MULTISTRATEGY LEARNING

R. S5 Michalski

Encyclopedia of Microcomputers, A. Kent and J. G. Williams (Eds.), Vol. 12, New York,
Marcel Dekker, 1993.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

s

5% e i n e!-lFMMi;‘P;‘in@P\l’-k

1) V7 R 3 gl
e, P e N L Y
= }L 5 \Jj-.; ; 'u : llq_ E?{.hi;#g f-.‘xf-%"}; ¥

T e

PRCi i
e P
Lt b
i »

«
L Ll
. Wet

- R
£ B T
e r

S

mﬁﬂ'@g

£ 12 gl

ENCYCLOPEDIA OF
MICROCOMPUTERS

EXECUTIVE EDITORS
Allen Kent James G. Williams

UNIVERSITY OF PITTSBURGH
PITTSBURGH. PENNSYLVANIA

ADMINISTRATIVE EDITORS
Carolyn M. Hall Rosalind Kent

PITTSBURGH., PENNSYLVANIA

VOLUME 12

Multistrategy Learning to
Operations Research,

Microcomputer Applzcatzons

Fenwick Library

Qeorge Mason University
Fairfax, VA

MARCEL DEKKER, INC. NEW YORK + BASEL * HONG KONG

CONTENTS OF VOLUME 12

Contributors to Volume 12 vii
MULTISTRATEGY LEARNING

Ryszard 8. Michaliski and Gheorghe Tecuci 1
MULTIUSER PROGRAMMING

Linda 8. DeBrunner 29
MUMPS

William J. Harvey and Frederick G. Kohun 45
MUSIC DESCRIPTION LANGUAGES

Mira Balaban 71
MUSIC PRINTING
. Keith A. Hamel 81

NATURAL LANGUAGE PROCESSING
Klaus K Obermeier 05

NATURAL LANGUAGE UNDERSTANDING _
Inger Lytje 133

NATURAL RESOURCE MANAGEMENT AND AGRICULTURE,
APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Michael S. Saunders, Robert N. Coulson, and L. Joseph Folse 149

NETWORK-BASED SIMULATION MODELS, ANIMATION OF-see
ANIMATION OF NETWORK-BASED SIMULATION MODELS

Volume 1, pages 139-149

NETWORK OPTIMIZATION ON MICROCOMPUTERS
Richard S. Barr 163

NETWORK TESTING SYSTEM FOR DIGITAL DATA NETWORKS-see
DIGITAL DATA NETWORKS; NETWORK TESTING SYSTEM
Volume 5, pages 99-122

Ly]
m

iv CONTENTS OF VOLUME 12

NETWORKS-DISTRIBUTED COMPUTING
W. Anthony Mason

A NEURAL ALGORITHM FOR DOCUMENT CLUSTERING
Kevin J. MaclLeod

NEURAL NETWORKS
Young B. Park

NEURAL NETWORKS~CONNECTIONISM
Peter Dayan

NOISE PHENOMENA IN VLSI CIRCUITS
Arthur Van Rheenen and Kostas Amberiadis

NORMALIZED OBJECT ORIENTED METHOD
Henri Habrias

THE OBJECT-ORIENTED PARADIGM
Chenho Kung

OBJECT RECOGNITION AND VISUAL ROBOT TRACKING
Luc J. Van Gool, Dao-Bin Zhang, and André Qosterlinck

OFFICE INFORMATION SYSTEMS DESIGN-see AUTOMATED
OFFICE SYSTEMS DESIGN Volume 2, pages 67-124

ONLINE INVESTING USING THE MICROCOMPUTER
Deanna K Daniels and Michael D. Chase

OPEN SYSTEMS INTERCONNECTION
Ray Denenberg

OPERATING SYSTEMS-see DOS Volume 35, pages 151-240

OPERATIONS RESEARCH, MICROCOMPUTER APPLICATIONS

Peter C. Bell

187

199

215

229

253

271

287

307

345

353

375

MULTISTRATEGY LEARNING

INTRODUCTION

Building systems with learning abilities is one of the central goals of artificial intelligence.
The research in this direction started already in the 1950s and over the years grew into the
very active and broad field of machine learning. While most research in this field has
been concerned with monostrategy learning systems (employing one primary type of in-
ference and a single computational paradigm), in recent years, there has been a growing
interest in multistrategy learning systems. Such systems integrate two or more types of
inference and/or computational paradigms, and can potentially apply to a much wider
range of learning tasks than monostrategy learners. They also resemble more closely hu-
man learning, which is intrinsically multistrategy.

Thas article reviews major ideas and methods in the area of multistrategy learning.
To introduce the reader to the subject, it first generally characterizes learning processes,
and gives a brief review of several monostrategy learning methods that summarizes their
interrelationships and limitations. Subsequently, it surveys some representative multi-
Strategy learning systems. It then outlines an Inferential Theory of Learning, which pro-
vides a theoretical foundation for building multistrategy learning systems (1). Finally, it
presents an inference-based framework for building multistrategy learning systems that
adapt their learning behavior to a given learning task (2). For further reading, the Bib-
liography provides a selection of representative papers on multistrategy learning.

WHAT IS LEARNING?

Learning is a multifaceted process that comprises a wide range of capabilities. A general
characterization is to say that it is a goal-oriented modification of one's knowledge by
exploring one’s experience. Such a modification can involve any type of knowledge
transformation and inference, such as deduction, induction, or analogy. The type and the
way the inference is performed depends on what external input is provided to the learning
process, what the goals of learning are, and what the learner already knows. Conse-
quently, the information flow in a learning process can be characterized by the schema

shown in Figure 1.
In each learning cycle, the learner analyzes the external input information in terms

of the learner’s background knowledge (BK). Such knowledge is the part of the total
learner’s prior knowledge that is relevant to the current learning process. This analysis
involves performing inferences on the input and BK, and aims at generating new knowl-
edge that satisfies the learning goal. In symbolic learning systems (e.g., in rule learn-
ing systems), the inferences are usually performed in a more or less explicit way, while

2 Multistrategy Learning

External Input

FIGURE 1 An illustration of a general learning process.

in subsymbolic systems (e.g., neural nets or genetic algorithms), they are performed im-
plicitty. This means that individual transformations may not correspond to some
identifiable inference rules, but the final results can be viewed as equivalent to perform-
ing inferences, e.g., they may represent a generalization of the input. |

A learning goal may be one of three general types: to change the current knowledge
to a more effective or operational form, to acquire new knowledge, or to validate some
piece of the current (uncertain) knowledge. If the results of a given learning step (Output)
satisfy the learning goal, they are assimilated within the learner’s BK, and become avail-
able for use in subsequent learning processes. |

In sum, to learn, an agent has to be able to perform inference, and has to possess
the ability to memorize knowledge. The ability to memorize knowledge serves two pur-
poses: to supply the background knowledge needed for performing the inference, and to
record “‘useful’’ results of inference. Without either of the two components—the ability
to reason and the ability to store and retrieve knowledge from memory—no learning can
be accomplished. Thus, one can write an ‘‘equation’’:

Learning = Inferencing + Memorizing

It should be noted that the term *‘inferencing’” means here any possible type of reason-
ing, including any knowledge manipulation, random searching for a specified knowledge
entity, etc.

The double role of memory, as a supplier of background knowledge, and as a de-
pository of results, is often reflected in the organization and the structure of a learning
system. For example, in the simplest learning systems, such as decision tree learning
systems, the BK includes available attributes, their legal values, and a method for at-
tribute selection. The learned knowledge is in the form of a decision tree whose nodes
correspond to individual attributes, and leaves to decision classes. In neural nets, back-
ground knowledge is determined by the structure of the network, i.e., by the number of

Mulristrategy Learning 3

processing units (which perform some transformation of the input signals to a unit, e. g,
a sigmoid function of the weighted sum of the inputs), the way they are interconnected,
and by the initial weights of the connections between units. The learned knowledge re-
sides in the new values of the weights. In a ‘‘self-contained”’ rule learning system, all
background knowledge and learned knowledge would be in the form of rules. A learning
process involves modifying prior rules and/or creating new ones.

As indicated above, a learning process depends on the input information, back-
ground knowledge, and the learning goal. These three components constitute a learning
task. An input can be sensory observations or knowledge from some source, e.g., a
teacher, or knowledge from the previous learning step. The background knowledge can
be in many forms—stated facts, concept instances, previously formed generalizations,
conceptual hierarchies, certainty measures, or any combinations of such types.

A learning goal is a necessary component of any learning process. Given an input,
and nontrivial background knowledge, a learner could potentially generate an unbounded
number of inferences. To limit the proliferation of choices, a learning process has to be
constrained and/or guided by the learning goal. A learning goal determines what parts of
prior knowledge are relevant, what knowledge is to be acquired, in which form, and how
the learned knowledge is to be evaluated. In addition to the general types of goals men-
tioned above, there can be many more specific learning goals, such as to acquire a piece
of knowledge that answers a given question, to derive a specific knowledge from the
general knowledge, to generalize given observations, to acquire control rules to perform
some activity, to reformulate given knowledge into a more effective form, to confirm a
given piece of knowledge, etc.

MONOSTRATEGY VERSUS MULTISTRATEGY LEARNING

Most of research in machine learning has been concerned with monostrategy methods
that employ a single inference type and computational paradigm, and are oriented toward
some specific class of learning problems. A large number of such methods, or their vari-
ants, has been developed to date, such as learning decision trees or decision rules from
examples, explanation-based generalization, empirical determination of equations fitting
a given set of data, neural network learning from examples, genetic algorithm-based
learning, case-based learning, abductive learning, and others. Recent research progress
on such methods have been reported by several investigators (3-14).

Each of these methods addresses a specific class of learning problems, correspond-
ing to a certain learning task (as defined above). For example, methods: for empirical
concept learning assume that the input consists of a number of (positive and/or nega-
tive) examples of a concept to be learned, BK contains information about the description
space (attributes or predicates used for describing examples), and the goal is to learn a
general concept description. Such a description is an inductive generalization of the
positive examples that does not cover any negative examples. Different methods of em-
pirical learning use different computational paradigms, such as decision tree, neural net,
decision rules, etc., but they all address that same class of problems. In explanation-
based generalization, the input may consist of only one example of a concept C, but BK
has to contain a complete abstract concept definition and domain rules relating it to op-
erational terms (that can be directly measured), and the goal is to learn an operational
concept description, which is a deductive derivation from BK and the input example. In

4 Multistrategy Learning

case-based learning, the input are examples (cases), BK contains inference rules for de-
termining the similarity between difference cases, and the goal of learning is to store and
index past cases for future retrieval and comparison with new ones. In abductive learn-
ing, the input may be some fact, BK contains causal knowledge related to the input, and
the goal is to hypothesize knowledge that would explain the input. In conceptual clus-
tering, input is a set of entities or observations, BK contains information about the prop-
erties of these entities, and the goal is to create a partitioning of the entities into certain
meaningful classes, and to provide a general description of the classes.

The above characterization of monostrategy methods shows that they are quite ver-
satile, but each of them is useful only if applied to a designated class of problems. It also
1llustrates a complementary nature of their requirements. The latter suggests a possibility
that by properly integrating various monostrategy methods, one could obtain a synergis-
tic effect, that is, different methods would mutually support each other in such a way that
together could be applied to a wider range of learning problems than the *‘sum’’ of
monostrategy methods.

The possibility of such a synergistic integration is 2 major motivation for the de-
velopment of multistrategy learning systems. Another important reason is that human
learning is intrinsically multistrategy. Thus, by understanding the role of different learn-
ing strategies and the methods for their synergistic integration, one might be able to more
adequately model human learning. The development of the theory and methodology for
building multistrategy learning systems is therefore a fundamental long-term objective
for machine learning research. The next section surveys a selection of existing multi-

strategy learning systems.

MULTISTRATEGY LEARNING SYSTEMS

Multistrategy learning systems built so far represent different methods for integrating
some monostrategy methods, and are oriented toward relatively limited tasks. Most of
these systems integrate some method for symbolic empirical induction (which usually
requires many input examples and a small amount of BK) with a method for explanation-
based generalization (which requires only one input example, and a large amount of BK).
The goal was to develop systems that could learn from fewer input examples (as com-
pared with the empirical induction) and a smaller amount of BK (as compared with
explanation-based generalization). Some current multistrategy systems also include some
form of abductive learning, or a simple method of analogical learning. Below is a brief
characterization of several well-known systems.

UNIMEM (15) combines empirical induction, which is used to form a generaliza-
tion of examples, with explanation-based learning, whose role is to explain and
verify the generalization for consistency with existing domain knowledge, and to
remove the unexplained features.

IOE (16) learns a concept from a set of positive examples by first constructing ex-
planations of the individual examples, and then by empirically generalizing these
explanations.

ML-SMART (17) employs a domain theory to improve and operationalize give ab-
stract concept descriptions. The original domain theory may be incomplete and/

Multistrategy Learning 5

or incorrect, unlike in ““pure’’ explanation-based generalization. The concept de-
scription is improved using a set of positive and negative examples.

GEMINI (18,19) and KBL (20,21) combine explanation-based learning and sym-
bolic empirical induction to complete a domain theory by performing a theory-
guided induction over a limited set of examples. GEMINI was designed for
symbolic classification problems, while KBL for engineering domains involving
real numbers and mathematical expressions.

ODYSSEUS (22,23) extends an incomplete domain theory by using empirical in-

duction and abduction.

PRODIGY (24,25) is a general problem solver and learner that integrates learning
by analogy, explanation-based learning, learning by abstraction, and learning by
experimentation.

OCCAM (26) is an interactive multistrategy system that learns to predict and ex-
plain the outcome of events. It integrates explanation-based learning, abductive
learning (based on a causal domain theory), and symbolic empirical induction.

MOBAL (27) represents an application of multistrategy learning to domain mod-
eling, which is based on a balanced interaction between the system and the user
in which different learning strategies contribute to the development of system’s
background knowledge, to enhancing the domain knowledge, and to the knowl-
edge validation.

CLINT (28,29} is an interactive concept learner and theory revisor, which inte-
grates deduction, induction and abduction using the Horn clause-based knowi-
edge representation and reasoning (an inductive logic programming paradigm).
The system enhances individual inferential strategies by employing techniques
for changing the representation of the concepts to be learned, and by handling
integrity constraints.

WHY (30) is a multistrategy system for learning and updating diagnostic knowl-
edge. It employs learning strategies for learning from different types of knowl-
edge. The phenomenological knowledge is used deductively, a causal model is
used abductively, and the examples are used inductively.

Below, we describe in greater detail three other systems, which illustrate well the
diversity of approaches and research issues in multistrategy learning. These include:
DISCIPLE (31,32), EITHER (33), and EBL-ANN (34). The DISCIPLE system supports
an interactive acquisition of knowledge from an expert, and modifies its learning behav-
lor accordingly to its prior knowledge about the inputs received. EITHER automatically
improves its initial knowledge base so that a given set of positive and negative examples
is correctly classified. While both DISCIPLE and EITHER integrate different symbolic
learning methods, EBL-ANN aims at integrating subsymbolic and symbolic methods.

The System DISCIPLE

DISCIPLE was designed as an advanced tool for building expert systems. It combines
an expert system shell with a multistrategy learning system, both using the same knowl-
edge base. To build an expert system with DISCIPLE, one has first to introduce into the
knowledge base some basic knowledge about the given application domain (the initial
background knowledge). Once this is done, DISCIPLE is ready to solve problems and
improve its knowledge base by interacting with a human expert. During such cooperative

] Multistrategy Learning

initial problem solving episode (pse) ,

user
rejected pse accepted pse
analogous
pse ‘ updated bounds
Explanation - Analogy . Empirical
o] Based | p-olenationofy | “PE Y | inidal bounds o f TOPIrCRL
Mode the initial pse Mode of the Tule Mode
| failure explanation ? ‘ npdated bounds f
incompletely -
completely learned rule completely
learned nule learned rule
problem solving rule

FIGURE 2 DISCIPLE’s main learning steps.

problem solving processes, the system learns general problem solving rules from
the problem solving steps (episodes) received from the expert, and will progressively
improve its problem solving capabilities.

The learning behavior of DISCIPLE depends on how much prior knowledge it
has about the problem solving episode received from the expert. This knowledge can be
complete (if DISCIPLE can build a deductive proof of the validity of the problem solving
episode), incomplete (if it can build only a plausible proof), or poor (if it cannot build any
proof). In the case of complete knowledge, the learning method is purely deductive, and
is a form of explanation-based learning. In the case of incomplete knowledge, the learn-
ing method involves different forms of inference, specifically, deduction, abduction, em-
pirical induction and a simple form of analogy, and also requires a small degree of
interaction with the expert. Finally, in the case of poor knowledge, the learning method
integrates empirical induction and analogy, and requires a high degree of interaction with
the expert. The main learning steps of DISCIPLE are presented in Figure 2.

The input to the learning process is an example of a problem-solving episode, rep-
resented by a problem and the solution indicated by the expert. The output is a general
problem-solving rule. Such a rule might be complete or incomplete if the system’s
knowledge is insufficient to create a complete rule.

First, DISCIPLE enters the Explanation-Based Learning Mode, and tries to find an
explanation of the problem-solving episode. If it is able to determine an explanation in
the form of a deductive proof tree, then it deductively generalizes the problem-solving
episode to a rule, using an explanation-based learning method. This ends the learn-
Ing process.

If DISCIPLE is not able to find a deductive proof tree, then it looks for a plausible
proof tree, using deduction, abduction, and/or analogy. If it finds a plausible proof tree
(which means that it has incomplete knowledge about the input), then DISCIPLE enters
the Analogy-Based Learning Mode. It generalizes the proof tree (by using a knowledge-
intensive generalization procedure), and generates a reduced plausible version space for
the rule to be learned. The plausible version space is the set of all the rules that could
potentially be learned from the input problem solving episode. This is a partially ordered
space and is represented by its two bounds, the plausible lower bound (a rule that is

Multistrategy Learning 7

supposed to be less general then the rule to be learned), and the plausible upper bound
(a rule that is supposed to be more general then the rule to be learned). Each rule in this
space covers only instances which are analogous to the initial problem solving episode.
Then, DISCIPLE generates such an analogous instance and asks the user if it is a cor-
rect problem-solving episode or not. If the problem-solving episode is accepted by the
user, then it is interpreted as a positive example of the rule to be learned. Consequently,
DISCIPLE enters the Empirical Induction Mode and generalizes the lower bound of the
plausible version space, so that to cover this instance. Then re-enters the Analogy-Based
Learning Mode, and generates a new problem-solving episode. If the generated problem-
solving episode is rejected by the user, DISCIPLE then enters the Explanation-Based
Learning Mode and tries to find an explanation of failure. If such an explanation is found,
DISCIPLE enters the Analogy-Based Mode. It uses the failure explanation to specialize
both bounds of the version space and then generates a new problem-solving episode. If,
however, no failure explanation of the rejected problem-solving episode is found, then
DISCIPLE enters the Empirical Induction Mode. It interprets the rejected episode as a
negative example of the rule to be learned and specializes the plausible upper bound of
the version space, so as no longer to cover this episode. Then it enters again the Analogy-
Based Learning Mode to generate a new problem-solving episode. The learning pro-
cess ends when the two bounds of the version space become identical, and therefore
the version space reduces to a single general rule. The learning process will also end
when, due to the incompleteness of system’s knowledge, no new useful problem-solving
episodes could be generated in the Analogy-Based Mode. In such a case, the result of
learning will be the current plausible version space which represents an incompletely
learned rule.

If DISCIPLE cannot find even a plausible proof tree of the user’s solution (because
it has poor knowledge about the input), it will look for a simplified explanation in the
form of a conjunction of justification statements. The justification statements may be
proposed by the system (through the use of some heuristics) and accepted by the expert,
or may be directly given by the expert. Then DISCIPLE will empirically generalize the
explanation and will formulate a reduced vetsion space for the rule to be learned. As in
the case of incomplete knowledge, DISCIPLE will generate instances from this version
space to be characterized as positive examples or as negative examples by the user. These
instances are used to learn the rule.

While the main goal of DISCIPLE is to learn a general problem-solving rule from
a specific problem-solving episode, it also improves the knowledge base by learning new
facts and improving the existing domain rules.

By employing three learning methods {two of them integrating different learning
strategies), DISCIPLE provides a solution to the so called “‘falling off the knowledge
cliff’’ problem of the current systéms which perform well within the scope of the knowl|-
edge provided to them, but any slight move outside their narrow competence causes the
performance to deteriorate rapidly. To the contrary, in DISCIPLE, the move from one
part of the application domain, characterized by a complete BK, to another part, char-
acterized by an incomplete or inconsistent BK, causes minimal deterioration of the per-
formance, this effect being obtained by a corresponding replacement of the learning
method used.

DISCIPLE has been successfully applied to several problems, such as acquiring
knowledge for loudspeaker manufacturing, acquiring qualitative chemical reactions, and
acquiring rules for robot action planning.

8 Multistrategy Learning

examples
Deduction
Module
A
errors of errors of
/omission rules COrmmission
Abduction rules to be | Minimal Cover and
Module Knowledge Base| "1 04 Rule Retractor
QILHI , new rules and undeletable
EI'OOfS gew specialized rules mies
-
‘ P Empirical
Minimal Cover and ungeneralizable rules —»| Induction
Antecedent Retractor Module

FIGURE 3 The architecture of EITHER.

The System EITHER

The EITHER system (Explanation-based and Inductive THeory Extension and Revision)
employs independent modules for deduction, abduction and empirical induction to im-
prove a knowledge base for solving classification problems (i.c., for assigning given ob-
servations to one of a predefined set of categories).

The system assumes that the initial knowledge base is partially incorrect. Its goal
1S to improve it by analyzing examples that are correctly classified by an expert. The
knowledge base is assumed to be correct, if for every given example of some category,
the system is able to build a logical proof that the example belongs to the category, If
an example does not belong to the category, then the system should not be able to con-
struct such a proof. The knowledge base is in the form of rules A & B & . . Z, where
A, B, . .., Z are simple statements that are either true or false, and => denotes logical
implication. The knowledge base may be revised by removing rules, adding new rules,
removing conditions from antecedents of the rules, or adding conditions to the
antecedents.

The general architecture of EITHER is presented in Figure 3.

The input to the system are examples representing observations and their correct
classification to some category. The deduction module tries to classify the examples to
categories using rules from the knowledge base. Because the knowledge base is partially
incorrect, the system may not be able to build a logical proof showing that a positive
example of a category belongs to its category (which indicates an error of omission). It
may also be able to build a logical proof showing that a negative example of a category
belongs to its category (which indicates an error of commission).

The system detects errors in classification, and processes them correspondingly to
their type. Errors of omission (examples of a category that the system does not recognize
as belonging to this category) are sent to the abduction module. This module performs an

Multistrategy Learning 9

exhaustive search to find all partial proofs for each error of omission. These partial
proofs are used to identify the conditions in the antecedents of the rules which, if deleted,
would correct the problem (removing a condition from the antecedent of a rule general-
1zes the rule, and this may make possible to prove an exampie that before was unprov-
able). The minimal cover and antecedent retractor module uses the output of abduction to
find a near-minimal set of antecedent retractions (condition removals) that would correct
all of the errors of omission. Errors of commission (examples that do not belong to a
category, but are classified by the system to that category), together with the correspond-
ing proof trees, are sent to the minimal cover and rule retractor module. This module
finds a near-minimal set of rule retractions (i.e., specializations of the knowledge base)
that would correct all of the failing negatives.

Every modification suggested by the deduction and the abduction components (rule
retractions and antecedent retractions) is tested, and accepted only if it does not have
negative side effects (i.e., does not produce additional errors).

The rules that cannot be generalized or deleted without causing additional errors
are sent to the empirical induction module. The empirical induction module learns new
rules (in order to correct the remaining errors of omissions), or adds new antecedents to
existing rules (in order to correct the remaining errors of commission).

If the retraction of an antecedent ‘A’ from a rule “A & B = C”’ would cause new
errors of commission (because the knowledge base would be overgeneralized), then in-
duction is used to learn a new set of rules for the consequent C. The positive examples
of C are the positive examples that have a partial proof completed by the given antecedent
retraction (i.e., the errors of omission that would have been removed by the retraction of
the antecedent “‘A”’). The negative examples of C are negative examples that become
provable when C is assumed to be true (i.e., the errors of commission that would have
been introduced by the retraction of the antecedent **A’).

If the retraction of a rule *‘D = C’’ would cause new etrors of omission (because
the knowledge base would be overspecialized), then induction is used to learn additional
antecedents to add to the rule instead of retracting it. The positive examples of C are
those examples that become unprovable when the rule is retracted (i.e., the errors of
omission that would have been introduced by the retraction of the rule). The negative
examples of C are the provable negative examples that become unprovabie waen the rule
is retracted (i.e., the errors of commission that would have been removed by the retrac-
tion of the rule). :

By combining deduction, abduction, and empirical induction, EITHER is able to
handle a wide range of imperfect domain theories. The system always guarantees that the
revised theory will be consistent with all the given examples. EITHER has successfully
revised two expert-provided rule bases, one in molecular biology (for recognizing bio-
logical concepts in DNA sequences) and one in plant pathology (for diagnosing soybean
diseases). The performed experiments with the system confirm the thesis that learning
from both the domain theory and the data, has a clear advantage over learning from
either the domain theory or the data alone.

The System EBL-ANN

EBL-ANN combines explanation-based learning (EBL) with artificial neural network
learning (ANN). The EBL module uses an approximately correct symbolic knowledge

10 Multistrategy Learning

to explain one of the positive examples of the concept to be learned and to generalize
the explanation. The resuit of the EBL module is an explanation structure (a general
proof tree).

Based on this explanation structure, the system builds an artificial neural network.
The core layout of the ANN is isomorphic to the explanation structure. Features used as
inputs to the explanation structure correspond to units in the input layer of the network.
Intermediate conclusions in the explanation structure correspond to hidden units, and the
final conclusion becomes the output unit for the network. The units in the network are
connected in the same way the inputs, intermediate conclusions, and final conclusion are
connected in the explanation structure. Connections between the units that correspond to
antecedents and consequents in the explanation structure are given high positive weights.
Connections between the units that correspond to prohibitory antecedents and conse-
quents are given high negative weights. After such a basic ANN is built, additional input
units and low-weight connections are inserted into it, corresponding to features that were
thought to be irrelevant by the approximately correct symbolic knowledge base. In par-
ticular, additional input units are added and connected to the network for every possible
feature not mentioned in the explanation. Also, new links, with a randomly chosen
weight within e of zero, are made between units in successive layers. This produces the
network which is the input to the ANN learning module.

The ANN learning module uses the training examples to teach the ANN using the
backpropagation algorithm. This produces the final neural network which represents the
concept to be learned. The EBL-ANN system attempts to overcome the shortcomings of
both explanation-based learning and neural learning used alone. The EBL module is used
to generate a justified initial configuration of the neural network. Consequently, fewer
training examples are needed than if the network’s initial configuration was chosen ran-
domly. The ANN module learns from given training examples, and produces a more re-
fined and accurate concept description, which would have not been possible to be learned
by the EBL module alone. Empirical results indicate that such a combined system learns
concepts more accurately, and produces better generalizations than the explanation-based
system or the artificial neural net alone. It also learns much faster than a standard neural
learning system.

The EBL-ANN system represents an example of using an artificial neural network
as a component of a multistrategy learning system. A more general integration of sym-
bolic and neural net learning requires developing automated methods for communicating
symbolic information to a neural net, and for translating the knowledge contained in a
network to a symbolic form. A schema for such a more general system is presented in

Figure 4 (35).

initial initial trained refined
symbolic — Hulis to lNEMDI’k Netral Network Nethork to Rules — symbolic
knowledge ransiator network earning network ransiator knowledge

FIGURE 4 A schema for combining symbolic and neural net learning.

The figure shows a schema for using rule-based domain knowledge in combination
with neural network learning. The first step creates a neural network that encodes the
given domain knowledge. This knowledge need be neither complete nor correct. The sec-

Multistrategy Learning 11

ond step trains the network using a set of classified training examples. The final step
extracts rules from the trained network. If the network consists of units, each of which
does not have too many inputs, a simple method for creating rules that represent know]-
edge contained in the neural net is to use diagrammatic visualization (36).

INFERENTIAL THEORY OF LEARNING

General Presentation

The development of multistrategy learning systems should be based on a clear under-
standing of the roles and the applicability conditions of different learning strategies. To
serve this end, the Inferential Theory of Learning (ITL) aims at explaining logical capa-
bilities of learning strategies (i.e., their competence) (1,37,38). Viewing learning as a
goal-oriented process of modifying the learner’s knowledge by exploring the learner’s
experience, the theory postulates that any such process can be analyzed in terms of high-
level knowledge transformation operators, called transmutations. Any learning process is
described as a search through a knowledge space, conducted through an application of
knowledge transmutations, i.e.:

Given * Input knowiedge {I)
» Goal (G)
* Background knowledge (BK)
* Transmutations (T)

Determine * Output knowledge, O, that satisfies goal G, by applying transmu-
tations from the set T to input the I and the background knowl-

edge BK

The input knowledge, I, is the information (observations, facts, general descriptions, hy-
potheses) that the learner receives from the environment in the process of learning. The
goal, G, specifies criteria to be satisfied by the Output knowledge, O, in order that a
learning process is accomplished. Background knowledge, BK, is a part of the learner’s
total prior knowledge that is relevant to a given learning process. While a formal defi-
nition of “‘relevant’” knowledge goes beyond the scope of this article, as a working def-
inition the reader may assume that it is prior knowledge that is found useful at any stage
of a learning process.

Transmutations are operators that make knowledge transformations in the knowl-
edge space. The knowledge space is a space of all representations of all possible inputs,
the learner’s background knowledge, and all the knowledge that the learner can poten-
tially generate using available transmutations. (In empirical inductive learning, the
knowledge space is usually called a description space.) Transmutations are independent
of the mechanism that performs them. They represent generic conceptual units of knowl-
edge transformation for which one can make a mental model. They can employ any type
of inference.

Let us consider a few examples. An abstraction transmutation takes a description of
some set of entities, and transforms it to a description that conveys less information about
the set (typically, an abstraction only removes information that is irrelevant for a given
goal). An inductive generalization takes examples of a given concept, and hypothesizes
a general description of the concept by conducting inductive inference. A deductive

12 Multistrategy Learning

CONCLUSIVE me Deduction ‘

Conclusive Induction

)

DEDUCTIVE INDUCTIVE
Truth- Falsity-
preserving preserving

FIGURE 5 Classification of major types of inference.

generalization takes a description of some entities, and derives a description of a
lar ger set of entities by exploring general knowledge it possesses about the entities.
Explanation-based generalization (e.g., 39) can be viewed as an example of deductive
generalization (it takes a concept example that resides in an “‘operational’’ description
space, and deductively derives a generalized concept description, by exploring a known
abstract concept description, and domain knowledge that links the abstract and opera-
tional description space. |

Transmutations can be implemented in many different ways, depending on the un-
derlying knowledge representation and the employed computational mechanism. In sym-
bolic learning systems, transmutations are usually (but not always) implemented in a
more or less explicit way, and executed in steps that are conceptually comprehensible. For
example, the INDUCE learning system performs inductive generalization according to
certain generalization rules-—selective or constructive, which represent conceptually un-
derstandable transformations (40).

In subsymbolic systems (e.g., neural networks) transmutations are performed im-
plicitly, in steps dictated by the underlying computational mechanism. These steps may
not correspond to any conceptually simple operations. For example, a neural network
may generalize an input example by performing a sequence of small modifications of
weights of internode connections. These weight modifications are difficult to explain in
terms of explicit inference rules. Nevertheless, they can produce a global effect equiva-
lent to generalizing a set of examples,

In sum, Inferential Theory of Learning states that Jearning is a goal-guided process
of deriving desired knowledge by using input information and background knowledge.
Such a process can be viewed as a search through a knowledge space, using transmuta-
tions as search operators. When a learning process produces knowledge specified by a
learning goal, it is memorized, and made available for subsequent learning processes.

Types of Inference

Any type of inference may generate knowledge that can be useful for some purpose, and
thus worth learning. Therefore, a complete theory of learning must include a complete
theory of inference. Therefore, a part of the effort to develop ITL is to analyze various
types of inference. Figure 5 presents an attempt to schematically illustrate all major types
of inference.

Multistrategy Learning 13

The first classification is to divide inferences into two fundamental types: deductive
and inductive. In defining these types, conventional approaches (e.g., formal logic) do
not distinguish between the input information and the reasoner’s background knowledge.
Such a distinction is important, however, for characterizing learning processes. Clearly,
from the viewpoint of a learner, there is a difference between the information received
from the senses, and the information that already resides in the learner’s memory. Thus,
making such distinction better reflects cognitive aspects of reasoning and learning, and
leads to a more adequate description of learning processes.

To define basic types of inference in a general, language-independent way, let us

consider an entailment:
PUBKI=C (1)

where P stands for a set of statements, called premise, BK stands for the reasoner’s back-
ground knowledge, |= denotes logical entailment, and C stands for a set of statements,
called consequent. It is assumed that P is logically consistent with BK.

Statement (1) can be interpreted: P and BK logically entails C, or alternatively, that
C is a logical consequence of P and BK. Equation (1) succinctly explains the relationship
between two fundamental forms of inference, deductive inference and inductive infer-
ence, and therefore, is called the fundamental equation for inference. Deductive inference
is deriving consequent C, given P and BK. Inductive inference 1s hypothesizing premise
P, given C and BK.

Deduction can thus be viewed as ‘‘tracing forward”’ the relationship (1), and in-
duction as ‘‘tracing backward’’ this relationship. Deduction is finding logical conse-
quences of given knowledge, and its basic form is truth-preserving (C must be true, if P
and BK are true). Induction is finding premises that logically imply the input. Its basic
form is falsity-preserving (if C is not true, then P cannot be true). The latter property
applies to every type of induction, such as inductive generalization, abductive derivation,
inductive specialization, and concretion (see below).

Based on the amount of background knowledge involved, inductive inference can
be divided into knowledge-limited (or empirical) and knowledge-intensive (or construc-
tive). A simple inductive generalization is a form of empirical induction, because it re-
quires little background knowledge. Abduction can be viewed as a knowledge-intensive
induction, because it requires background knowledge in the form of causal, or generally,
implicative relationships. |

In a general view of deduction and induction that also captures their approximate or
common sense forms, the standard logical entailment |= may be replaced by a “‘contin-
gent"’ or “‘weak’’ entailment |= (in this context, the standard entailment is called ‘‘con-
clusive’” or ‘‘strong’’). A contingent entailment means that C is only a plausible,
probabilistic, or partial consequence of P and BK. The difference between these two
types of entailments leads to another major classification of types of inference. Specifi-
cally, inferences can be conclusive (‘‘strong’’) or contingent (*‘weak’”). Conclusive in-
ferences assume strong entailment in (1), and conmtingent inferences assume weak
entailment in (1). Conclusive deductive inferences (also called formal or demonstrative)
produce true consequences from true premises. Conclusive inductive inferences produce
hypotheses that conclusively entail consequences. Contingent deductive inferences pro-
duce consequents that may be true in some situations and not true in other situations; they
are weakly truth-preserving. Contingent inductive inferences produce hypothesis that
weakly entail consequences; they are weakly falsity-preserving.

14 Multistrategy Learning

The intersection of deduction and induction, that is a truth- and falsity-preserving
inference, represents a equivalence-based inference (or a reformulation transmutation).
Such an inference transforms a given statement (or set of statements) into a logically
equivalent one. For example, if A is logically equivalent to A’, then the rule A = B can
be transformed to rule A’ = B. Analogy can be viewed as an extension of an
equivalence-based inference, namely as a “‘similarity based’’ inference (or *‘similiza-
tion’’). For example, if A is similar to A, then from A = B one can plausibly derive A
=> B [under the assumption that the similarity between A and A is relevant to B (e.g.,
they share the same properties or high-level relations that are *‘relevant’’ to B)]. Analogy
occupies the central area in the diagram because deriving new knowledge by analogy can
be viewed as a combination of induction and deduction. The inductive step consists of
hypothesizing that a similarity between two entities in terms of certain descriptors ex-
tends to their similarity in terms of some other descriptors. Based on this similarity, and
the knowledge of the values of the additional descriptors for one entity, a deductive step
derives their values for the second entity. In order that an analogy can work, there is a
tacit assumption that the additional descriptors are ‘‘relevant’” in some way to the de-
scriptors used to establish the similarity.

A Summary of Transmutations

Transmutations can be classified into two categories: knowledge-generation and
knowledge-manipulation transmutations. Knowledge-generation transmutations (also
called knowledge-level transmutations) change the informational content of knowledge,
create new knowledge, determine relationships among knowledge components, organize
knowledge into certain structures, etc.

 In contrast, knowledge-manipulation transmutations view the input knowledge as
data or objects to be manipulated, rather than statements from which new statements are
to be derived. Knowledge-manipulation transmutations include inserting/deleting. gen-
erated knowledge components to/from knowledge structures, physically transmitting
knowledge to/from other knowledge bases, or organizing knowledge components accord-
ing to some syntactic criteria. Such operations on knowledge are not classified as infer-
ences. However, since they are performed according to well-defined algorithms that do
not include generating any hypothetical knowledge, they can be formally interpreted as
using deduction as the underlying inference.

Most of the transmutations are bidirectional operators, that is, they can be
grouped into pairs of opposite operators. Below is a summary of knowledge transmuta-
tions that have been identified in the theory. The first eight groups represent knowledge-
generation transmutations, and the remaining ones represent knowledge-manipulation
transmutations.

Generalization/Specialization

A generalization transmutation extends the reference set of the input, that is, generates a
description that characterizes a larger reference set than the input. Typically, the under-
lying inference is inductive, that is, the extended set is inductively hypothesized. Gen-
eralization can also be deductive, when the more general description is a logical
consequence of the more specific one in the context of the given background knowledge
(or can be deductively derived from the background knowledge). The opposite transmu-
tation is specialization, which narrows the reference set. Specialization usually employs
deductive inference, but there can also be an inductive specialization.

Multistrategy Learning 15

Abstraction/Concretion
Abstraction reduces the amount of detail in a description of an entity (an object, or a class
of objects). To do so, it may change the description language to one that uses more ab-
stract concepts which express the properties relevant to the reasoner’s goal, and omit
other information. The underlying inference is deduction. An opposite transmutation is
concretion, which generates additional details about a given entity. Concretion typically
utilizes an inductive inference.

Association/Disassociation

Association transmutation determines a dependency between entities or descriptions
based on the observed facts and/or background knowledge. The dependency may be log-
ical, causal, statistical, temporal, etc. Associating a concept instance with a concept
name is an example of association transmutation. The opposite transmutation s disas-
sociation that asserts a lack of dependency. For example, asserting that a given instance
is not an exampie of some concept is a disassociation transmutation.

Similization/Dissimilization

Similization derives new knowledge on the basis of the similarity between various ref-
erence sets. The similization transfers knowledge from one reference set to another ref-
erence set which is similar to the original one in some viewpoint. The opposite operation
is dissimilization that derives new knowledge on the basis of the lack of similarity be-
tween the compared reference sets. The similization and dissimilization transmutations
are based on the patterns of inference presented in the theory of plausibie reasoning by
Collins and Michalski (41). For example, knowing that England grows roses, and that
England and Holland have similar climates, a similization transmutation is to hypothesize
that Holiand may also grow roses. An underlying background knowledge here is that
there exists a dependency between the climate of a place and the type of plants growing
in that location. A dissimilization transmutation is to infer that bougainvilieas probably
do not grow in Holland because Holland has very different climate than Caribbean Is-
lands where they are very popular. These transmutations can be characterized as a com-
bination of inductive and deductive. inference.

Selection/Generation

A selection transmutation selects a subset from a set of knowledge components that sat-
isfies some criteria. For example, choosing a subset of relevant attributes from a set of
candidates, or determining the most plausible hypothesis among a set of candidates, is a
selection transmutation. The opposite transmutation is generation, that generates addi-
tional components of some knowledge structure. For example, generating an additional
attribute based on some algorithm, or creating an alternative hypothesis, is a generation
transmutation.

Agglomeration/Decomposition

The agglomeration transmutation groups together certain entities into larger units ac-
cording to some goal criterion. If it also hypothesizes that the larger units represent some
general patterns in data then it is calied clustering. The grouping can be done according
to a variety of principles, e.g., to maximize some mathematical notion of similarity, as
in conventional clustering, or to maximize ‘‘conceptual cohesiveness,”’ as in conceptual

16 Multistrategy Learning

clustering (e.g., 42). The opposite transmutation is a decomposition that splits a structure
of entities into subgroups according to some goal criterion.

Characterization/Discrimination

A characterization transmutation determines a characteristic description of a given set of
entities that differentiates these entities from any other entities. The simplest form of
such a description is a list of all properties shared by all the entities. The opposite trans-
mutation is discrimination that determines a description that discriminates a given set of
entities from another set of entities.

Derivations: Reformulation/Intermediate Transmutations/Randomization

Derivations represent a range of transmutations that derive one piece of knowledge from
another based on a dependency relationship between them. The dependency can range
from the logical equivalence to random relationship, and is a part of the reasoner’s back-
ground knowledge. Thus, the extreme points of this range are the reformulation and ran-
domization, respectively. The reformulation transforms a segment of knowledge into a
logically equivalent segment of knowledge. For example, mapping a geometrical object
represented in a right-angled coordinate system into a radial coordinate system is a re-
formulation. A translation of a segment of knowledge from one formal language to an-
other is also a reformulation. In contrast, randomization transforms one knowledge
segment to another one by making random changes. For example, the mutatior operation
in a genetic algorithm represents a randomization. Two related intermediate transmuta-
tions are an abduction derivation, which derive a cause for a given effect, and predictive
derivation, which derives an effect from a given cause. These two derivations are com-
plimentary in the sense that they are based on the same causal dependency, but ‘‘trace it™’
in the opposite directions. Another intermediate derivation is crossover in a genetic al-
gorithm, which derives new knowledge by exchanging two segments of related knowl-
edge components.

Insertion/Deletion
Insertion transmutation adds a new knowledge component generated by some transmu-
tation to0 a given knowledge structure. The opposite transmutation is deletion, which
removes some knowledge component from a given structure. An example of deletion
is forgetting.

Replication/Destruction

Replication reproduces a knowledge structure residing in some knowledge base in another
knowledge base. Replication is used for example in rote learning. There is no change of
the contents of the knowledge. The opposite transmutation is destruction that removes a
knowledge structure from a given knowledge base. The difference between destruction
and deletion is that destruction removes a copy of a knowledge structure that resides in
some knowledge base, while deletion removes a component of a knowledge structure re-
siding in the given knowledge base.

Sorting/Unsorting

Sorting transmutation changes the organization of knowledge according to some well-
defined criteria. For example, ordering decision rules in a rule base from the shortest

Multistrategy Learning 17
(having the smallest number of conditions) to the longest is a sorting transmutations. An

opposite operation is unsorting, which is returning back to the previous organization.
Figure 6 provides a summary of the above described transmutations, and the un-

derlying types of inference. Depending on the type, the amount and the way the back-
ground knowledge is employed, all knowledge-level transmutations can be done by

KNOWLEDGE GENERATION TRANSMUTATIONS

Inference Type Transmutations

Generalization
Specialization

Abstraction
Concretion

DEDUCTION
Association

Disassociation
Similization
Dissimilization

ANALOGY

Selection
Generation

INDUCTION

Agglomeration
Decomposition

Characterization
Discrimination

Derivations
EQUIVALENCE ® ® Reformulation
DEDUCTION R —— I
ANALOGY ¢ lnterrrediate

INDUCTION o
NO INFERENCE e 9 Randomization

KNOWLEDGE MANIPULATION TRANSMUTATIONS

insertion
Deletion

DEDUCTION & Replication
Destruction

Sorting
Unsorting

FIGURE 6 A summary of transmutations and the underlying inference types.

18 Multistrategy Learning

deduction, induction or by analogy (1). Some transmutations predominantly use one type
of inference, e¢.g., generalization typically uses induction, and abstraction typically uses
deduction. An example of generalization based on analogy is given in the next section.
Similization and dissimilization transmutations are based on analogy, which can be
viewed as deduction and induction combined. As mentioned above, data leve] transmu-
tations can be viewed having deduction as the underlying inference.

By analyzing diverse learning strategies and methods in terms of abstract,
implementation-independent transmutations, Inferential Theory of Learning offers a uni-
fying view of learning processes. Such a view provides a clear understanding of the roles
and the applicability conditions of different learning strategies, and facilitates the devel-
opment of theoretically weli-founded muitistrategy learning systems.

MULTISTRATEGY TASK-ADAPTIVE LEARNING

Multistrategy task-adaptive learning (MTL) comprises a class of methods in which the
learner determines by itself which strategy or combination of strategies is most appro-
priate for a given learning task. A learning task is defined by the learner’s goal, the
learner’s BK, and the input to the learning process. In a task-adaptive learning, individ-
ual inferential strategies can be deeply integrated, so that they represent different aspects
of the activity of one general system, or loosely integrated, in which case the strategies
are implemented as separate modules.

This section briefly presents an inference-based framework for multistrategy task-
adaptive learning (2,43). In this framework, individual strategies are integrated at the level
of individual inferences (i.e., deduction, analogy, abduction, generalization, specializa-
tion, abstraction, concretion, etc.). The input to a learning process can take different forms.
It may be a ground fact. It may consist of one or several positive, and/or negative exam-
ples of a concept. It may also consist of one or several positive {and negative) examples of
problem solving episodes, each episode specifying a problem and its solution. The initial
knowledge base of the system (which contains the BK) is assumed to be incomplete and/
or partially incorrect. The goal of the system is to improve this initial knowledge base so
that it can explain all the external inputs in a consistent way. This means that the inputs
would be entailed by the updated knowledge. The framework is outlined in Table 1.

The system analyzes the input in terms of its current knowledge in order to build a
‘‘plausible justification tree.”” Such a tree demonstrates that the input is a plausible con-
sequence of the current system’s knowledge. A plausible justification tree is like a proof
tree, except that individual inference steps may result from different types of reasoning
(not only deductive, but also analogical, abductive, probabilistic, fuzzy, etc.).

Let us suppose that the input to a learning process is an example of some relation-
ship, P,(x,y), where P, is the name of a relationship holding between objects x and y:

P,(a,f) & Py(g,2) & P3(b) & Py(h) & . . . & P(b,c) ::> P,(a,b) (2)

P,, ... ,P; are predicates, ‘a’, 'f’ . . ., ‘c’ are object names or object properties, and
i1 > denotes a target assignment operator, which assigns ‘‘truth’’ to the predicate on the
right hand side (RHS), if the expression on the left hand side (LHS) is true. An example

of the relationship ‘‘grows(x,y)’” is:

rainfall(Thailand, heavy) & climate(Thailand, tropical) & (3)
soll(Thailand, red-soil) & terrain(Thailand, flat) &

location(Thailand, SE-Asia) ::> grows(Thailand, rice)

Multistrategy Learning 19

TABLE 1 The Learning Methodology.

» For the first positive example I;:
-build a plausible justification tree T, of I,
-build the plausible generalization T, of T,
-generalize the knowledge base so that to entail T,
* For each new positive example I;:
-generalize T, so that to cover a plausible justification tree T, of I,
-generalize the knowledge base so that to entail the new T,
» For each new negative example I
-specialize T, so that no longer to cover any plausible justification tree T, of I,
-specialize the knowledge base so that to entail the new T, without entailing the previous T,
» After all the examples have been processed:
-extract from T, abstractions of the input examples and concept definitions

The LHS of (3) is a description of Thailand, and the RHS states that Thailand grows rice.
To “‘understand’’ the example stated generally in Eq. (2), the system attempts to demon-
strate that P_(a,b) is a plausible consequence of P,(a,f) & P,(g,a) & P;(b) & P,(h) & . . .
& Pj(b,c}, in the context of the learner’s BK. To make such a demonstration, the system
builds the plausible justification tree in Figure 7. The root of the tree in Figure 7 is the RHS
of Eq. (2). The leaves are the predicates from the LHS of eq. (2), and the intermediate
nodes are intermediate predicates generated during the “‘understanding’” process. The
branches connected to any given node link this node with facts, the conjunction of which
certainly or plausibly implies the fact at the node, according to the learner’s knowledge.
The notion ‘‘plausibly implies’’ means that the target (parent node) can be inferred from
the premises (children nodes) by some form of plausible reasoning, using the learner’s
knowledge. The branches together with the nodes they link represent individual inference
steps which could be the result of different types of reasoning. To indicate such inference
steps In a general way, we use the symbol **--->"’. We also use **=’’ to denote logical
(conclusive) implication, and “‘=="" to denote plausible implication.
For example, the inference step

P\(a,f) & Py(g,a) --*> Pyla,c) (4)
may be a result of deduction based on the following deductive rule from the BK (Figure 7):

_ ﬂ } RHS of (2)
B(a.b) Py(b) N
o« * inf;ernege steps
............ >(deductive,
/ W ﬂ analogical,
Py(a.c) P(d) P.{b) ; abductive, etc.)

/\ \ * Predicates from

P,(a,f) E,(g.a) M . BOe)) G THS of (2)

FIGURE 7 A plausible justification tree for the input P_(a,b).

20 Multistrategy Learning

Vs Vt Vz Vp (P,(s,t}) & P,(z,s) = P,(s,p) (5)
Also, the inference step

Py(g,a) & Py(h) -+-> P,(d) (6)
may be a result of analogy with the following implication from the BK:

Py(g',a") & Py(h') = P(d’) (7

Indeed, suppose that the system determined that g, a, h, and d are similarto g’, a’, h" and
d', respectively. By analogy, the system concludes that from Py(g,a) & P,(h} one can
plausible infer P,(d), and hence (6).

The inference step

P,(b,e) ---> P,(b) | (8)
could be the result of abduction based on the following causal relationship from the BK:
Vr (P(re) = P,(r)) (9)

Indeed, let us suppose that the predicate P, (b) needs to be true in order to build the plau-
sible justification tree in Figure 7. Because P,,(b) matches the RHS of (9), one may trace
backward this rule, and hypothesize that P,(b,¢) is true.

An inference step could also result from a combination of empirical generaliza-
tion and deduction, which we call inductive prediction. To illustrate this, let us suppose
that the knowledge base contains the following abstract examples of the relationship

P (x,y}x
© Pyle.f) & Pylc) & Pile) 2> Py(c,f) (10)
P,(d,g) & P,(d) & P, (b) ::> P,(d,g)

These examples can be empirically generalized to the rule

VxVy (P,(x,y) & Py(y) == P.(x,y)) (1)
Rule (11) can then be used to produce the plausible inference step:
P.(a,b) & P,(b) --> P (a,b) (12)

In a more complex case, available examples may not be so easily generalizable to
(11), and the system may have to use constructive induction. |

Thus, the plausible justification tree in Figure 7 shows that P,(a,b) is a plausible
consequence of facts from the LHS of (2). As an illustration, the plausible justification
tree of example (3) is presented in Figure 8 (2):

An important result of understanding the input (i.e., building the plausible justifi-
cation tree) is the generation of new pieces of knowledge which extend the knowledge
base so as to entail the input.

In the case of the justification tree in Figure 7, these new pieces of knowledge are:

P,(g,a) & P,(h) = P,(d) (generated through analogy)
P,(b,e) (generated through abduction)
P,(a,b) & P, (b) == P,(a,b) (generated through inductive prediction)

By asserting these pieces of knowledge into the knowledge base, the new knowledge
base entails the input. The support for these new pieces of knowledge is that they allow

Mudltistrategy Learning 21

grows(Thailand, rice)

water-in-soil{Thailand, high) temperature(Thailand, warm) soil{Thailand, fertile-soil)
] induction pprediction
anefogy dedqotion abdyction
rainfall(Thailand, heavy) climate(Thailand, tropical) soil(Thailand, red-soil)

FIGURE 8 A plausible justification of example (3).

building a logical connection (a justification tree) between the knowledge base that rep-
resents a part of the real world, and a piece of knowledge (the input) that is known to be
true in the real world. .

The understanding process proceeds in the same way when the input is a new fact,
a new relationship, or a solution of some problem. Let us suppose that the input is the
relationship P,(a,b), assumed to represent a correct knowledge. In such a case, the sys-
tem builds the plausible justification tree from Figure 7 that shows that the relationship
P.(a,b) is a plausible consequence of the following facts and relationships contained in
the knowledge base: P,(a,f) & P,(g,a) & P,(h) & . . . & P,(b,e). If the input is a specific
solution S to problem P, then the plausible justification tree represents a demonstration
that S solves P.

In general, a learning system should try to learn as much as possible from any input
it receives. In the case of the considered learning scenario, it may do so by generalizing
the plausible justification tree as much as allowed by the knowledge used to build it in the
first place. By this, it will generalize the hypothesized knowledge, so that the resulting
knowledge base will entail not only the received input, but also similar ones.

One way to generalize the plausible justification tree is to replace each implication
with a plausible generalization, and then to unify the connections between the general-
ized implications. To illustrate this process, take, for instance, the inference step (4) {i.e.,
P,(a,f) & P,(g,a) ---> P,(a,c)]. This inference step can be locally generalized into the
rule (5) that allowed it, i.e., Vs Vt Vz ¥p(P,(s,t) & Ps(z,s) = P,(s,p)). The branches of
the tree in Figure 7, corresponding to the original inference step (4), are then replaced by
the appropriate components of this rule. This is a deductive generalization.

Let us now consider the inference step (6} [i.e., P,(g,a) & P,(h) ---> P (d)]. This
step was made by analogy with implication (7) [i.e., Px(g’,a") & P,(h') = P(d’)]. The
generalization of this analogical inference is based on the idea that a similarity of an en-
tity to a given entity generates an equivalence class of all entities similar to the given
entity. Following this idea, one may generate a conjunctive generalization that covers all
the inferences that could be derived by analogy with (7):

P,(g",a") & Py(h") ---> P,(d") (13)

where g”, a”, h”, and d" represent classes that contain g and g’, a and a’, h and h’, d and
d’, respectively. This is a generalization based on analogy.

The abductive step (8) Pi(b,e) :--> P,(b) is replaced by P,(r,e) ---> P, (r), accord-
ing to the general rule (9), i.e. Vr (P(r,e) = P_(r)). This generalization is justified be-
cause a system abducing P;(b,e) could also abduce P,(r,e), for any r, by tracing backward
the rute (9). This is a generalization based on abduction.

22 Multistrategy Learning

P.{x,y)
P 4
Po(X.y) P.ly)
,1 * VAW

llllllllllllll

/1
P.{x.p) P {d") Puly)

Py(x,t) Pa(z,x) Pih™) - Piye)
FIGURE 9 A generalization of the plausible justification tree from Figure 7.

Finally, the inference step (12) P(a,b) & P (b) «--> P,(a,b) was done by applying
the rule (11) [i.e. VxVy(P,(x,y) & P(y) == P, (x,y)I, which was obtained by empirical
generalization. Then the corresponding branch is replaced by rule (11). This is an em-
pirical inductive generalization.

As one could notice, the generalization of an implication depends on the type of
inference that generated it and of the system’s knowledge. As mentioned above, after all
the inference steps are locally generalized, the system unifies their connections. In par-
ticular, it makes the unifications x=s=a", z=g", y=r and builds the general plausible
justification tree from Figure 9,

To give a specific example, the generalization of the plausible justification tree in
Figure 8 is indicated in Figure 10 (2).

During the generalization of the plausible justification tree, some of the previously
learned knowledge may also be generalized as, for instance, the analogical implication
(6) Po(g,a) & P,(h) ==> P(d), which was generalized to the rule (13) P,(g", a") & P,(h")
~> P, (d"). Other generalized knowledge pieces have been generated during the building
of the plausible justification tree in Figure 7. An example of such a knowledge piece is
the rule (11).

The generalized plausible justification tree shows how a generalization of the input
is entailed by the knowledge base. However, this tree was obtained by making both plau-
sible inferences and plausible generalizations. Consequently, both the tree and the cor-
responding knowledge pieces learned are less certain. One may improve the tree, as well
as the knowledge pieces hypothesized during its building, by learning from additional
concept examples,

For each new positive example E;, the system will generalize the plausible justifi-
cation tree in Figure 9 so as to cover a plausible justification of E;. Also, some of the
knowledge pieces from the knowledge base may be generalized so as to cover inferences
from the plausible justification of E;.

grows(x, rice)
deductive g :;M
water-in-s0il{x, high) temperature{x, warm) soil{x, fertile-soil)
generaiization based on analogy deductive generalization inductive géneralization
rainfall(x, heavy) climate(x, tropical) soil(x, red-soil)

FIGURE 10 A generalization of the plausible justification tree from Figure 8.

Multistrategy Learning 23

grows(x, rice)

deductive generalization s y
soil(x, fertile-soit)

water-in-soil(x, high) temperature(x, warm)
eneralization inductive - S
ased on specialization : : inductive deductive
nalogy deduct:?e : dec{ucn_'ve generalizgtion generalization
] generalization generalization _ o
sinfall(x, heavy) terrain(x, fiat} soil(x, red-soil) soil(x, loamy)

climate(x, tropical)} climate(x, subtropical)

FIGURE 11 An improved general justification tree.

For each new negative example N;, the system will specialize the general plausible
justification tree so as to no longer cover a plausible justification tree which would show
that N; is a positive example. This may also require the specialization of some knowledge
pieces from the knowledge base as, for instance, the rule (11) or the rule (13).

For instance, as a result of learning from the positive example (14) and from the
negative example (15), the tree from Figure 10 is improved as indicated in Figure 11.

Positive Example 2: {14)
rainfall(Pakistan, heavy) & climate(Pakistan, subtropical) & soil(Pakistan, loamy) &
terrain{Pakistan, flat) & location(Pakistan, SW-Asia) :: >>grows(Pakistan, rice)

Negative Example 3: ; (15)
rainfall(Jamaica, heavy) & climate(Jamaica, tropical) & soil(Jamaica, loamy) &
terrain(Jamaica, abrupt) & location(Jamaica, Central-America):: > — grows(Jamaica, rice)

After all the examples have been processed, the system may extract several (operational
or abstract) concept definitions from the final general justification tree. For example, if
the final general justification tree is the one from Figure 9, then its leaves represent an

operational definition of P (x,y):
P (x,t) & P,(z,x) & P,(s) &...& Pi(y.e})::>P, (x,y) (16)

Also, the top part of the justification tree represents the most abstract characterization
of P (x,y):

Po(x,y) & P(y):: >P,(x.y) | (17D

Other learnable knowledge pieces are various abstractions of the input examples. For in-
stance, one abstraction is obtained by instantiating the variables in the above abstract

characterization [eq. (17)], to specific arguments in a certain example:
P,(a,b) & P (b)::>P,(a,b) (18)

Other abstractions would correspond to lower levels of the generalized justification tree.
Table 1 synthesizes the main steps of this learning methodology.

As demonstrated above, the types and order of inferences performed in building a
plausible justification tree depend on the relationship between the input and the knowl-
edge base. The presented learning method thus integrates dynamically different types of
elementary reasoning mechanisms. Moreovey, if a particular learning task corresponds to

24 Multistrategy Learning

a monostrategy method, then the behavior of the system corresponds to the application
of such a method (2).

CONCLUSION

This article described a conceptual framework and several methods for multistrategy
learning—a central research direction in the field of machine learning. A major prem-
ise of the framework is that learning is a goal-oriented process in which the learner’s
initial knowledge is modified by exploring the learner’s experience. By being able to em-
ploy in a learning process two or more inferential strategies and/or computational para-
digms, multistrategy systems offer significant advantages over monostrategy learning
systems. Although a number of experimental multistrategy systems have been developed,
the research in this area is still at an early stage. The outlined Inferential Theory of
Learning gives theoretical foundations for understanding diverse learning strategies and
approaches, and for developing multistrategy learning systems. More research is needed,
however, on the formalization of various concepts and further development of various
aspects of theory. The inference-based framework for building multistrategy task-
adaptive learning systems shows how, by dynamically integrating several types of knowl-
edge transmutations, a system can adapt its learning behavior to the learning task. A
comprehensive presentation of the current research in multistrategy learning is given
elsewhere (44). Other representative papers on multistrategy learning are indicated in the

Bibliography.

ACKNOWLEDGMENTS

The research on this article was done in the GMU Center for Artificial Intelligence. The
Center’s research is supported in part by the National Science Foundation Grant No. IRI-
9020266, in part by the Office of Naval Research Grant No. N00014-91-J-1351, and in
part by the Defense Advanced Research Projects Agency Grant No. N00014-91-1-1854,
administered by the Office of Naval Research & Grant.

REFERENCES

1. R. 8. Michalski, Inferential Learning Theory: Developing Theoretical Foundations for Mul-
tistrategy Learning, in Machine Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski
and G. Tecuci (eds.), Morgan Kaufmann, San Mateo, CA, 1993.

2. G. Tecuci, An Inference-Based Framework for Multistrategy Learning, in Machine Learning:
A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.), Morgan Kaufmann,
San Mateo, CA, 1993,

3. J. E. Laird, (ed.) Proceedings of the Fifth International Conference on Machine Learning,
University of Michigan, Ann Arbor, June 12-14, 1988.

4. D. Touretzky, G. Hinton, and T. Sejnowski, {eds.), Proceedings of the 1988 Connectionist
Models, Summer School, Carnegie Mellon University, June 17-26, 1988.

5. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,
Addison-Wesley, Reading, MA, 1989.

6. D. Schafer (ed.), Proceedings of the 3rd Intern. Conference on Genetic Algorithms, George
Mason University, June 4-7, 1989.

Multistrategy Learning 25

7.

8.

9.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

A. M. Segre (ed.), Proceedings of the Sixth International Workshop on Machine Learning,
Cornell University, Ithaca, New York, June 26-27, 1989.

R. Rivest, D. Haussler, and M. Warmuth, Proceedings of the Second Annual Workshop on
Computational Learning Theory, University of Santa Cruz, July 31-August 2, 1989,

M. Fulk and J. Case, Proceedings of the 3rd Annual Workshop on Computational Learning
Theory, University of Rochester, Rochester, NY, August 6-8, 1990.

B. W. Porter and R. }. Mooney, (eds.), Proceedings of the 7th International Machine Learn-
ing Conference, Austin, TX, 1990.

Y. Kodratoff and R. S. Michalski, (eds.) Machine Learning: An Artificial Intelligence Ap-
proach Vol. 3, Morgan Kaufmann, San Mateo, CA, 1990,

L. Bisnbaum and G. Collins, Proceedings of the 8th International Conference on Machine
Learning, Chicago, June 1991.

M. Warmuth and L. Valiant (eds.), Proceedings of the 4th Annual Workshop on Computa-
tional Learning Theory, University of California at Santa Cruz, CA, August 5-7, 1991.

D. Sleeman and P Edwards, Proceedings of the Ninth International Workshop on Machine
Learning (ML92), Aberdeen, July 1-3, 1992, Morgan Kaufman, San Mateo, CA, 1992,
M. Lebowitz, Integrated Learning: Controlling Explanation, Cognitive Sci, 10, 219-240
{1986).

N. Flann and T. Dietterich, A Study of Explanation-Based Methods for Inductive Learning,
Machine Learning, 4, 187-266 (1989).

F. Bergadano and A. Giordana, Guiding Induction with Domain Theories, in Machine Learn-
ing: An Artificial Intelligence Approach, Vol. 3, Y. Kodratoff and R. S. Michalski (eds.),
Morgan Kaufmann, San Mateo, CA, 1990.

A. P Danyluk, The Use of Explanations for Similarity-Based Learning, in Proceedings of the
International Joint Conference on Artificial Intelligence, Mitan, Italy, Morgan Kaufmann,
1987, pp. 274-276.

A. P. Danyluk, Gemini: An Integration of Analytical and Empirical Learning, in Machine
Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.), Morgan
Kaufmann, San Mateo, CA, 1993.

B. L. Whitehall, Knowledge-based Learning: Integration of Deductive and Inductive Lean-
ing for Knowledge Base Completion, Ph.D. thesis, University of Illinois at Champaign-
Urbana, 1990.

B. L. Whitehall and S. C-Y. Lu, Theory Completion using Knowledge-Based Learning, in
Machine Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.),
Morgan Kaufmann, San Mateo, CA, 1993.

D. C. Wilkins, W. J. Clancey, and B. G. Buchanan, An Overview of the Odysseus Learning
Apprentice, Kluwer Academic Press, New York, 1986.

D. C. Wilkins, Knowledge Base Refinement as Improving an Incorrect and Incomplete Do-
main Theory, in Machine Learning: An Artificial Intelligence Approach, Vol. 3, Y. Kodratoff
and R. S. Michalski (eds.), Morgan Kaufmann, San Mateo, CA, 1990.

S. Minton and J. G. Carbonell, Strategies for Learning Search Control Rules: An
Explanation-Based Approach, in Proceedings of the International Joint Conference on Arti-
ficial Intelligence, Milan, Italy, Morgan Kaufmann, San Mateo, CA, 1987, pp. 228-235.
M. Veloso and J. Carbonell, Automating Case Generation, Storage, and Retrieval in PROD-
IGY, in Machine Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci
(eds.), Morgan Kaufmann, San Mateo, CA, 1993.

M. J. Pazzani, Integrating Explanation-Based and Empirical Learning Methods in OCCAM,
Proceedings of the Third European Working Session on Learning, Glasgow, Scotland, 1988,
pp. 147-166.

K. Morik, Balanced Cooperative Modeling, in Machine Learning: A Multistrategy Ap-
proach, Vol. 4, R. S. Michalski and G. Tecuci (eds.), Morgan Kaufmann, San Mateo,
CA, 1993,

26

28.

29.

30.

31.

32.

33.

35.

36.

37.

38.

39.

4].

42,

43,

Multistrategy Learning

L. De Raedt, Interactive Concept Learning, Ph.D. thesis, Catholic University of Leuven,
Leuven, Belgium, 1991.

L. De Raedt and M. Bruynooghe, Interactive Theory Revision, in Machine Learning: A Mul-
tistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.}, Morgan Kaufmann, San
Mateo, CA, 1993.

C. Baroglio, M. Botta, and L. Saitta, ““WHY: A System that Learns Using Causal Models
and Examples, in Machine Learning: A Multistrategy Approach, Vol. 4, R. 8. Michalski and
G. Tecuci (eds.), Morgan Kaufmann, San Mateo, CA, 1993.

G. Tecuci, DISCIPLE: A Theory, Methodology, and System for Learning Expert Knowl-
edge, Ph.D. thesis, University of Paris-South, 1988,

G. Tecuci and Y. Kodratoff, Apprenticeship Learning in Imperfect Theory Domains, in Ma-
chine Learning: An Artificial Intelligence Approach, Vol. 3, Y. Kodratoff and R. S. Michal-
ski (eds.), Morgan Kaufmann, San Mateo, CA, 1990.

R. J. Mooney and D. Ourston, A Multistrategy Approach to Theory Refinement, in Machine
Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuct (eds.), Morgan
Kaufmann, San Mateo, CA, 1993.

1. W. Shavlik and G. G. Towell, An Approach to Combining Explanation-Based and Neural
Learning Algorithms, in Readings in Machine Learning, J. W. Shavlik and T. Dietterich
(eds.), Morgan Kaufmann, San Mateo, CA, 1990.

G. G. Towell and J. W. Shavlik, Refining Symbolic Knowledge Using Neural Networks, in
Machine Learning: A Multistrategy Approach, Vol. 4, R. §. Michalski and G. Tecuci (eds.),
Morgan Kaufmann, San Mateo, CA; 1993.

J. Wnek and R. S. Michalski, Comparing Symbolic and Subsymbolic Learning: A Case
Study, in Machine Learning: A Multistrategy Approach, Vol. 4, R. §. Michalski and G.
Tecuci (eds.), Morgan Kaufmann, San Mateo, CA, 1993.

R. S. Michalski, Toward a Unified Theory of Learning: An Outline of Basic Ideas, Proceed-
ings of the First World Conference on the Fundamentals of Artificial Intelligence, M. De
Glas and D. Gabbay (eds.), Paris, France, July 1-5, 1991.

R. S. Michalski, Inferential Theory of Learning as a Conceptual Framework for Multistrat-
egy Learning, Machine Learning I., Multistrategy Learning (special issue) 1993.

T. M. Miichell, T. Keller, and S. Kedar-Cabelli, Explanation-Based Generalization: A Uni-
fying View, Machine Learning, 1, 47-80 (1986).

R. S. Michalski, Theory and Methodology of Inductive Learning, Machine Learning: An Ar-
tificial Intelligence Approach, R. S. Michalski, J. G. Carbonell, and T. M. Mitchell (eds.),
Tioga Publishing Co., San Mateo, CA, 1983.

A. Collins and R. S. Michalski, The Logic of Plausible Reasoning: A Core Theory, Cognitive
Sci. 13, 1-49 (1989).

R. S. Stepp and R. S. Michalski, How to Structure Structured Objects, in Proceedings of the
International Machine Learning Workshop, University of Illinois Allerton House, Urbana,
June 22-24, 1983, pp. 156-160.

G. Tecuci, Plausible Justification Trees: A Framework for the Deep and Dynamic Inte-
gration of Learning Strategies, Machine Learning J. , Multistrategy Learning (special is-
sue) (1993).

R. 8. Michalski and G. Tecuci (eds.), Machine Learning: A Multistrategy Approach, Vol. 4,
San Mateo, CA, Morgan Kaufmann, 1993,

BIBLIOGRAPHY

Bala, J., K. DeJong, and P Pachowicz, Muitistrategy Learning from Engineering Data by Inte-

grating Inductive Generalization and Genetic Algorithms, in Machine Learning: A Mulii-
strategy Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.), Morgan Kaufmann, San
Mateo, CA, 1993.

Multistrategy Learning 27

Cohen. W., The Generality of Overgenerality, in Machine Learning: Proceedings of the Eighth In-
ternational Workshop, L. Birnbaum and G. Collins {(eds.), Chicago, IL, Morgan Kaufiann,
San Mateo, CA, pp. 490-494, 1991.

de Garis H., Genetic Programming: Evolutionary Approaches to Multistrategy Learning, in Ma-
chine Learning: A Multistrategy Approach, Yol. 4, R. 8. Michalski and G. Tecuci (eds.),

‘Morgan Kaufmann, San Mateo, CA, 1993.

Delong, G and R. Mooney, Explanation-Based Learning: An Alternative View, Machine Learn-
ing, 1, 145-176 (1986).

Dietterich, T. G., Learning at the Knowledge Level, Machine Learning, I (3), 287-316 (1986).
Reprinted in J. W. Shavlik and T. G. Dietterich (eds.) Readings in Machine Learning, Mor-
gan Kaufmann, San Mateo, CA, 1990.

Gordon, D. E, An Enhancer for Reactive Plans, in Machine Learning: Proceedings of the Eighth
International Workshop, L. Birnbaum, and G. Collins (eds.), Chicago, IL, Morgan
Kaufmann, San Mateo, 1991, pp. 505--508. |

Gould J. and Levinson R., Expericnce-Based Adaptive Search, in Machine Learning: A Multi-
strategy Approach, Vol. 4, R. S. Michalski and G. Tecuci {eds.), Morgan Kaufmann, San
Mateo, CA, 1993.

Hirsh, H., Incremental Version-Space Merging: A General Framework for Concept Learning, Doc-
toral dissertation, Stanford University, 1989.

Hunter L., Classifying for Prediction: A Multistrategy Approach to Predicting Protein Structure, in
Machine Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.),
Morgan Kaufmann, San Mateo, CA, 1993. -

Josephson J., Abduction: Conceptual Analysis of 2 Fundamental Pattern of Inference, Technical
Research Report 91-JJ, Laboratory for Artificial Intelligence Research, The Ohio State Uni-
versity, 1991.

Kodratoff Y., Induction and the Organization of Knowledge, in Machine Learning: A Multistrategy
Approach, Vol. 4, R. S. Michalski and G. Tecuci (eds.), Morgan Kaufmann, San Mateo,
CA, 1993.

Kodratoff, Y and G. Tecuci, DISCIPLE-1: Interactive Apprentice System in Weak Theory Fields,
Proc. IJCAI-87, Milan, Italy, 1987, pp. 271-273.

Matwin S. and B. Plante, Theory Revision by Analyzing Explanations and Prototypes, in Machine
Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuct {eds.), Morgan
Kaufmann, San Mateo, CA, 1993,

Michalski, R. 8., A Methodological Framework for Multistrategy Task-Adaptive Learning, in Pro-
ceedings of the Fifth International Symposium on Methodologies for Intelligent Systems,
Knoxville, October 1990, Elsevier, New York, 1990,

Michalski R.S. and G. Tecuci (eds.), Proceedings of the First International Workshop on Multi-
strategy Approach, Harpers Ferry, WV, November 7-9, 1991, Center for Artificial Intelli-
gence, George Mason University, 1991.

Mooney, R. and S. Bennet, A Domain Independent Explanation Based Generalizer, in Proceedings
of the Fifth National Conference on Artificial Intelligence, Philadelphia, PA, Morgan
Kaufmann, San Mateo, CA, 1986, pp. 551-5535.

Pazzani M., Learning Causal Patterns: Making a Transition from Data-Driven to Theory-Driven
Learning, in Machine Learning: A Multistrategy Approach, Vol. 4, R. §. Michalski and G.
Tecuci (eds.), Morgan Kaufmann, San Mateo, CA, 1993.

Ram A. and M. Cox, Introspective Reasoning Using Meta-Explanations for Multistrategy Learn-
ing, in Machine Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G. Tecuci
(eds.), Morgan Kaufmann, San Mateo, CA, 1993.

Reich, Y., Macro and Micro Perspectives of Multistrategy Learning, in Machine Learning: A Mul-
tistrategy Approach, Vol 4, R. S. Michalski and G. Tecuci (eds.), Morgan Kaufmann, San
Mateo, CA, 1993.

Russell, S., The Use of Knowledge in Analogy and Induction, Morgan Kaufmann, San Mateo,
CA, 1989.

28 Multistrategy Learning

Saitta, L. and M. Botta, Multistrategy Learning and Theory Revision, Machine Learning J., Mul-
tistrategy Learning (special issue) (1993).

Segen J., GEST: A Learning Computer Vision System that Recognizes Hand Gestures, in Machine
Learning: A Multistrategy Approach, Yol. 4, R. §. Michalski and G. Tecuci (eds.), Morgan
Kaufmann, San Mateo, CA, 1993.

Tecuci G., Automating Knowledge Acquisition as Extending, Updating, and Improving a Knowi-
edge Base, IEEE Trans. Sys., Man Cybernetics, 22 (5) (1992).

Tecuci, G. and R. S§. Michalski, A Method for Multistrategy Task-adaptive Learning Based on
Plausible Justifications, in Machine Learning: Proceedings of the Eighth International
Workshop, L. Birnbaum, and G. Collins (eds.), Chicago, IL, Morgan Kaufmann, San Ma-
teo, CA, 1991, pp. 549-553. :

Tecuci, G. and R. S. Michalski, Input Understanding as a Basis for Multistrategy Task-Adaptive
Learning, in Proceedings of the International Symposium on Methodologies for Intelligent
Systems, Charlotte, NC, Springer-Verlag, New York, 1991, pp. 419-428.

Vafaie, H. and K, DeJong, Improving a Rule Induction System Using Genetic Algorithms, in Ma-
chine Learning: A Multistrategy Approach, Yol. 4, R. §. Michalski and G. Tecuci (eds.),
Morgan Kaufmann, San Mateo, CA, 1993.

Widmer, G., Learning with a Qualitative Domain Theory by Means of Plausible Explanations, in
Machine Learning: A Multistrategy Approach, Vol. 4, R. §. Michalski and G. Tecuci (eds.),
Morgan Kaufmann, San Mateo, CA, 1992,

Wisniewski, E. J. and L. M. Medin, The Fiction and Nonfiction of Features, in Machine Learning:
A Multistrategy Approach, Vol. 4, R. §. Michalski and G. Tecuci (eds.}, Morgan Kaufmann,
San Mateo, CA, 1993.

Whek, J. and M. Hieb, Bibliography of Multistrategy Learning Research, in Machine Learning: A
Multistrategy Approach, Vol. 4, R. S. Michaiski and G. Tecuci (eds.), Morgan Kaufmann,
San Mateo, CA, 1993.

Zhang, 1., Learning Graded Concept Descriptions by Integrating Symbolic and Subsymbolic Ap-
proaches, in Machine Learning: A Multistrategy Approach, Vol. 4, R. S. Michalski and G.
Tecuci (eds.), Morgan Kaufmann, San Mateo, CA, 1993.

RYSZARD S. MICHALSKI
GHEORGHE TECUCI

