KB to deductively 
entail the instances of Ig which are true and 
to reject the ones which are false. 

However, because the KB is incomplete and 
possibly partially incorrect, some of the 
learned knowledge pieces may be inconsistent 
(i.e. may cover negative examples). In order 
to remove such inconsistencies, additional 
knowledge pieces (which represent new terms 
in the representation language of the system) 
are elicited from the expert, through several 
consistency-driven knowledge elicitation 
techniques. This represents the third stage of 
the KB refinement process. 

The entire know ledge refinement process is 
characterized by a cooperation between the 
learning system and the human expert in 
which the learner performs most of the tasks 
and the expert helps it in solving the problems 
that are intrinsically difficult for a learner 
(e.g., the credit/blame assignment problem, 
the problem of new terms) and relatively easy 
for the human expert. 

4. Exemplary application domain 
We will use the domain of workstation 
allocation and configuration in order to 
illustrate this KB refinement method. The 
expert system to be built has to reason about 
which machines are suitable for which tasks 
and to allocate an appropriate machine for 
each task. 

The initial (incomplete and partially 
incorrect) knowledge base contains 
information about various printers and 
workstations distributed throughout the 
workplace. A sample of this knowledge base 
is presented in Figure 4. Notice that it 
contains different types of knowledge: 
deductive rules, a plausible determination 
(Russell. 1989; Tecuci, 1993). facts, and 
hierarchies. Each of these knowledge pieces 
might be incomplete and/or partially 
incorrect. 

Let us suppose that the system is told that 
macII02 is suitable for publishing 

suitable( macII02, publishing) 
and this fact is representative of the type of 
answers it should be able to provide. 

5. Multitype inference and 
generalization 

The system tries to analyze ("understand") 
the input in terms of its current knowledge by 
building the plausible justification tree in 
Figure 5. Such a tree demonstrates that the 
input is a plausible consequence of the 
system's current knowledge. The method for 
building such a tree is presented in (Tecuci, 
1993). It employs a backward chaining 
uniform--cost search. 

The tree in Figure 5 is composed of four 
deductions, an inductive prediction, and a 
determination-based analogical implication. 



81 

suitable(X, publishing) :- : X is suitable for publishing if it runs 

runs(X, publishing-sw), communicate(X, Y). ; publishing software and communicates 

isa(Y. higb-quality-printer). ; with a high quality printer 


communicate(X. Y):­ : X and Y communicate if they are on the same network 

on(X. Z), on(Y, Z). 


communicate(X. Y) :- ; X and Y communicate if they are on connected networks 

on(X, Z). on(Y, V), connect(Z, V). 


isa(X, bigh-quality-printer) :- ; X is a bigh quality printer if 

isa(X, printer), speed(X, higb), resolution(X, high). ; it bas bigh speed and resolution 


runs(X, y) :- os(X, Z). ; the type of software wbich a machine could run is largely determined 

; by its operating system (":-" means plausible determination) 


run.s(X, Y) :- runs(X, Z), isa(Z, Y). 


os(sunOl, unix). on(sunOl, fddi). speed(sunOl. bigh). processor(sunOl, rise). 

; sunOl's operating system is unix, it is on the fddi network, bas high speed and a risc processor 


os(bp05, unix). on(hp05, ethemet). speed(bp05, bigh). processor(hp05, risc). runs(hp05, frame-maker). 


os(macplus07, mac-os). on(macplus07, appletalk). 


os(macII02, mac-os). on(macn02, appletalk). 


os(maclc03, mac-os). runs(maclc03, page--maker). 


on(proprinterOl, etbemet). resolution(9fOprinterOl, high). processor(proprinter, rise). 


on(!aserjetOl, fddi). resolution(laserjetOl, higb). processor(laserjetOl, rise). 


on(microlaser03, ethemet). resolution(microlaser03, high). processor(microlaser03. rise). 


resolution(xeroxOl. higb). speed(xeroxOl. bigh). processor(xeroxOl. risc). 


connect(appletalk, ethernet). connect(appletalk., fddi). connect(fddi, ethemet). 


prOprin~r ----proprinterOl 
laserwnter 

~xerox 

vax 

...~~::::::=a~ounting 

nse-=====::: cisc 

fddi 

~ethernet 
network 

printer,1IIIIIIg;:= 
microlaser-----microlaser03 

rjet laserjetO1 
xeroxOl 

macplus---- macplus07 

~macle maclc03 

~ madl macII02 

---------------------------sunOI 
-------------------------hp05 

unixsomething op-system ..... &;:::~----

~~ 
------ mac-os

spreadsheet . 
mac-wnte 

~blisbing-Sw~page_maker 
frame-maker 
microsoft-word 

appletalk 

Figure 4: Sample of an incomplete and panially incorrect KB 
for the domain of workstation allocation and configuration. 
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suu.able( macII02. publishing) 

Figure 5: A plausible justification tree for "suitable(macl102, publishing)". 

The inductive prediction 
processor(propnnterlH ,rise) ~ speed(proprinterlH,high) 

was made by empirically generalizing the 
facts: 

speed(sunOl, high), os(sunOl, wtix), on(sunOl, fddi), 
processor(sunOl, rise). 

speed(hp05, high), os(hp05, unix), on(hp05, ethemet), 
processor(hp05, rise). runs(hp05. fiame-maker). 

speed(xeroxOI. high), resolution(xeroxOl. high), 
processor(xeroxOl, rise). 

to the rule 
speed(x, high) :- processor(x, rise) 

and then applying this rule deductively. 

An open problem is how to collect the facts to 
be generalized, and what kind of 
generalization to look for. One solution which 
we are investigating is based on CLINT's 
approach (De Raedt, 1991) of using a 
hierarchy of languages for the rules to be 
learned. Each language is characterized by a 
certain form of the rules to be learned. which 
suggests the kind of facts to look for. 

The analogical inference was made by using 
the determination rule 

runs(X, Y} : - os(X. Z) 

as indicated in Figure 6. 

While there may be several justification trees 
for a given input, the attempt is to fmd the 
most simple and the most plausible one (Lee, 
1993). This tree shows how a true fact I 
derives from other true facts from the KB. 
Based on the Occam's razor (Blumer, 
Ehrenfeucht. Haussler, and Warmuth, 1987), 
and of the general hypothesis used in 
abduction which states that the best 
explanation of a true fact is most likely to be 

true (Peirce, 1965), one could assume that all 
the inferences from the most simple and 
plausible justification tree are correct. 

With this assumption, the KB is improved by: 

• learning a new rule 	by empirical inductive 
generalization: 
speed(X. high) :- processor(X, rise) 
with the positive examples 

X=sunOl. X=hp05. X=xeroxOl. X=proprinterOl 

• discovering 	 positive examples of the 
determination rule (which is therefore 
enforced): 

runs(X. Y) :- os(X. Z). 
with the positive examples 

X=maclc03, Y=page-maker, Z=mac-os 
X=macII02. Y=page-maker. Z=mac-os 

• discovering positive examples 	 for the 
deductive rules used in building the 
plausible justification tree as, for instance: 

suitable(X, publishing) : ­
runs(X, publishing-lOW), eommunicate(X, Y), 
isa(Y. high-quality-printer). 

with the positive example 
X=macn02. Y =proprinterOl 

Therefore, the user merely verifying a 
statement allows the system to refme the KB 
by making several justified hypotheses. As a 
result of these improvements 

KB 1= suitable(macII02, publishing) 

During KB refinement, the rules are 
constantly updated so as to remain consistent 
with the accumulated examples. This is a type 
of incremental learning with full memory of 
past examples. 

As mentioned before. the input fact 
"suitable(macIl02, publishing)" is representa· 
tive for the kind of answers the final system 
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should be able to generate. This means that 
the final system should be able to give other 
answers of the form "suitable(x, y)". It is 
therefore desirable to extend DC so as to 
include other such true facts, but also to 
improve DC so as no longer to include false 
facts of the same form. 

While the integration of the fact 
"suitable(macII02, publishing)" into DC was 
a costly process that involved multitype 
inferences and the determination of the most 
plausible justification tree, lh:e ~ntegratio~ in 
(or exclusion from) DC of sIDular facts IS a 
much simpler process which basically 
replicates most of the reasoning involved in 
the "understanding" of the input 
"suitable(macII02, publishing)". This feature 
is one of the main strengths of the proposed 
KB refmement method. 

The basic idea is the following one. One 
performs a costly reasoning process to show 
that KB t= I. Then it computes a general­
ization of that reasoning so as to speed up 
future problem solving which requires a 
similar reasoning. Indeed, such a reasoning 
process could be generated by simply 
instantiating this generalization to the new 
problem to be solved. 

A simple illustration of this idea is 
explanation-based learning (Mitchell, Keller, 
Kedar-Cabelli, 1986; Dejong and Mooney, 
1986). In this case, an explanation (proof tree) 
of a concept example is deductively gener­
alized. Different instances of this deductive 
generalization demonstrate that other descrip­
tions are examples of the same concept 

In our method, each inference from the 
plausible justification tree is replaced with a 
generalization which depends of the type of 
inference, as shown in (Tecuci, 1993). Thus, 
the system is performing not only deductive 
generalizations, but also empirical inductive 
generalizations, generalizations based on dif­
ferent types of analogies, and possibly, even 
generalizations based on abduction. To illus­
trate this, let us consider the analogical impli­
cation from Figure 5. The process of making 
this inference is illustrated in Figure 6. 

According to the plausible determination rule 
"runs(X, Y) :- os(X, Z)", the software which 
a machine can run is largely determined by its 
operating system. It is known that the oper­

ating system of "maclc03" is "mac-os", and 
that it runs "page-maker". Because the 
operating system of "macII02" is also "mac­
os", one may infer by analogy that "macII02" 
could also run "page-maker". 

os(maclc03, mac-os) ... similar .... os(macfi02. mac-os) 

I . I 

delemunes dctcmuncs 

. + T
similar. 
runs(maclc03. page-maker)" ... runs(macII02. page-maker) 

runs(macII02. page-maker) 

~-
/ wlogy.~ 


os(maclc03. mac-os) os(macII02. mac-os) T 

runs(maclc03, page-maker) 

Figure 6: Inferring 

"runs(macII02, page-maker)" by analogy. 


Let us notice now that the same kind of 
reasoning is valid for any type of operating 
system, and for any type of software, as 
illustrated in Figure 7. 

os(XI. Zl) ..... ._--..:.!sUm=·=lar----t....... os(X2. Zl) 


~_. I 
delmnillcs delemuncs-r- -r-­similar 

nms(X1. Yl) .....---==--........... runs(Jb. Yl; 


runs(X2. Y I) 
~ 

GENERAlIZATION BASED ON ANALOGY 

/' \ ........
os(Xl. ZI) o$(X2. Zl) 
nms(Xl. Yl) 

Figure 7: Generalization of the 
reasoning illustrated in Figure 6. 

Now, if one knows, for instance, that 
"os(hp05, unix)", "runs(hp05, frame-maker)", 
and "os(sunO 1, unix)", then one may 
immediatel y infer "runs(sunO l, frame­
maker)", by simply instantiating the general 
inference from the bonom of Figure 7. 

This might not appear to be a significant 
saving but, in the case of a plausible 
justification tree, one generalizes several such 
individual inferences and, even more 
importantly, their interconnection in a 
plausible reasoning process. For instance, the 
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________ DEDUCTlVEGE,ERAUZ4TJON ~ 

runs(X, ~ng-sw) COITlllJ1lllca1e(X. Y) isa(Y. high-qualitY'pnnter) 

DEDuenvEGENERAUlxnON /f\. DEDUCT~RAUl.ATlON 
/ ......... DEDUCTlVEGENERALlZATION...",- / ' 


runs(X. U) ISa(U. publishing-sw) / I "\ is.a(Y. printer) resoluuon(Y. !ugh) 

GENE~EDONANAWGY on(Y.W) spcedf..Y.biP )OO(X,V) 

os(1!n \ ~, n CODllCCt(V. W) EMPJRlCALlNDUCTlVE GEIVERAUZ4TION 

Iruns(Z. U) p.-oces.sor( Y. nsc) 

Figure 8: A generalized plausible justification tree. 

generalization of the tree in' Figure 5 is once this tree is built, one may draw 
presented in Figure 8. The generalization conclusions that are similar to the ones drawn 
method is presented in (Tecuci, 1993). from the tree in Figure 5: 

The important thing about the general tree in • if the top of the tree in Figure 9 is known to 
Figure 8 is that it covers many of the be true, then one may assume that all the 
plausible justification trees for facts of the intermediate implications are also valid. 
form "suitable(x, publishing)". If, for This reinforces each rule used in building 
instance, sunOl is another computer for which the tree with a new positive example. 
the leaves of the plausible justification tree in • if the top of the tree is not true, then one has 
Figure 8 are true, then the system will infer to identify the wrong implication and to 
that sunO I is also suitable for publishing, by correct accordingly the KB. 
simply instantiating the tree in Figure 8 (see 

Figure 9). 
 6. Experimentation, verification and 
Let us mention again that while building the repair
plausible justification tree in Figure 5 was a 
difficult problem which required the Building the plausible justification tree from 
employment of different types of reasoning, Figure 5 and its generalization from Figure 8 
and of determining the simplest and the most was the first stage of the KB refinement 
plausible justification tree, the building of the process described in Figure 3. The next stage 
tree in Figure 9 was a very simple process of is one of experimentation, verification, and 
instantiating the tree in Figure 8. However, repair. 

sllilJlble(sunOI, publishing) 
~-----------: ~=-----------

rvnII(SudJl-;;"tishlng-SW) commwUca1e(sunOl. miaola.scr(3) isa(miaoiaserO~-qUality-prinler) 

( dUJlt:tiotI "' d~ /r dedMaioJl • 

/isa(frame..~. publishillg-sw) tI 1/ isa(microlasa:Q3. pnnta:-; ­

NIl$(sunOl. frame-maker) on(microlaser03 ethcmet) 
~ 0(--"1 r~di) • speed(miaolasct1.)3. high)

C1III4lop~ 0 """"..... _._4..
OS(hpO~ os(sWlOl. unix) conncct(fddi. et.hcmet) ind~!~~,f!.rtldiCliO" 

J. "';::S(hpO} frame-maker) proce.uor(miCl'ola..er<l3. rise) 

Figure 9: An instance of the plausible justification tree in Figure 8, 
justifying that sunO I is suitable for publishing. 
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The system will generate plausible justifi~ 
cation trees like the one in Figure 9. These 
trees show how statements of the form 
"suitable(x, publishing)" plausibly derive 
from the KB. Each such statement is shown to 
the user who is asked if it is true or false. 
Then, the system (with the expert's help) will 
update the KB such that it will deductively 
entail the true statements and only them. 

The experimentation phase is controlled by a 
heuristic search in a plausible version space 
(PVS) which limits significantly the number 
of experiments needed to improve the KB. In 
the case of our example, the plausible version 
space is defined by the trees in Figure 5 and 
Figure 8, and is represented in Figure 10. 

plausible upper bound 
suitable(X, publishing) : ­

os(Z, n. runs(Z, U). os(X. n. 
isa(U, publishing-sw). on(X, V), 
connect(V, W), on(Y, W), 
isa(y, printer), processor(Y, rise), 
resolution(Y, higb). 

plausible lower bound 
suitable(macl102. publishing) : ­

os(maclc03, mac-os), runs(maclc03, page-maker), 
os(macl102, mac-os), 
isa(page-maker, publishing-sw), 
on(macll02, appletalk), conneet(appletal..k,ethemet), 
on(proprinterO1, etbernet), isa(proprinterO l,printer), 
processor(proprinterOl, rise), 
resolution(proprinterOl, higb). 

Figure 10: The plausible version space (PVS) 

The plausible upper bound is a rule the left 
hand side of which is the top of the general 
tree in Figure 8, and the right hand side of 
which is the conjunction of the leaves of the 
same tree. The plausible lower bound is a 
similar rule corresponding to the tree in 
Figure 5. This plausible version space 
synthesizes some of the inferential 
capabilities of the system with respect to the 
facts of the fonn "suitable(x, publishing)". 
We call these bounds plausible because they 
are only approximations of the real bounds 
(Tecuci, 1992). The upper bound rule is 
supposed to be more general than the exact 
rule for inferring "suitable(x, publishing)", 
and the lower bound rule is supposed to be 
less general than this rule. Let us nO.tice that 
this version space corresponds to the version 
space in Figure 2. The plausible upper bound 

corresponds to the plausible closure, and the 
plausible lower bound corresponds to the 
deductive closure. Of course, this space is 
restricted to facts of the form "suitable(x, 
publishing)". 

The version space in Figure 1 0 could be 
represented in the equivalent form in 
Figure 11. Note that the facts of the form 
"isa(Q, something)" are always true. 

suitable(X, publishing) : ­

plausible upper bound 
isa(T, something), isa(U, publishing-sw), 
isa(V, something), isa(W, something), 
isa(X, something), isa(Y, printer), 
isa(Z, something), os(Z, '0, runs(Z, U), os(X, '0, 
on(X. V), conneet(V, W), on(Y, W), 
processor(Y. rise), resolution(Y, higb). 

plausible lower bound 
isa(T. mac-os), isa(U, publishing-sw), 

isa(V, appletalk), isa(W. ethemet), 

isa(X, maen02), isa(Y. printer), 

isa(Z, maclc03), os(Z. T), runs(Z. U), os(X. T), 

on(X. V), conneet(V, W), on(Y, W), 

processor(Y, rise), resolution(Y, high). 


with the positive example 
T=mae-os, U=page-maker, V=appletalk. 

W=ethernet, X=macn02, Y=proprinterOl, 

Z=maclc03. 


Figure 11: Equivalent fonn of the 
plausible version space in Figure 10. 

The version space in Figure 11 serves both 
for generating facts of the fonn "suitabIe(x. 
publishing)", and for detennining the end of 
the experimentation phase. 

To generate such a fact, the system looks into 
the KB for an instance of the upper bound 
which is not an instance of the lower bound. 
Such an instance is the following one: 

suitable(sunOI, publishing) : ­
os(bp05, unix), 
runs(bp05, frame-maker), 
os(sunOl, unix), 
isa(frame-maker, publishing-sw), 
on(sunOl, fddi), 
connect(fddi, ethernet), 
on(microlaser03, ethernet), 
isa(microlaser03, printer), 
processor(microlaser03, rise), 
resolution(microlaser03, bigb). 

which could be written as: 
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suitable(X. publishing) : ­
isa(T, unix), isa(U, publishing-sw), isa(V, fddt), 
isa(W, ethernet), isa(X, sunOl), 
isa(Y, microlaser03), isa(Z, hpOS), os(Z, n, 
runs(2. U), os(X. n, on(X. V), eonnect(V. W), 
on(Y, W), processor(Y. rise), resolution(Y, high). 

with the positive exampLe 
T=unix, U=frame-maker, V=fddi, W=ethernet, 
X=sunOl, Y=microlaser03. Z=hpOS. 

The corresponding instance of the general 
tree in Figure 8 shows how "suitable(sunO 1, 
publishing)" is plausibly entailed by the KB 
(see Figure 9). The user is asked if 
"suitable(sunOl, publishing)" is true or false, 
and the KB is updated accordingly. 
Assuming the user accepted "suitable(sunOl, 
publishing)" as a true fact. the KB and the 
plausible version space are updated as 
follows: 

• 	 the KB is improved so as to deductively 
entail "suitable(sunOl, publishing)"; 

• 	 the plausible lower bound of the PVS is 
conjunctively generalized to "cover" the 
leaves of the tree in Figure 9. 

It has already been shown how the KB is 
improved (see section 5), The plausible 
lower bound of the PVS is generalized as 
shown in Figure 12. 

Let us also consider the case of a generated 
fact which is rejected by the user: 

"suitable(macplus07, publishing)". 

The corresponding plausible justification tree 
is shown in Figure 13. This tree was obtained 
by instantiating the general tree in Figure 8 
with facts from the KB. It shows how a false 
fact is plausibly entailed by the KB. 

suitable(X. publishing) : ­

plausibLe upper bound 
isa(T. something). isa(U. publishing-sw). 
isa(V. something). isa(W, something). 
isa(X, something). isa(Y. printer). 
isa(z' something). os(2o n. runs(Z. U). os(X. n. 
on(X, V), eonneet(V, W), on(Y. W), 
processor(Y. rise), resolution(Y. high). 

plausible lower bound 
isa(T, op-system). isa(U, publis.bing-sw), 

isa(V, network), isa(W, ethernet), 

isa(X. workstation). isa(Y, printer), 

isa(Z, workstation), os(2, n, runs(z' U). os(X. n, 

on(X. V), eonneet(V. W), on(Y, W), 

processor(Y, rise). resolution(Y. high). 


with the positive example 
T =mae-<ls,U=page-maker. V =appleta1k. W=ethernet. 

X=maeII02. Y=proprinterOl, Z=maclc03. 
T=unix. U=frame-maker, V=fddi. W=ethemel, 

X=sunOl, Y=microlaser03, Z=hpOS. 

Figure 12: Updated PVS. 

In such a case one has to detect and correct 
the wrong inference(s), as well as to update 
the KB, the general justification tree in Figure 
8, and the plausible version space such that: 
• the tree in Figure 13 is no longer a plausible 

justification tree; 

• 	the KB does not deductively entail 
"suitable(macplus07, publishing)"; 

• the updated general 	justification tree no 
longer covers the tree in Figure 13; 

• the plausible upper bound 	of th~ PVS is 
specialized so that it no longer covers the 
leaves of the tree in Figure 13. 

Figure 13: Another instance of the plausible justification tree in Figure 8, 
which shows how a false fact is plausibly entailed by the KB. 



pIes of the rule from the discovered negative 
example. 

As a result of updating the above rule. the 
general plausible justification tree in Figure 8 
is updated as shown in Figure 14, and the ver­
sion space is updated as shown in Figure 15. 

It might not always be easy to identify the 
problem with a wrong inference, and to 
specialize the corresponding rule so as no 
longer to cover the negative example. In such 
a case, the wrong inference is kept as a 
negative exception of the rule which 
generated it, as shown in Figure 16. 

suitable(X, publishing) : ­

plausible upper bound 
isa(T, something), isa(U, publishing-sw), 
isa(V, something), isa(W, something), 
isa(X. something), isa(Y, printer), isa(Z, something), 
os(Z. n, runs(Z, U). os(X. n, display(X, large), 
on(X. V), connect(V. W). on(Y, W). 
processor(Y. rise). resolution(Y. high). 

plausible lower bound 
isa(T, op-system), isa(U, publishing-sw), 
isa(V, network), isa.(W, etbemet), 
isa(X, workstation), isa(Y, printer), 
isa(z, workstation), os(z, n, runs(Z, U), os(X, n. 
display (X. large), on(X, V), CODDect(V, W), 
on(Y. W), processor(Y, rise), resolution(Y, high). 

with the positive example 
T=mac-os,U=pa.ge-maker, V =apple talk,W=ethernet, 

X=macII02, Y =proprinterOl, Z=maclc03. 
T=unix, U=frame-maker, V=fddi, W=ethemet, 

X=sunOl, Y=microlaser03. Z=bpOS. 
with the negative example 
T=mac-os, U=page-maker, V=appleta1k, W=fddi, 

X=macplus07. Y=laserjetOl. Z=maclc03. 

Figure 15: Updated PVS. 
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Detecting the wrong implication from the 
plausible justifi.ca~on tree in Figure 13 is an 
intrinsically dIffICUlt problem for an au­
tonomous learning system. One possible solu­
tion, which is presented in (Tecuci, 1993), is 
to blame the implication which is the least 
plausible, and the correction of which 
requires the smallest change in the KB. For a 
human expert, however, it should not be too 
difficult to identify the wrong implication and 
even to find the explanation of the failure 
(Tecuci, 1992). In the case of the tree in 
Figure 13, the wrong implication could be 
identified by the user as being the deduction 
from the top of the tree: 

suitable(macplus07, publishing) : ­
runs(macplus07, publishing-sw), 
communicate(macplus07, laserjetOl), 
isa(la.serjetO1, bigb-quality-printer). 

Although macplus07 runs publishing software 
and communicates with a high quality printer, 
it is not suitable for publishing because it 
does not have a large display. . 

Consequently, the rule which generated the 
above implication is specialized as follows 
(requiring X to have a large display): 

suitable(X, publishing) : ­
runs(X, pubJisbing-sw), display(X,large), 
communicate(X, y), isa(Y, higb-quality-printer). 
with the positive examples 

X=macII02, Y=proprinterOl. 
X=sunOl, Y=microlaser03. 

with the negative example 
X=macplus07, Y =laserjeli:n. 

One should notice that the predicate 
"display(X, Y)" could be defined by the user, 
or could be suggested by the system as one 
which distinguishes the known positive exam­

~) 
_________./UcrIVEGE,ERA.l1Z4TION ~ 

mDS(X. ~ng-sw) display(X.larJe) comnuruC3le(X. Y) isa(Y, higlHfiWily·ptinler) 

DEDUCI1VEGENERAUZA170N /1'\. DEDU~RAUZA170N 
/ ........ DEDUCTTVEGENERALlZA170N...,. / .......
I '"
mns(X. U) isa(U. publisbing·sw) / isa(Y. piIIIcr) rcsolution(Y. high) 

GENERA1JZA~ED ON ANALOGY

oaT) \ ;;;a. T) 

oll(X. V) 

COIIIIeCt(V. W) 

oD(Y. w) speed(. higb) 

EMPIRICAL lNDUCITVE GENERALIZATION 

runs(Z. U) ~Y.risc) 

Figure 14: Updated general justification tree. 
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suitable(X, publishing) : ­
runs(X, publisbing-sw), communicate(X. Y), 
isa(Y. bigb-quality-printer). 
with the positive examples 

X=macII02, Y =proprinteru l. 

X=sunOl, Y=micro1aseru3. 


with the negaJive exception 
X=macplus07, Y=lasetjetOl. 

Figure 16: A rule with a negative exception. 

During experimentation, the lower bound of 
the plausible version space is generalized so 
as to cover the generated facts accepted by 
the user (the positive examples), and the up­
per and lower bounds are specialized so as to 
no longer cover the generated facts rejected 
by the user (the negative examples). This pro­
cess will end in one of the following 
situations: 
• the bounds 	of the plausible version space 

become identical. 
• the bounds are not identical, but the 	K.B no 

longer contains any instance of the upper 
bound of the version space that is not an 
instance of the lower bound. Therefore, no 
new fact of the form "suitable(x, 
publishing)" can be generated. 

Notice that the plausible version space is only 
used for controlling the experimentation 
phase. It is not kept in the K.B as a new rule 
for inferring "suitable(x, publishing)" because 
it would be a redundant rule. 

7. Goal-driven knowledge elicitation . 
Because the KB is incomplete and partially 
incorrect, some of the learned knowledge 
pieces may be inconsistent (i.e. may cover 
negative examples), as it is illustrated in 
Figure 16. In order to remove such 
inconsistencies, additional knowledge pieces 
(which may represent new terms in the 
representation language of the system) are 
elicited from the expert. through several con­
sistency-driven knowledge elicitation meth­
ods. as described in (Tecuci and Hieb, 1993). 
These methods are applied in the third phase 
of KB refinement, as shown in Figure 3. 

Let us consider the case of the inconsistent 
rule in Figure 16. 

One consistency-driven knowledge elicitation 
method is to look for a new predicate which 
could characterize all the positive instances of 

X (although it might not be associated with 
each of these instances), without character­
izing any negative exception .of X,. A 
potentially discriminating predlcat~ hke 
"display" is one which charactenzes a 
positive instance of X (either macII02 or 
sunO!), and does not characterize the negative 
exception of X (macplus07) .. If suc~ .a 
predicate is found, then the user IS asked If lt 
characterizes all the other positive instances 
of X. The same technique could, of course, be 
applied to the instances of Y. 

It may happen, however, that the system 
cannot find a property to transfer from one 
positive example of X to the others. In such a 
case, it will try to elicit a new property by 
using a technique similar to the triad method 
employed in the elicitation of the repertory 
grids (Boose and Bradshaw, 1988; Shaw and 
Gaines, 1987). 

Another method for removing the negative 
exception is to look for a relationship between 
X and Y which could characterize all the 
positive instances of X and Y, without 
characterizing the negative exception. 

Yet another method is to define a new 
concept that covers all the positive instances 
of X (or all the positive instances of Y), 
without covering the negative exception of X 
(Y). A method similar to this one is reponed 
by (Wrobel, 1989). 

8. Summary and conclusions 
Figure 2 suggests two basic approaches to 
the development of the competence of a 
deductive knowledge-based system. One 
approach is to extend the deductive closure 
of the K.B by acquiring new knowledge. The 
other approach is to replace the deductive 
inference engine with a plausible inference 
engine, and thus to enable the system to 
solve additional problems from the plausible 
closure. The first approach has the advantage 
that the system employs "sound" reasoning. 
but it has the disadvantage of requiring a 
difficult knowledge acquisition process. The 
second approach has the advantage of 
avoiding knowledge acquisition, but the 
disadvantage that the system needs to rely on 
plausible reasoning. 

The knowledge refinement method presented 
in this paper is an attempt to combine these 
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two approaches i~ such a way as to take 
advantage of theIr complementarity, This 
method is summarized in Figure 17. It 
resulted from the merging and extension of 
two related research directions: 

• the knowledge acquisition methodology of 
Disciple (Tecuci and Kodratoff, 1990) and 
NeoDisciple (Tecuci, 1992); 

• the MTL-JT framework for multistrategy 
learning based on plausible justification 
trees (Tecuci, 1993). 

On the one hand, it extends NeoDisciple with 
respect to the knowledge representation used 
and the types of inferences and 
generalizations employed and, on the other 
hand, it adapts and integrates the MTL-JT 
framework into an interactive knowledge 
acquisition scenario. 

The method is based on the following 
general idea. The system perfonns a complex 
reasoning process to solve some problem P. 
Then it detennines a justified generalization 
of the reasoning process so as to speed up the 
process of solving similar problems Pi. When 
the system encounters such a similar 
problem, it will be able to fmd a solution just 
by instantiating the above generalization. 

In the context of the presented method, the 
problem to solve is to extend the KB so as to 
entail a new fact I. The complex reasoning 
process involved consists of building a plau­
sible justification tree. This reasoning 
process is generalized by employing various 
types of generalization procedures. Then, 
during the experimentation phase, the system 
instantiates this generalization and, using it, 
improves the KB so as to entail similar facts 
which are true (or to no longer entail similar 
facts which are false). 

One important aspect of the presented 
method is the notion of plausible justification 
trees (Tecuci and Michalski, 1991; Tecuci, 
1993). Other systems have employed implicit 
justification trees (DeRaedt and Bruynooghe, 
1993), or even explicit justification trees 
(Tecuci, 1988; Mahadevan, 1989; Widmer, 
1989). that integrated only a small number of 
inferences. In our method, the plausible 
justification tree is defined as a general 
framework for integrating a whole range of 
inference types. Therefore, theoretically, 
there is no limit with respect to the type or 

I nilial Slate, sIIoww.g Tl\Ith and 
the PlauSIble anct C)eQI,jC1IVe 
Closu,.s. 

II. piMl;tible juslllcation "M lor 

1M new lac! il ccnSlll.l elect via 

mulli!ype .tienInee. Thil 

ju~con_lhe 
fact willi _erne.. fI 1M 


origiNllded........ and pi..... 


dO-. 

ThIOUllh otlq)erimentation and 
eon.-...cy<l_ ~ 
elicIiIIIion, DC ,...,. be tufther 

re&lect AId ucing tile _ 


oc-TC and TC-OC••'. 
flcicIU poIiIIv. INIanCft, .'. 
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Figure 17: Modification of DC and PC 
during KB refinement. 

number of inferences employed in a plausible 
justification tree. 

Another important feature of the KB 
refinement method is the employment of 
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different types of generalizations. While the 
c~r~ent . machine learning research 
dlstmgulshes only between deductive 
generalizations and inductive generalizations 
(Michalski, 1993), this method and the MTL­
JT framework (T~cuci, 1993) suggest that 
one ~ay. consider other types of 
generalizations, each associated with a 
certain type of inference (as, for instance 
generalization based on analogy). ' 

There are also several ways in which the 
method could be improved. For instance the 
set ?f inferences involve~ in the pre~ent 
verSion of the method IS quite limited 
~dedu~tion, d~te~ination-based analogy, 
mducnve predlctlon, and abduction). New 
types of inferences should be included, as 
well as more complex versions of the current 
ones. 

Also. new types of justified generalizations 
(each corresponding to a certain inference 
type) should be defined. 

Finally, the goal-driven knowledge elicitation 
methods briefly mentioned in section 7 
should be extended so as not only to add new 
concepts and relationships into the KB but 
also to delete those that become unnecessary. 
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