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AQ17: A Multistrategy Learning System:
The Method and User’s Guide

Abstract

AQ17 is a system for acquiring decision rules or trees from examples and counterexamples and/or
from previously learned decision rules. When learning rules, AQ17 uses 1) back;mund
knowledge in the form of rules (input hypotheses), 2) the definition of descriptors and their types
and 3) a preference criterion that evaluates competing candidate hypotheses. Each training example
characterizes an object, and its class-label specifies the correct decision associated with that object.
The generated decision rules are expressed as symbolic descriptions involving relations between
objects” attribute values. Rule generation is guided by a user-defined rule-preference criterion. The
user-defined criterion ranks the importance and tolerance of a number of measures of rule quality
including rule complexity, cost and coverage. AQ17 has a number of new features including four
for various types of representation space modification. These types include data-driven
constructive induction, hypothesis-driven constructive induction, concept-based example removal,
and attribute-value discretization. AQ17 also includes a method for generating decision trees from
decision rules, as well as a decision rule testing utility for evaluating the predictive accuracy of the
generated rules.

_Ksj' words: Concept learning, Inductive inference, Learning from examples, Constructive
induction
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1. Introduction

The AQ17 program learns decision rules or trees by performing inductive inference over a set of
teacher<lassified training examples and/or a set of initial rules. Training examples are expressed as
conjunctions of attribute values. Initial or induced decision rules are logical expressions in
disjunctive normal form. The program performs a heuristic search through a space of logical
expressions, until it finds a decision rule which best satisfies the preference criterion and that
covers all positive examples, but no negative examples. The program implements the STAR
method of inductive leaming (Michalski, Larson 1983). It is hasedp on the AQ algorithm for solving

the general covering problem (Michalski, 1969).

The AQ17 program is an immediate descendent of AQL5. The program AQ15 was written in
Pascal by Jiarong Hong and Igor Mozetic as an improvement of the GEM (Generalization of
Examples by Machine) program written by Bob Stepp and Mike Stauffer. GEM was written from
scratch and was not a modified version of the AQ7-AQ11 series of programs on the Cyber 175
(Michalski 1969; Michalski and Larson 1975, 1978, 1983).

AQ17 includes a number of new features that extend the functionality of previous versions. One
change from previous versions is the language in which it is writen. ACEI".-‘ has been ported to
ANSI-C. The most important advantage of this change is that it reduces the need to use limiting
system-defined data structures. In particular, the Pascal set structure which under Sun Pascal was
limited to a cardinality of 58, was very restrictive as it limited the cardinality of attribute values sets
to 58. The ANSI-C version has no presel limitations on the number of variables, the number of
values or the number of classes. In addition, the ANSI-C version is on average six times faster
than the previous implementation.

The implementation of such features was crucial for the development of the constructive induction
capabilities in AQ17 system. Constructive induction systems perform changes in the representation
space, i.e. they may change the number of attributes and/or attribute values. The dynamic
evaluation of the needs for computing resources and dynamic allocation provides such flexibility.

AQ17 includes the functionality of AQ17-DCI (Bloedomn and Michalski, 1992) and AQ17-HCI
(Wnek and Michalski 1992). This provides the user with the ability to do both data-driven (DCI)
and hj;fothf,sis-dﬁven (HCI) construction of new attributes and hypothesis-driven attribute

removal. AQ17 can now also take continuous-valued attributes as input. These input values are

discretized using a method based on a %2 analysis (Kerber, 1992). Another feature related to the
input data involves the format of the example data. In AQ17 all examples are in one data table with
the decision variable. There is no longer any special need 1o build separate tables of examples
based on the value of the decision variable. However, AQ17 also accepls data in the old format, in
additiojn to the new format. A complete discussion of data formats is provided in section 4.9.
Other new functions of AQ17 include a method for dealing with noisy data using concept-based
filtration of training data (AQ-NT; Pachowicz, Bala 1992), and a method for learning decision trees
from decision rules (AQDT-1; Imam and Michalski, 1993).

One new constraint in AQ17 is the requirement that the declarations of types and variables precede
input data (in the form of examples or rules). This requirement is similar to those found in some
programming languages where variables must be declared before they are used. The general
structure of the input file is as follows:

« Parameters controlling the learning process (parameters, criteria-table)

« Definitions of knowledge types (domain_types, names tables)

« Attribute declarations (variables table)

« Background knowledge in the form of rules (a-rules, 1-rules, inhypo tables)



* Data (events tables)

ANSI-C language versions of AQ17 were implemented on three platforms: Sun Workstation, PC-
compatible, and Macintosh.

2. Knowledge Representation

AQ17 uses the VL, (Variable-valued Logic system 1) and APC (Annotated Predicate Calculus)
(Michalski, 1975, 1983) representational formalisms.

Training examples are given to AQ17 in the form of events. Events belong to two or more decision
classes. Positive examples are examples of the class for which rules are being currently
constructed. During this construction examples from all other classes are considered negative
examples. When rules for another class are being generated, the positive and negative example
labels are changed accordingly. For each class a decision rule or cover is produced that is complete
and consistent. A complete rule covers all of the positive examples. A consistent rule does not
cover any negative examples. The user may provide initial decision rules to the program. These
rules are treated as initial hypotheses. Intermediate results during the search for a cover are called

hypotheses or partial covers.
Each decision rule is described by selectors. Aselector is a relational statement and is defined as:
[TERM RELATION REFERENCE]

where:

TERM is an attribute

RELATION is one of the following symbols: <, <=, =, <, >=,>
REFERENCE is a value, a range of values, or an internal disjunction of values.

Selectors state that the attributes in TERM take values defined in REFERENCE. Examples of
selectors are shown below:

[color = red, white, blue]
[width = 5]
[temperature = 20...25, 50..60]

A complex (or a rule) is a conjunction of selectors. The following are examples of complexes:

[color = red, white, blue] [stripes = 13][stars = 1..50]
[width = 12] [ color = red,blue]

A cover (or a hypothesis) is a disjunction of complexes. The following is an example of a two
complex cover.

[color = red, white, blue] [stripes = 13][stars = 50] v
[color = red, white, blue] [stripes = 3][stars = 1]

A cover is satisfied if any of its complexes are satisfied, while a complex is satisfied if all selectors
in it are satisfied. A selector is satisfied if all attributes and expressions in it actually take one of the
specified values. The example cover just given can be interpreted as follows: an object is a flag if:

1) Its color ir red, white, or blue and it has 13 stripes and 50 stars on it, or
2) Its color is red, white, or blue and it has 3 stripes and 1 star on it.



3. Algorithm
3.1 Control Flow

Figure 1 is a flowchart of the AQ17 program. It shows the integration of seven modules under the
control of the user. The core of the AQ17 program is the AQ Learning module. This module is
extensively described in the following sections. For additional information see (Hong, Mozetic and
Michalski, 1986). Modules DCI, HCI, SCALE, and NT modify the representation space. The DT
Module provides a capability for generating a decision tre¢ from already learned rules. A brief
description of each module is included in this report.

Variables, Events, Hypotbeses

Input Control:
coatrol command

yes

| | 1 ]
DC1 HCI NT SCALE DT

(see Fig. 22) | | (see Fig. 20) | | (see Fig. 2¢) | | (seeFig-29) {see Fig. 2¢)

| | ] 1
l ATEST
AQ Learning Module (see Sec. 10)
- }
Output: _? no .
Rules Test Rules? STOP

Figure 1. AQ17 Algorithm

3.2 General Input Format

Input to AQ17 and all tools in the AQ family is in the form of a set of relational tables (Hong,
Mozetic, Michalski, 1986). Relational tables have three parts 1) a table-name, a header, and a list
of tuples. Legal table-names, headers and ruples are described below. All tables must be separated
by at least one blank line. Values within a header may be separated lt}v spaces or tabs. In many
cases some columns are optional (e.g. cost column in variables table). If an optional column is not
used then the default value is assigned. Table columns may also be ordered differently than is
&re.senwd here in some cases. For example in the domaintypes table levels may come before (to the
ft) or after (to the right) the cost column.



Data tables in AQ17 can be provided in two formats. In the old format, data was formatted using
events tables (section 4.9). In the new format data can be provided to the system in a simpler
comma-delimited ASCII table. In this table, the value of the decision variable (class) is simply
another column in the table. Both data formats are described in section 4.9. If the old format is
used, data should be stored in a filestem.train file. If the new format is used the table should be
stored in a filestern.data file.

In AQ17, the input tables are split into a number of different files: parameters, names, variables,
data and testing. Each input file may consist of one or more tables. For example, the names file
may consist of a variables table and multiple -names tables (see descriptions below), while a
parameter file will consist of just a parameters table. Files are identified by a file suffix. The
format for the name of a data file (new format) is filestem.dat. The filestem may be any valid unix
filename. A complete list of files, their suffix, and content is given below:

Name Suffix Content

domain .domain variables definitions: -names, variables, domaintypes tables

training data (new)  .data single table of comma delimited data. Class variable in last

column.

training data (old) .train multiple tables of data divided according to value of class
iable: -events tables.

test JAest labelled testing examples: -tevents tables.

leamning parameters Lpa.mm leaming parameters:

dci parameters .dparam dci parameters.

hci parameters .hparam hci parameters.

scale parameters .Sparam scaling parameters.

atest parameters .atparam alest parameters.

The minimum required files are the filestem.names and filestem.dat files. These files describe the
data b:mn;f used as input and provide the examples required for learning. All other files are used for
additi features of AQ17.

Tables generated by AQ17 are also saved in the filestem.suffix format. A description of each of
these files is given below.

Name Suffix Content

rules .rule rules generated from training data. Contents of file depend
on setting of echo parameter in filestem.lparam

testing results Aest-results  results from testing rules in filestem.rule against testing data
found in filestem.test. Contents of file are generated by
ATEST module.

scaling intervals Anty results from SCALE module. List definitions of new
attribute value intevals. Used to discretize testing data to
same values.

tree .lree descision tree generated from rules by DT module.

hci log .hlog record of changes made to data by HCI module.

3.3 Running AQI17



If the current working directory contains the executable AQ17 file and the required input, then
executing the following command, under the UNIX shell

aql7 [option flags] filestem

will start the ag17 process running with input from the files beginning with filestem in the current
directory using the options described in the flags. These flags are used to invoke some the
additional features of AQ17. All available flags and their meanings are given below:

Flag Meaning

-d invoke the dci module for data-driven constructive induction (see section 5 for a full
description of dci). If a filestem.dparam file is in the current directory, then this will be
used to set the options for dci otherwise the default settings will be used.

- € toggle expert mode on. With the -e option AQ17 checks the current directory for a

filestern Iparam file. If this file exists it is used for setting the leaming parameters. If the
- option is not used default settings will be used for the learning parameters.

=h invoke the hci module for hypothesis-driven constructive induction (see section 6 for a
full description of hei). If a filestem.hparam file is in the current directory, then this
will be used to set the options for hci otherwise the default settings will be used.

-nthl invoke the nt module for concept-driven noise removal. thl controls the degree of
filtration perfomed. See section 7 for a detailed description of nt.

-t invoke the testing module after rules have been leaming. AQ17 will use the testing data
found in filestem_test to test the rules generated from the training data in filestem.dat

-5 invoke the scaling module for X2 based artribute-value discretization. AQ17 will take the
data in filestem.train and automatically discretize it into significant intervals.
Discretization is controlled using the parameters found in filestem.sparam.

4. User's Guide

This section describes the tables in AQ17, their purpose, and syntax. Most tables are optional and
many parts within a table are also optional.

4.1 The Title table

The title table is an optional table useful for putting comments into the input file. This table is not
used by AQ in any way. This table should be placed in the filestem.param file. A title table consists

of two parts:

# (1..n)
A mandatory column which contains the row number of the text in the next column. Row numbers

are consecutive integers beginning with "1".

text" "
The column consists of a string of characters surrounded by quotes. The string must fit on one

line. Quotation marks may either by single or double.



4.2 The lparameters Table

The mandatory parameters table contains values which control the execution of aql17. All of the
parameters have default values. The default values are provided in parentheses following the
description of each option. Each row of the parameters table represents one run of the program. In
g;: way the user is allowed to specify many runs of the program on the same data in a single input

run (1..n)
An optional parameter which contains the row number of the text in the next column. Row
numbers are consecutive integers beginning with "1".

mode (ic)
An optional parameter which controls the way in which AQ17 is to form rules. Legal values for
this column are:

ic: *interescting covers” mode produces rules which may intersect over areas in the
learning space in which there are no events.

de: "disjoint covers” mode produces rules that do not intersect at all.

vl: "variable-valued logic” mode produces rules are are order dependent. That is, the

rules for class n will assume that the rules for classes 1 to n-1 are not satisfied.
Hence the rule for the last class will be null.

ambig (neg)

An optional parameter which controls the way ambiguous examples are handled (i.e. overlapping
examples from more than one class) are handled. Examples overlap when they have at least one
common value for each variable. Legal values are:

neg: ambiguous examples are always taken as negative examples for the current class,
and are therefore not covered by any classification rule.

pos: ambiguous examples are always taken as posilive examples for the current class, and
are therefore covered by more than one classification rule.

empty: ambiguous examples are ignored, i.e. treated as though they do not exist, and may
or may not be covered by some classification rule(s).

trim (mini)

An Optional parameter that specifies the generality of the resulting rules. The legal values are:

gen: rules are as general as possible, involving the minimum number of extended
selectors, each with a maximum number of values.

mini: rules are as simple as possible, involving the minimum number of extended seletors,
each with a minimum of values.

spec: rules are as specific as possible, involving the maximum number of extended

seletors, each with a minimum of values.

wts (cpx)

Optional parameter that specifies whether AQ is to display weights with the rules it produces. Legal

values are;

ne: no weights

cpx: two weights are associated with each complex. The first weight is the total number
of positive events that the complex covers (the fotal weight), The second weight is
the number of events that this complex, and no other complex in the rule covers (the
unique weight). Complexes are always displayed in decreasing order of the first

weight.

10



evt: in addition to the two weights (total and unique) calculated for each complex, a list of
example indices is printed. These indices list the positive examples which are
covered by the complex.

sel: weights are calculated for each selector in addition to each complex. There are two
weights associated with each selector. The first weight is the number of positive
examples covered by the selector, and the second weight is the number of negative
examples covered by the selector. When selector weights are shown, selectors are
displayed in decreasing order of the first weight. Otherwise selectors are displayed in
the order they are given in the variables table.

all: all weights and example information is printed for each selector and complex. all is
the union of evt and sel.

maxstar (10)

Optional parameter that specifies the number of altenative solutions kept during complex
formation. A higher number specifies a wider beam search, which also requires more computer
resources. In general the size of maxstar should be approximately the same as the number of
variables used. The rules produced tend to be a good compromise between computational
resources and rule quality. Maxstar values may range from 1 to 50.

increment (1)

Optional parameter that must be an integer and can take any value between 1 and 100. This
eter controls n, the number of subsets into which the training examples are divided. If n=1

then batch learning is done. If n>1 then incremental learning is performed, with the rules learned

from examples subsets 1..n-1 being used to produce inhypos for the session in which the nth

training set is used.

echo (pvne)

Sll:eciﬁes which tables are to be printed to output. Values in this column consist of a string of
characters. Each character represents a single table type. The order of characters in the string
controls the order of the tables in the output. No blanks or tabs are allowed in this string (such
whitespace separates words in the input and would confuse the parser). Legal values for the echo
parameter and the tables they represent are shown below:

0 ——- noecho

a---- arules/lrules table
b —~--- childrens table

¢ -—— crileria table

d —- domaintypes table
¢ -— events tables
i-——- inhypo table

n ----- names tables

p ——- parameters table

g ——- tevents tables
§ --—- structure table
t ——— title table

v --—- variables table

z ----- leaming time

criteria (default)
Entry is the name of the criteria table to be used. The name must be of alpha type, and a criteria

1able with that name must appear in the input file.

11



A sample table is shown below. Values in the first row are the default. Note that the default criteria

table is the ONLY one for which it is unnecessary to follow with a full table description. The

mincost criteria table, however, must be defined later in the input file. See next section for a

dﬂdescnfw'lpt:gln of -criteria tables. Parameters not present (e.g. "run”, "mode” and "maxstar”) take their
t values.

Example:

parameters

ambig trim wis echo crileria increment
neg mini cpx pvne default 1

pos gen all pvne mincost 20

4.3 The criteria tables

All criteria tables other than the "default™ must be defined. This table type is used to define a
lexiographic evaluation function (LEF). An LEF evaluates a series of criteria in order, with the
most important criterion being used first, and so on. Examples that fail to meet the first criterion are
eliminated, while those that qua]ify are only then evaluated on the second criteria. The LEF is used
by AQ1S to judge the quality of complex formed during learning. A LEF consists of several
criterion-tolerance pairs. The ordering of the criteria in the LEF determines the relative importance
of each. The tolerance specifies the allowable error within each criterion.

A criteria table name consists of two parts - the specific name, which must appear in the "criteria”
column of the parameters tables (in the example above "mincost” was used) and the table name,
-criteria. In the previous example "mincost” in the parameters table refers to the existence of a
*mincost-criteria” table later in the input file. Any value in the criteria column of the parameters
table except "default” must have a corresponding -Criteria table and vice-versa.

# (1.n)
This column numbers the entries in the criteria table. Values must be sequential integers. This

column is not required.

criterion (maxnew, minsel)

This mandatory column specifies the criteria which is to be applied at this point in the LEF. There
are eight defined criteria. From these eight the LEF that best describes the user’s rule preference is
built. At least one and at most all eight criteria can be used in a criteria table. Criteria may also be
selected by number rather than name. These numbers are the indices of the criterion in this table.

maxnew(1)- maximize the number of newly covered positive events, i.e. events that are not
covered by previous complexes.

maxtot(2) - maximize the total number of positive events covered.

newvsneg(3) - maximize the ratio between the total number of newly covered positive examples
and all negative evente covered. Computationally expensive.

totvsneg (4) -  maximize the ratio between the total number of positive covered examples and all
negative evente covered. Computationally expensive.

mincost (5) -  minimize the total cost of the variables used (see section 4.4).

minsel (6) - minimize the number of extended selectors.

maxsel (7) - maximize the number of extended selectors.

minref (8) - minimize the number of references in the extended selectors.

tolerance (0.00)

12



This mandatory column specifies the relative tolerance in the importance of this criterion. In a strict
LEF any complex not having the best (or equal) value for a criterion is immediately eliminated.
This real value specifies the degree of tolerance in the importance of the criterion given in the same
line. As an example, say the best complex in 2 list had a value of 100 for some criterion, and the
tolerance for this criterion was 0.2, The absolute tolerance value is the product of the tolerance
value (0.2) and the best value (100) and is 20. Any complex with a value between 80 and 100 will
not be eliminated from the list.

An example is given below. The first -criteria table given is the default. In many experiments, this
criteria table produces good results. This is the only -criteria table that need not be defined. The
second example is a user-defined table called =mincost™. Note that row numbers may be omitted.

Example:

default-criteria

# criterion tolerance
1 maxnew 0.00
2 minsel 0.00

mincost-criteria

criterion tolerance
mincost 0.20
maxtot 0.00

4.4 The domaintypes table

The domaint table is used to define domains for attributes. This table is optional, but it is
convenient if several atiributes have the same set of possible values. The table consists of four
columns. The type, levels, and cost columns all have the same meanings as defined in the variables
table description. There is no limit to the number of domains, or to the number of values (levels) in
a domain.

name (xp)
This mandatory column is the name of the domain being defined and must be of alpha type. If the
name is not provided, the default name will be x where n is the index of the entry in the

domaintypes table.

type (nom)
This optional column specifies the type of the domain being defined. Four domain types are legal.
The legal types are described in the description of the variables table.

levels (2)
This optional integer value specifies the number of possible values for the domain being defined.

There is no preset limit on the number different values or levels an attribute may have.

cost (1.00)

This optional real value specifies the relative expense of the domain being described. This value is
used by the mincost criterion in the LEF (see description of criteria table). The expense of an
attribute may be determined by the difficulty or expense of acquiring the value, or it may be set by
a domain expert to encourage or discourage this attribute’s appearance in generated rules.

13



The domaintypes table is normally used in conjunction with the variables table and the names table.
Below are examples of both the variables table and domaintypes table.

Example:

floppies lin 4
domaintypes processor nom 3
name type  levels memory str 8
boolean nom 2
op_system nom 2

S floppies 100.0
variables 6 disk.boolean 0.0
# name cost 7 processor 1.0
1 pascal boolean 10.0 8 memory 100.0
2 fortran boolean 10.0 9 printer.boolean 0
3 cobol.boolean 10.0
4 op_system 10.0

4.5 The variables table

The mandatory variables table specifies the names and domains (legal values) of the variables used
to describe events. The variables table must include at least one, and at most all 5 of the following
columns. There is no preset limit to the number of variables, or to the number of values (levels) of

a variable.

# (1..n)
This optional column numbers the entries in the variables table. Values must be sequential integers.

name (xn)

This column specifies the name of the attribute. Names must be of alpha type. If the name column
is omitted, the default value is xn where n is the number of the row in which the name.domain-
name. Name is the alpha string name of the specific variable while domain-name is a more general
name of the domain (as defined in the domaintypes table). The name and domain-name may be the
same if there is only one variable with that domaintype.

type (nom)

This column specifies the type of the variable domain. Four domain types are legal:

nom a "nominal” domain consists of discrete, unordered values (e.g. colors)

lin - a "linear" domain consists of discrete, ordered alpha or numeric values (e.g. sizes —
small, med, large)

cyc- a "cyclic” domain consists of discrete values in a circular order (e.g. months).

Str - a "structured” domain has values in the form of a hierarchical taxonomy. A variable
with a structured domain requires that domain be described in a structure table as
well.

levels (2)

This integer gives the size of the domain being defined. Their is no present limit on the number of
values an attribute may have.

cost (1.00)
This real number specifies the relative 'expense’ of the domain being defined on this line. The
value is used when computing criterion mincost is used in the LEF. Cost defaulis to 1.0

14



The variables table may be used in conjunction with the domaintypes and -names tables. In the
example given above, the tygfeand levels columns were defined for all domaintypes so that these
columns were not needed in the variables table.

4.6 The mames tables

The names table is used to specify legal domain values for an attribute. These must be the attribute
values that appear in the events tables. If no names table is present in the input file, then the values
for that domain are assumed to be the integers from 0 to #levels-1 (levels are defined in the
variables table). The specific name of a names table must be the same as that used in the domains
or variables table. There are two required columns in each names able: value and name,

value (1..n)

This column must be an integer beginning with '0' and continuing sequentially up to #levels-1.
This column is the integer equivalent of the name to be defined in the next column. This column is
required. There is no preset limit to the number of values for an domain being defined.

name (1..n)
This column defines the input and output name of the value being defined. Alpha, integer or real
types are allowed. Only two decimal places are stored for real types. This column is required.

Below are typical examples of the -names table. All variables that are of type "boolean™ may take
values "yes” and "no". The domain "make” has the value "IBM", "Compaq”, "Zenith” and
"Apple". Note that for the variable "floppies” the default values of 0,1.2 and 3 are acceptable so
there is no need for a "floppies” names table.

Example:

boolean-names
value name
0 no

1 yes

make-names
value name
0 IBM
1 Compaq
2 Zenith
3 Apple

4.7 The structure tables

The structure table is optional and is used to define a structured domains for any variable of the
structured type (as specified in the domaintypes or variables table). A structured domain has the
form of a hierarchical graph, where the lowest level corresponds to the values of the variable as
31:{ will appear in the input examples (and may be defined in a names table.) Higher levels (as

the structure table) specify parent nodes in the hierarchy of values and are used 10
simplify classification rules.

The specific name of a structure table must be the name of the domain, as specified in the name
column of the domaintypes table. If the domaintypes table is not specified it may be a variable
name from the variables table. A structure table consists of three columns:



This optional alpha or integer type entry specifies the name of the corresponding value in the tree.If
specified, it may appear in classification rules instead of the values named in the names table, or
events-table.

value

This mandatory integer entry specifies the node in the hierarchy which is the parent of the nodes
specifies in the subvalues column. If this value is a subvalue of some other values it must appear
before any rows inwhich it is listed as a subvalue. This value must always be greater than any of
the subvalues in the following columns.

subvalues

This mandatory entry specifies a set of children values for the parent node as defined in the value
column. This entry consists of a string of integers separated by commas or by ".." as in extended
selectors. These numbers correspond to values as defined in the names table of the

variable or previous rows of the structure table.

The hierarchical graph below shows an example of a structured domains for the variable
"memory”. Note that the same node (e.g. 64) may be shared by multiple parents ("medium” and
-hrge").

For the variable "memory” a names table must first be defined, because to allow a domain of all
values between 2 and 280 would be inefficient and might cause inaccurate rules. Note that the node
*large" must be defined after the node "very_large” as it is higher in the tree.

Example:

memory-names memory-structure

value name name value subvalues
0o 2 very_small 8 0,1

1 4 small 9 82

2 16 mediom 10 3.5

3 32 very_large 11 6,7

4 48 large 12 5,11

5 o4

6 128

7 280
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4.8 The inhypo tables

The inhypo tables are optional and are used to input rules for incremental learning. The specific
name of this table must match the name of one of the decision classes. The rules input in the
inhypo table have two possible roles. In the first, when there is at least one events table specified,
the input rules are used as initial covers for incremental learning. If no events tables are present the
inhypo rules are treated as events for rule optimization. If inhypo rules intersect, then their
intersection is treated as determined by the "ambig" parameter (sec parameters table). There are two
columns in the inhypo table.

# (1..m)

This mandatory column associates a number with each complex in the rule. It is a sequentially
increasing integer (1..#icomplexes). Only in inhypo tables may an entry span more than one line.
There must always be a # entry for each complex in the table.

cpx (D

This mandatory column specifies the VL1 rule. A complex is presented as a conjunction of
selectors. Selectors, and complexes are defined in section 2.

Below are examples of an inhypo tables. A complex is a conjunction of selectors and a cover is a
disjunction of complexes.

Example:

Under1000-inhypo
# cpx
1 [floppies=0]

Fron1000_4000-inhypo
# cpx
1 [Floppies= 1,2)[memory>16]
2 [Floppies > 3][memory<=4]



4.9 The data tables

Data tables for AQ17 can take one of two forms: 1) a single table of attribute values with individual
examples listed as rows in which the value of the class variable is given in the last column or 2)
multiple tables of attributes in which all examples with the same class variable value is grouped
together. The first format is the same as that used by C4.5 and ID3. The latier format is the -event
table format used by AQ15. Both format types are supported in order to make using AQ on a given
problem as easy as possible. The first format will be referred to as the single-table format, while
the other will be the multi-table format.

The single table format is very simple. The input data consists of a header followed by n rows of
attribute-value vectors (examples). The header is a list of artribute names such as x1,x2,...xn. The
last column is the class vanable. Attribute values may be separated by commas, or spaces.
Attribute values may be alphnumeric strings, or real, or integer -values. If data is rovided in
single-table format, AQ17 will automatically build the data into multi-table format. AQ17 detects
the need to build data tables when it cannot find any filestem.tdat (table data) files. AQ17 then
builds the filestem .tdat files and invokes AQ.

If data is already in a multi-table format then it should be stored in filestem.tdat. The multi-table
format consists of a set of -events (or -tevents in the case of testing examples) tables. The format of
-events (and -tevents) is provided below.

Events and tevents tables have identical structure except the examples contained in events tables
are used for learning and those in tevents are used in testing. Events tables contain a specific name
corresponding to the name of the decision class. This name must be of type alpha.

The column headers for this table consist of the attribute names (as defined in the variables table).
The values in the row of the table must be legal values for the appropriate attribute. In the case that
many attributes are used, events tables may be split. Each split table must contain the specific
name and 'events’ and a different set of attributes. Attributes can not overlap between split events
tables. Events tables consists of two column types: 1) row number and 2) attribute name.

# (1..m)

This optional column is an integer index of the example. Values must be sequential integers
beginning with 1. This column is optional.

variables (x1..xn)

This column consists of an arbitrary number of columns, one for each attribute in the variables
table. The entries in the rows of the table must contain legal values of the corresponding variables
in the heading. Entries may be single values or they may be an ‘unknown’ symbol (*). Unknown
values (*) are internally represented as taking all legal values for that attribute domain. Below is an
example of events tables.

Example:

Under1000-events

Pascal Fortran Cobol floppies Disk Processor Memory Printer
no no no 0 no M6502 2.16 no

no no no 0 no Z80 32 no

Overd000-events



# Pascal Fortran Cobol
1 yes yes yes
2 no yes  yes

Overd000-events

# floppies Disk Processor Memory Printer
11 yes Z80 128 no

2 2 no 18085 &4 yes

4.10 The children tables

The optional children tables define the hierarchical ordering of the decision variable. The specific
name of the table must be the name of a class already defined, i.e. the name must have appeared as
the specific title in an events table. The rule base may be structured to arbitrary depth. The children
table consists of two columns:

node

This mandatory alpha column specifies the name of the node being defined.

events

This mandatory column is a list of event indices belonging to the nt node which are examples
of this child node. The list of indicies may use commas (1,2,3.4) or ranges (1..4). The parent's
events are numbered in the order they appear in the events table, All indicies refer to the example
indices of the root node of the tree so that all events use the same set of numbers.

The tree below shows how a decision attribute may be structured. In this case classes
"Under1000", "From1000t04000" and *Overd000" are brothers at the top of the structure. The
class "From1000104000" has two sub-classes, "From 1000t02000" and *From?2000104000".

The example below defines the two classes ""From1000to2000" and *From2000to4000" which
are sub-classes of the class "From 1000104000". Assuming that there is already an events table for
*From 1000104000" with 13 events, the following children tables would assign events 1 to 6 and
11 to class "From1000t02000" and events 7 to 13 to class "From2 P

From1000to4000-children
node events
From1000t02000 1.6,11
From2000t04000 7..13

From 1000104000

From1000t02000  From2000t04000

123456 g9 10 11 12 13



5. Data-Driven Constructive Induction

5.1 Introduction

Data-driven constructive induction is a method for generating new problem-relevant attributes
based on an analysis of the training data. This generation is performed through the application of
various mathematical and logical operators to the initial attribute values. The currently available
operators include multiplication, integer division, addition, subtraction, comparison, average,
most-common, least-common, maximum, minimum, and number of attributes having some value.
The DCI method can be invoked with the -d option and and requires a filestem.dparam file be
present in the current directory. The following sections will describe the tables which should be

included in the dparam file.

5.2 The DCI Method

The DCI method for constructing new attributes is primarily one of generate and test. This method
is shown in figure 2a_ First all candidate features are identified (all linear-type features). Then each
pairwise combination of attributes and operators is calculated. The operation to be performed on
this pair is selected from the list supplied by the user. With the features, and operation selecied the
values for the new feature are calculated. The discriminatory power of these feature values is then
tested using an information-theoretic metric. This is the same metric used in ID3 to determine
which attribute to select next when building a decision tree (Quinlan, 1983). A brief description is
included here for completeness.

In this approach the quality of an attribute is a measure of how well the values of the attribute
discriminate objects of different classes (how much information is provided by the values of that
attribute). If the probability of the object belonging to a class is p* and if the probability of the
object belonging to another class is p~ then the information content of a message is:

Info(message) = -(p*logz p*) - (plog2p7)

With a known set of objects the probabilities can be approximated by relative frequencies; p* is the
percentage of objects in C with class "+".

The set of all attributes has a total information value. This is denoted M(c). This is the total
information in the message. Each individual attribute contributes to that information value. The
information value of an attribute is the sum of the information values of each of the attribute’s
values.

Autribute quality is calculated for each new attribute. If the information value of a newly
constructed attribute is above a user-defined threshold, the attribute is retained, if not, the attribute

is discarded.

A number of different operations are available to construct new features. These operations can be
classified as either binary operators or multi-argument operators (functions). In the binary group
are currently the comparison operator, and a number of mathematical operators including addition,
subtraction (absolute difference), multiplication, and integer division. Integer division is calculated
as trunc(x/y). Examples of each of these operations are shown below:

Operator feature 1  feature 2 result
comparison 6 8 2%
addition 6 8 14



subtraction 6 8 2
multplication 6 8 48
integer division 6 8 0

*The comparison operator can take three different values depending on the relation between the
value of attribute x and attribute y. if x=y then compare(x,y)=1; 2 if x <y; and Jifx>y

In the multi-argument class are the following functions; maximum, minimum, average,
least_common, most_common, and #VarEQ(x). Except for the latter, these function are self-
explanatory. #VarEQ(x) is a function which calculates the number of times the value x appears in
an example. For a vector of binary attributes, #VarEQ(1) measures the number of variables
(attributes) that take the value 1 in an example of a given class. Tiebreakers in the calculation of
functional operators is done on the basis of which value appeared first in the example (from left to
right). Examples of each of these operations is shown below:

Operator featurel feature2 feature3 featured result
maximum 4 8 6 6 8
minimum 4 8 6 6 4
average 4 8 6 6 6
most_common 4 8 6 6 6
least_common 4 g 6 6 4
#VarEQ(4) 4 8 6 6 1
#VarEQ(6) 4 8 6 6 2
#VarEQ(8) 4 8 6 6 1

The program has a default list of global functions, but allows the user to modify the list to fit the
problem at hand. The default list of functions include maximum, minimum, average, mosl
frequent, least frequent and #VarEQ(x).
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Figure 2a. The DCI Method

5.3 DCI Tables
5.3.1 The dparameters table
The mandatory dparameters table contains values which control the execution of the DCI module.

maxnew (10)

Maxnew is an optional integer that specifies the maximum number of new attributes that will be
kept. As soon as the number of new attributes exceeds maxncw, no new attributes are added to the
current attribute set. The default value of maxnew is 10.

operations (default)
Entry is the name of the operations table to be used. The name must be of alpha type, and an
operations table with that name must appear in the input file.



An example dparameters table is shown below. These parameters state that only at most will five
new attributes be constructed (maxnew=>5), and the operations table is default. The default
up:lmions table is the ONLY one for which it is unnecessary 10 follow later with an operations
table.

Example
ions maxnew
default 5

5.3.2 The operations table

The operations table defines the list of operations the user wishes to perform on the data. With each
operation entry is included the quality threshold that new attributes constructed using that operator
must attain, as is a maximum cost threshold for which the cost of the new artribule must not
exceed.

Each operations table title line has two parts - the specific user-defined name, and the keyword
‘operations’. There may be multiple operations tables in the input. The table that is used must have
its user-defined name listed in the dparameter table under operations. If the default operations table
is desired only the word ‘default’ in the dparameters table is required. The first operations table
shown below is the default. The second is user - defined.

default-operations

tion threshold cost
addition 0.1 ; 15.0
subtraction 0.1 15.0
mult 0.1 15.0
relation 0.1 15.0
valuecom 0.1 15.0
numeric-operations
operation threshold cost
addition 0.5 10.0
subtraction 0.6 10.0
mult 0.7 10.0
division 0.7 10.0

6. Hypothesis-Driven Constructive Induction

6.1 Introduction

The hypothesis-driven constructive induction (HCI) method incrementally transforms the
representation space by analyzing inductive hypotheses generated in one iteration and using
detected patterns as attributes for the next iteration. The proposed method is based on repetitively
detecting strong "patterns” in the hypotheses generated in one iteration, and then treating them as
new attributes in the next iteration. To explain the method, we will start by describing the measure

of a pattern’s strength.



6.2 Determining the Paitern Sirength

A pattern can be a group of rules in the leamed description, a part of a rule (a conjunction of
conditions), or a group of attribute values in a condition of a rule. The strength of a pattern can be
determined in many different ways. Below is the measure implemented in the HCI module.

In this measure, the strength (o) of a pattern is a function of the number of positive examples,
PCov, and the negative examples, NCov, that are "covered” by the pattern:

o( pattern) = f(PCov(parttern), NCov( pattern)) (1)

To determine the specific form of the function f, let us observe that the strength of a pattern should
be positively related to the number of positive examples covered by it, and negatively related 0 the
number of negative examples covered by it. The way the strength is calculated should also depend
on the pattern type—is it a ruleset, a subrule, or a group of attribute values. In addition, the
measure of strength may distinguish between types ot coverage of concept instances by a given
pattern. For example, a concept instance can be covered only by a given pattern (unique coverage),
or it can be multiply covered. To reflect this difference, PCov and NCov are expressed not just by
single numbers, but by multiple numbers. Here is a simple measure of pattern strength that reflects
above considerations:

_ 1*(partern) + Au* ( pattern)

otpattem) = =" (patiern) +1 @

where

t*(pattern), called the total positive weight, and t (pattemn), called the total negative weight , are the
nurnbers of positive and negative examples covered by the pattern, respectively.

uHpattem), called the unique weight , is the number of positive examples uniquely covered by the
pattern, i.e., not covered by any other comparable pattern,

A is a parameter that controls the relative importance given to these two types of coverage.

When A = 0, i.e. when the unique weight is ignored, the above measure of pattern strength (@) is
similar to the logical sufficiency (LS) used in the Prospector expert system (Duda, Gasching and
Hart, 1979), and in the STAGGER concept learning system (Schlimmer, 1987).
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Figure 2b. The HCI method.

6.3 Determining an Admissible Ruleset

The HCI method works iteratively. Each iteration generates a complete and consistent set of rules,
i.e., a ruleset that covers all positive examples and none of the negative examples. In order to
speed up the process of determining strong patterns, and avoid searching through rules that are
weak and/or low validity, the method selects rules that have sufficient strength in the generated
ruleset. These rules constitute an admissible ruleset.. The method searches for strong patterns in
the admissible ruleset, uses patterns for transforming the representation space, and then moves to
the next iteration (the complete method is described in the next section).

When determining the strength of rules in a ruleset representing a concept, expression (2) can be
simplified; specifically, the denominator in (2) can be ignored. This is so because such a ruleset is

consistent with regard to negative examples (no negative examples covered), and therefore 1 (the
negative weight ) is zero.

Thus, we have:
o(rule) = t(rule) + Au(rule) 3)

where, ¢ is the total (positive) weight of a rule in a ruleset (the total number of training examples
covered by this rule); and u is the unique weight of a rule in a ruleset (the number of training
examples covered only by this rule, and not by any other rule in the ruleset; Michalski et al.,



1986). The program's default value for parameter A is 2, which gives a relatively strong
preference to rules with higher unique weights, i.e., rules that have smaller overlap with other
rules in a ruleset for a given concept.

To determine an admissible ruleset, rules in the ruleset for a given concept are ordered from the
strongest to the weakest. An admissible ruleset contains the minimal number of rules from the
ruleset whose total relative strength exceeds a predefined threshold:

Sa
T—- 2TH (4)
g;

j=lm

where o is the strength of rule (i) defined by equation (3), n is the total number of rules in the
current hypothesis, m (m < n) is the number of strongest rules (recall that the rules are ordered,
thus O 2 Gi41). In the program, the TH parameter has the default value 0.67, which means that the
admissible ruleset will cover at least 2/3 of the training examples of a given concept. Since noisy
examples and exceptions are normally covered by low-strength rules, therefore the admissible
ruleset can be expected to cover the most "central” portion of the learned concept. This method
could be improved by setting the TH parameter on the basis of knowledge of the noise level, and
of the confi ocmlgﬂlcmmd hypothesis.

6.4 The HCI Method

The proposed HCI method combines an inductive rule learning algorithm (Ad) with a procedure for
iteratively transforming representation space. In each iteration, the method changes the
representation space by adding new attributes, and/or removing insufficiently relevant attributes.
The quality of the hypothesis generated in each iteration is evaluated by applying the hypothesis to
a subset of training examples. The set of training examples prepared for a given iteration is split
into the primary set (the P set), which is used for generating h 'iothescs. and the secondary set (the
S set), which is used for evaluating the prediction accuracy of the generated hypotheses. Figure 2b
presents a diagram illustrating the HCI method.

For the HCI module input consists of training examples of one or more concepts, and background
knowledge about the attributes used in the examples (which specifies their types and legal value
sets). For the sake of simplicity, let us assume that the input consists of positive examples, E* and
negative examples, E-, of only one concept. If there are several concepts to learn, examples of each
concept are taken as positive examples of that concept, and the set-theoretical union of examples of
other concepts is taken as negative examples of that concept.

The method consists of two phases. Phase 1 determines the representation space by a process of
iterative refinement. In each iteration, the method prepares training examples, creates rules,
evaluates their performance, modifies the representation space, and then projects the training
examples into the new space. This phase is executed until the Stopping Condition is satisfied. This
condition requires that the prediction accuracy of the learned concept descriptions exceeds a
fined threshold, or there is no improvement of the accuracy over the previous iteration. Phase
determines final concept descriptions in the acquired representation space from the complete set
of training examples. The output consists of concept descriptions, and definitions of attributes
cﬂ?e%wi in Phase 1. Below is a detailed description of both phases, and of the basic modules of
me

Phase 1 consists of six modules. The first, "Split of Examples” module, divides positive and
negative training examples into the primary set, P, and the secondary set, S (in the experiments the



split was according to the ratios 2/3 and 1/3, respectively). The set of primary positive (negative)
examples is denoted P+ (P-), and the set of secondary positive (negative) examples is denoted S*
(S°). Thus P = P+ U P-, and § = §* U S". The primary training set, P, is used for initial rule
learning, the secondary set, S, for an evaluation of intermediate rules, and total set, PU S, is used
for the final rule learning (in Phase 2).

The "Rule Learning” module induces a set of decision rules for discriminating P* from P-, i.e., 2
cover COV (PHP-) of positive primary examples against negative primary examples. This is done
by employing the AQ15 inductive learning program (Michalski et al., 1986). The program is based
on the algorithm A4 for solving general covering problem, which was described in various
sources, €.g., (Michalski and McCormick, 1971; Michalski, 1973).

The "Rule Evaluation™ module estimates the prediction accuracy of the rules by applying them to
the secondary training set, S. The accuracy of the rules in classifying the examples from S is
determined by the ATEST procedure implemented in the AQL5 program (Reinke, 1984). If the
Stopping Condition criterion is not satisfied, the control passes to the "Rule Analysis" module,
otherwise, it passes to Phase 2.

The "Rule Analysis” module determines an admissible ruleset. The "Representation Space
Transformation” module analyzes the rules in this ruleset to determine desirable changes in the
representation space. It removes redundant or insignificant attributes, modifies existing attributes
(by attribute value agglomeration), and generates new attributes. The "Example Reformulation”
module projects all training examples into the new representation space, and the whole inductive

process is repeated.

Phase 2 determines final ruleset by applying the "Rule Learning” module to all training examples
projected into the final representation space determined in Phase 1. For each concept, a set of the
most specific (ms) rules is induced from all positive examples against all negative examples, i.., a
cover COVms (E+/E-), and the most general (mg) rules of negative examples against positive
examples, that is COVmg (E7/E*). The final concept description is built by generalizing the most
specific rules for positive examples against the most general rules for negative examples, i.e.,
determining a cover, COVmg[COVums (E*/E7)/COVimg (E-/E¥)] (notice that the arguments for the
covering algorithm are here not sets of examples, but sets of rules). The description so generated
represents an intermediate degree of generalization between the most specific positive rules and the
most general negative rules. For details on generating such concept descriptions see Wnek (1993).

6.5 HCI Tables
The hparameters table

The hparameters table is an extended version of the parameters table used to control learning. The
HCI module requires both the learning parameters and hci parameters. This section will only
describe the hci parameters (expand, window, thl, and th3). Section 4.2 describes the learning
parameters.

expand (all)

Controls generation of new attributes. With expand=no — no attributes are generated; expand=one
— attributes are generated only for one class; expand=all — atributes are generated for all classes.



window (0.67)

Controls the size of the primary training set (P). The default setting assumes 2/3 of the training set
to be used as the primary training set, and 1/3 of the training set as the secondary training set.

thl (0.67)

Threshold used for determining the admissible ruleset, thl = TH in formula (4). In the program,
the parameter has the default value 0.67, which means that the admissible ruleset will cover at least
273 of the training examples of a given concept. Since noisy examples and exceptions are normally
covered by low-strength rules, therefore the admissible ruleset can be expected to cover the most
"central” portion of the learned concept. For th1=1, all rules will be regarded as admissible.

thl (0.1)

Threshold used for controlling removal of irrelevant attributes. The relevance of an attribute is
measured as a ratio between its importance score and the sum of importance scores of all
attributes. If relevance is less then th3, then the attribute is regarded as irrelevant. For each
attribute, its importance score is calculated by summing up the total weights of all rules in which
the attribute was used. The greater th3 is, the more attributes will be removed. For th3=0, no
attributes will be removed.

7. Handling Noisy Data
7.1 Introduction

Inductive learning systems must perform some form of generalization in order to anticipate unseen
examples. Ideally, a concept description generated by an inductive learning system should cover
all examples (including unseen examples) of the concept (completeness) and no examples of other
concepts (consistency). This is precisely what most inductive learning systems do, generating a
complete and consistent concept description. In the case of noisy data, complete and consistent
descriptions are problematic because multiple concept descriptions can partially overlap in the
attribute space. This is so because attribute noise skews the distribution of attribute value from the
correct value. Because of the existence of noise in the sensory data, some positive examples are
noise, that is, they are actually negative examples. We call such examples “positive noisy
examples”. These positive noisy examples are covered by the complete and consistent description.
These examples, however, should not be covered. On the other hand, some negative examples can
be noise, i.e., they are actually positive examples. Such negative examples are referred to as
“negative noisy examples”. Negative noisy examples are incorrectly left uncovered.

There are two basic approaches to learning from noisy data. One is to allow a certain degree of
inconsistent classification of training examples so that the descriptions will be general enough to
describe basic characteristics of a concept. This approach has been taken by the ID family of
algorithms [Quinlan, 1986). The second approach, used by programs which induce rules rather
than trees, is to discard some of the unimportant rules and retain those covering the largest number
of examples. The remaining rules are a general description of the concept. Typical algorithms using
these techniques are the AQ family of algorithms [Michalski, 1986]. Rule truncation in AQI15
([Michalski, 1986, Zhang and Michalski, 1989, Pachowicz and Bala, 1991], [Michalski, 1986,
[Zhang and Michalski, 1989], and the significance test in CN2 [Clark and Niblett, 1989] are also
examples of that approach. Other approaches are based on the minimum description length
principle [Quinlan, 1989] and cross validation to control over-fitting during a training phase
[Breiman, Friedman et al., 1984].
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Figure 2c. The NT Method

Because the above methods try to remove noise in one step, they share a common problem - the
final descriptions are based on the initial noisy data. For methods applying pre-pruning, the
attributes used to split the instance space in a pruned tree are selected from initial noisy training
data. For methods applying pre-truncation, the search for the best disjunct is also influenced by
noise in training data. This problem is more severe for post-pruning and post-truncation. The post
learning concept optimization ¢annot merge broken (by noisy examples) concept components (i.e.,
disjuncts, subtrees). So, the "gaps” in concept descriptions remain unfilled. Post learning
optimization will cause the complexity of concept descriptions 10 decrease only if the concept
components are eliminated; i.e., without reorganizing concept descriptions.

7.2 The NT Method

A new approach to noise-tolerant learning, called model-driven learning, is presented. The
approach was developed o acquire concept descriptions of visual objects from the teacher- or
system-provided noisy training samples. is method has the following steps (Figure 2d): (i)
learning concept descriptions, (1i) the evaluation of leaed class descriptions and the detection of
less significant disjuncts which do not likely represent patterns in the training data, (iii) the iterative
removal (e.g., truncation or pruning) of detected disjuncts/subtrees, and (iv) the filtration of
training data by optimized rules (i.e., removal of all examples not covered by truncated of pruned
concept description). The first novel aspect of this approach is that rules optimized throu disjunct
removal are used to filter noisy examples, and then the filtered set of training data is used to releam



improved rules. The second novel aspect is that noise detection is done on the higher level (model
level) and can be more effective than traditional data filtration applied on the input level only. The
expected effect of such a leaming approach is the improvement of recognition performance and a
decrease in the complexity of leamed class descriptions.

7.3 NT Tables

The NT module requires only one parameter which is given at the command line when AQ17 is
invoked. For example,

>aql7 -n 5 filestem
sets thl to 5 and invokes the nt module on filestem.dat. A full description of thl is given below.

thl

This mandatory parameter controls the degree of filtration performed by NT. Using the example
coveratge (t-weight) calculated for each learned rule, rules are ranked. Rules with low t-weight are
‘light’ rules and identify potentially noisy examples. Light rules are added to a ordered list of
‘noise covering’ rules (ranked in order of increasing weight) while the total t-weight of such rules
is below th1*#examples. Values for th1 range from 0 to 100.

Example

th1=5; total examples=100: 50 examples of class1, 50 examples of class2
nparameters

thl

class1-outhypo

# cpx
1 [x1=11,14] [x2 = red] (1:40, u:47)
2 [x1 = 10][x2 = yellow] ( t:7, u:7)

3 [x1=15][x2 =red] (t:3, u:7)

In the case, complex #3 is put in the ‘noisy set’ and is then used to remove examples from the
training data. Complex #2 is not used to filter as the t-weight total of complex #1 and complex #2
(10) would be greater than th1*#examples (5)

8. Handling Continuous Data
8.1 Introduction

The AQ leaming algorithm is designed to leam from attributes that have a small number of discrete
values. This makes it well-suited to symbolic processing. However, their are many potential
applications in which learning descriptions of classes involves data that has continuous data. For
example in the case of texture recognition, feature extraction techniques such as Law’s masks
output real-valued data (to the hundredths place) over a wide range. The precision of these values
is not required to do the learning, and in fact can overwhelm the learning method. The problem that
SCALE addresses is to determine how to partition the data into meaningful intervals.

8.2 The SCALE Method

The ChiMerge method (Kerber, 1992) has been implemented which discretizes attribute values into
relevant intervals. The effect of this discretization is to remove attribute values from the data.



The ChiMerge algorithm is a boltom-up process in which initially all values are stored in separate
intervals which are then merged until a termination condition is met. The interval merging process
consists of continuously repeated two steps: compute the x2 value (correlation between the value of
the class attribute and the interval in which the example value belongs) and 2) merge the pair of

adjacent intervals with the lowest 32 value. All intervals are merged until all pairs of intervals have

x2 values exceeding the user defined chi-threshold. The chi-threshold is calculated from a table
given a desired signifigance level and the number of degrees of freedom (1 less than the number of

classes). The x2 value measures the probability that the attribute interval and class value are
independent. If means that among cases where the class and attribute are independent, there is a

signifigance-level probability that the computed 2 value will be less than the threshold value. If

the interval has a %2 value greather than threshold then class and attribute are not independent.
Higher values of the threshold causes more merging and fewer intervals and vice versa. Testing of
this method with AQ in the texture domain has shown it to improve recognition over simple equal-
interval scaling.

The Chimerge technigue can be used whenever there exists attributes in the problem being studied
which have large domains. Usually this large number of values is not necessary-there is too much
detail. In such cases rules can be overly complex and inaccurate. With the Chimerge technique the
domains are reduced to only intervals which are dependent on the class.
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Figure 2d. The SCALE Method

8.3 SCALE tables

SCALE requires only one table, the sparameters table. This table has 3 parts: method, intervals-
output, and variables description.

intervals (1)

This parameter controls whether the resulting interval ranges determined by the method will be
output with the scaled data. This information is required if testing data must be scaled into the same
intervals into which the training data was scaled. This information may also be of interest to a
domain expert who wishes to evaluate the semantics of the resulting intervals.

variables

The mandatory variables description provides information on the name, minimum number of
intervals, maximum number of inl‘.crvug method of scaling and threshold values. The name must
be an alpha string. The minimum and maximum columns specify the lower and upper bounds on
how many intervals the scaling program is allowed to Lﬂmduce for the attribute being described.
The method value controls what method is used to do the discretization. The legal values are chi
and equal (for equal interval sized). The threshold value specifies how strong the correlation
between decision variable and the interval must be to prevent it from being merged with its adjacent



interval. The signifigance of this correlation is obtained by looking up in a 2 table the degrees of
freedom of the data (#classes -1).

9. Decision Trees from Rules
9.1. Introduction

A standard approach to generating decision trees is to learn them from a set of given examples. A
disadvantage of this approach is that once a decision tree is learned, it is difficult to modify or to
learn new decision trees that suit different decision-making situations. Such problems arise
whenever there is incomplete or unusual reasoning sitation. For example, when an attribute
assigned to some node cannot be measured, or there is a significant change in the costs of
measuring attributes or in the frequency distribution of events from different decision classes.
Some attempts have been made to solve such problems using probabilistic or pruning techniques,
but due to the inflexibility of the examples, it is difficult to learn a new decision tree for the given

situation.

An attractive approach to resolving this problem is to learn and store knowledge in the form of
decision rules, and to generate from them, whenever needed, a decision tree that is most suitable
for a given situation. An additional advantage of such an approach is that it facilitates building
compact decision trees, which can be much simpler than the logically equivalent conventional
decision trees (by compact trees are meant decision trees that may contain branches assigned a set
of values, and nodes assigned derived attributes, i.e., attributes that are logical or mathematical
functions of the original ones). This section describes an efficient method, AQDT-1, that takes
decision rules generated by an AQ-type leaming system (AQ17), and builds from them a decision
tree satisfying a given optimality criterion. The method can work in two modes: the standard
maode, which produces conventional decision trees, and compact mode, which produces compact
decision trees.

9.2 The AQDT-1 Algorithm

AQDT-1 constructs a decision tree from decision rules by recursively selecting at each step the
“best” attribute according to the attribute ranking measure described in (Imam, and Michalski,
1993), and assigning it to the new node. The process stops when the algorithm creates terminal
branches that are assigned decision classes.

To facilitate such a process, the system creates a special data structure for each concept description
(ruleset). This structure has fields such as the number of rules, the number of conditions in each
rule, and the number of attributes in the rules. The system also creates an array of attribute
descriptions. Each attribute description contains the attribute’s name, domain, type, the number of
legal values, a list of the values, the number of rules that contain that attribute, and values of that
attribute for each rule. The attributes are arranged in the array in a lexicographic order, first, in
descending order of the number of rules that contain that attribute, and second, in ascending order
of the number of the attribute’s legal values.
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Figure 2e. The AQDT-1 Algorithm

The system can work in two modes. In the standard mode, the system generates standard decision
trees, in which each branch has a specific attribute value assigned. In the compact mode, the
system builds a decision tree that may contain “or” branches, i.e., branches assigned an internal
disjunction of attribute values, whenever it leads to simpler trees.

To generaie decision wrees from rules, the method uses characteristic descriptions generated in the
“dc” (disjoint cover) mode of AQ17. The reason for using characteristic descriptions is that they
offer a greater choice of attributes in the process of building a decision tree, and this may lead 10
simpler decision trees. The reason for disjoint rulesets is that they are more suitable for building



decision trees, as the latter are equivalent to sets of logically disjoint descriptions. **Is this
required?**

Assume that the input contains characteristic descriptions of the given decision classes. The
description of each class is in the form of a ruleset. Assume that this set is the initial ruleset
coniext.

Step I: Evaluate each attribute occurring in the ruleset context using the LEF attribute ranking
measure. Select the highest ranked attribute. Suppose it is attribute A

Step 2: Create a node of the tree (initially, the root, afterwards, a node attached to a branch), and
mg to it the attribute A. In the standard mode, create as many branches from the node as there
are legal values of the attribute A, and assign these values to the branches. In the compact mode,
create as many branches as there are disjoint value sets of this attribute in the decision rules, and
assign these sets to the branches.

- For each branch, associate with it a group of rules from the ruleset context that contain a
condition satisfied by the value(s) assigned to this branch. For example, if a branch is assigned
values i of attribute A, then associate with it all rules containing condition [A=iv..]. Ifa branch
is assigned values i v j, then associate with it all rules containing condition [A=ivj v o B
Remove from the rules these conditions. If there are rules in the ruleset coniext that do not contain
attribute A, add these rules to all rule groups associated with the branches stemming from the node
assigned attribute A (This step is justified by the consensus law: [x=1] = { [x=1] & [y= a] v
[x=1] & [y=b] }, assuming that a and b are the only legal values of y.) All rules associated with
the given branch constitute a ruleset context for this branch.

. If all the rules in a ruleset context for some branch belong to the same class, create a leaf

and assign to it that class. If all branches of the trees have leaf nodes, stop. Otherwise, repeat
steps 1 to 4 for each branch that has no leaf.

9.3 DT Tables Guides

9.3.1 dtarameters
The mandatory dtparameters table contains values which control the execution of the DT module.
The set of DT parameters is given below.

Compact (no)

Specifies the format of the output decision tree. Given the value “no”, DT generates a conventional
decision tree. Given the value “yes”, DT generates compact decision trees (see section 9.2).

Cost (no)

Specifies the LEF mode for selecting an attribute. Legal values are “yes” and “no”. Given the value
“no”, cost information is not used when evaluating attributes. Given the value “yes” cost
information is used.

Prun (no)
Specifies whether or not rule pruning shouldbe performed before generating a decision tree. Legal
values are “yes” or “no”

LEF_tol (0.0)



Specifies the wlerance of the LEF. The possible values of this parameter are real numbers from 0.0
to 1.0.*** integer??**

Prun_tol (1)
Specifies the rule pruning performed. The value indicates the minimum number of examples that a
rule must cover in order not to be removed. Prun must be “yes” for prun_tol to be used.

10. Testing Rules
10.1 Introduction

ATEST is a program for evaluating the the performance of a rule base. ATEST has the ability to
check both the predictive accuracy and the completeness and consistency of a rule base. ATEST
takes as input rules, attribute definitions and control parameters. Each of these input types are
discussed fully below. This description is taken from (Reinke, 1984).

10.2 Method

In ATEST the fundamental operation is the calculation of the degree of match between a rule and a
vector of attribute values (example). This value is called a degree of consonance. The calulation of
consonance is dependent on parameter settings. Six parameters control rule evaluation. These six
parameters are andtype, ortype, norm, threshold dropa2 and dweight. Three parameters control
which features of ATEST are used in a specific run. These are test, misclass and cc.When rule
testing is performed ATEST applies each rule to the pre-classified testing example. For each
example a set of rules whose degree of consonance is within tau of the highest match is calculated.
These rules are are said to be in the same ‘rank’.

For a rule to be satisfied, some complex in the rule must be satified. A complex is satisfied if every
selector in that complex is satisfied by the example under consideration. A selector may be
considered to be a boolean conditional or a continuously-valued conditional.

10.3 ATEST tables

ATEST takes as input parameters, domain descriptions and testing examples. The parameter
descriptions are described below. The domain descriptions are identical to those described in
section 4.4 to 4.7. The testing examples are provided in -test tables. These tables are identical in
syntax to -tevents tables except that -test replaces -tevents. ATEST parameters should be in
filestem.atparam. Domain descriptions should be in filestem.domain and testing data in
filestem.test.

The parameters table is mandatory for ATEST. Default values (as shown in the parentheses) are
used if no values are given. At least two parameters must be explcitly provided in the input file,
however. The ATEST parameters are given below.

test (yes)

This parameter controls whether to test rules on the provided events. Legal values are: “yes”, “no”,
and “sum”. If “sum"” is given a summary of the results for each class is reported. If “yes” is given
a confusion matrix for each testing class (classes as columns and examples as rows) is reported. If
“no” is given the rules are not evaluated against the examples.

misclass (no)
If an exanple is misclassified and misclass is on, then a trace of that event will be reported. If

misclass is off, no such trace will be reported.



cc (no)
This parameter determines if completeness and consistency checking will be on.

andtype (minimum)
This parameter controls how conjunctions are evaluated. Legal values are “average” and

ortype {maximum)
This parameter controls how disjunctions are evaluated. Legal values are “maximum and “‘psum”

(probabilistic sum).

norm (no)
This parameter controls whether selectors of linear variables will be evaluated as boolean or
continuously-valued (normalized) conditions. Legal values are “yes” (normlized) and “no”

(boolean).

threshold (0.50)
This real-valued parameter controls the threshold for rule satisfaction. If rule consonance is

greather than threshold, then the rule is satisfied by the event.

dropa2 (1.00)

This real-valued parameter controls when to stop using the a2 weight in rule evaluation. This value
specifies the truth threshold a module must exceed before that module can be included in the
cumulative weight of evidence. This is a measure of ‘cumulative evidence’.

dweight

This real-valued parameters us used to determine which modules (rule-sets) are used for
multiplying during completeness and consistency checking. The dweight is a measure of how
important a particular complex is in reaching a decision.

11. Future Work

There are a number of new features in this implementation of AQ. Future work will involve better
explaining when these features will be appropriate to use. The basic outline of this work was given
in AQ17-MCI (Bloedomn, Michalski, Wnek, 1993). In this approach the system uses a meta-level
description of the data to leamn rules for the application of various representation space modifiers
(RSM). This assistance will allow the novice user to better utilize the power of AQ.

12. Bibliography



Appendix A. Programmer’s Guide to Data Structures

1. Inmtroduction

The most important change in the implementation involved the binary representation of the
complex/selector/event data. The original Pascal data structure supporting the
complex/selector/event limited the size of individual structures, as well as the number of structures.
This was due to the static allocation of memory. This was not a trivial limitation. On the PC
version this limit was 200 events, and 12 variables. The new C version uses dynamic memory
allocation. This allows the user to analyze much bigger input data.

As in the original Pascal implementation decision classes are organized hierarchically in a tree
structure. Each node in the tree represents a class. A complex is a variant record representing a
complex from a rule or an individual selector. As opposed to the original implementation, event
information is stored in a separate structure. Future implementation will also prvide a separate
structure for selector information. This change reduces memory use and improves speed.

The essential building block of the complex/selector/event structure is called bits. It is the address
of :‘h?l contiguous memory location holding the complex information. Consider simple event space
as follows:

There are 4 variables: x1, x2, x3, x4.

Each of these variables has the following domain sizes:
x1-3 (0.2)
x2-2 (0.1)
x3-4 (0.3)
x4-2 (0..1)

The complex Comp has the following variable values:
x1=1, x2=0, x3=3, x4=1

The size of the complex is 3+2+4+2=11.

Two bytes (16 bits) will be allocated for storage. The last five last bits of the second byte are
unused and are zeroed. The complex bytes will look as follows:

01010000 10100000

2. New Data Types

typedef unsigned char * bits
This is the essential data type in the new implementation of AQ. Every variable of this type holds
the pointer to the contiguous memory area storing the com plex/selector/event.

typedef struct Complex {
pcomplex next;

;I.:I:.liou {
struct {
bits compexbits;



}
struct {
bits selectorbits;

}

}v;

}Complex;

typedef struct Complex *pcomplex;

Data type pcomplex is holds the pointer 10 the variant record containing information about complex
and selector. In addition to storing the core logical part of complex or selector it holds some other
data needed in the algorithm. The previous utilization of AQ also included event information in this
data type . This version has separate data lype holding the event information. In future
implementation the pcomplex data type will pertain only to the complex from a rule. Selector data

will be kept by separate structure.

typedef struct Event {
t next;
its eventbits;
} Event;
typedef struct Event *pevent;

Type pevent holds the pointer to the data area containing information about events. Note that the
eventbits part of Event is of the same type as complexbits and selectorbits in the Complex type.

typedef struct locate_ {
int firstbyte;
?nsigned char firstbit_;

Type locate_ holds the pointer to the memory area containing information about variable
configuration in the complex/selector/event. Firstbyte holds the byte number of the complex where
the feature bits (variable data) starts . Firstbit holds the bit number where the feature starts.

3. New Global Variables

The size of the complex/selector/event is determined in the setup function and is represented by the
global variable size_of_complex_in_bits and size_of_complex_in_bytes. The bitwise location of
each feature is kept by the dynamic array pointed by firstbit. The size of each variable is kept in the
dynamic array pointed by varsize. In addition to these variables there is a structure type locate_
holding the bytewise and bitwise locations of each variable. This approach reduces the overhead
associated with the access to features. Also there is no longer need to create special bitwise masks
t0 access the features like in previous implementations. Some operations in the new implementation
are done without entering the intemal structure of the particular complex/selectorfevent - I will call
such operations bytewise as opposed to bitwise functions that deal with the internal “partitioning”
of the complex/selector/event .

From previous example:
comp = 01010000 10100000



If the presented complex name is comp and the memory location of its first byte is 100. The
allocated space for it consists of two bytes.

comp = 100 (address of the first byte in complex)
size_of _complex_in_bits = 11
size_of_complex_in_bytes =2

number_of _variables=4

The domain size of each variable is represented by the pointer varsize. In this case :

*yarsize =3 (size of first domain)
*(varsize + 1) =2 (size of second domain)
*(varsize + 2) = 4 (size of third domain)
*(varsize + 3) = 2 (size of fourth domain)

Global variable positions_ is the pointer to data type locate_.

positions_->firstbyte = () (the byte number where the first feature starts)
(positions_ +1)->firstbyte = 0 (the byte number where the second feature starts)
(positions_ +2)->firstbyte = 0 (the byte number where the third feature starts)
(positions_ +3)->firstbyte = 1 (the byte number where the fourth feature starts)

positions_->firsthit = 0 (bit location of the first feature)
(positions_ +1)->firstbit = 3 (bit location of the second feature)
(positions_ +2)->firstbit = 5 (bit location of the third feature)
(positions_ +3)->firstbit = 1 (bit location of the fourth feature)

Global variable firstbit is the pointer to the array containing the bitwise distances between the
features and the beginning of complex/event/selector.

*firsthit = 0 (bitwise distance between first feature and the beginning of complex)
*(firstbit+1) = 3 (bitwise distance between second feature and the beginning of complex)
*(firstbit+2) = 5 (bitwise distance between third feature and the beginning of complex)
*(firstbit+3) = 9 (bitwise distance between fourth feature and the beginning of complex)

4. New Functions

Most of our effort was put to streamline the basic set and logical operations in the new C version.
Following you will find short descriptions of some new f unctions associated with the core of AQ.
Most of the "high level” functions like traversetree, formrule, coverll etc remained unchanged.

The core of new logical and set operations is included in the new file called ags.c. This file
contains routines that deal with complexes at the lowest level. They can be viewed as a set of basic
tools or drivers needed for the new C version of AQ.

void compl_allocation(bits *c)

This routine allocates the space needed to hold the complex/selector/event pointed by c. It uses the
global variable size_of_complex_in_bytes.

void put_1(bits c, int _bytenr, unsigned char _bitnr)



This function places one in location pointed by the above parameters. C is the pointer (o the
beginning of the complex/selector/event, _bytenr represents the byte number in complex under
consideration, _bitnr is the bit number in the byte. Both _bytenr and _bitnr start with zero.

void put_O(bits c, int _bytenr, unsigned char _bitnr)
Function similar to put_l but places zero in the location- pointed by the above parameters.

Parameters are the same as in put_l.

void invert_bit(bits ¢, int _bytenr, unsigned char _bitnr)
This function inverts the bit value in location pointed by the above parameters. The paramelers are
the same as in put_l.

char check_bit_status(bits ¢, int _bytenr, unsigned char _bitnr) '
Check_bit_status returns one if the bit pointed by the above parameters is st to one. Otherwise it
returns zero. See put_1 for the description of parameters.

void allocate_complexes(void)
This function is called by setup after the size of the complex is determined. It allocates complexes
used locally in frequently called functions.

void create_bytes(void)

Create_bytes is called by setup. After domain and variable sizes are acquired create_bytes
establishes the configuration of the complex/selector/event structure. This function creates global
variables holding information of the bytewise and bitwise locations of each feature. (See GLOBAL

VARIABLES)

void intersect_compl(bits c1, bits c2, bits c2)
The function intersects logically complexes c1 and ¢2 and places the result complex under c3.

int subset_compl(bits c1, bits ¢2)
Subset Ecampl returns one if complex cl is a proper subset of complex c2, otherwise zero is
returned.

char check_if _sel_fill(bits a, int fid)
The function returns one if complex a has all bits of feature number fid set to 1. Fid must be in
range of zero to number_of _variables-1.

void copy_sel(bits a, bits b, int fid)
Copy_sel copies all bits assigned to feature fid of complex a to the same feature number of
complex b. Fid must be in range of zero to number_of_variables-1.

void blank_feature(bits c, int fid)
Blank_feature sets all bits belonging to the feature fid to zero. Fid must be in range from zero to
number_of_variables - 1

void copy_complex(bits ¢, bits c2)

This function copies the complex pointed by c1 to c2. The operation is bytewise, this means that
no feature check is performed. It is different from original Pascal implementation where such
operation had to performed on the array of sets.

void intcrs:ect_mnpl(bir.s cl, bits c2, bits ¢3)
E‘he function multiplies logically complexes cl and c2 and puts the result into c3. Operation is
ytewise.



Appendix B, Sample Application

This appendix provides samples of input and ouput files for all seven modules of AQ17.

B.I Learning Module

This section provides sample input and output files for use with the leaming module of AQ17. This
example does not show how all of the AQ17 tables may be used. Only the files used by the

learning module are described in this section. To run AQ17 with only the leaming module type:
aql7 ml.

B.1.1 Input to learning module
Input to the ag17 leaming module requires a learning parameter (.Iparam), domain description

(.domain) and training data (.data). Training data may also be provided in the -events table format.
IF that format is used, data should be in the m1.train file. In this example training data is provided

in an m1.data file, so the program automatically generates an m | training file.
B.1.1.1 Contenis of ml.lparam

parameters

maxstar trim echo wis

10 mini 0 cpx

B.1.1.2 Contents of ml.domain

variables

# type levels cost name
1 lin 4 100 xlxl
2 lin 4 100 x2x2
3 lin 3 100 x3x3
4 lin 4 100 x4.x4
5 lin S5 100 x5x5
6 lin 3 100 x6x6

B.1.1.3 Contents of ml.data
Only part of this file is shown here. The entire file contains 87 lines.

x1 x2 x3 x4 x5 x6 class
3211421
2121311
1223221
2313421
1211421
2112311
1313221
3212421
2121421
2123411
12233121
3112221
2111321



3313422
2211222
2322112
2213322
3313212
2213422
33233212
1111322

B.1.2 Ouput from learning module

The learning module outputs the rules that it generated from the training examples to m4.rule. It
also echoes to the .rule file some of the input tables. Which tables are echoed depends on the value
of the echo parameter in the m4.lparam file. The input tables are given in section B.1.1 so only the
new outhypo table will be shown here.

classl-outhypo

# cpx

1 [x1=1] [x2=2.3] [x5=2.4] (1:22, u:22)
2 [x1=2.3) [x2=1] [x5=2.4] (11, u:1l)
3 [x1=3] [x2=2] [x5=2..4] (t:5, u:5)

4 [x1=2] [x2=3] [x5=2.4] (t5, u:5)

class2-outhypo

# cpx

1 [x5=1] (t16,u:ll)

2 [x1=3] [x2=3] (:15,w:ll)
3 [x1=2] [x2=2] (10, u:10)
4 [x1=1][x2=1] (t:7, u:6)



B.2 DCI Module

This section provides sample input and output files for use with the DCI module. This module
modifies the training data by constructing new attribuies. These new attributes are added to the
training data, the testing data (if present) and the domain (-names, domaintypes and variables
tables). Input to the DCI module is the m1.dparam. ml.domain and m1.train (and ml.test if
present). The results of the DCI module are normally sent directly to the leaming module. In order
io better show what DCI does, the modified m1.domain, and ml.train file will be shown as
output.

B.2.1 DCI input

DCI input consists of the tables in m1.dparam, ml .domain and m1.train. See Appendix B.1.1 for
the m1.domain file.

B.2.1.1 ml.dparam

paramelers
echo operations
pvnex testl

test1-operations

cost name  threshold
10.0 relation 0.1
10.0 plus 0.5
10.0 muliiply 0.8

B.2.1.2 ml.train
This file contains the -event tables form of the training examples. These tables can be entered

directly, or generated from a .data file. AsinB.1, the below table is incomplete, but enough of it is
given to show the correct syntax. The “_» shows where the file was truncated.

class1-events
x1 x2 x3 x4 x5x6
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221332
111132
222132

B.2.2 DCI ouput

DCI modifies the training data, and attributes given to it. To show this, the modified m1.domain
and m1.train files are given below.

B.2.2.1 ml.domain

variables
# type levels cost name
1 lin 4 1.00 xl
2 lin 4 1.00 x2
3 lin 3 100 x3
4 lin 4 1.00 x4
5 lin 5 100 x5
6 lin 3 100 x6
7 lin 3  3.00 xIRELx2.x1RELx2
8 lin 3 3.00 xIRELx5.xIRELx5
9 lin 3 3.00 x3RELx5.x3RELx5
10 lin 3  3.00 xS5RELx6.xSRELx6
x1RELx2-names
value name
0 1
1 2
2 3
x1RELxS-names
value name
0 1
1 2
2 3
x3RELx5-names
value name
0 1
1 2
2 3

B.2.2.2 ml.train

classl-cvents
xl x2 x3 x4 x5 x6 leElel x1RELxS5 x3RELx5 x5RELx6

3211423 2 3
2121313 2 2 3
1223222 2 1 1
2313422 2 2 3
1211422 2 2 3



x6 x1RELx2 x1RELx5 x3RELx5 x5SRELx6
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B.3 HCI Module

This section provides sample input and output files for use with the HCI module. This module
modifies the training data by constructing new attributes and removing irrelevant attributes. These
new attributes are added, or removed from the training data, the testing data (if present) and the
domain (-names, domaintypes and variables tables). Input to the HCI module is the m1.hparam.
m1.domain and m1.train (and m1.test if present). The results of the HCI module are normally sent
directly to the learning module. In order to better show what HCI does, the modified m1.domain,
and m1.train file will be shown as output.

B.3.1 HCI input

HCI input consists of the tables in m1.hparam, m1.domain and m1 train. See Appendix B.1.1 for
the m1.domain file, and B.2.1 for the m1.train file.

B.3.1.1 ml.hparam

parameters
mode trim wts echo expand
ic minicpxpq all

B.3.2 HCI ouput

HCI modifies the training data, and attributes given to it. To show this, the modified m1.domain
and m1.train files are given below. A record of the sequence of attribute removals and additions is

provided in m1.log
B.3.2.1 ml.domain

nd-c)umint)rl:ne.s;ki
levels cost name
Enrpc 4 1.00 x1
lin 4 100 x2
lin 3 100 x3
lin 4 100 x4
lin 5 100 x5
lin 3 100 x6
lin 2 100 classll
in 2 1.00 class22
variables
# type levels cost name
1 lin 4 1.00 xlxl
2 lin 4 1.00 x2x2
3 lin 5 100 x5x5
4 lin 2 1.00 classll.classll
5 lin 2  1.00 class22.class22



B.3.2.2 ml.train

The below table is incomplete, but enough of it is given to show the correct syntax. The ..."
shows where the file was truncated.

classl-events

# x1 x2 x5 classll class22
13240 0
22131 O
31221 O

4 2341 0
51241 0
62131 O
71321 0
class2-events

# x1 x2 x5 classll class22
13340 1
2222490 1
32310 1
42230 1
53320 1
62240 1
73330 1
81130 0

9 2230 1
B.3.2.3 ml.log

parameters

run mode ambig trim wis maxstar echo criteia expand window thl  th3
1 ic neg mini cpx 3 Pq default all 1.00 067 0.10
class1-outhypo

# cpx

1 [x1=1] [x2=2.3] [x5=2..4] (total:22, unique:22)
2 [x1=2..3] [x2=1] [x5=2..4] (total:1], unique:11)
3 [x1=3] [x2=2] [x5=2..4] (total:5, unique:5)
4 [x1=2] [x2=3] [x5=2..4] (total:5, unique:5)

class2-outhypo

# cpx

1 [x5=0.1] (total:16, unique:11)

2 [x1=3] [x2=3] (total:15, unique:11)

3 [x1=2] [x2=2] (total:10, unique:10)

4 [x1=0.1] [x2=0..1] (total:7, unique:6)

Removed attributes: 3 4 6



classl-outhypo

# cpx
1 [x1=0..1] [x2=2..3] [x5=2.4] (total:22, unique:13)

2 [x1=0..2] [x2=3] [x5=2.4] (total: 14, unique:5)
3 [x1=2..3] [x2=0..1] [x5=2..4] (total:11, unique:8)
4 [x1=3] [x2=0.2] [x5=2..4] (total:8, unique:5)

class2-outhypo

# cpx

1 [x5=0..1] (total:16, unique:11)

2 [x1=3] [x2=3] (total:15, unique:11)

3 [x1=2] [x2=2] (total:10, unique:10)

4 [x1=0..1] [x2=0..1] (total:7, unique:6)

Removed attributes:
Relevant atiributes: 1 2 5

class1-outhypo

# cpx

1 [x1=0..1] [x2=2..3] [x5=2..4] (total:22, unique:13)
2 [x1=0..2] [x2=3] [x5=2..4] (total:14, unique:5)

3 [x1=2..3] [x2=0..1] [x5=2..4] (total:11, unique:8)
4 [x1=3] [x2=0..2] [x5=2.4] (total:8, unique:3)

class2-outhypo
# cpx

1 [x5=0..1] (total:16, unique:11)

2 [x1=3] [x2=3] (total:15, unique:11)

3 [x1=2] [x2=2] (total: 10, unique:10)

4 [x1=0..1] [x2=0..1] (total:7, unique:6)

classl 1-attribute
# cpx
1 [x1=0..1] [x2=2.3] [x5=2..4]

2 [x1=2.3] [x2=0..1] [x5=2.4]
3 [x1=0..2] [x2=3] [x5=2.4]

class22-atiribute
# cpx
1 [x5=0..1]

2 [x1=3] [x2=3]
3 [x1=2] [x2=2]

Relevant attributes: 12 57 8



class1-outhypo

# cpx

1 [classll=1] (total:38, unique:11)

2 [x2=2.3] [class22=0] (total:32, unique:5)

class2-outhypo

# cpx

1 [class22=1] (total:37, unique:36)

2 [x1=0.1] [x2=0..1] (total:7, unique:6)

This run used (milliseconds of CPU time):
Systemn time: 0
User time : 350



B.4 NT Module

This section provides sample input and output files for use with the NT module. This module
modifies the training data by removing training examples which are covered by ‘light’ rules in the
learned covers. Input to the NT module is the ex1.domain and exl.train (and ex1.test if present)
files. The results of the NT module are normally sent directly to the leamning module. In order to
better show what NT does, the modified ex1.train file will be shown as output.

B.4.1 NT input

NT input consists of the tables in ex1.domain and ex1.train. In this example nt is invoked with
th=10. This threshold is entered at the command line:

>aq17 -n 10 exl

AQI7 [release 1] Multistrategy Leaming System

Options:

noise removal

running the NT module...
1 example removed from training data

learning rules. Please standby...
c_l-outhypo
# c

1 []['::ight=4..5] (12, u:2)
2 [length=4] (1:2, u:2)

¢_2-outhypo
# cpx :
1 [length=5..6] [width=2] (t:2,u:2)
2 [length=1..2] (t:2, u:2)
Done learning rules
aql7 Leaming System Exiting
B.4.1.1 exl.domain

variables
# type levels cost name
1 lin 20 1.00 height
2 lin 20 1.00 length
3 lin 20 1.00 width



B.4.1.2 exl.train

c_l-events
height length width
5102
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c_2-events

height length width
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B.4.2 NT ouput

NT modifies the training data. To show this, the modified ex1.train file is given below. The first
example of class c_1 has been removed.

c_l-events
height length width



B.5 SCALE Module

This section provides sample input and output files for use with the SCALE module. This module
modifies the training data by discretizing the attribute values. The new discretized attribute values
replace the values given in the training data, and the testing data. Input to the SCALE module is the
t2.sparam and (2.train (and 12.test if present) files. The results of the SCALE module are normally
sent directly to the learning module. In order to better show what SCALE does, the modified
(2.train file will be shown as output with the t2.intv file which show into which intervals the values

were rewritten.

B.5.1 SCALE input

SCALE input consists of the tables in 12.sparam and t2.train.
B.5.1.1 t2.sparam

gimnra]s 1

name min_intv max_intv method chi_thresh
x1 2 50 chi 1.0

x2 2 50 chi 10.0
x3 2 50 chi 10.0
x4 2 50 chi 10.0
x5 2 50 chi 10.0
x6 2 50 chi 10.0
x7 2 50 chi 250
x8 2 50 chi 1.0

B.5.1.2 t2.train

class_l-events

xl x2 x3 x4 x5 x6 x7 x8

165.1 581.2 1572.4 2471.0 280.1 264.9 1081.5 812.3
164.9 540.4 1671.2 2036.2 298.5 292.1 1025.1 807.6
196.8 733.8 1416.4 1626.2 246.1 251.5 953.9 937.5
165.6 572.8 1908.1 2212.2 289.7 275.2 1037.2 947.8
163.0 510.9 2139.0 2207.8 319.8 355.0 1011.5 12313
150.3 459.0 2052.3 2297.1 303.0 282.0 1354.4 1042.0
166.0 575.9 2121.8 1809.7 256.8 267.3 983.9 1007.7
190.6 675.7 1619.8 2064.0 254.9 251.3 1040.9 934.4
164.7 560.0 1575.9 1568.3 267.1 250.5 858.7 793.6
1423 481.9 1367.6 1296.7 237.3 208.1 765.0 8304
149.9 499.4 1535.8 1553.7 193.0 226.7 840.5 903.0
194.3 698.6 2347.8 1751.7 249.2 307.3 780.3 1068.3
187.3 671.0 1476.3 1880.8 260.2 235.4 1011.4 8443
183.0 660.6 1346.3 1526.2 302.4 302.6 931.2 936.6

class_2-events
xl x2 x3 x4 x5 x6 x7 x8
111.8 341.2 1610.1 1721.4 197.6 215.6 746.0 859.7
146.1 464.4 2878.6 1766.7 194.5 203.5 693.3 1205.2



135.4 427.6 1956.0 1500.7 187.7 225.8 698.4 1095.5
109.1 372.9 1686.1 1245.5 148.4 176.8 502.6 676.7

B.5.2 SCALE ouput

SCALE modifies the attribute values in the training (and possible testing) data. To show this, the
modified t2.train file and t2.intv file is given below.

B.5.2.1 t2.train

classl-events
xl x2 x3 x4 x5 x6 x
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class2-events

xl x2 x3 x4 x5 x6 x7 x8
1 1 2 1 1 1 1 3
31 2 11 1 1 5§
1 1 2 1 1 1 1 5§
1 1 2 1 1 1 11



B.5.2.2 tl.intv

SCALE discretizes the initial attribute values into the intervals defined in the following ranges. This
file is produced both for the user o see into what intervals the original data was discretized, and to
allow testing data to be scaled to the same intervals.

attribute intervals-x1
1 0.00.. 142.29
2 142.30.. 146.09
3 146.10... 149.89
4 149.90... 196.80

attribute intervals-x2
1 166.00... 481.89
2 481.90... 733.80

attribute intervals-x3
1 0.00.. 1610.09
2 1610.10... 2878.60

attribute intervals-x4
1 1245.50... 1809.69
2 1809.70... 2471.00

attribute intervals-x5
1 148.40... 237.29
2 237.30... 2207.80

attribute intervals-x6
1 176.80... 226.69
2 226.70... 1520.72

attribute intervals-x7
1 0.00.. 764.99
2 765.00... 1354.40

attribute intervals-x8
1 676.70... 793.59
2 793.60... 859.69
3 859.70... 902.99
4 903.00... 1095.4%
5 1095.50... 1231.29
6 1231.30... 1231.30



B.6 ATEST Module

This section provides sample input and output files for use with the ATEST module. This module
tests rules against labelled testing examples. Input to the ATEST module is the exl.tparam
exl.domain and ex1.test files. The results of the ATEST module is a confusion matrix which
records the degree of match between each testing example and each class. Summary statistics on
the percent correct, percent first-rank correct (flexible match) and percent strict-match correct are

given, for this example, in the ex].test-results file.

B.6.1 ATEST input

ATEST input consists of the tables in ex].atparam, ex1.domain, ex1.test and exl.rule.
B.6.1.1 exl.atparam

parameters
run test echo threshold tau
lyes p 05 000

B.6.1.2 exl.domain

domaintypes
type levels cost name
lin 20 100 height
lin 20 1.00 length
lin 20 1.00 width

variables

# type levels cost name

1 lin 20 1.00 heightheight
2 lin 20 1.00 lengthlength
3 lin 20 1.00 width.width

B.6.1.3 exl.test

th width
2 2
3



B.6.1.4 exl.rule

c_l-outhypo

# cpx

1 [length=8,10]
2 [height=0]

3 [height=9]

¢_2-outhypo
# cpx
1 [height=2..3,5] [length=2,5..6]

B.6.2 ATEST ouput
The generated summary statistics and confusion matrix is put in the file ex1 test-results.

B.6.2.1 exl.test-results

parameters
test misclass tau andtype ortype threshold norm cc dweight dropa2

yes false 000 average maximum 0.50 no no 050 100

DECISION CLASSES
Dl =c_1 )
D2 =c_2

e S S PP T PR R R AL S e L el e b Rl

TEST RESULTS FOR CLASS c_I

e T T T T e et T L L R R S S Ll b

CORRECT DECISION CLASS =Dl(c_1)

1 ==]
I EVENT  :#TIES : ASSIGNED DECISION I
I 2 : DI D2 I
I== = = = =1
Ic_1-1 « :*1.00*0.50 I
I o
Ic_1-2 ' : 0.00 1.00 1
I ememennees I
{c_l-?r : :0.00 1.00 1[
Ic_1-4 : 1 :0000.00 %
I e

I #I1stRANKEVENTS: 1 2 I

= I

1 -
TOTAL # 1st RANK EVENTS/#EVENTS = 3/4 =075
NUMBER OF EVENTS SATISFYING CORRECT RULE: 1
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TEST RESULTS FOR CLASS c_2

rpererrrr e e P TR PR R R I EL LR A LSS LA L L L L

CORRECT DECISION CLASS = D2(c_2)

[ EVENT  :#TIES : ASSIGNED DECISION :
I : : Dl D2 l
: c_2-1 : : =[J=0(] *1.00* o = st -
g':-z‘z : - 0.00 *1.00* i """""““'""-------‘-II
i # 1st RANK EVENTS: 0 2 R II

TOTAL # 1st RANK EVENTS/#EVENTS = 2/2 = 1.00
NUMBER OF EVENTS SATISFYING CORRECT RULE: 2

e eTT T TTES PR TR I LIS L AL S S S

TEST RESULTS -- SUMMARY

e e TS PR L L R b L b bbb

OVERALL % CORRECT : 50.00
OVERALL % CORRECT 1ST RANK : 50.00
OVERALL % CORRECT ONLY CHOICE : 50.00

Number of testing events satisfying individual complexes

in the correct class description:
COMPLEXES
ClC2LC

CLASS c_1 100

CLASS c_2 2

Note: the entries (class x, CI) in the above table show the number
of testing events of class x that were completely covered by
the ith complex (CI)

This run used (milliseconds of CPU time):
CPU user time: 16 milliseconds
CPU system time: 0 milliseconds



B.7 DT-Module

This section provides sample input and output files for use with the DT module. This module
constructs decision trees from decision rules. Input to the DT module is the ml.dtparam,
m4.domain and m1.rule. The results of the DT module are given in m1.tree.

B.7.1 DT input

DT input consists of the tables in m1.dtparam, m1.domain and m1.rule.

B.7.1.1 ml.dtparam

parameters .

run mode cost rul_prun cost_tol disj_tol prun_tol

1 dc no no no no no

B.7.1.2 ml.domain

variables

# type levels cost name

1 nom 4 100 =l

2 nom 4 100 x2

3 nom 3 100 x3

4 npom 4 1.00 x4

S nom 5 100 x5

6 nom 3 100 x6
B.7.1.3 ml.rule
Pos-outhypo

# cpx

1 [xl=lv2v3][ﬂ=lv2v3][x3=l\r2][x4=1v2v3}[15=11[xﬁ=1v2]

(Total:xx, Unique:yy)
2 [x1=1])[x2=1][x3=1v2][x4= 1v2v3](x5=1v2v3v4][x6=1v2]

(Total:xx, Unique:yy)

3 [11=2][12=2][x3=lv2}[14:1v2v3] [x5=1v2v3vd][x6=1v2]
(Total:xx, Unique:yy)

4 [x1=3)[x2=3][x3=1v2)[x4=1v2v3][x5=1v2v3v4][x6=1v2]
(Total:xx, Unique:yy) *

Neg-outhypo
# cpx
1 [xl=1][xl*—-‘lvil][x3=1v2][x4:1v2v3][x5=2v3v4][x6=1v2]
(Total:xx, Unigue:yy)
2 [x1=2][x2=1v ][13=lv2}[x4=1v2v‘3]{xﬁ=2v3v4}[xﬁ=1v2]

(Total:xx, Unique:yy)
3 [xl=3][xl=1v2][13=lvZ][x4=1v2v3][15=1v3v4][16=1v2]
(Total:xx, Unique:yy)



DT generates a decision tree from rules. The contents of m4.tree are given below.

B.7.2 DT ouput
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