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ABSTRACT

The paper presents a method for integrating two different data analysis techniques: symbolic
learning and statistical. The method concerns the problem of discovering rules characterizing the
dependence between a group of dependent attributes and a group of independent groups, €.g.,
decision attributes and measurable attributes. The method proceeds along two paths. One paths
generates a set of rules characterizing this dependency using a symbolic inductive learning
program (AQ15). In the obtained rules, each attribute is assigned an "importance score” which
represents the ratio of the total number of examples that can be classified by this attribute to the
maximum number of classified examples. Second path calculates the correlation coefficient
between the decision and measurable attributes using the Chi-square test. The independent
attributes with low "importance score" and low correlation are considered irrelevant, and
removed from the data. The AQ15 is applied again to the data set spanned over the reduced set of
attributes, in order to determine the simplest expression characterizing the dependency. The
method has been experimentally applied to two real world problems: "Wind bracing" —to
determine the dependence of the type of wind-bracing for tall buildings on the parameters of the
building, and "Accident factors"—to determine the dependence between the age of construction
workers and the types of accidents. The results have shown that the proposed approach of
combining two different methods for relevant attribute determination gives better results than
those obtained by applying either method separately.
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1. Introduction

Methods for knowledge discovery in databases can be generally classified into two groups:
statistical and conceptual. Statistical methods are oriented primarily toward numerical data, and
create characterizations of data in terms of correlations, statistical distributions, variancess, etc.
(e.g., Chan & Wong, 1991; Klosgen, 1992; Major & Riedinger, 1992). Conceptual methods (also
called symbolic or logic-based) are oriented primarily toward qualitative data, and create
“conceptual” data descriptions in the form of decision rules, decision trees, or other symbolic
representations (e.g., Kaufman, Michalski & Kerschberg, 1991; Gonzalez, et al, 1991;
Bergadano, et al, 1991; Piatetsky-Shapiro, 1991; Manago & Kodratoff, 1991; Piatetsky-Shapiro
& Matheus, 1992; Michalski, et al, 1992).

Most statistical methods involve computing statistical correlation among the attributes.
Conceptual methods typically use a machine learning technique. They typically involve



obtaining the user’s goal (requesting the decision attributes), selecting a relevant subset of data,
and then inducing rules or patterns characterizing the data.

This paper addresses the problem of integrating statistical and conceptual methods. It presents a
new strategy for determining irrelevant attributes (for any given user’s goal) in a large database.
The method uses an inductive leaming technique AQI15 (Michalski et. al, 1986) for generating
conceptual descriptions and calculating the "importance score” for each input attribute. It also
uses the Chi-square test to compute correlation among the input and output attributes.

The importance score for an attribute is the ratio of the total number of data tuples (examples
linked to the given output attribute) that are covered by induced decision rules that contain this
attribute to the maximum number of matched examples by any attribute. Attributes with an
importance score less than a given threshold and with low Chi-square score are assumed to be
irrelevant and are removed from the database. The modified database is used as an input to AQ1S5
program. The program determines decision rules characterizing the dependence between the
reduced set of input attributes and the output attribute.

2. A Brief Description of the AQ15 Rule Learning Program

In order to make the paper self-contained, we briefly describe the system, AQ15 (Michalski et
al., 1986) that learns decision rules for a given set of decision classes from examples. The
method uses the AQ algorithm, which is an implementation of the STAR methodology
(Michalski, 1983). The algorithm starts with a “seed” example of a given decision class, and
generates a set of the most general conjunctive descriptions of the seed (decision rules). Such a
set is called a star of this seed. Subsequently, the algorithm selects from the star a description
that optimizes a criterion reflecting the needs of the problem domain. If the criterion is not
defined, the default criterion is to select the description covers the largest number of positive
examples and, with the second priority, involves the smallest number of attributes. If this
description does not cover all examples of the class, a new seed is selected, from uncovered
examples and the process continues until a complete class description is generated. The
algorithm can work with just a few examples or with very many examples.

The learned descriptions are represented in the form of a set of decision rules (a “ruleset”)
expressed in an attributional logic calculus, called variable-valued logic (VL1) (Michalski,
1973). A distinctive feature of this representation is that it employs, in addition to standard logic
operators, the internal disjunction operator (a disjunction of values of the same attribute), which
can significantly simplify rules involving multivalued attributes.

AQ15 can generate decision rules that represent either characteristic or discriminant concept
descriptions, or an intermediate form, depending on the settings of its parameters. A
characteristic description states properties that are true for all objects in the concept. The simplest
characteristic concept description is in the form of a single conjunctive rule. The most desirable
is a rule with the longest condition part (stating as many common properties of objects of the
given decision class as possible).

A discriminant description states only the properties that discriminate a given concept from a
fixed set of other concepts. The most desirable is a rule with the shortest condition part



(Michalski, 1983). For example, to distinguish a given set of tables from a set of chairs, one may
only need to indicate that tables “have large flat top.” A characteristic description would include
also properties such as “have four legs, have no back, have four corners, etc.” Discriminant
descriptions are typically much shorter than characteristic descriptions.

3. Discovering Attribute Dependence

An application of our methodology is done on two distinct databases, the wind bracing
(Arciszewski, et al, 1992) and the accident data (Arciszewski, et al, 1992). Four different
strategies were done on each set of data to show the effect of each strategy on the performance of
the discovery. All the strategies are based on the inductive learning system AQ15 (Michalski, et
al., 1986). The wind bracing data contains a decision attribute representing the structural worth
of the buildings with four values (i.e. four decision classes) high (c1), medium (c2), low (c3) and
infeasible (c4). The data has also seven attributes: number of stories (x1), bay length (x2), wind
intensity (x3), number of joints (x4), number of bays (x5), number of vertical trusses (x6), and
number of horizontal trusses (x7). The database consists of 336 examples. Only 220 random
examples were used for learning a concept description and 116 for testing. The goal of the
discovery is to learn knowledge about the important features which may affect the structural
worth of any building.

The accident data divides examples of construction accidents according to the age of the
workers. The attribute "age" has four possible values; young (c1), medium (c2), old (c3), and
unknown (c4). There are 12 other attributes in the database: Race (x1), Marital Status (x2),
Children (x3), Occupation (x4), Job Experience (x5), Hour of Day (x6), Season (x7), Accident
type (x8), Work Period (x9), Injury Type (x10), Injured Part (x11), Return Work (x12). The
accident database consists of 225 examples. A random sample of size 169 (75%) is chosen as a
training set and 56 examples for testing. The goal of the discovery is to learn knowledge about
the relation between the age of the workers and the character of accidents.

Figure 1 shows a plan of performing the four strategies. The first strategy uses AQL1S to learn
rules directly from the database. The second strategy uses the chi-square test to determine the set
of attributes relevant to the decision attribute(s) (the user interest). A subset of the database,
which contains only the relevant attributes, is used by AQ15 to learn a new concept description
in the form of rules. Third strategy uses the output of the first one together with the database to
calculate the importance score for each measurable attribute. Any attribute has importance score
greater than the specified threshold is considered as relevant attribute. A subset of the database
which contains only the relevant attributes is used by AQ1S5 for learning description rules. In
strategy four, each of the second (chi-square test) and the third (importance score) experiment
provides a set of relevant attributes. A subset of the database which contains the union of both
relevant attributes is used as an input to AQ15 for discovery.

To test the effectiveness of our methodologies, we use training examples in the discovery
process, and testing examples in measuring the correctness of the discovered knowledge. These
strategies used AQLS to generate knowledge, in the form of discriminant rules, from examples
(each example is equivalent to one tuple of the database). Discriminant rules are used to



calculate the importance score because discriminant rules differentiate classes from each other,
and contain only attributes relevant to this goal, while characteristic rules include all attributes,
relevant or irrelevant in the generated rules. Thus characteristic rules would produce equal

attribute importance score.
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Figure 1: A plan of performing the different strategies.

3.1. Using AQIS5 for discovery

In the first strategy, we ran AQ15 against the wind bracing data and the accident data, separately.
First, The databases are translated into a symbolic format (examples) to be used by AQ15. We
set the AQ15's parameters to generate a discriminant and disjoint rules. The effect of intersected
rules on this methodology would be interesting work for the future. Also, a parameter was set to
print with each rule the number of examples that it covers. After running AQ1S, the produced
rules are tested against the testing examples. The accuracy of testing the discovered rules against
the testing data for the wind bracing data is 81.74%. The accuracy of testing the discovered rules
against the testing data for the accident data is 79.11%.

3.2. Determining the relevant attributes to the decision attribute using Chi-square test
The second strategy searches first for the attributes relevant to the decision attribute, then it
applies AQ1S5 to these relevant attributes. The strategy uses the Chi-square test to determine the



correlation between the decision attribute and all of the other attributes. The strategy was done as
follows: 1) create statistical tables for each attribute in the data against the decision attribute; 2)
detect the irrelevant attributes to the decision attribute by calculating the Chi-square value using
formula 1; 3) modify the database by removing the irrelevant attributes from the database; 4) run
AQIS5 on the data set and determine the testing accuracy.

An attribute x is strongly correlated to the decision attribute if the calculated Chi-square value is
greater than the measured one for a significant percentage. We choose 97.5% and 75%
significance for the wind bracing and accident data, respectively. In the case of the accident data,
we reduced the significant interval to include more attributes (in the case of 90% significant
interval, there was just two attributes and the accuracy was zZero). ‘

Figure 2 presents a relational table for the attribute x7 of the wind bracing data and the decision
classes. Each number in the table aij represents the number of examples that belong to class ci
and have x7 take value vj. For example, the number 12 in the first row and first column
represents the number of examples that belong to class c1 and the value of x7 has value one.

Figure 2: Distribution of the values of attribute (x7) of the wind bracing data
in the training examples over each of the decision classes.

Formula 1 shows how the Chi-square significance can be calculated from Figure 2. The decision
attribute has four values, c1, ¢2, ¢3 & c4. The attribute x7 has four values, v1, v2, v3 & v4

Chi-square (xj) = PN | (ay - cyflcyl @
i=t j=1

where n is the number of decision classes, m is the number of values of xj, ajj (is the number in

row i and column j in the table), is the number of examples in class ci where the attribute x takes
value vj, cij = (Tci *Tyj)/ T, Tciand Ty; are the total values over the decision class ci and the

total values over the value vj of the given attribute, respectively. T is the total number of
examples. The calculated value of Chi-square for attribute x7 is 5.6.

The statistical degree of freedom for determining the Chi-square value is calculated as follows:

(Number of decision classes - 1) * (Number of legal values of the attribute - 1) 2



Attribute x7 has a degree of freedom 9. For a confidence interval equal to 97.5%, the tabled Chi-
square value is 19.02. As Chi-square(x7)=5.6 < 19.02, The attribute x7 is irrelevant. From the
wind-bracing data, the Chi-square test shows that the set of relevant attributes Rw= {x1, x4, x5,
x6), and the set of irrelevant attributes Iw= { x2, x3, x7}. We removed the irrelevant attributes
from the original database and applied the AQ15 program to the rest of the data. The discovered
rules were simpler, but not as accurate as the rules learned from the entire original attribute set
only using AQ15. The accuracy of testing the knowledge (learned over the reduced data set)
against the testing data was 74.78% for the wind bracing data and 32.89% for the accident data.

3.3. Determining irrelevant attributes based on the analysis of decision rules

The third strategy is used to determine the irrelevant attributes by calculating the importance
score for each attribute in the decision rules generated by the AQ15 program. In this strategy, we
assumed that irrelevant attributes are those which occur in rules that match less than a specified
percentage (threshold) of the maximum number of matched examples. In this research, this
threshold is set arbitrarily (50% for the wind bracing data, and 40% for the accident data).

This strategy addresses also the issue of whether or not these irrelevant attributes increase the
complexity of the discovery process, and/or reduce the predictive accuracy (or the degree of
correctness) of the discovered knowledge.

Figure 3 shows three rules produced in the first strategy. Each attribute present in any rule is
considered as an important to the rule and has a number of examples that are covered by this
rule.

1 [x1=1][x4=1v3][x7=1.3]

{Total: 14; Examples covered: 2, 4, 11..14, 18, 19, 23, 26, 27, 29..31}
2 [x1&x4=1v3][x5=1][x7T=1v2v4]

{Total: 11; Examples covered: 1,3, 6,9, 15, 17, 21, 28, 32..34}
3 [x1=1v2][x4=3][x5=2][x7=4]

{Total: 3; Examples covered: 10, 22, 24}

Figure 3: A sample of AQ15 rules, with list of the covered examples.

To print the total number of examples that match each rule, set the parameter "echo"”, in the input
file to AQ15, to the appropriate mode which print after each rule the examples that are covered
by this rule. ,

In this example, rule 1 covers 14 different examples, which means the attributes x1, x4 and x7
have a score of 14, each, from this rule. For these attributes, the score will increase by 11 from
the second rule, while the attribute x5 takes an initial score 11.

The importance score of an attribute is the ratio of the total number of examples that are covered
by any rule, (for all the decision classes) that including that attribute, to the maximum number of
covered examples. If this ratio is less than the specified threshold, we consider that attribute
irrelevant to the discovery process.



For example, suppose we have n classes cl, ..., cn, and m attributes Al, ..., Am. Assume also
for each attribute Aj there are Ecjj examples matching rules which contain Aj, and belong to class
ci (i=1,..,n; j=1,.., m). The importance score for Aj is given by:

n n
LS(Aj)= (g&ij)/(mugaq,-) 3
= J i=

We chosen a threshold value of 0.5 for the wind bracing data, and 0.4 for the accident data.
Determining the optimum threshold is very important point for further research. In this strategy,
the accident data with threshold 0.5 did not perform well.

Figure 4 shows for each attribute (of the wind bracing data), the number of examples that are
covered by rules which include that attribute. Figure 5 shows the importance score for each
attribute.

Figure 6 shows for each attribute (of the accident data), the number of examples that are covered
by rules which include that attribute. Figure 7 shows the importance score for each attribute.
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Figure 4: The frequency of the wind bracing attribute in AQ1S5 rules.
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Figure 5: The importance score for the wind bracing attributes.

As we can see in Figure 5, the set of relevant attributes in the wind bracing database is Rw= {x1,
x4, x5, x7}. From Figure 7, the set of relevant attributes in the accident database is Ra={x2, x4,



x5, x6, x7, x8, x11}. Consequently, the sets of irrelevant attributes are Iw= {x2, x3, x6} and Ia=
{x3, x9, x10, x12}. We apply the AQI5 program to discover knowledge from the data that
contains only the relevant attribute for both problems. The produced rules from both problems
(wind bracing and accident) were simpler and accurate than the discovered rules in the first t.wo
strategies. The accuracy of the discovered knowledge was 83.48% and 80.44, for the wind
bracing and accident problems, respectively. Full results are shown in figure 8.
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Figure 7: The importance score for the accident attributes.

The accident data answers a very interesting question which is "can we get this results just by
adjusting the importance score?". The answer is no!. For example, (as we will see in the next
section) the integration of the two methods adds x3 from the chi-square relevant attributes to the
importance score set of relevant attributes which increases the accuracy. If we want to add x3
using the importance score, we have to add all the other attributes (because x3 has the minimum
importance score).

3.4. Discovering knowledge by integrating the Chi-square and the importance score
technigues

This section introduces the integration of the Chi-square and the importance score together with
AQ15 for the discovery process. The second strategy, Chi-square, searches for relevant
attributes to the decision attribute or the user interest, but the third strategy, importance score,
searches for relevant attributes to the discovery algorithm. The integration strategy searches for



relevant attributes to both the decision attribute and the discovery algorithm. As we can see from
the previous strategies, It is inefficient either to remove an attribute that somehow is important to
the discovery algorithm nor to keep an attribute that is totally irrelevant to the decision attribute
(the user interest).

The proposed method locates the irrelevant set of attributes (to the decision attribute) to both
using the Chi-square test, and it determines the set of attributes that are irrelevant to the
discovery Algorithm AQ15 using the importance score. The intersection of these two sets gives
the optimal set of irrelevant attributes. On the other hand, the intersection of the relevant sets
from the chi-square test and the importance score gives the optimal set of relevant attributes (to
the user interest), with the specified threshold and confidence interval.

After performing the wind-bracing experiment, the set of irrelevant attributes to the decision
attribute (from chi-square) was Iw¢ = {x2, x3, x7}, and the set of irrelevant attributes to the
discovery algorithm (from importance score) was Iwjs = {x2, x3, x6}. The optimal set of
irrelevant attributes is given by the intersection of these sets 0; = Iwe N Iwis = {x2, x3}. The
union of the relevant attributes from both methods is Ur = Rw¢ u Rw; = {x1, x4, x5, x6, x7}.
The optimal set of relevant attribute is Or = Rwe N Rwjs = {x1, x4, x5}. Applying AQ15 on the
database with all the attributes in Uy gave us the best accuracy in the four strategies 86.09%.
Applying this strategy on the accident data, the set of irrelevant attributes to the decision attribute
(from chi-square) was Iac = {x4, x6, x7, x8, x9, x10, x11, x12}, and the set of irrelevant
attributes to the discovery algorithm (from importance score) was lajs = {x3, x9, x10, x12}. The
optimal set of irrelevant attributes is given by the intersection of these sets Oj = Iac N Iajs = {x9,
x10, x12}. The union of the relevant attributes from both methods is Ur = Rac u Rajs = {x1, x2,
x3, x4, x5, x6, x7, x8, x11} (where Rajs = {x1, x2, x4, x5, x6, x7, x8, x11}). The optimal set of
relevant attribute is Oy = Rac M Rajs = {x1, x2, x5}. Applying AQ15 on the database with all the
attributes in U gave us the best accuracy 82.67%.

4. Discussion of Results

The goal of integrating statistical and symbolic techniques is to simplify the data by focusing on
the relevant attributes, and in the same time to improve the discovered knowledge. The accident
data is very noisy. Using chi-square for determining the relevant attributes for such noisy data
give poor results. The Chi-square test with 95% confidence interval determined all but x1 and x2
where relevant. Most likely, the discovery or classification results produced by two attributes
will fail. From these experiments, one can notice that, determining the relevant attributes to other
attributes (statistically) is not as important as determining the relevant attributes through the
discovery algorithm.

Figure 8 shows a summary of results from applying various method on the wind-bracing and the
accident databases.

Discovered knowledge from the wind bracing data

Measuring the structural worth of buildings does not depend on the bay length nor the wind
intensity. It depends highly only on the number of floors, the number of joints, and the number of
bays. The expert supported these results.



Discovered knowledge from the accident data

The relation between the age of workers and the accident features does not depend on whether
they can return to their work or not (x12), the type of injury (x10), nor the work period (x9). The
worker age depends on the race (x1), depends on the job experience (x2), and depends on the
marital status (x5). These relevant attributes and the attribute "age" were classified by the expert
as personal information.

7 81.74%

32.89% 4 74.78%

8 80.44% 4 83.48%
9 82.67 5 86.09%

Figure 8: A summary of results on the comparing different inductive programs
in terms of the number of attributes and the prediction accuracy.

5. Summary

This paper presented a new method for determining irrelevant attributes in databases, and thus
improving the process of knowledge discovery. The methodology combines a symbolic inductive
learner (AQ15), with two statistical approaches (Chi-square and importance score). It uses the
Chi-square test to determine the correlation coefficient between the decision attribute (which is
defined by the user), and the measurable attributes. It also determines irrelevant attributes by
calculating the “importance score” of each attribute and testing it against a defined threshold.
This score is calculated from the output rules of AQ15 over the entire database. The
methodology removes from the database any attribute that has an importance score less than the
threshold, and an insignificant correlation (from Chi-square). The experiments demonstrated that
combining the three methods leads to the improvement of the final rules characterizing patterns
in data. The rules were simpler and more accurate.

Future research should concern the development of a general framework for solving the problem
of dependence among the attributes (specially, with very large databases). Another interesting
problem would be to study the proposed method in the context of using other learning
techniques, such as decision trees, neural networks and genetic algorithms.
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