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Abstract. A standard approach to determining decision trees is to leamn them from examples. A
disadvantage of this approach is that once a decision tree is leamed, it is difficult 1o modify it to suit
different decision making sitiations. Such problems arise, for example, when an attribute assigned to
some node cannot be measured, or there is a significant change in the costs of measuring atributes
or in the frequency distribution of events from different decision classes. An attractive approach to
resolving this problem is to lcam and store knowledge in the form of decision rules, and to generate
from them, whenever needed, a decision tree that is most suitable in a given situation. An additional
advantage of such an approach is that it facilitates buiiding compact decision trees, which can be much
simpler than the logically equivalent conventional decision trees (by compact trees are meant decision
trees that may contain branches assigned a set of values, and nodes assigned derfved attributes, ie.,
attributes that are logical or mathematical functions of the original ones). The paper describes
an efficient method, AQDT-1, that takes decision rules generated by an AQ-type learning system
(AQ15 or AQ1T), and builds from them a decision tree optimizing a given optimality criterion. The
method can work in two modes: the standard mode, which produces conventional decision trees, and
compact mode, which produces compact decision trees. The preliminary experiments with AQDT-1
have shown that the decision trees generated by it from decision rules (conventional and compact)
have outperformed those generated from examples by the well-known C4.5 program both in terms
of their simplicity and their predictive accuracy.
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1. Introduction

Methods for learning decision trees from examples have been very popular in
machine learning due to their simplicity. Decision trees built this way can be
quite efficient, as long as they are used in decision making situations for which
they are optimized and these situations remain relatively stable. Problems arise
when these situations significantly change and the assumptions under which the
tree was built do not hold anymore. For example, in some situations it may be
difficult to determine the value of the attribute assigned to some node. One would
like to avoid measuring this attribute and still be able to classify the example,
if this is potentially possible (Quinlan, 1990). If the cost of measuring various
attributes changes, it is desirable to restructure the tree so that the “inexpensive”
attributes are evaluated first. A tree restructuring is also desirable, if there is
a significant change in the frequency of occurrence of examples from different
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classes. A restructuring of a decision tree to suit the above requirements is,
however. difficult to do. The reason for this is that decision trees are a form of
procedural knowledge representation, and imposes constraints on the evaluation
order of the attributes that are not logically necessary.

An attractive alternative that avoids such problems is to learn and store
knowledge in the form of decision rules, and to generate from them an appropriate
decision tree “dynamically,” as needed. Decision rules represent knowledge
declaratively, and thus do not impose any order on the evaluation of the attributes.
Due to the lack of “order constraints,” rules can be evaluated in many different
ways. Since the number of rules per class is typically much smaller than the
number of examples per class, generating a decision tree from rules can potentially
be done “on line,” without a delay noticeable to the user. Such “virtual” decision
trees can be tailored to any given decision making situation.

This approach may allow one, for example, to generate a decision tree that
avoids evaluating an attribute that is difficult or impossible to measure for some
decision making situation, or that fits well a particular frequency distribution
of decision classes. In some situations, it may be unnecessary to gemerate a
complete decision tree, but instead to generate only the part of it, whose leaves
are associated only with decision classes of interest. Thus, such an approach has
many potential advantages.

On the other hand, it has a disadvantage that it requires determining decision
rules first. There exist, however, efficient methods for generating decision rules
from examples (rules can also be generated by an expert). The needed decision
rules have to be generated only once, and then they can be used many times
for generating decision trees according to changing requirements of decision
making situations.

This paper presents a simple and efficient method for generating decision trees
from decision rules. It also reports preliminary results from experiments compar-
ing it with a well-known C4.5 method for learning decision trees from examples.

2. A brief description of the AQ15 rule learning program

The proposed method, called AQDT-1 (AQ-derived Decision Tree - 1), generates
decision trees from decision rules. The decision rules used by the program are
generated from examples by an AQ-type inductive learning system, specifically,
by AQ15 (Michalski et al., 1986) or AQ17-DCI (Bloedorn and Michalski, 1991a,
b). In order to make the paper self-contained, we briefly describe the AQ15
and AQ17-DCL

AQ15 learns decision rules for a given set of decision classes from examples
of decisions, using the STAR methodology (Michalski, 1983). The simplest
algorithm based on this methodology, called AQ, starts with a “seed” example
of a given decision class, and generates a set of the most general conjunctive
descriptions of the seed (alternative decision rules for the seed example). Such
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a set is called the “star” of the seed example. The algorithm selects from the
star a description that optimizes a criterion reflecting the needs of the problem
domain. If the criterion is not defined, the program uses a default criterion that
selects the description that covers the largest number of positive examples (to
minimize the total number of rules needed) and, with the second priority, that
involves the smallest number of attributes (to minimize the number of attributes
needed for arriving at a decision).

If the selected description does not cover all examples of a given decision
class, a new seed is selected from uncovered examples, and the process continues
until a complete class description is generated. The algorithm can work with
few examples or with many examples, and optimize the description according to
a variety of easily-modifiable hypothesis quality criteria.

The learned descriptions are represented in the form of a set of decision
rules, expressed in an attributional logic calculus, called variable-valued logic 1
or VL1 (Michalski, 1973). A distinctive feature of this representation is that it
employs, in addition to standard logic operators, the internal disjunction operator
(a disjunction of values of the same attribute in a condition) and the “range”
operator (to express conditions involving a range of discrete or continuous
values). These operators help to simplify rules involving multivalued discrete
attributes; the second operator is also used for creating logical expressions
involving continuous attributes.

AQ15 can generate decision rules that represent either characteristic or discrim-
inant concept descriptions, depending on the settings of its parameters (Michalski,
1983). A characteristic description states properties that are true for all objects
in the concept. The simplest characteristic concept description is in the form
of a single conjunctive rule (in general, it can be a set of such rules). The
most desirable is the maximal characteristic description, that is a rule with the
longest condition part, i.e., stating as many common properties of objects of the
given class as can be determined. A discriminant description states properties
that discriminate a given concept from a fixed set of other concepts. The most
desirable is the minimal discriminant descriptions, that is a rule with the shortest
condition part. For example, to distinguish a given set of tables from a set
of chairs, one may only need to indicate that tables “have large flat top.” A
characteristic description of the tables would include also properties such as
“have four legs, have no back, have four corners, etc.” Discriminant descriptions
are usually much shorter than characteristic descriptions.

Another option provided in AQ15 controls the relationship among the gen-
erated descriptions (“rulesets” or “covers”) of different decision classes. In the
“IC” (Intersecting Covers) mode, rulesets of different classes may logically inter-
sect over areas of the description space in which there are no training examples.
In the “DC” (Disjoint Covers) mode, descriptions of different classes are log-
ically disipint. The DC mode descriptions are usually more complex, both in
the number of rules and the number of conditions. There is also a “DL’ mode
(a Decision List mode, also called “VL' mode — for variable-valued logic mode),
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in which the program generates rulesets that are linearly ordered. To assign a
decision to an example using such rulesets, the program evajuates them in order.
If ruleset i is satisfied by the example, then the decision is made, otherwise, the
program proceeds to the evaluation of the ruleset i+I. In IC and DC modes,
_ rulesets can be evaluated in any order.

Alternatively, the system can use rules from the AQ17-DCI program for
Data-driven Constructive Induction. AQ17-DCI differs from AQ15 mainly in
that it contains a module for generating additional attributes. These attributes
are various logical or mathematical combinations the original attributes. The
program generates a large number of potential new attributes, and selects from
them those most promising based on an “attribute quality” criterion.

To illustrate the format of rules generated by AQ15 (or AQ17-DCI), an
exemplary ruleset is shown in Figure 1. The ruleset (that can be re-represented
as a disjunctive normal form expression) describes a voting record of Democratic
Representatives in the US Congress.

R1: [Gas.cont.ban = yes] & [Socseccut = no v not-reg.]

R2: [Draft = Yes v vote not-reg.] & [Alaska_parks = yes v vote
not registered.] & [Food stamp.cap = no] &
[State = northeast v northwest]

. R3: [Chrysler = yes v not-reg.] & [Income = low]

R4: [Education = yes] & [Occupation = yes]

Figure 1. A ruleset generated by AQ15 for the concept “Voting Pattern of Democratic Representa-

tives.”

Each rule is a conjunction of elementary conditions. Each condition expresses
a simple relational statement. For example, the condition [State = northeast v
northwest] states that the attribute “State” (of the Representative) should take
the value ‘northeast’ or ‘northwest’ to satisfy the condition.

The above rules were generated from examples of the voting records. For
illustration, below is an example of a voting record by a Democratic representative:

Draft registration=no; Ban of aid to Nicaragua =no; Cut expenditure on mx mis-
siles =yes; Federal subsidy to nuclear power stations =yes; Subsidy to national parks
in Alaska =vyes; Fair housing bill =yes; Limit on Pac contributions =yes; Limit on
food stamp program=no, Federal help to education=no; StateFrom =north east;
State Population =large; Occupation =unknown; Cut in social security spending =no,
Federal help to Chrysler corp =not-registered. )

By expressing elementary statements in the example as conditions, and linking
conditions by conjunction, the examples can be re-expressed as decision rules.
Thus, decision rules and examples formally differ only in the degree of generality.
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3, Generating decision trees from decision rules
3.1. Related research

Decision trees are normally generated from examples. The essential aspect of any
such method is the attribute selection criterion that is used for choosing attributes
to be assigned to the nodes of the tree being built. Criteria for that purpose
include the entropy reduction measure (¢.g., Quinlan, 1979), the gini index of
diversity (Breiman et al., 1984), and many others (Cestnik and Karalic, 1991;
Mingers, 198%a).

An early algorithm for generating decision trees from examples was proposed
by Hunt, Marin and Stone (1966). This algorithm was subsequently modified by
Quinlan (1979, 1983), and improved and/or applied by many authors to a variety
of learning problems (e.g., Quinlan, 1983, 1985; Breiman et al., 1984).

Later, Quinlan (1986) and Bratko and Kononeko (1987) extended the method
to handle also data with noise (by pruning). Such a method consists of two
phases: the creation of an initial decision tree, and “tree pruning,” done by
removing subtrees with small statistical validity, and replacing them by leaf
nodes. More recently, pruning has also been used for simplifying decision trees
even for noiseless problems (Cestnik and Bratko, 1991). Pruning decision trees
improves their simplicity, but reduces their predictive accuracy on the training
examples. Quinlan (1990) proposed also a method to handle the “unknown
attribute value” problem, by exploring probabilities of an example belonging to
different classes.

The AQDT-1 method proposed here generates decision trees from decision
rules. As mentioned earlier, decision rules used in this method are obtained
by an AQ-type inductive learning program (AQ15 or AQ17-DCI). One problem
in developing a method for generating decision trees from decision rules is to
design an attribute selection criterion that is based on the properties of the
rules, rather than of the fraining examples. A decision rule normally describes
a number of possible examples. Only some of them are examples that have
actually been observed, i.e., training examples. An attribute selection criterion
needs to analyze the role of each attribute in the rules. It cannot be based on
counting the numbers of training examples “covered” by each attribute value,
as done in learning decision trees from examples, because training examples are
assumed to be unavailable.

Another problem in learning decision trees from decision rules stems from the
fact that decision rules constitute a more powerful knowledge representation than
decision trees. They can directly represent a description in an arbitrary disjunctive
normal form, while- decision trees can represent directly only descriptions in the
“disjoint” disjunctive normal form. In such descriptions, all conjunctions are
mutually logically disjoint. Therefore, when transforming a set of arbitrary
decision rules into a decision tree, one faces an additional problem of handling
logically intersecting rules,
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The solution of the first problem (attribute selection) in the AQDT-1 system
is based on the earlier work by Michalski (1978), which introduced a general
method for generating decision trees from decision rules. The method aimed at
producing decision trees with the minimum number of nodes or the minimum
cost (where the “cost” was defined as the total cost of classifying unknown
examples, given the cost of measuring individual attributes and the expected
probability distribution of examples of different decision classes). The method
proposed several attribute selection algorithms of increasing power (the nth
order cost estimates, » = 1,2,...), and analyzed two specific criteria, MAL
and DMAL, for selecting the “optimal” attribute for a node in the tree, based
on rule properties. The MAL criterion (“minimizing added leaves”) secks an
attribute that minimizes the estimated number of additional nodes in the decision
tree being generated over a hypothetical minimal decision tree. The AQDT-1
uses an approximate version of this criterion (the “attribute dominance™). The
DMAL criterion (“dynamically minimizing added leaves”) is based on the similar
principle as MAL, but is more powerful, because it takes into consideration
additional information. DMAL is more difficult to implement, and the current
version of the program does not include it.

3.2. The AQDT-1 method for anribute selection

In its basic form (the default version), the attribute selection method employed
in AQDT-1 seeks the simplest (i.e., with the minimum number of nodes) decision
tree. In a more general form, the method seeks the minimum-cost decision tree,
that is, a tree that minimizes the overall cost of making classification decisions.
If measuring different attributes involves different costs, these costs are taken
into consideration. If some decision classes occur much more frequently than
others, then the method should favor measuring first the attributes occurring in
the rules for the most frequent classes. The issue of producing the simplest trees
is addressed first, and then it is shown how the method is modified to address
the minimum cost requirement.

The method for choosing attributes on the basis of rule properties is based
on an aftribute utility ranking that is based on three elementary criteria: (1)
disjointness —that captures the attribute effectiveness in discriminating among
decision rules of different decision classes, (2) dominance—that measures the
attribute relevance by counting the number of rules that contain the attribute,
and (3) extent—that measures the number of different attribute values present
in the rules.

The disjointness of an attribute is defined as the sum of the artribute class
disjointness —the disjointness of the attribute for each decision class. Suppose
decision classes are Ci, C, ..., Cn, and decision rulesets for these classes have
been determined. Given attribute A, let Vi, V2 ..., Vi, denote sets of the values
of attribute A that are present in rulesets for classes Cy, G, ..., Co, Tespectively.



LEARNING DECISION TREES FROM DECISION RULES 285

If a ruleset for some class, say, C. contains a rule that does not involve the
attribute A, than V, is the set of all possible values of A (the domain of A).

‘DEFINITION 3.1. The degree of class disjointness, D(A, C;) of artribute A for the
ruleset of class C;, is the sum of the degrees of disjointness, D(A, C;, C;), between
the ruleset for C; and rulesets for C;, j = 1,2,...,m, j # i. The degree of
disjointness between the ruleset for C; and the ruleset for C; is defined by

0, fVCV;
1, VoW
D(4, G, Cy) = 4
2, fVinVi#gorViorV
3, ifVinVi=¢

where ¢ denotes the empty set.

DEFINITION 3.2. The disjointness of attribute A for evaluating a given set of
decision rules is the sum of the degrees of class disjointness for each decision class:

DAy = 3°D(4, C) where D(A,C) = Y D(A, Ci, C) )
iml i=] j@i

The disjointness of an attribute ranges from 0, when the attribute values in
rulesets of different classes are all the same, to 3'm’(m — 1), when every ruleset
of a given class contains a different set of the attribute values. Selecting an
attribute with the maximum possible disjointness produces a node of the decision
tree whose children can be immediately assigned decision classes.

The second elementary criterion, dominance, prefers attributes that appear in
large number of rules, as this indicates their high relevance for discriminating
among ruleset of given decision classes. Since some conditions in the rules
have values linked by internal disjunction, counting such rules directly would not
reflect properly their relevance. Therefore, for computing the dominance, the
rules are counted as if they were converted to elementary rules that do not have
internal disjunction. Such a conversion is done by “multiplying out” the condition
parts of the rules containing internal disjunction. For example, the condition
part [z3 = 1 v 3]&[z4=1] is “multiplied out” to two rules with condition parts
[z3=1]&[z4=1] and [z3=3]&[zd4=1].

The third elementary criterion, extent, prefers attributes with fewer values
in the rules. Nodes that are assigned such attributes will have a smaller fan
out. When attributes are continuous, they are quantized into discrete units
representing ranges of values.

The above three elementary criteria are combined into one general attribute
" ranking measure using the “lexicographic evaluation functional with tolerances”
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(LEF) (Michalski, 1973). The LEF allows to combine the elementary criteria in
different ways. In the default combination, the LEF is defined as

(Disjointness, 1; Dominance, +2; Extent, 73)

where r1, r2, v3 are tolerance thresholds.

The above LEF ranks attributes this way. First, attributes are evaluated on
the basis of their disjointness, If two or more attributes share the same top
score, or their scores differ less than the assumed tolerance threshold =1, the
method evaluates these attributes using the second (dominance) criterion. If
again two or more attributes share the same top score or their scores differ
less than the tolerance threshold 72, then the third criterion, extent, is used. If
there is still a tie, the method selects the “best” attribute randomly. The system
tries for maximize disjointness and dominance of an attribute, while minimizing
the extent.

In the nondefault version of the attribute selection criterion, the above definition
changes as follows. If the costs of measuring attributes are known and are
nonuniform, then the attribute selection method seeks the minimum cost attribute.
If an attribute cannot be measured, then its cost is assumed to be infinite.

The attribute ranking criterion is defined by a LEF consisting of four elemen-
tary criteria:

(Cost, r1; Disjointness, 72; Dominance, 73; Extent, T4}

where the Cost denotes the evaluation cost of an attribute and is to be minimized,
while other elementary criteria are treated the same way as in the default version.
Thus, attributes with minimum or comparable costs (within the defined tolerance)
will have the preference over other attributes. Finally, if one wants 1o take into
consideration a nonuniform distribution of examples of different classes, then
the attribute ranking criterion is modified by differently evaluating the degree of
attribute disjointness. Namely, the previously defined degree of disjointness for
a given class is multiplied by the frequency of examples of this class.

3.3. The AQDT-I algorithm :

AQDT-1 constructs a decision tree from decision rules by recursively selecting at
each step the “best” attribute according to the above-described attribute ranking
measure, and assigning it to the new node. The process stops when the algorithm
creates terminal branches that are assigned decision classes.

To facilitate such a process, the system creates a special data structure for
each concept description (ruleset). This structure has fields such as the number
of rules, the number of conditions in each rule, and the number of attributes
in the rules. The system also creates an array of attribute descriptions. Each
attribute description contains the attribute’s name, domain, type, the number of
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legal values, a list of the values, the number of rules that contain that attribute,
and values of that attribute for each rule. The attributes are arranged in the
array in the a lexicographic order, first, in the descending order of the number
of rules that contain that attribute, and second, in the ascending order of the
number of the attribute’s legal values.

The system can work in two modes. In the standard mode, the system
generates standard decision trees, in which each branch has a specific attribute
value assigned. In the compaet mode, the system builds a decision tree that
may contain:

(A) “or” branches, i.e., branches assigned an internal disjunction of attribute
values, whenever it leads to simpler trees. For example, if a node assigned
attribute A has a branch marked by values “1 v 2,” then the control passes along
this branch whenever 4 takes value 1 or 2. The program creates “or” branches
on the basis of the analysis of the value sets V;, while computing the degree of
attribute disjointness.

(B) nodes that are assigned derived attributes, that is, attributes that are certain
logical or mathematical combinations of the original attributes. To produce
decision trees with derived attributes, the input decision rules are generated by
program AQI17-DCI (rather than AQ15). The AQI17-DCI rules may contain
conditions involving attributes constructed by the program, rather than those
originally given. If a AQ17-DCI discovers a particularly useful attribute, then
the decision rules and consequently the derived from them decision trees can
be significantly simplified (compare, for example, decision tree in Figure 9b with
the one in Figure 11).

To generate decision trees from rules, the method uses characteristic descrip-
tions generated in the “DC" (disjoint cover) mode of the AQ15 (or AQ17-DCI)
program. The reason for using characteristic descriptions is that they offer a
greater choice of attributes in the process of building a decision tree, and this
may lead to simpler decision trees. The reason for disjoint rulesets is that they
are more suitable for building decision trees, as the latter are equivalent to sets
of logically disjoint descriptions.

Assume that the input contains characteristic descriptions of the given decision
classes. The description of each class is in the form of a ruleset. Assume that
this set is the initial ruleset context,

Step 1. Evaluate each attribute occurring in the ruleset context using the LEF
attribute ranking measure. Select the highest ranked attribute. Suppose it is
attribute A.

Step 2. Create a node of the tree (initially, the root, afterwards, a node
attached to a branch), and assign to it the attribute A. In the standard mode,
create as many branches from the node, as there are legal values of the attribute
A, and assign these values to the branches. In the compact mode, create as
many branches as there are disjoint value sets of this attribute in the decision
rules, and assign these sets to the branches.
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Step 3. For each branch, associate with it a group of rules from the ruleset
context that contain a condition satisfied by the value(s) assigned to this branch.
For example, if a branch is assigned values i of attribute A, then associate with
it all rules containing condition [A=iv ...]. Ifa branch is assigned values i V j,
then associate with it all rules containing condition [A=ivjv...]. Remove
from the rules these conditions. If there are rules in the ruleset context that do
not contain attribute A, add these rules to all rule groups associated with the
branches stemming from the node assigned attribute A. (This step is justified
by the consensus law: [z=1] = { [z=1] & [y=a] V [z=1] & [y=b] }. assuming
that a and b are the only legal values of y.) All rules associated with the given
branch constitute a ruleset context for this branch.

Step 4. If all the rules in a ruleset context for some branch belong to the same
class, create a leaf node and assign to it that class. If all branches of the trees
have leaf nodes, stop. Otherwise, repeat steps 1 to 4 for each branch that has
no leaf.

The algorithm was implemented in the C language on the SPARC II machine.
The average running time of the algorithm, for the experiments presented in this
paper, was below one second.

3.4. An example illustrating the algorithm
The following simple example illustrates the AQDT-1 algorithm. Suppose there

are three decision classes, C1, C2, & C3, described by the AQ15-derived ruleset
shown in Figure 2.

(€1 <=[z1=2] & [22=2]  Cle=[z1=3] & [z3 = 1 v 3] & [z4=1] }
{C2 <=[z1=1v2]&[22=3v4] ,Cl<=[z1=3] & [s3=1v2] & [z4=2] }
{C3 <=[z1=1] & [z2=1] . C3<=[zl=4] & [z3 = 2v 3] & [z4=3] }

Figure 2. Rules used for illustrating the algorithm.

Suppose that these rules constitute the initial ruleset context. Table 1 presents
information on these rules and the values of elementary criteria computed for
all attributes. For each class, the row marked “Values” lists values occurring in
the ruleset for this class. For evaluating the disjointness of an attribute, say A,
each rule in the ruleset above that does not contain attribute A is characterized
as having an additional condition [A= a vb..], where a, b, ... are all legal
values of A. '

The row “Class disjointness” specifies the class disjointness for each attribute.
The attribute =1 has the highest disjointness (11), and is assigned to the root of the
tree. For simplicity, assume the tolerances for each elementary criterion equal (.

From the rules in Figure 2, we can also determine disjoint groupings of
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Table . Determining values of the sclection criteria for each attribute.

Attributes

Class zl x2 z3 4
Cl Values 23 1.4 1.3 1.3

Class disjointness 3 0 0 0
c2 Values 1,23 1.4 1.3 1.3

Class disjointness 3 0 L] ]
Cc3 Values 1,4 1.4 1.3 1.3

Class disjointness 5§ 0 0 1}
Attribute Disjointness 1 0 1] 1]
Attribute Dominance 12 fi [ 6
Attribute Extent 4 4 3 3

attribute values used for the compact mode of the algorithm. This done as
follows: (1) determine for each attribute the sets of values that the attribute
takes in individual decision rules, and remove those value sets that subsume other
value sets. The remaining value sets are assigned to branches stemming from
the node marked by the given attribute. For example, z1 has the following value
sets in the individual decision rules: {2}, {3}, {1. 2}, {1}, and {4} (Figure 2).
Value set {1, 2} is removed as it subsumes {2} and {1}. In this case, branches
are assigned individual values of the domain of zl. For attribute 2, the value
sets are {1}, {2}, {3, 4}, and {1, 2, 3, 4}. In this case, branches are assigned
value sets: {1}, {2} and {3, 4}.

Attribute x1 ranks highest (as it is the highest disjointness), and is assigned
to the root of the tree. Four branches are created each one is corresponding to
one of z1 possible values. Since all rules containing {z1=4} belong to class C3,
the branch marked by 4 is ended by a leaf C3. Rules containing other values
of z1 belong to more than one class.. This process is repeated for cach subset
of rules until the decision tree is completed. Figure 3a shows a conventional
decision tree, and Figure 3b a compact decision tree learned from these rules.
For combinations of attribute values that do not lead to any leaf, the decision tree
assigns no decision (“unknown” decision). Figure 4a shows the diagrammatic
visualization of the decision rules and Figure 4b of the derived decision tree.

Each diagram in Figure 4 consists of cells representing one combination of
attribute values. Attributes and their legal values are shown on scales surrounding
the diagram (e.g., the horizontal scale for z1 shows values 1, 2, 3 and 4). Rules
correspond to collections of cells in the intersection of the rows and columns
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Figure 3, Decision tree generated for the rules in Figure Z
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Figure 4. A diagrammatic visualization of the decision rules and the derived decision tree.

corresponding to the conditions in the rules. The shaded areas correspond to
individual rules. Rules of the same class have the same type of shading. Empty
cells correspond to combination of attribute values not assigned to any class.
For illustration, collections of cells corresponding to some of the initial rules are
marked R11, R21, R31, and R32. R11 denotes the first rule of Class C1, ie.,
(z1=2] & [z2=2]; R21 denotes the first rule of class C2, i, {[z1 =1v2] &
[#2 = 3 v 4], R31 the first rule of class C3, i.e., [zr1=1] & [z2=1]; and denotes
R32 denotes the second rule of class C3, i.e., [z1=4] & [£3 = 2 v 3] & [z4=13] }.
Comparing diagrams in Figure 4a and 4b, one can see that the derived decision
tree represents a slightly more general description of Concepts C1, C2, and C3
than original rules.

Let us assume that determining the value of =2 is impossible, which is indicated,
to AQDT-1 by assigning very high cost to z2. The algorithm assigns again attnibute
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zl to the root of the tree. When zl takes value 1 or 2, it is impossible to
assign a specific decision without measuring attribute 2. For the value 1 of z1,
the decision class can be C2 and C3 (see the diagram in Figure 4a), and for
the value 2 of =1, the decision class can be C1 or C3. However, for the value
3 of zl, one can make a specific decision after measuring attributes z4. For
the value 1 of x4 decision is C1, and for the value 2 of =4 the decision is C2.
Figure 5 shows the obtained decision tree. Such a tree is called indeterminate,
because some of its leafs are assigned a disjunction of two or more class names.
These leafs indicate situations in which without measuring =2 one cannot make
a specific decision.

x1

L Complexity
Mo. of nodes: 2
Na. of leaves: 5

Figure 5. The indeterminate decision tree gencrated from rules in Figure 2 under the assumption of
unavailability of z2.

Let us now suppose that xl, which was determined as the highest ranked
attribute, cannot be measured. Each of the remaining attributes, =2, =3 and =4,
has disjointness () and dominance 6. The extent of z3 and =4 is 3 (the number
of difference values in rules), and of z2 is 4. The algorithm selects randomly
an attribute between z3 and z4, and assigns it to the root of the tree. Suppose
it is z4. After continuing the algorithm, the tree in Figure 6 is obtained. The
nodes that are assigned one class indicate situations in which it is possible to
make a specific decision:without knowing the value of attribute z1. Figure 7
shows a diagrammatic visualization of each class individually without using 1.
The shades areas in these diagrams that do not have common cells indicate
situations (combinations of attribute values) for which it is possible to make a
specific decision without knowing the value of z1. If 1 can be measured, but
measuring is very expensive, then the decision tree will have a node assigned z1
as far as possible from the root.

3.5. Experiment ]

This experiment illustrates the application of AQDT-1 to the so-called MONK-1
problem (Thrun, Mitchell & Cheng, 1991). This problem is to learn a concept
from 124 training examples (62 positive and 62 negative) expressed in terms



292 IMAM AND MICHALSKI

Complexiry
No. of nodes: 4
No. of leaves: 12

Figure 6. An indeterminate decision tree gencrated from rules in Figure 2 under the assumption that
rl cannot be measured.
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Figure 7. A diagrammatic visualization of the individual classes and the decision trees that do not
contain zl node.

of 6 multivalued attributes. These training examples constitute 30% of the all
possible examples (432), thus the “density” of the training examples is relatively
high. For comparison, the well-known program C4.5 for learning decision trees
from examples was also applied to this same problem.

It was assumed that both programs should produce a complete and consistent
decision tree with regard to the training examples, i.e., a decision tree that gives
100% correct performance on the training examples).

The C4.5 program has the capability of generating a decision tree for a
“window” of examples (a randomly selected subset of the training examples).
It starts with a randomly selected window, generates a trial tree, adds some
unclassified objects, and continues until its all training examples are classified
correctly, or it cannot produce a better tree. This entire process is repeated 10
times. The results presented here and for all experiments are the best result
obtained when running C4.5 with both default windows (maximum of 20% and
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twice the square root of number of examples) and 100% windows (i.c., the entirc
set of training examples).

The AQDT-1 program, running in the conventional mode and with the opti-
mality criterion set to minimize the number of nodes, produced a decision tree
with 41 nodes. The C4.5 program did not produce a consistent and complete
decision tree when run with its default window size (max. of 20% and ftwice
the square root of number of examples) nor with 100% window size. After
10 trials with different window sizes, we succeeded in making C4.5 produce the
same decision tree as AQDT-1 (using the window size of 72.5%). The tree is
presented in Figure 8.

25
2 3 &
@ xl 1l xl
2
1 3 2
x2 . e l x2 x2
3 FANE] .
1/ B 2 L e 1 3 ) 1/ BA\3 Wl A%
(4 (® B ) (8 ) ) b (1) 3
1/ B\3 1/ A3 ’Eﬁﬂ'mﬂﬁﬁﬂﬂ
OO OO BOO OO |noormmen
P - Positive N - Negative Mo. of leaves: 28

Figure 8. The decision tree for the MONK-1 problem generated both by AQDT-1 (in conventional
mode) and C4.5.

By running AQDT-1 in “compact” mode, a simpler decision tree was pro-
duced (Figure 9a). In the final experiment, we used AQ17-DCI (Bloedorn and
Michalski, 1991a, b) to derive decision rules. These rules were

Pos <= [z5 = 1]V [z1=22] and Neg <= [z5#1] & [z1# 22]

From these rules, the system produced the compact decision tree presented in
Figure 9b. It should be noted that decision trees in Figures B, 9a, and 9b are
all logically equivalent, and they all have 100% prediction accuracy on testing
examples (which means that they represent exactly the target concept).

3.6. Experiment 2

To test AQDT-1 on a real-world problem, it was applied to learning patterns in
the U.S. Congress voting records of 1981. Again, for comparison, C4.5 was also
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15

Complexity :
No. of nodes: 5 Complexity
Mo, of leaves: 7 Mo. of nodes: 2
P - Positive M - Negative P - Pesitive M - Megative | No. of leaves: 3
(a) Compact decision tree derived from AQI15 rules. {b) Compact decision tree derived from

AQ17-DCI rules.

Figure 9. Compact decision trees gencrated by AQDT-1 for the MONK-1 problem.

applied to the same problem. There are two decision classes: the “Democratic
Voting Pattern” and the “Republican Voting Pattern.” Each voting record of a
Democrat or a Republican is described in terms of 19 multivalued attributes.
Qur experiment used 51 voting records (31 Democratic and 20 Republican).

The AQ15 inductive learning program generated four rules for the “Democratic
Voting Pattern,” and seven rules for the “Republican Voting Pattern.” Only 10
of 19 original attributes were used in the learned rules. The AQDT-1 program,
running in the conventional mode and with the optimality criterion set to minimize
the number of nodes, produced a decision tree with 20 nodes. The prediction
accuracy of the tree on the testing examples was 91.8%.

For comparison, C4.5, was also run on exactly the same data. C4.5 pro-
duced a decision tree with 23 nodes, and its prediction accuracy on the same
testing examples was 85.7%. (Both programs run under the assumption that
they will produce a complete and consistent decision tree with regard to the
training examples, i.c., a decision tree that gives 100% correct recognition on
the training examples).

To provide more details on this experiment, Table 2 presents attributes involved
in the decision rules, and their legal values (domains).

For simplicity, original symbolic values have been mapped into isomorphic
numerical values. These numerical values correspond to the symbolic values
listed in Table 2.

Figure 10 presents decision trees generated by AQDT-1 for the above Congres-
sional Voting problem (1981). Figure 10a shows a conventional decision tree,
generated from AQLS rules, and Figure 10b shows a compact decision tree, gen-
erated from AQ17-DCI rules. The compact decision tree contains some nodes
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Table 2. The U.S, Congressional voting attributes and their legal value sets.

Autribute Legal values

yl-Food stamp cap O-no 1=yes 2-not registered
y2-0Occupation (O=known 1-unknown

y3-Gas cont ban O-no 1-yes Z-not registered
yd-[ncome O-low 1-medium 2=high
yS-Education (—no 1-yes 2-not registered
yb=Chrysler O-no l=yes 2-not registered
y7=Draft ~no |=yes 2-not registered
yE-State O-northwest 1-northeast 2-not registered
y9-Soc sec cut O-no 1-yes 2-not registered
ylil-Alaska parks (~no 1-yes 2-not registered
y11-Wind tax limit O-no 1-yes 2-not registered
yl2-Nicaragua ban 0-no l=yes 2-not registered
y13-Fair housing O-no 1-yes 2-not registered
yld—Muc power O=no |—yes 2-not registered
y15-Pac limit O-no 1-yes 2-not registered
yl6-Mx cut O-no 1-yes 2-not registered
y17-Osha cut O=no l-yes 2-not registered
y18-Hosp cost cont O-no 1-yes 2-not registered
wl9-Population 0-small 1-medium 2-large

that are assigned comstructed attributes: %20, y21 and y22. These attributes
represent simple mathematical relations on the initial attributes. The attribute
420 is defined by the relation y7+y3 = 1 v 2. (The attribute takes value T (true)
whenever the sum of the numeric values of 47 and y3 equals one or two, and
value F (false), otherwise.) Attribute y21 is defined by the relation y12+y9<3,
and attribute y22 is defined by the relation y12—-y4 =0v 1.

For comparison, Figure 11 presents a decision tree generated by C4.5 for the
same problem.

Comparing decision trees in Figures 10 and 11, one can notice that the trees
generated from decision rules (conventional and compact) had a higher predictive
accuracy (91.8% vs. 85.7%) on testing examples and were simpler that the tree
generated directly from examples by C4.5.

3.7. Pruning AQDT-1 decision trees
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The predictive accuracy on testing examples is 91.8%.

(a) A conventional decision tree.

Complexity
No. of nodes: 7
Mo, of leaves: B
y3 - Gas_cont_ban y7 - Draft ¥y - Soc_sec_cul y12 - Nicaragus_ban D- Democrat
y6 - Chrysler ¥ - Stue y10 - Alaska_park y15 - Pac_limit R- Republican

y2=0T+yi=12) Yl=(y2+P¥sh
The predictive accuracy on testing examples is 91.8%.
(b) A compact decision tree.

Figure 10. Decision trees obtained by AQDT-1 for the Congressional Voting {1981) problem.



LEARNING DECISION TREES FROM DECISION RULES 297

y2 - Occupation ¥5 - Education ¥10 - Alska_parks 12 - Nicaragus_ban D- Democrat
yi - Income ¥6 « Chrysler yi1 - Wind_tax_Limit ¥13 - Fair_housing R- Republican

The prediciive accuracy on testing examples is 85.7%.

Figure 11, Decision tree obtained by C4.5 for the Congressional Voting (1981) problem.

When input data may contain errors (noise), it is often useful to “prune” parts of
the (consistent and complete) decision tree that have small statistical significance.
Such pruning protects the tree from over fitting. Various approaches to such “tree
pruning” have been described in (Mingers, 1989b; Breiman et al., 1984; Quinlan,
1986, 1987; Niblett and Bratko, 1986; Cestnik and Karalic, 1991; Clark and
Niblett, 1987; Smyth et al., 1990; Cestnik and Bratko, 1991). These approaches
differ in the criteria for deciding whether or not to prune the tree at some level.
A comparison of these pruning approaches is in (Mingers, 1989b).

When decision trees are generated from decision rules, it is better to prune
the rules before they are used for determining the tree. Pruning decision rules
is done on basis of the “rule strength.” The rule strength is characterized by
its t-weight and w-weight. The t-weight (toral-weight) of a rule for some class
is the number of examples of that class covered by the rule. The u-weight
(unigue-weight) of a rule for some class is the number of examples of that class
covered only by this rule.

The proposed method follows ideas presented in (Michalski et al, 1986),
namely, to prune rules of small strength, specifically, the rules with the t-weight
or the u-weight below certain threshold. So pruned rules are used for determining
a decision tree. For example, in the Congressional voting domain, four rules
characterize Democratic records and seven rules characterize Republican records.
Of these 11 rules in toto, five rules have t-weight equal 1. These five rules (one
for the Democratic vote class and four for the Republican vote class) are pruned
(truncated). The remaining rules are used for creating decision tree using the
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Explanation: The complete (unpruned) trec generated by AQDT-1 had 20 nodes, and the one
generated by C4.5 had 23 nodes.

Figure 12. The dependence of the predictive accuracy of the decision tree on the size of the tree
after pruning for the Congressional Voting problem (1981).

AQDT-1 algorithm. The decision tree learned this way had 18 nodes (vs. 20
nodes in the decision tree obtained from the unpruned rules), and the prediction
accuracy of 91.8% on the testing examples (no change), and 94.1% on training
examples (vs. 100%). The results of further pruning are presented in Figure 12.

For comparison, C4.5 generated a consistent decision tree with 23 nodes before
pruning (Figure 11). After pruning it had 7 nodes and prediction accuracy of
88.2% on the training examples and 83.1% with testing examples. Figure 12
presents the dependence of the predictive accuracy on the size (the number
of nodes) of the pruned tree for the Congressional voting problem (1981).
The experiment was done using training examples (Figure 12a) and testing
examples (Figure 12b).
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4. Comparing learning behavior of AQDT-1 and C4.5

This section presents experiments comparing the learning behavior of AQDT-1
and C4.5 when learning from the training data sets of varying size. These
experiments were performed for the U.S. Congressional Voting (1984) problem,
and the MONK-1 problem (described earlier).

There are many ways to test the performance of learning systems, such as
hold-out, leave-one-out, and cross-validation (e.g., Arciszewski, Dybala and Wnek,
1992). In comparing learning systems, one should apply them to training datasets
of different sizes. In this experiment, we applied a variation of the hold-
out method, in which the training set of examples varies from experiment
to experiment.

Experiments were performed for two problems. One was the U.S. Congres-
sional Voting problem (1984). Each example was described in terms of 16
attributes. There were two decision classes, and total 216 examples, The exper-
iments tested the change in the number of nodes and the predictive accuracy
with varying the number of training examples used for generating a decision tree
by AQDT-1 and C4.5. The experiment was done with C4.5 using two window
options, the default option (maximum of 20% the number of examples and twice
the square root the number of examples), and with 100% window size (one trial
per each setting), In the Congressional Voting (1984) problem, the sizes of the
set of training examples were 8%, 16%, 24%, 31%, 39% and 52% of the total
number of training examples (216 examples in total; half of the examples were
in one class and the second half in the other class).

Another problem used for testing was the MONKS’ first problem. The MONK-
1 data had in toto 432 examples, half of them representing one decision class,
and the other half representing the second class. In Monk-1 problem, the sizes
" of the set of training examples were 5%, 10%, 15%, 20%, 25% and 34% of the
total set of training examples (100% stands for 432 examples).

Figures 13a and b show the results graphically for the Congressional voting
record (1984). Figures 14a and b show the results graphically for the MONK-1
problem.

Table 3 and Figures 13 and 14 indfcate that AQDT-1 generated decision trees
had a higher accuracy and were simpler than decision trees produced by C4.5.
Also, the variations of the size of the AQDT-1's trees with the change of the
size of training example set were somewhat smaller,

5. Conclusion

The paper argues for generating decision trees from decision rules rather than
from examples, as has been done conventionally. The reason for the proposed
approach is that it is easier to generate a decision tree tailored to any given
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(b) The size of the decision tree as a function of the size of the set of the training examples.

Figure 13. The predictive accuracy of the AQDT-1 and C4.5 decision trees for the Congressional
Voting 1984 problem as a function of the size of the set of training examples.

decision making situation from rules than to modify a decision tree once created.
The presented method, AQDT-1, efficiently determines a decision tree from
decision rules generated by the AQ15 or AQ17-DCI inductive learning programs.
The paper introduced also the idea of a “compact” decision tree, in which
branches can be associated with a set of attribute values and nodes with attributes
derived from initial attributes via constructive induction. Compact decision trees
generated by the method were consistently simpler than conventional trees.
The main difference between determining trees from decision rules and deter-
mining them from examples is in the attribute selection criterion. In the former
case, the attribute selection function needs to evaluate the role of attributes in
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(b) The size of the decision tree as a function of the size of the set of the training examples.

Figure I4. Comparing decision trees for MONK-1 data generated by C4.5 and AQDT-1.

the rules, while in the latter case, the criterion evaluates the way the attribute
splits the training examples. The AQDT-1 method uses an attribute ranking
criterion composed of three elementary criteria: the dominance and the extent
of an attribute in the decision rules. Further research will investigate other
attribute selection criteria for generating decision trees from rules.

A disadvantage of the proposed method is that it requires a generation of
decision rules first. However, there are efficient rule learning systems. The
AQDT-1 method uses the AQ15 or AQ17-DCI learning programs for this purpose.
Since the method is independent on what rules are used as input, it could
potentially be applied also with other decision rule learning systems, or with
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Table 3. A tabular summary of the predictive accuracies of decision trecs obtained by AQDT-1 and
C4.5 (as shown in Figures 13 and 14).

Experiment

Relative size

of training Accuracy (%)  Number of nodes
Problem data (%) C45 AQDT C45 AQDT
Congressional 8 95.7 95.7. 3 3
Voting 1984 3 91.4 931 7

52 94.8 94.8 9

5 72.6 6.6 10 15

MONEK-1 20 B4.2 B8.8 a7 35

34 92.4 100.0 61 41

decision rules acquired from an expert.

One advantage of the proposed method is that it allows one to efficiently
determine a decision tree that is optimized for a given decision making situation.
For example, when some attribute is difficult to measure, the method creates
a decision tree that shows in which situations measuring this attribute can be
avoided. The method is quite efficient, and the time of determining a decision
tree from decision rules in the cases we investigated was negligible. Therefore,
it is easily to experiment with different criteria for tree generation in order to
obtain the most desirable tree.

Another advantage is that decision trees obtained this way tend to be simpler
and have higher predictive accuracy. In the experiments done so far, the AQDT-
1 generated decision trees have consistently outperformed those generated by
C4.5 program both in terms of predictive accuracy and simplicity of the decision
tree. In the experiments, the program was applied to a made-up problem and a
real-world problem.
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