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CONSTRUCTIVE INDUCTION:
An Automated Improvement of Knowledge
Representation Spaces for Machine Learning

Ryszard 8. Michalski and Janusz Wnek

Center for Artificial Intelligence, George Mason University
4400 University Dr., Fairfax, VA, USA

Abstract. Most machine leaming methods assume that the original representation
space is adequate, that is, the initial attributes or terms are sufficiently relevant to the
probiem at hand. To cope with learning problems in which this assumption does not
bold, the idea of constructive induction has been proposed. A constructive induction
system conducts two searches, first for an improved representation space, and the second
for the “best” hypothesis in this space. Research on constructive induction is reviewed
and a method for kypothesis-driven constructive induction (AQ-HCI) is presented. The
method searches for an adequate representation space by analyzing the hypotheses
generated in each step of an iterative double-search leaming process. In an experimental
study, the method outperformed all learning methods that were tested. Also, it achieved
the top performance in solving the so-called Monks' problems that were used as a
benchmark in the first international competition of learning programs. The conclusion
outlines several open problems in this area,

1 Introduction

Most research in machine learning has been concerned with learning concept descriptions from
examples in an a prioti defined representation space. In such methods, the hypothesis learned is
expressed using attributes or terms selected from among those initially provided. For this
reason, such inductive learning methods are sometimes called selective (Michalski, 1983:
Rendell, 1985).
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‘To overcome this limitation, the idea of constructive induction has been proposed (Michalski,
1978). A constructive induction system performs a double, mutually intertwined search, one for
the most suitable representation space, and second for the “best” concept description in this
space, for example, the simplest description. The system includes mechanisms for generating
new, more relevant descriptors, as well as for modifying or removing less relevant ones from
those initially provided. In general, a constructive induction system perform a problem-oriented
transformation of the original knowledge representation space.

The primary goal of constructive induction may be to maximize the overall prediction accuracy
of a concept description, to minimize the overall complexity of a description, or to optimize the
description according to a combination of both criteria. The prediction accuracy is measured by
applying the generated concept description to festing examples, and determining the correctness
of the predictions. It is often expressed as a percentage of the testing examples that are correctly
classified (a reciprocal measure is an error rate, defined as 100% - prediction accuracy). The
overall complexity of a concept description is a function of the number and the complexity of
attributes used in the description, and the types of operators employed.

The primary goal of the method described here is to learn a concept description that has the
highest prediction accuracy on the unseen concept examples. The search for such a description is
done by iteratively changing representation space, and measuring the prediction accuracy of the
generated description in this space. The prediction accuracy is estimated by applying the
description to concepts examples that were not used in the learning process.

This paper briefly reviews and classifies research on constructive induction, and then presents a
new method in which the desirable changes in the representation space are determined by
analyzing hypotheses generated in each iteration of the learning process. For that reason, the
method represents a hypothesis-driven constructive induction (HCI) approach, as opposed to a
data-driven (DCI) approach, which is based on the analysis of data (concept examples). The
presented method employs the well-known AQ inductive learning algorithm, therefore the
method is called AQ-HCL '

To relate the presented method to other methods, Section 2 provides a summary aod a
classification of existing constructive induction metheds. Section 3 gives a description of the
proposed AQ-HCI method. Sections 4 and 5 examine the performance of the method on two
problems. Transformations of the representation space are illustrated by diagrammatic
visualization, Section 6 describes an experimental comparison of the method with several
symbolic and subsymbolic leamning systems. Section 7 summarizes the main features of the
method and suggests topics for future research,

Z A Classification of Constructive Induction Systems

The idea and the name constructive induction was first proposed by Michalski (1978), and
mnpiemented in INDUCE-] system for leaming structural descriptions from examples (Larson
& Michalski, 1977, Michalski, 1980). INDUCE-1, and subsequent versions, e.g., INDUCE-4
(Bentrup, Mehler & Riedesel, 1987), used various conastructive generalization rules and
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procedures 1o generate new problem-oriented descriptors (Michalski, 1983). These descriptors
were then employed together with the original descriptors in the process of induction. A nuymber
of other systems that exhibit various constructive induction capabilities have been subsequently

developed (e.g., Rendell, 1985; Matheus, 1989; Drastal, Czako & Raatz, 1989: Wnek &
Michalski, 1991).

Systems for constructive induction may employ different strategies for improving the
tepresentation space, in particular, for generating new descriptors!, Based on the primary
strategy employed, existing constructive induction systems can be divided into four categories:
data-driven, hypothesis-driven, knowledge-driven, and multistrategy. Below is a brief
characterization of these categories, and selected representative systems in each category.

2.1 Data-—Drivén Constructive Induction Systems (DCI)

These systems analyze and explore the input data (examples), particularly, the interrelationships
among descriptors used in the examples, and on that basis suggest changes in the representation
space.

BACON creates new attributes (variables) that represent simple nomericai functions of the
original variables. The process of generating new attributes employs heuristics based on the
interdependencies between original attributes in the data (Langley, Bradshaw & Simon,
1983; Langley et al., 1987).

ABACUS employs methods for splitting data into subgroups, determining equations for
each subgroup (in a similar fashion as BACON), and applying methods of symbolic
induction for defining the applicability conditions for the equations (Falkenhainer &
Michalski, 1990; Greene 1988; Michael, 1991).,

PLS0 (Probabilistic Learning System) creates new atiributes from initial attributes using 2
form of conceptual clustering performed at three levels of abstraction: object, structure, and
group relationships (Rendell, 1985).

Wyl, IOE (Induction-QOver-Explanations) leams structural descriptions of selected concepts
in chess and checkers games by first mapping the training examples from a performance-
level representation (a chess or checkers board) into a learning-level representation (concepts
characterizing game states), generalizing them in this representation, and converting the
leamed concept back into the performance-level representation for efficient recognition
(Flann & Dietterich, 1986; Flann 1990).

STAGGER enhances the representation space by generating various Boolean combinations
of description clements (attribute-value pairs), and discretizing continuous attributes using a
statistical utility function (Schlimmer, 1987).

1 By descriptors are meant attributes, predicates, functions, relations, transformations, etc. that
span the knowledge representation space in which the learning process occurs.
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AQ17-DCI applies many different logical and mathematical operators to the original
atributes to create new "candidate™ auributes. The candidate atiributes that score high on an
attribute quality function are added to the original attribute set, and the whole set is
employed in the process of inductive generalization (Bloedom & Michalski, 1991).

FCE (Pactored Candidate Elimination) algorithm starts with a set of initial representation

spaces. After detecting inconsistency in hypotheses formulated in these representation
spaces, the algorithmn creates a Cartesian product of these spaces (Carpineto, 1992),

2.2 Hypothesis-Driven Constructive Induction Systems (HCI)

These systems incrementally transform the representation space by analyzing inductive

hypotheses generated in one iteration and using detected patterns as attributes for the next
iteration.

BLIP proposcs new "meta-facts” on the basis of rule exceptions that cannot be defined in
terms in the given representation (Emde, Habel & Rollinger, 1983; Morik, 1989; Wrobel,
1989).

CITRE {(Constructive Induction on decision TREes) determines a decision tree, and by

analyzing it constructs new attributes. Simple facts are combined by constructive operators
(Matheus, 1989}

FRINGE improves decision trees by avoiding the duplication of tests in them. New
attributes are constructed from “fringes” of the tree, and stand for conjunctions of Boolean
attributes (Pagallo & Haussler, 1990).

KLUSTER introduces new relations or concepts if another concebt cannot be characterized
without it. A definition of the requested concept or relation is learned using initial examples
(Kietz & Morik, 1991).

AQI7-HCI (an earlier mplcmentauon of the system presented here) creates new atmbutcs
from admissible sets of rules, i.e. rule pattemms (Wnek & Michalski, 1991).

AQ-PRAX introduces new attributes called principal axes. The attributes are defined by AQ-
generated rules and a non-linear similarity measure (Bala, Michalski & Wnek, 1992).

2.3 Knowledge-Driven Constructive Induction Systems (KCI)

These systems apply expert-provided domain knowledge to construct and/or verify new
representation space.,

AM (Automated Mathematician) program changes its representation space by employing
predefined heuristics for: (1) defining new concepts represented as frames, (2) creating new
slots and/their values, (3) adapting concept frames developed in one domain to another
domain (Lenat, 1977, 1983).
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SPARC/E (Sequential PAtiern ReCognition) program for learning rules in the game
Eleusis changes the representation space by adding derived attributes. The new attributes
make explicit certain commonly known characteristics of playing cards that are likely to be
used in an Eleusis rule. Definitions of the attributes are provided by a user (Dietterich &
Michalski, 1983, 1983, 1986).

COPER creates new function arguments by applying rules of dimensional analysis for
combining arguments into dimensionless monomials (Kokar, 1985)

AQ15 applies arithmetic transformations (g-rules) and/or logical rules (J-rules) for
constructing new attributes (Michalski et al., 1986).

MIRO applies an expert-defined rulés ("domain theory” ) to construct an abstraction space,
and then to perform induction in this space (Drastal, Czako & Raatz, 1989).

2.4 Moultistrategy Constructive Induction Systems (MCI)

These systems combine different appfoachcs and methods for constructing a new representation
space. {The strategies combined are specified in the parentheses).

INDUCE-1 (KCI & DCI) applies inductive generalization rules selected by a user from a
predefined repertoire and/or built-in procedures for generating new attributes. The rules are
applied either directly (KCI) or according to the results of the analysis of the properties of
the structural descriptions of training examples {DCI) (Larson & Michalski 1977,
Michalski, 1978, 1983).

STABB (DCI & HCI) uses two procedures to Shift To A Better Bias. The leas? disjunction
procedure changes the representation by examining only the training examples and the
current description language (DCI). The constraint back-propagation procedure builds new
representation based on hypotheses {(operator sequences) verified by LEX's critic (HCI).
STABB was incorporated into the existing LEX program (Mitchell, Utgoff & Banerii, 1983)
to provide LEX with constructive abilities (Utgoff, 1984, 1986).

Duce (HCI & XCI) suggests domain features to a user (or oracle) on the basis of a set of
example object descriptions (given in the input or hypothesized), and six transformation
operators (HCI). Such inductive transformations are tested against an oracle which ensures
the validity of any transformation (KCI} (Muggleton, 1987).

CIGOL (HCI & KCI} (LOGIC backwards) employs "inverted resolution” using Horn clause
knowledge representation. New predicates that play role of sub-concepts {(or missing
premises) are generated from input or hypothesized examples of a high-level predicate by
applying the intra-construction operator (equivalent to rule-partern operator in AQ17-HCI).
A user may name the concept (predicate) or reject the proposed definition (which can be
viewed as KCI) (Muggleton & Buntine, 1988).

ALPINE constructs a hierarchy of monotonic, i.e. structure preserving, abstraction spaces
from the operators of a domain (DCI). It uses domain axioms and knowledge about the
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primary effects of operators to avoid adding unnecessary constraints {(KCI) (Knoblock, 1990).
The method was integrated with other types of learning in the PRODIGY problem solver
(Knoblock, Minton & Etzioni, 1991).

NeoDisciple (HCI & KCI) introduces new concepis in the form of example explanations
provided by an expert (KCI} (DISCIPLE, Tecuci & Kodratoff, 1990), and creates new
intermediate concepts based on the similar definitions in the knowledge base to reduce the
inconsistency in the learned rules (HCI) (Tecuci, 1992; Tecuci & Hieb, 1992).

CLINT (HCI & XCI) (Concept-]eamning in an [NTeractive way) leams concepts using an
inductive and/or abductive method. If the learned rules match a predefined schemata then a
user is presented with the partially instantiated schema (concept or predicate) (HCI). The user
may name the schema or reject it (KCI) {De Raedt & Bruynocoghe, 1989).

AQ17 (DCI, HCI & KCI) integrates in a synergistic way constructive induction
capabilities of AQ15, AQ17-DCI and AQ17-HCI (Bloedorn, Michalski & Whnek, 1993).

3 Representation Space Transformations

In the AQ-HCI method, transfornnations of the representation space may involve both
contraction and expansion of the representation space operations. Contraction decreases the
number of possible instances that can be represented in the space, and expansion increases that
number. Contraction is done by removing atiributes, or combining attribute values into larger
units. Expansion is done by adding new attributes, or adding new attribute values to the legal
valge sets of the attributes.

3.1 Contraction

From the viewpoint of algorithmic efficieacy, it is desirable to maximally reduce the
representation space, while preserving its ability to adequately describe concepts to be learned.
The AQ-HCI method removes from the representation space attributes considered as
insufficiently relevant. The latter ones can be either redundant or insignificant. The redundant
attributes are defined as those that do not occur in the concept description (a set of rules)
generated by the employed selective induction algorithm (here, AQ). The insignificant atiributes
are those that occur only in the “low strength” rules (that cover only very small number of
examples). The importance of the space contraction has beea confirmed by experiments showing
that descriptions generated in properly contracted representation spaces tend to have higher
predictive accuracy than descriptions generated in spaces that have not been contracted (Quinlan,
1986b; Subramanian, 1990; Thrum, 1991; Vafaie & De Jong, 1991). Another form of
contraction is to aggiomerate values of an attribute into larger units. This is done by creating
more abstract values of attribntes. These are useful operations, because overly precise attributes
can cause an gverfitting of the hypotheses,
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3.2 Expansion

When the original representation space is determined to be of insufficient quality, it needs to be
extended by adding new attributes. One method for generating new attributes is to invent some
new physical processes that allow the measurement of the previously unknown or undetectable
object properties. This is often very difficult and is normally done by an expert in a given
domain (a physicist, chemist, etc.). Another method is (o search a certain functions or relations
among the existing atiributes for combinations that demonstrate a high relevance to describing
concepts to be learmed. Such combinations are given names, and serve as new constructed (or
derived) attributes. Adding constructed atiributes to the representation space is a space expansion
operation. The AQ-HCI algorithm generates derived atiributes by detecting various “patterns”™ in
the descriptions obtained in consecutive iterations of the leamning process. These patterns are
described below.,

3.3 Patterns in Concept Descriptions

By a partern is meant here a component of a generated concept description that is characteristic
of a relatively large number of concept examples. The basic idea behind the AQ-HCI method is
to search for different patterns in the hypotheses generated in each iteration of the learning
process. Detected patterns are viewed as relevant intermediate knowledge transformations and
treated as new derived (constructed) attributes. Each pattern is assigned a partern strength, which
reflects the number of examples covered (or explained) by the pattern. Such a pattern strength is
viewed as a measure of the importance of the attribute constructed on the basis of this pattem
(sce Sec. 3.4).

A concept description is in the form of a set of rules (a ruleset). Different patiern types
correspond to different components of such a ruleset. There are value-patterns, condition-patterns
and rule-patierns. A value-pattiern represents a subset of attribute values that satisfies the pattern
criterion. A condition-patiern represents a conjunction of two or more elementary conditions. A
rule-pattern is a subset of the rules in a given ruleset. A value-pattern or a condition-patiern
represents an overgeneralization, if considered by itself as a concept description. A rule pattern
represents an overspecialization if considered by itself as a concept description, Thus, patterns
represent statements about the input data that can be either an overspecialization or an
overgeneraiization. These palterus give the learning system powerful mechanisms for knowledge
space transformation.

To illustrate the concept of derived attributes and different pattems in a description, let’s consider
an example. Table 1 shows initial atiributes spanning a description space and their valoe seis,
Table 2 shows examples of constructed attributes that correspond to different types of patterns.
These patterns are expressed in terms of initial attributes.
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Table 1. Examples of attributes.

Attribute Value set £xplanation

X 1..100 (Atribute x can take vaiues from 1 to 103}
y small, medium, large {y is a symbolic atiribute)

A white, red, blue, green, black (z is a symbolic attribute)

Table 2. Examples of consiructed atiributes.

Attribute definition Value set Explanation

cal <:: (z=blue vred v white) Oorli (Value-pattern)

ca2 < (x =20) & (y = large) Dortl {Condition-patiern)
ca3 <:: ((x=75..100) & {y=small)) or {x < 20) Dorl (Rule-patiern)

The first constructed attribute (cal) is based on a value-pattem. It states a condition that z should
take value blue, red or white. If the condition is satisfied, the attribute takes value 1, otherwise
0. The second constructed attribute, ca2, is based on a condition-pattern. It is a conjunction of
two conditions. The third attribute, ca3, is based on a rule-pattern, It is a disjunction of two
rules {conjunctive terms}. The first is a conjunction of two conditions and the second is a single
condition.

Let us now explain our description language. The constructed attributes, as well as the concept
descriptions are expressed in the form of DNF expressions of variable-valued logic system VL1
(Michalski, 1975). Elementary conditions in such an expression are relations between an
attribute and a set of its values:

I#R

where x is an attribute, # denotes a relation (=, <, >), R denotes a set of attribute values that is
represented as an internal disjunction of values {a v b v ....), or a range {a..b). For example, an
elementary condition can be represented in such forms asx =1, x> 3, x=2..7, x=AvBv
D. A VL1 expression is equivalent to a set of conjunctive rules (a ruleset). Such a ruleset can be
represented as a two dimensional matrix C(n m), where n is the number of attributes, and m is
the number of rules. Each C(i, j) element in this matrix is a set of values that attribute (i) is
assigned to in rule ().

3.4 Determining the Patiern Strength

As mentioned earlier, every pattern in a ruleset is assigned a pattern strength. In the case of
learning single concepts, a pattern strength is a function of the number of positive examples,
PCov, and the negative examples, NCov, that are covered by (or satisfy) the pattem:

c(partern)= f(PCov{ pattern), NCov( pattern)) 1)
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To determine a desirable form of the function f, let us observe that the strength of a pattern
should be positively correlated with the number of positive examples covered by it, and
negatively correlated with the number of negative examples covered by it. In addition, the
definition of a pattern strength may distinguish between types of coverage of concept instances
by the pattern. For example, a concept instance may be covered only by the given pattern (a
unique coverage), or maybe covered also by other patterns (multiply covered). To reflect this
difference, PCov and NCov are expressed not just by single numbers, but by multiple numbers.
Here is a simple measure of pattern strength (o) that reflects above considerations:

t* (pattern) + Au* (pattern)

ol patlern) =
(P ) t” (pattern) + 1

2

where

t¥(pattern), called the total positive weight, and t-(pattern), called the foral negative weight,
are the numbers-of positive and negative examples covered by the pattern, respectively.

u+(pattem), called the unique weight , is the number of positive examples uniquely covered
by the pattern, i.e., not covered by any other comparable pattern.

A 2 0 is a parameter that controls the relative importance of these two types of coverage.

When A= 0, i.e., when the unique weight is ignored, the above measure is similar to the logical
sufficiency (L.S) used in the Prospector expert system (Duda, Gasching & Hart, 1979), and in
the STAGGER concept leaming system (Schlimmer, 1987).

The pattern strength function, as defined in equation (2), is vsed to determine which patterns are
admissible as new attributes. The function represents a degree to which an unknown example
that satisfies a pattern can be believed to be an instance of the concept.

To explain the o function (eq. 2), let us assume that A = 0, i.e., the unique weights are ignored.
In this case, the function ranges from zero to the number of positive examples. When a pattern
is not matched by any positive example, o{pattern} is equal to 0. Such a pattern is least useful
for describing the concept. When the pattern is not matched by any negative examples,
o(pattern) equals the number of positive examples. If s(pattem) is greater than 1, the patiern
matches more positive negative than negative examples. Patterns that match many more
positive than negative examples may be considered useful for constructing new atiributes. In the
AQ-HCI method, pattern selection is additionaily restricted by a condition that a pattern to be
selected should have strength greater than the strengths of all conditions involved in the pattem
3.5 Determining an Admissible Ruleset

The AQ-HCI method works iteratively. Each iteration generates a complete and consistent
concept description, that is, a ruleset that covers all positive examples and none of the negative
examples. To speed up the search for patierns, the method selects rules that have sufficient
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strength in the generaled ruleset. These rules constitute an admissible ruleset. The method
searches for strong patterns in the admissible ruleset, employs patierns for transforming the
représentation space, and then moves to the next iteration (the details are described in Section 6).

‘When determining the strength of rules in the ruleset representing a concept, expression (2) can
be simplified, specifically, the denominator in (2) can be ignored. This is so because such a
ruleset is consistent with regard to negative examples (no negative examples are covered), and
therefore +~ (the negative weight ) is zero,

Thus, we have:
o(rule) = t(rule) + Au(rule) (3)

where, ¢t is the total weight of a rule in a ruleset (the total number of positive training
examples covered by this rule); and i is the unique weight of a mle in a ruleset (the number of
training examples covered only by this rule, and not by any other rule in the ruleset; Michalski
et al., 1986). The method's default value for parameter A is 2, which gives a relatively strong

preference to rules with higher unique weights, i.e., rules that have smaller overlap with other
rules in a ruleset for a given concept.

To determine an admissible ruleset, rules in the ruleset for a given concept are ordered from the
strongest to the weakest. An admissible ruleset contains the minimal number of rules from the
ruleset whose total relative strength exceeds a predefined threshold:

2.0,

i=l.m' >TH (4}

O;

j=l.m

where ©; is the strength of rule (i) defined by equation (3), m the total number of rules in the
current hypothesis, m’ (m’ < m) is the number of the strongest rules (recall that the rules are
ordered, thus g; 2 0;+1). The threshold TH is chosen on the basis of an estimate of the possible
noise level the data. Noisy examples are typically covered by low-strength rules, therefore the
admissible ruleset is selecied to cover the most "central” portion of the concept to be leamed.
The threshold level may also reflect the prior knowledge about the concept. For example, if it is
known that the concept is non-DNF, then the threshold can be set very high,

3.6 The AQ-HCIMethod

The AQ-HCI methed combines an inductive rule leaming algorithm (implemented in AQ15)
with an HCI procedure for iteratively transforming a representation space. In each iteration, the
method changes the representation space by adding new attributes determined on the basis of
detected patterns, and removing insufficiently relevant attributes. The quality of the hypothesis
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generated in each iteration is evaluated by applying the hypothesis to a subset of training
examples. The set of training examples prepared for a given iteration is split into the primary
set {the P set), which is used for generating hypotheses, and the secondary set (the S set), which
is used for evaluating the prediction accuracy of the generated hypotheses. Fig. 1 presents a

diagram illustrating the method.
INPUT : Examples & Definitions
of Inltial Attributes
gf:g*zgz’jm“‘;:ﬁ:" I Spilt of Examples Into P & § ‘—I Reformulation of Examples
S - — * T * R
1 Representation Space -
Ruis I..nrnlni(:rnm P} Transformation
Rule Evaluation (on §}) I Rule Analysis
Stopping Condltion
Satisfled
R Eo ] oo - TY" i g L Ham—
REER Rt IR B . " A
Leaming the Final Final Rule Learning (from P& S)
Concept Description
in the Acguired
Reprasentation Space

( QUTPUT : Rules & Definltions of

Constructed Attributes

NOTE: P - Primary Training Examples
S —~ Secondary Training Examples

Fig. 1. The method for Hypothesis-driven Constructive Induction.

The input consists of training examples of one or more concepts, and background knowledge
about the attributes used in the examples (which specifies their types and legal value sets). For

the sake of simplicity, let us assume that the input consists of positive examples, E* and

negative examples, E-, of only one concept. If there are several concepts to learn, examples of
each concept are taken as positive examples of that concept, and the set-theoretical union of

examples of other concepts is taken as negative examples of that concept.
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The method consists of two phases. Phase 1 determines the representation space by a process
of iterative refinement. In each iteration, the method prepares training examples, creates rules,
evaluates their performance, modifies the representation space, and then projects the training
examples into the new space. This phase is executed yntil the Stopping Condition is satisfied.
This condition requires that the prediction accuracy of the learned concept descriptions exceeds a-
predefined threshold, or there is no improvement of the accuracy over the previous iteration.
Phase 2 determines final concept descriptions in the acquired representation space from the
complete set of training examples. The output consists of concept descriptions, and definitions
of attributes constructed in Phase 1. Below is a detailed description of both phases, and the basic
modules of the method.

Phase 1 consists of six modules. The first, "Split of Examples” module, divides positive and
negative training examples into the primary set, P, and the secondary set, S (in the experiments
the split was according to the ratios 2/3 and 1/3, respectively). The set of primary positive
(vegative) examples is denoted P* (P7), and the set of secondary positive (negative) examples is
denoted S* (§7). Thus P =P+ U P, and § = S* U §~. The primary training set, P, is used for
initial rule leaming, the secondary set, S, for an evaluation of intermediate rules, and total set, P
W §, is used for the final mle leaming (in Phase 2).

The "Rule Learning” module induces a set of decision rules for discriminating P¥ from P, i.e.,
a cover COV (P*/P) of positive primary examples against negative primary examptes. This is
done by employing the AQ15 inductive learning program (Michalski et at., 1986). The program
is based on the A9 algorithm for solving the general covering problem and for minimizing
Boolean functions of a very large number of variables (e.g., Michalski & McCormick, 1971;
Michalski, 1973). For completeness, Section 3.7 gives a brief description of the algorithm.

The "Rule Evaluation" module estimates the prediction accuracy of the rules by applying them
to the secondary training set, S. The accuracy of the rules in classifying the examples from $ is
determined by the ATEST procedure implemented in the AQ15 program (Reinke, 1984). If the
Stopping Condition criterion is not satisfied, the control passes to the "Rule Analysis" module,
otherwise, it passes to Phase 2. |

The "Rule Analysis™ module analyzes the rules in the ruleset for each class to determine
desirable changes in the representation space. This process includes a detenmination of the
attributes that are to be removed from the space and a generation a constructed attributes that are
to be added to the representation space. The last ones represent strong patterns found in the
admissible ruleset generated in the current iteration. Section 3.8 gives more details about this
process,

The "Representation Space Transformation” module modifies the space according to the findings
in the previous module. It removes redundant and insignificant attributes, modifies existing
attributes (by attribute value agglomeration), and adds to the space constructed attributes.

The "Example Reformulation™ module projects all training examples into the new
representation space, and the whole inductive process is repeated.
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Phase 2 determines the final ruleset by applying the "Rule Learning” module to all training
examples projected into the final representation space determined in Phase 1.

For each concept, a set of the most specific (ms) rules is induced from all positive examples
against all negative examples, i.e., a cover COVm (E¥/E"), and a set of the most general (mg)
rules of negative examples against positive examples, that is COVmg (E/E*). The final concept
description is built by generalizing the most specific rules for positive examples against the
most general rules for negative examples, i.¢., determining a cover, COVmg[COVm (EH/E"

YCOVmg (E-/E™)] (notice that the arguments for the covering algorithm are not sets of
examples, but sets of rules). The description so generated represents an intermediate degree of
generalization between the most specific- “positive™ rules and the most general “negative” rules.
The idea of such an intermediate cover was proposed and implemented by Wnek (1992).

3.7 Rule Learning Module

As mentioned earlier, initial and consecutive hypotheses are generated by the inductive rule
leamning program AQ15 (Michalski et al., 1986). The program leamns rules from examples
represented as vectors of attribute-value pairs. Attributes can be multiple-valued and can be of
different types, such as symbolic, numerical, cyclic or structured (in the latter case the value set
is a hicrarchy). The teacher presents the learner a set of examples of each concept to be learned.
The program generates a set of general rules (a ruleset) characterizing each class.

A ruleset is equivalent to a DNF disjunctive normal form expression with internal disjunction
(each rule comresponds to one disjunct). In the standard mode, the program generates rulesets that
arc consistent and complete concept descriptions, i.e., cover all positive examples and no
negative examples. Generated rules optimize a problem-dependent criterion of preference. In the
case of noisy data, the program may generate only partially counsistent and/or complete rules.

- The AQ1S program is based on the A9 algorithm, which iteratively evokes a star generation
procedure. A star of an example is the set of the most general alternative rules that cover that
example, but do not cover any negative examples. In the first step, a star is generated for a
randomly chosen example (a seed), and the "best” rule in the star, as defined by the preference
criterion, is selected. All examples covered by that rule are removed from further consideration.
A new seed is then selected from the yet-uncovered examples, and the process is repeated. The
algorithm ends when all positive examples are covered. If there exists a single rule that covers
all the examples (that is, there exists a conjunctive characterization of the concept), the
algorithm terminates after the first step of star generation). An efficient procedure for star
generation is described in (Michalski & McCormick, 1971).

The AQ135 program has various parameters whose default values can be changed accordingly to
learning goals. One parameter, trim, controls generality of the leamed descriptions without
increasing their complexity. Based on this parameter setting, the program can learn either
maximal characteristic descriptions, or minimal discriminant descriptions (Michalski, 1983).
The maximal characteristic descriptions are the most specific conjunctions characterizing all
objects in the given class using descriptors of the given representation. Such descriptions are
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intended to discriminate the given class from all other possible classes. The minimal
discriminant descriptions are the most general logical products characterizing all objects in the
given class using descriptors of the given representation. Such descriptions are intended to
discriminate the given class from other classes currently represented in the space.

Another AQ1S5 parameter, mode, controls cover bounds of the learned descriptions. The
intersecting covers mode produces descriptions that may intersect over areas with no training
examples. The disjoint covers mode produces descriptions that do not intersect.

There are two learning goals in the AQ-HCI method. They are related to the two phases of the
method: the jterative determination of the representation space, and learning the final concept
description. The first learning goal is to obtain concept descriptions that can serve as
intermediate knowledge for selecting useful patterns for constructing new atiributes. Such
descriptions should reveal the necessary conditions for the best classification of the available
data, and thus help detect useful value-patierns and condition-patterns. To this end, maximal
characteristic descriptions are most desirable.

An additional assumption is made for the purpose of finding proper rule-patterns. Such patterns,
if endorsed as new attributes, may cause ambiguity in the representation space. The ambiguity
could be introduced if two or more new attributes, created from rulesets of different concept
descriptions, had overlapping definitions, and at the same time some existing atiributes, relevant
for describing the overlap, were removed. To prevent creating such ambiguity, the method in
phase 1 assumes the generation of disjoint covers.

The second goal is to obtain final concept descriptions that give the highest performance
accuracy. Therefore, Phase 2, generates concept descriptions at an intermediate level of
generalization between the most specific and the most general levels. The descriptions of
different classes may overlap over areas occupied by unseen examples (therefore the "Intersecting
Covers” mode is used). Instances from overlapping areas are recognized through a flexible
matching procedure (Reinke, 1984; Michalski, et al. 1986).

In sum, in the AQ-HCI method, the AQ15 program for searching the problem space is
combined with processes that change the representation space. The hypotheses generated in
Phase ] are characteristic generalizations of examples (most specific), and used for praposing
problem-oriented changes in the representation space. Phase 2 utilizes the resulting
representation space to generate final hypotheses which are at an intermediate level of
generalization that is desirable for achieving the highest possible prediction accuracy (Wnek
1992).

3.8 Rule Analysis Module and Pattern Determination

Given a ruleset representing a concept description generated in a given iteration of the
algorithm, the "Rule Analysis” module analyzes the rules to determine desirable changes in the
representation space. This process includes a determination of the attributes that should be
removed from the space, a modification of some attributes, and a generation a constructed
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attributes that are to be added to the representation space. The last ones represent strong patterns
foumd in the generated rulesets for each class.

Attributes to be removed are those that are redundant (do not occur in the description) or
insufficiently relevant. The latter ones are determined by assigning the relevance to each
attribite in the concept description. The relevance of an attribute is defined as the sum of the ¢
weights (the number of positive examples covered) of the rules containing the attribute in the
ruleset. There is a parametes that defines which attribuies are sufiiciently relevant.

The attribute modification and construction are done on the basis of the patierns delermined in
the rulesets for each class. Here is an algorithm for pattern search:

1. Determine the admissible ruleset (ARSET).
Patterns are searched for only in this ruleset, in order to avoid searching through weak
rules.

2. Determine alogical intersection of the rules in ARSET.
This step produces a conjunction of conditions that are common for all rules in the ruleset.

3. Determine candidate conjunctive paiterns
The conjunction of conditions determined in the previous step plus all of its
subconditions (of the length one or more) are viewed as candidate patterns. A conjunction

of two or more conditions constitutes a condition-pattern; single conditions constitute
value-patterns.

4. Determine additional subconjunctive patterns
Reduce ARSET by one rule in every possible way and repeat steps 2 and 3 to determine

additional patterms. Continue until the ARSET has no rules or the number of candidate
pattems reaches an assumed limit.

5. Select value-patterns and condition-patterns

Evaluate the strength of ail the generated patierns and select a predetermined number of the
strongest ones. The result is a set of value-patterns and condition-patterns.

6. Determine rule-patterns

There are two methods for determining rule-patterns. The early method, “top-down,” was
employed in our earlier work (Whnek and Michalski, 1991). Here, the whole admissible set
was selected as a rule-pattern. The new “bottom up” method works as follows. For each
pair of candidate patterns determined in steps 1-4, create 'a disjunction of them, and
evaluate its strength. Repeat this operation for three and more patterns, until the number
of patterns reaches a predefined threshold.

7. Select rule-patterns

Evaluate the strength of the determined candidate rule-patterns and select from them a
predetermined number of the strongest ones to be rule-patterns.

The so determined patterns are assigned names, and used as attributes for determining a
representation space for the next iteration of the algorithm.
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The ability to introduce new attributes in the form of subconcepts corresponding to patterns
found in subsequenty generated rules makes two implicit extensions to the representational
capabilities of the AQ family programs:

(1} Rulesei—-to—condition operator. This operator substitutes a simple condition for a DNF
expression. For example, following the domain description from Table 1, the system can create
and use the following _condition:

(c3=1)

that stands for { { (x = 75..100) & (y=small)) or (x=7)).

(2) Ruleset-negation—to~condition operator. This operator substitutes an attribute vaiue for a
negated DNF expression. From a conceptual point of view, this operator plays an important
role in negating the created subconcepts. For example:

(c3=0)

that stands for (ot (({(x=75,100) & (y=small)) or (x=7}))
which is equivalent to ({(x#75,100) or (y #small)) & (x#7))

Notice that by extending the representation space by introducing new attributes that are logical
combinations of other attributes, some areas of the space may represent impossible
combinations of the attribute values, and some arcas may contain a high concentration of
concept examplés. The higher the concentration of examples of a specific concept in a some
area, the easier it is to describe and generalize these examples. Such an effect is a desirable
consequence of the representation space change.

It may be interesting to note, that the idea of the so-called “W-operator™ (Muggleton, 1988) is
closely related to the detection of condition-patterns in rules for different concept descriptions
{called the “inter-construction” W-operator) or rule-patterns {called the “intra-construction” W-
operator). The presented concepts of value-patterns, condition-patterns and rule-patterns can be
applied not only within the attributional description language used here, but also within a

relational description language, ¢.g., predicate calculus or annotated predicate calculus
(Michalski, 1983).

4 Case Study I: Representation Space Contraction
4.1 The Initial Representation Space
The testing domain in this study is the worsld of robot-like figures in the EMERALD? system

(Kaufman, Michalski & Schultz, 198%). For simplicity's sake, the robots are described by just
six multivalued attributes (Fig. 3A). The attributes are Head Shape, Body Shape, Smiling,

2 BMERALD is a large-scale system integrating several different leamning programs for the purpose
of education and research in machine learning. It was developed at the Center for Artificial
Intelligence at George Mason University. An earlier version, ILLIAN, was developed at the
University of Illinois at Urbana-Champaign.
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Holding, Jacket Color and Tie, and can have 3, 3, 2, 3, 4, and 2 values, respectively.
Consequenily, the size of event space (the space of all possible robot descriptions) is3x3 x2
x 3 x4 x 2 = 432. The space of all possible concepts in this space is 2432 -1 (=10143). Below
is a description of a target concept used in the experiment with the total numbers of positive and
negative examples:
Cy: Headis round and jacket is red or head is square and is holding a balloor

(84 positive, 348 negative)

The concept is presented graphically in Fig. 2B using a method for diagranvnatic visualization.
This method employs a General Logic Diagram (GLD) which is a planar representation of a
multi-dimensional space spanned over multivalued discrete attributes® (Michalski, 1973; Wnek
& Michalski, 1993). Each cell in the diagram represents a combination of the attribute values,
e.g., a concept example. For example, the cell A in Fig. 2B represents the following robot
description:
Head Shape = round, Body Shape = round, SMiling = yes
HOiding = flag, Jacket Color = green, TIe = no

Positive and negative training examples are marked with + and -, respectively. Concepts are
represented as sets of cells. The concept C1 can be described by two rules:
- R1: Head Shape is round and Jacket Color is red

 R2: Head Shape is square and is HOiding balloon
The rules are represented in the diagram by shaded areas marked R1 and R2.

The diagrammatic visualization method permits one to display the target and learned conceplts,
individual steps in a learning process, and the errors in learning. The set of cells representing the
target concept (the concept to be learned) is called the target concept image (T). The set of cells
representing the learned concept is called the learned concept image (L). The areas of the target
concept not covered by the learned concept represent errors of omission (T \ L}, while the areas
of the leamned concept not covered by the target concept represent errors of commission (L\T).

The union of both types of errors represents the error image. In the diagrams, errors are marked
by slanted lines,

Fig. 3 explains the meaning of various cases in concept visualization. Concept images are
represented in the diagrams by shaded areas, e.g. Figures 3A and 3B. If the target and learned
concepts are visualized in the same diagram, then the shaded areas represent leamed concept (Fig.
30). The error image is represented by slanted areas. It is easy to distinguish between errors of
omission and errors of commission. Since errors of commission are part of a leammed concept,
corresponding areas on the diagram are both shaded and slanted. Errors of omission are not part
of the learned concept thus the corresponding slanted areas remain white in the background. The

3 The system DIAYV -implementing the visualization method permits one to directly display
description spaces as many as 10° cells (e.g., about tweaty binary attributes). I.arger spaces can
also be displayed but their representations must be projected to subspaces.
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Jocation of the target concept is implicitly indicated by correctly leamed concept and errors of
omission. The parts of the target concept that were correctly learned are only shaded.

A ROBOTS Domain B. Concept C1 TEG 10
iE = 7
Attributea Possible Values 3 n| *
HS Head Shape round, square, octagon ﬁ : bl r
BS Body Shape round, square, octagon =
SM Smiling yes, no s £y i a) f
HO Hokding sword, balloon, flag R1
JC Jacket Color  ped, yellow, grean, blue e ol *
Tl Tie yes, no v
nl |7
3 Pouitive axample ' - 1
w Negative sxample - T ' = 3 _,_T
Cell A- & robot dascription: ;‘
HS=1} & (BS=r] & [SM=y] & [HO=1] & JC=g] & [Ti=n] L
| i {
Target concept C1 conslsts of two rules: Y
Rule R1: Head is round and jacket is red A ol ?
Rule R2: head is square ard is holding balloon == -
n
7] .- cells represanting rule R1: [HS=r] & [KC=r]
%1 — cells representing nie R2: [HS=s] & [HO=b] nl !

SM{y{n{ y{n :_r{n yjelyiniyinlyjniyin|y|n

| BS Y 5 0

Fig. 2. The target concept and initial training examples in the ROBOTS domain.

The descriptions jearned by the methods were compared in terms of the exact error rate. Exact
error rate is the ratio between exact error and the size of event space. It is measured as a function
of the number of training examples. Exact error is defined as the total number of errors of
omission and errors of commission, or equivalently the cardinality of the set-difference between
the union and the intersection of the target and learned concepts.

: Exact_error
Exact_error_rate= £ (7)

# Event _ space

where  Exact_error =#[(T\ LYO(L\T)|=#[(Tu L)\ (T n L)}
where (T\ L) — error of omission, (L \ T)}— error of commission
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C. Relationship between
target & learned concepts

A. Target concept B. Learned concept

Errors of
omission

Correctly
leamed part
of the concept

Errors of
{ commission

Fig. 3. An illustration of a target concept, learned concept and their interrelationship.

There are many ways to define error rates in order to characterize learning capabilities of a
system. Here are three assumptions related to the equation (7). Firstly, for simplicity, we do not
make any distinction between errors of omission and errors of commission, which may be
important in some real-world domains. Secondly, the egunation (7) indicates that if the event
space were large and the target concept were relatively small, then the etror rate would always be
small, and thus, not sensitive to learning errors. Fig. 4 illustrates two cases where the equation
(7) would give the same error rate for different learning results. In the first case (Fig. 4A), a
system did not learn any part of the target concept and still maintained 2% error raie, or in other
words, it was 98% accurate! Since the correct performance of a system is artificially increased by
the system's performance on non-examples of a concept, the ermor estimating method is
subjected 10 the Hempel's paradox (Hempel, 1965; Kodratoff, 1992).

In the second case (Fig. 4B), where the target concept occupies relatively large portion of the
event space, the 2% error rate intuitively reflects the true performance of a system. In our
experiments the representation space is small and the target concepts cover approximately 30%.

The third assumption related to equation (7) is that in order to get complete insight into the
performance of the tesied methods we used all examples from the event space to test the
performance. In other studies, training examples might have been exciuded from the testing

phase.
4.2 Steps in Learning Concept C1

The rule learned by AQ17-HCI was exactly equivalent to the target concept (Fig. 5A). It was
generated in a transformed, smaller description space. Fig. 6 shows the steps in learning concept
C1 by AQ17-HCL. The input to the method is 2 set of training examples in the original
representation space as shown in the diagram A.
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A. Target concept A — 'small-size concept’ B. Target concept B — *large-size concept”
i I:'I L i_ it L_L L

A’ Concept A is not leamed at all: B'. Large portion of concapt B is learned:
Exact_eror._rate = (2%) Exact_error_rate = {2%)

N | k-4

X 1 | K
1 ]

I 4] Comectly leamed concep!

Fig. 4. The dependence of the error rate definition on the relative size of the target concept.

‘The method divides the training set into primary and secondary examples and employs the AQ15
learning algorithm to induce rules from the primary set of training examples (diagram B). Since
the performance test on the secondary training set is not satisfactory, the representation space is
reduced to contain relevant attributes only, i.e., those attributes that are present or significant in
the induced hypothesis. The method changed the ROBOTS original represeutation space by
removing three irrelevant attributes: Body Shape, SMiling, and Tle (diagram C). The new
representation space implied changes in the event space so the number of training examples was
decreased by 1. This is due to the fact that two positive exampies, E1 and E2, from the original
event space have the same description in the new event space.

El: (round, round, yes, sword, red, no) E2: {round, square, yes, sword, red, yes)
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Although such an abstracted problem is simpler for learning, the resulting hypothesis is still
not accuraie {(Jiagram D). At this point, the training data set seems to be insufficient to allow
proper learningz, The lacking information can however, be induced while taking into
consideration both positive and megative hypotheses. Fig. 5, diagrams D and E show two
covers, COVums (E+/E-) and COVmg (E'/E*), that were generated using all the initial training
éxamples. AQ17-HCI generalized the positive concept description against the negative coucept,
and by this means improveqd the learned concept. The concept C1 was learned precisely (Fig. 5,

5 Case Study II: Representation Space Contraction and Expansion

To illustrate the use of the mleset attributes described in Section 3.9, let us describe an
experiment on leaming a form of the multiplexer function with 3 binary inputs and 8 binary
outputs: the multiplexer-11 (MX11) problem (Wilson, 1987). The function "switches on" an
output {data) line addressed by the input (address) lines. The remaining output lines are irrelevant
for the given address. '

MX11 AE" |HEREEN f.%-ﬁ—’ df
EC uad g LK
3% 5 310 1
o :’:ﬁ ; a
.,....g i :
BO%mmX ﬂ;_ ~ 1
Y %
A 3 !
e | Rl
% 3 i ki
£0EE2 Sl nmp
et e el
1% AN S !
q,_,...,# (L LY LT ™ 0 ﬂu
A EED - Lfesatasagat U4
e St D
ek ki e | X
T {HI {3 {4 Id{d {d {4 {d 14 {d 114 {d 11944141912 14a144d1d19tdy
d1nl0101G‘ll)lﬂ‘ln1ﬂ1n‘lu10_1.010101ﬂ1ﬂ1
gy O 1 ] 1 1} 1 o 1 0 1 Q 1 4] 1 Q 1
4] 1 1] 1 1] 1 [ 1] 1
1 Q 1 O 1
(1} 1
B (a0=0] & {a1=0] & [a2=0] & [0 1} Ef [a0=1] & [a1=0] & [a2=0] & {dd=1]}
[a0=0] & [a1=0] & [a2=1] & [d1=1] .= [ [a0=1] & [a1=0} & [a2=1] & [d5=1]
B [a0=0] & [a1=1] & [a2=0] & [d2~1] [a0=1] & [a1=1] & {a2=0] & [d6=1]
B8 [20=0] & [a1=1] & [a2=1] & [d3=1] [a0=1} & [a1=1] & [a2=1] & [d7=1]

Flg. 6. Target concept MX11 in the original representation space.
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The address lines are represented by a0, al, a2 binary attributes, and the data lines are represented
by d0-d7 binary attributes. For example, the result of MX11 function on [a0=0] {al=1] {a2=1] is
[d0=#] [d1=#)] [d2=#] [d3=1] [dd=#] [d5=#] {d6=4#] [d7=#], where "#" represents "0" or "1". An
instance described by [a0=0] [al=1] [a2=1] [d0=#] [d1=#] [d2=#] (d3=1] [d4=H#] [d5=H] [dO=H]
[d7=#] is a positive example of the MX11 concept. Fig. 6 presents the MX11 concept
graphically, using the diagrammatic visualization method, The MX11 concept is described by
eight rules listed at the bottom of the figure. For easy recognition, each rule in the diagram is
shaded differently. The MX11 function has the value of the data bit indexed by the address bits.
In the experiment, the input examples were encoded in terms of 11 binary attributes. Thus, the
representation space contains 2048 clements. The training set had 64 (6%) of the positive
examples and 64 (6%) of the negative examples. Table 3 shows a sample of the positive and the
negative examples, From these examples, the Rule Leamning module produced disjoint and
maximally characteristic hypotheses of the correct (Pos-Class) and incorrect (Neg-Class)
behavior of the multiplexer.

Table 3. Part of the set of training examples.

Positive examples "Negative examples

20_at a2 40 d1 42 d3 d4 .d3 46 d7 a0 _al a2 d0 di d2 43 d4 45 46 d7
¢ 01 01 00COCGCOCO 0901 00111110
¢ 10 DO 1O 0001 01 0 00060 0001
o1t o0 11111110 ¢c1 0 110111140
101 00 0011 01 101 00 060 06 00
110 00 001111 110 00 00 10 0°C0

- R

Table 4. Disjoint characteristic descriptions of MX11 concept induced by AQ15 from the training

examples.

Pos-Class if

1. (a0=1) & (al=1) & (a2<0) & (d6=1) or {11, wil)
2, (aD=0) & (a1=0) & (a2=1) & (di=1) or (t11, wlil)
3, (al=1) & {al1=0) & (a2=1) & (I5=1)or (10, wil}
4. (a0=1) & (al=1} & (a2=1) & {d7=1} or {10, w:10)
5. {a0=1) & (21=0) & (a2=0) & {d4=1}or (9, w9
6. (a0=0) & {al=1) & (a2=1) & (d2-0} & (d3=1) & (d7=1)or (14, w3
7. (a0=0) & (al=1) & (d2=1) & (43=1) & (d4=0) & (d7=0) or {3, u:3)
8. {aD=0) & (a1=0) & (a2=0) & {(d0=1) & (d1=0) & {d2=1) & (d3=]) & (d5=l) or 2, w)
9. (a0=0) & {(a1=1) & (a2=1) & {d1=1) & {d3=1) & (d5=0) & (d6=0) or (2, u:1)
10.(20=0) & (al=1) & {a2=1) & (d0=1) & {d1=0) & {d2=0) & (d3=1) & (d4=]) &(d5=1) & (db=1) & (d7=0) {1, a1}
11.(a0=0} & (al=1) & (820} & (d0=0) & {d1=0) & (d2=1) & (d3=0) & (d¥b==1) &(d5=1) & (d6=0) & (d7=D) {1, ul)
12.(a0=0) & {al=l) & (a2=0) & {d0=1) & {d1=1) & (d2=1) & (d3=0) & (d4=]) &(d5=0} & (d6=1) & (d7=1) (t1, wl)
Neg-Class if

1. (90=)) & {al=!) & (a2=1) & (d7=0) or 13, vl
2. {a0=0) & (a2=0) & (d2=0) or (12, wiz)
3. (a0=0) & (al=0) & (a2=1) & (d1=0) or {10, w10}
4. (al=0) & (a2=0) & (d1=I) & {d4=0) or {t:9, w9)
5. (a0=1} & (al=1) & (22=0) & (d6=0) or &7, wh
§. {a0=l} & (8l=0) & (a2=1) & (d5=0}) or (5, u:s)
T, (30=0) & (al=1} & (a2=1) & {d3=0) & (d7=1) or (&5, u:5)
3. (20=0) & (al=0) & (a2=0) & (40=0) & (d1=1) & (d2=1) & (d3=0) & {d6=0) & {d7=1) or {2, w:2)
9. {a0-0) & {ai=0) & (a2=0) & (d0=0) & (d1=1) & (d2=1) & (d3=0) & (d4=D) & (45=0) & (d6=1) & (d7=D) (t:1u:1)
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Fig. 7 presents an AQ1S learned concept in the context of the target concept. The total number
of errors measured over the whole representation space is 299, which gives a 15% total error
rate. (The total error rate for overlapping covers is 20%). The classification rules are shown in
Table 4. Pos-Class and Neg-Class are hypotheses in the k-DNF form. Each rule in the
hypotheses is accompanied with 7 and u weights that represent total and unique numbers of
training examples covered by a rule.
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Errors of omission 299
7 Total numbar of errors 299 {Total ertror rate = 15%)
Note: There are no errors of commission

Fig. 7. AQ15-learned concept in the original representation space and its relationship to the MX11
target concept.

From the hypotheses presented in Table 4, the admissible rulesets were selected to constitute the
candidate attributes P1 and N2 (Table 5). Table 6 shows the definition of the new attributes and
Fig. 8 shows the coverage of the instance space done by the new aitributes.
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Table 5. The admissible rulesets selected according to formula (4).

Pos-Class

1. (@=1)& @i=l}&{(a2-0) & {do=1)
2. {(20=0) & (a1=0) & (a2=1) & (d1=1)
1, (=1} & (al=0) & (a2=1) & (d5=1)
4. (x0=1)& (pi=1) & (a2=1} & (d7=1)
5. (a0=1) & (a1=0) & (a2=0) & (dde=1)

KE s/ (Ss)} =126 /191 =0.66 < TH
= si)!(Zsj]] = 1537191 = 080> TH

(5:33)
(8:33}
{8:30)
(s:30)
(s:217)

{i:=rl..4)
{i=1..5)

Neg-Class

1. %50=1 ) & (al=1) & (a2=1) & (d7=0)
(20=0) & (a2=0) & {d2=0)

(a0=0) & {21=0} & (a2=1) & (di=D)
(al=0} & (R2=0) & (d1=1) & (d4=0)

-h-u!ﬁl

[T}/ (Es)] =105/192 =055 <TH
= si]HEsj)] =132/192=0.69>TH

Table 6. The definition of the constructed attributes P1 and N2.

Pl =1 1f
1. (@0=1) & (al=1) & (a2=0) & {d6=1)
2. (a0=0) & (al=D) & {a2=1) & (dl=])
3, {al=1) & (al=0) & {a2=1) & (d5=1)
4, (a=1)& Gl=1)& (22=1) & (d7=1)
5. (a0=]) & {al=-0) & (a2=0) & (d4=1)

P1 = 0 otherwise

ar
or
or
or

P1=0

Nl=11If

1. (a0=1) & (al=1) & (a2=1) & (d7=0)
2. (a0=0) & (x2-0) & (d2=«l))

3. (a0=0) & (al=0) & (a2=1} & (d1=0)
4. (ml=0) & (02=0) & {d1=1) & (d4=0)

N2 = 0 otherwise

(s:39)
{2:36)
(5:30)
(s:27)

(i=1..3)
{i=1.4)

888§

Fig. 9. Images of the constructed attributes P1 and N2

Ouce the new attributes are created, they are used to reformulate the training examples (Table 7).
For each training example the new P1 and N2 attribute values are added. Note that, if the new
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attribute originated in the given class then it mostly has value "1" assigned. After examples are
reformulated, the whole inductive process is repeated. Table 8 presents the newly inducted rules.

Table 7. A part of the reformulated training set.

Positive examples Negative examples
a0al a2 40 d1 42 d3 d4 G5 d6 d7 Pl N2 aQ.al a2 dO di d2 d3 44 .45 46 d7 Pl N2

00 1 01 0O OOCOO0OTUOT1 O ¢ 01 ¢ 111110 01
01 00 01 00 GO 10 0 010 00 GO0 O0O0CO0OCI1 01
1 01 111111000 010 116111 10¢ 01
1010 006 ¢ 119011 ﬂ 1 ¢ 1.00 006 006 @0 009D
11T 00 00 ¢1 11110 1 10 00 0O0C1099O0 020
Table 8. Decision rules with the constructed attributes.
Pos-Class I :
1. (Pi=l) or (51, u:51)
2., {a0=0) & (d3=1) & (P1=0) & (N2=0) ox (11, uil)
3, (a0=0) & (al=1) & (a2=0) & (d3=0) & (P1=0) & (N2=D0) 2. w3)
Neg-Class {f
1. (Ni=zl) or (44, w4d)
2. (a0=1) & (P1=0) & (N2=0) or (12, u:ll}
3, @0 & (alxl) & (a2=1) & (d3=0) & (P1=0) & (N2=0) or {5, ws
4. (a0=0) & (al=0) & (22=0) & (d0=0)} & (d3=0) & (Pi=0} & (NZ2=D) {t3, w3)

As expected, the new aitributes were used in the output hypotheses in both Pos and Neg classes,
replacing some of the initially given attributes. We can observe that large portions of traiping
examples were covered by the rules (P1=1) in the Pos-Class, and (N2=1) in the Neg-Class. Fig.
9 summarizes the new learning task in the changed representation space. The new space consists
of 7 binary attributes; 5 primary attributes and 2 constructed attributes. A characieristic feature
of this representation space are impossible instances, ie., instances that do not have equivalent
descriptions in the original space. For example, instances described by the rule ((P1=1) &
(N2=1)) are impossible. This is directly related to the definitions of P1 and N2 and the fact that
these attributes were constructed from two disjoint rulesets. This is also in agreement with the
intuition that there should not be any instances that conform to both the "Positive” and

"Negative" concept descriptions represented by P1 and N2.

The MX11 target concept image is shown in Fig. 9A after mapping into the new representation
space. For easy identification, areas that comrespond to those in Fig. 6 are marked with the same
pattern. Fig. 9B shows all instances of the MX11 concept mapped into the new space. One cell
in the new space represents 32 or 64 original examples depending on the rule describing the new
cell. Fig. 9C shows the training examples in the new space. Fig. 9D shows the final concept
Jearned. The leamed concept still does not cover exactly the target concept (3 errors of omission
and 1 error of commission) but it gives improved prediction accuracy. The learning could be
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further improved if the generalization were prohibited over impossible areas. Instead of
producing the rule (0=0) & (d3=1) & (P1=0) & (N2=0) to cover the four positive examples listed below,
the system would be forced to generate a more specific rule.

1. (a0=0) & (al=1) & (a2=1) & (d0=0) & (d3=1) & (P1=0) & (N2=0)
2. (a0=0) & (al=1) & (a2=1}) & {d0=1) & (d3=1) & (P1=0) & (N2=D)
3. (a0=0) & (al=1) & (a2=0) & {d0=0) & (d3=1) & (P1=D) & (N2=0)
4. (a0=0) & (al=0) & (a2=0) & (d0=1) & (d3=1) & (P1=0) & (N2=0)

A. Target concept mapped into the new space aaatg B. Distribution of ail instances in the new space
g o a2 ales) {122 EEE
] 1 . uﬁ a2 “'| . >4 2 s ud 32"31‘32*'
31 0] 32" aafes 2| a2 mJaz*az
cal ]! 32%f \az}ed 2z x 32 2| 2232122
D 32" |32 a2 a2
e
19 ; 2% s2 a2 32
10 az"|32 32 a2
3} ! az*|a2 a2 a2
E.L_o_l_i__gii pt1{olsjoljolsfol qloly ol vol1lolslefilol1]ot1fol 1ol
1] © 1 0 1 ¢ 1 0 1 0 1 0 1 0 1 0 1 jay
a0 a 1 0 1 0 1 o 1 o
1 0 1 0 1 P1
W ENY 2%l 1% 741 0] 5
eloivicid > Fvl i U | I N 9
P afA | TR AN i h* z"‘-_ﬂ‘
& Pl 1 i o e Eulk
e
11213 2 2 o
= nki
S LWLt £l ] 1 4
- L] L] L 0
BERE] 4 M
it o 2 1
C. Training exampies mapped into the new spaca a9 N

3 D. Concept learned in the new space

£ (¢) Number of positiva (negativa)
examples mapped into a call

B impossible instance

+a Targst concept ﬂ Ermors of omission 3
&8 Enors of commission 1
22 Total number of errors 4

Fig. 9. Steps in leaming the concept MX11 in the changed mpresentaﬁoﬁ space.

The rule does not produce a commission error. The only remaining uncovered example (4) could
be generalized to form the rule: (20=0) & (a1=0) & (a2=0) & (d0=1) & (Pi=0), and therefore eliminate the
three omission errors. Ongoing research is investigating ways of improving induction in spaces
with impossible instances. Another important issue that needs further research involves the
utilization of information about the numbers of original examples mapped into new examples.
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The final hypothesis produced by AQ17-HCI was tested against the testing set. The result was

04% accuracy {compared with 85% accuracy from rules generated by AQ15 without constructive
induction). Fig. 10 shows the final concept image learned by AQ17-HCI in the original
representation space. Compare this figure with Figs 6 and 7. -
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Fig. 10. AQ17-HCI-learned concept projected into the original representation space and its
relationship o the MX11 target concept,

6 Experiments with the AQ-HCI method

6.1 Comparing AQ-HCI with Symbeolic Methods

A major measure of the performance of a learning system is the prediction accuracy of the
learned concepts on the testing examples. The prediction accuracy is a ratio between the number
of correctly classified examples from the testing data set and the cardinality of this sct. For the
sake of comparison with results published previously, we also use the complementary measure
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of error rate. Error rate is a ratio between the number of incorrectly classified examples froin the
testing data set and the cardinality of this set. Al experiments were run ten Umes over randomly
generaled data and the results were averaged. |

The goal of our experiments was to test bow well the AQ-HCI method does according to
prediction accuracy criterion, and how well it compares to other methods, The following
systems were compared: 4 system implementing the method for generating attributes from rule-
patterns, AQ17-HCY; a standard decision rule system, AQ15 (Michalski et al., 1986); two
decision lists systems, GREEDY?3 and GROVE (Pagailo & Haussler, 1990); and two decision
tree systems, one, based on hypothesis-driven constructive induction, FRINGE, and second,
basect on the standard ID3, REDWOOD (Pagallo & Haussler, 1990).

6.1.1 Experimental Domains

The domains for testing AQ17-HCI and comparison with other methods were four discrete
functions: C1 (DNF3), C2 (DNF4), C3 (MX11), and C4 (PARS). These functions were used by
Pagallo & Haussler (1989, 1990) to test several learning methods, specifically REDWOOD,
FRINGE, GREEDY3 and GROVE. In this study, we applied AQ17-HCI and AQ15 and
compared results with those reported by Pagallo & Haussler (1989, 1990).

Table 9 provides a characterization of the test domains. The number of training examples was
calculated according to the following formula (Pagallo & Haussler, 1990):

K *log,(N)

£
where N is the number of attributes, K is the number of conditions in the smallest DNF
description of the target concept, ¢ is the maximum error rate of the learned description. The
number of conditions in the smallest DNF description of the target concept is the product of the

number of rules in the description and the average number of conditions in a rule. In the
experiments e is set to (.10,

The testing set consists of 2000 examples {different from training examples). The training and
testing sets are very small in relation to the size of the representation space, For example, in the
representation space with 32 binary attributes, there are 232 - 1 i.e., about 4.3 x 1(°, possible
descriptions of examples. Following Table 9 are the descriptions of the target concepts C1-C4.

Table 9. A characterization of experimental domains.

Target No. of | No. of | No. | Average mo. of| No. of | No. of
concept }attributes| redundant of | conditions in a| training i testing
L attributes| rules rule ex. ex.
Cl1 (DNF3) 32 12 6 5.5 1650 2000
C2 (DNF4) 64 33 10 4.1 2640 2000
C3 (MX11) 32 21 8 4.0 1600 2000
€4 (PARS) i 32 27 16 5.0 4000 2000 |
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C1 The DNF3 function defined by rules:

x1 x2 x6x8 x25x28 —x29 =l -2 —x10 x14 —x21 —x24 =>C1
x2 x9 x14 x16 -x22x25 =1 x11 x17 x19 x21 —x25 => 1
x] —x4 —x19 —x22.x27x28 = Ci —ix1 x4 x13 ~x25 =» C1

Atributes {x3 x5 x7 x12 x15 x18 x20 x23 x26 x30 x31 x32} are irrelevant, i.e. have random
values for each example.

C2 The DNF4 function defined by rules:

x1 x4 x13 x57 —x59 => C2 x18 —-x22 —x24 =» C2
x30 —x46 x48 —x58 => 2 —x9 x12 —x38 x55 => 2
~x5 x20 —x48 => 2 x23 x33 x40 x52 => 2
X4 —x26 —x38 —X52 =» 2 x5 x11 x36 —x55 =» C2
X6 —x9 —x10 x39 —x46 => C2 x3 x4 x21 —x37 —x57 => 2

Attributes {x2 x7 x8 x14 x15 x16 x17 x19 x20 x25 x27 x28 x31 x32 x34 x35 x41 x42 x43
x44 x45 x47 x49 x50 x51 x53 x54 x56 x60 x61 x62 x63 x64} are viewed as irrelevant,

C3 The C3 function is based on multiplexer-11 function (Wilson, 1987).

—x] —x2 -x3 x4 => 3 —x1 —x2 x3 x5 =>C3
—-x1 x2 =x3 x6 = C3 —x1 x2 x3 x7 =3
x1 —x2 —x3 x8 =»C3 xl ~x2 x3 x9 => C3
x1 x2 —x3 x10 => (3 x1 x2 x3 x11 => C3

Attributes {x12 .. x32} are viewed as irrelevant.

C4 Parity-5 function with irrelevant attributes.

The function has value true on an observation if an even number of relevant attributes {x1..x5}
are present, otberwise it has the value false.

—iX] —Xx2 —%x3 —x4 —x5 => C4 —x1 x2 x3 —x4 —x5 => C4
—x] —x2 —x3 x4 x5 => C4 x1 —x2 x3 -x4 x5 =>4
—x1 ~x2 x3 —x4 x5 => C4 x1 x2 —=x3 —x4 —x5 =>4
—x1 x2 —x3 —x4 x5 = C4 ~x1 x2 x3 x4 x5 =>4
x] —x2 —x3 —x4 x5 => C4 x] —x2 x3 x4 x5 => 4
—%1 —x2 x3 x4 x5 =>4 x1 x2 —x3 x4 x5 =>C4
—x] x2 -x3 x4 x5 => C4 x1 x2 x3 —x4 x5 => C4
x1 —x2 —x3 x4 —x5 - =C4 x1 x2 x3 x4 —x5 => C4

Attributes {x6 .. x32} are viewed as irrelevant.
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6.1.2 Comparing AQ17-HCI with the Induction System AQIS5

This section compares the performance of the AQ17-HCI and AQ15 systems on concepts Cl-
C4 on various sets of experimental data. The rules generated by both systems were tested using
the ATEST procedure (Reinke, 1984). ATEST views rules as expressions which, when applied
to a vector of attribute values, evaluate to a real number. This number is called the degree of
consonance between the rule and an instance of a concept.

The method for arriving at the degree of consonance varies with the settings of the various
ATEST parameters. Rule testing is summarized by grouping the resuits of testing all the
instances of a single class. This is done by establishing equivalence classes among the rules that
were tested on those instances. Each equivalence class (called a rank) contains rules whose
degrees of consonance were within a specified tolerance (t) of the highest degree of consonance
for that rank. When ATEST summarizes the results it reports the percentage of first rank

decisions (flexible match) (1=0.02) as well as the percentage of only choice decisions (100%
match) (=0).

Concepts C1-C4 were learned and tested using data sets characterized in Table 9. The summary
of the results obtained in ten executions of both systems for each concept learned, is presented
in Table 10.

The AQ17-HCI system was able to correctly leam all concepts. The 100% match between the
learned concept descriptions and the testing examples shows that all concepts were learned
precisely. The AQI5 system did not learn exact descriptions of concepts C1, C2, and C4,
however, it was able to recognize them using the flexible matching procedure. The resuits

reported in the "Flexible match” columns are compared with resunlts from other methods in
Tabie 10.

Table 10. The experimental results for different problems.

T Average Error Rate )
Target ™ - - - -
concept AQls AQ17-HCI
Flexible match| 100% match |Flexible match] 100% match
C1 0.3% 1.5% 0.0% 0.0%
C2 0.2% 11.5% 0.0% 0.0%
C3 0.0% 0.0% 0.0% 0.0%
C4 1.6% 138% 0.0% 0.0%
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Table 11 presents resulis from leaming concept C2 using varying numbers of examples in the
training set. From the table, it is easy to estimate the number of examples required by a system
to achieve a desired prediction accuracy. The table shows that the HCI method requires a
significantly smaller training set to precisely learn the C2 problem. These results are due to
better descriplors used in expressing learned concepts both in the leaming phase (relations
already discovered and stored under new atiributes make it possible for a deeper search for
dependencies among training data), and the testing phase (the match between an example and a
more concise rule results in a higher degree of consonance). The results from this table were
combined with results from other methods and presented in Fig. 12.

Both systems, AQ15 and AQ17-HCI, generate a complete and consistent set of rules from the
input examples. Since HCI involves attributes constructed from AQ15 rules, a question arises:
why does AQ17-HCI produce higher accuracy on testing examples? The answer seems to lie in
the AQ1S method of generalizing examples. The extend-against generalization operator
(Michalski, 1983) considers attributes one at a time*. This can be an essential obstacle in
learning hard concepts in the context of a preliminary description of a learned problem (Rendell
& Seshu, 1990). Hard concepts are spread out all over the given hypotheses space and require
multiple covers.

Table 11. The resuits for different numbers of training examples in learning concept C2.

Average Error Rate in Learning Target Concept C2
No.of
training AQl15 AQ17-HCI
examples ifjexible Match| 100% match |Flexible Match| 100% match
330 296% | 482% 21.2% T 482%
660 71.7% 24.3% 2.4% 9.4%
13290 1.8% 16.4% 0.2% 43%
1980 08% | 13.6% 0.0% 0.0%
2640 0.2% 11.4% 0.0% 0.0%
3960 i} 0.2% 10.5% | 0.0% 0.0%

In order 10 merge those regions and to make the induction process simpier, a leaming algorithm
has to detect possible atiribute interactions, and construct new attributes that capture those
interactions. A closer look at AQ17-HCI shows that it does exactly this. By abstracting concept
descriptions, the method takes advantage of already detected attribute interactions and uses them

4 Ope way to address this problem can be a lookahead technique to detect interaction between
attributes, but this increases computational cost (Rendell & Seshu, 1990).
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in converting a hard problem to an easier one by just enlarging the initial attribute set. Since
new attributes combine interacting attributes, the systematic transformations in a hypotheses
space support the extend-against operator in finding more accurate and effective hypotheses.

6.1.3 Empirica!l Comparison of AQ-HCI with Other Methods

Fig. 11 and Table 12 summarize the results obtained in ten executions of all tested algorithins.
The results for the REDWOOD, FRINGE, GREEDY?3, and GROVE algorithms come from
(Pagallo & Haussler, 1989, 1990).

Fig. 11 shows the learning curves for the concept C2. The curves were obtained by measuring
and averaging prediction accuracy over ten experiments. The measure points were at 330, 660,
1320, 1980, 2640, and 3960 training examples. Four systems, AQ15, FRINGE, GREEDY3,
and AQ17-HCI obtain 100% performance accuracy when supplied with 2640 training examples.
However, convergence to 100% is fastest in the case of AQ17-HCI. The exact results for 2640
examples are given in the row describing concept C2 in Table 12.

Prediction

Accurac
A Y aat7He FRINGE & GREEDY3
100% —

N% —

80% —

REDWOOD

70% —

so%l e m— 117"

|
1320 1980 2640 3960
Number of Training Examples

i R
330 660

Flg. 11. Learning curves for the concept C2 for different systems.
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Table 12 shows the results obtained from testing concepts C1-C4 (Table 9). AQ17-HCI with
bypothesis-driven constructive induction capabilities has completely learned all the target
concepts. REDWOOD and GROVE did not leam any concept with 100% accuracy. FRINGE
and GREEDY?3 learned three concepts but failed to learn the PARS concept. It is worth noting
that the standard decision rule system AQ1S5 (without constructive induction) leamed all the
CONCEPIS, |

The results shown in Table 12 suggest that all problems were difficult for the decision tree
algorithm implemented in REDWOOD. The reascn is that the decision tree structure does not
capture interactions between attributes: Only FRINGE which places conjunctions of initial
attributes in the nodes of the decision tree, thus acting more like AQ15, was able to partially
overcome these difficulties. The AQ13 algorithm was able to find almost perfect solutions. This
suggests that the structure of this algorithm supports solving these kinds of problems.

Table 12. Experimental results for testing descriptions of concepts C1-C4 learned by different
systems.

| Average Error Rate r
comen:|Decision TREES () | Decision LISTS (%) | Decision RULES (1
REDWOOD| FRINGE |GREEDY3 | GROVE | AQ15_[aoQ17-HCY
c1 7.4% 0.3% 0.6% 14% | 03% 0.0%
c2 249% | 00% 0.0% 78% | 02% 0.0%
c3 13.1% 0.0% 0.5% 39% | 0.0% 0.0%
Cd | 365% 22.1% 45.8% 41.3% 1.6% 0.0%

{*) from {(Pagallo & Haussler, 1989, 1990), (1) flexible match. Concepts C1, C2, C3, C4 were learned

from 1650, 2640, 1600, and 4000 examples, respectively. All concepts were tested on 2000 testing
examples. -

Finaily, Table 13 gives a qualitative comparison of AQ17-HCI with FRINGE. The two
systems are compared using the following criteria: representational capabilities (1-2),
achievement of constructive induction goals (3), and the overall capabilities (4-7).
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Table 13. Qualitative comparison of AQ17-HCI with FRINGE.

AQ17-HCI FRINGE
1. Represeniational formalism ,
g e VYector of bin
: ! o
INPUT: descriptions of examples VL1 attribute values
Background knowledge VL1 Not available
| ourpUT: concep! description VL1 Decision tree
Constructed attributes VL1

Conjunctive expression

2. Operators used 1o construct new
altributes

VYalue-patterns, e.g.
(x1=1, 5..10, 15)

Condition-patterns.e.g.

(x1=1) & (x2=5) &
(x5=4)

Rule-patterns, e.g.
[(x1=1) & (x2=5)} or
[(x3=0) & (x5=7)] or
[(x4=28)]

Binary conjunction,
e.g. (xi=1) & (x2=0)

3. Constructive induction goal:

could not learn :

- improvement of prediction accuracy YES YES

- reduction of description compiexisy The number of rules is | The tree is smaller but
reduced but constructed | nodes may contain
attributes can be I complex conjunctive
complex expressions

4. Facilitating the learning process with | YES I NO

|_information about impossible areas

5. Multiconcept learning YES [m ]

6. Concepts learned that the underlying MONK2 problem

selective induction learning algorithm PARS (parity 5)

Improvement in
prediction accuracy in
learning DNF-type
concepts

Improvement in
prediction accuracy in
learning DNF-type |
concepts

7. Tested concepts that could not be
leamed

None

PARS
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6.2 Testing AQ17-MCI on MONK's Problems

This section reports results from a performance comparison of AQ17-HCI with a large number
of machine learning algorithis on the so-called MONK's problems. The problems were so
called becanse they were introduced at the Priory Corsendonk in Belgium (a former monastery
turned to a conference center), where an International Summer School oo Machine Learning was
beld in 1991 (Thrun et al., 1991). During the School, there were many discussions on the
merits and demerits of different machine leaming approaches. To help to resolve the disputes,
Tom Mitchell (CMU) and Sebastian Thrun (GDM) suggested three problems and asked various
research teams in the US and Europe to apply their leamning programs to them. A large number
of machine learning programs were tested on these problems.

The MONK's problems represent three different types of leaming problems. The first problem,
M1, is to learn a concept description that can be formulated as a simple DNF expression (a
Disjunctive Normal Form}. This is a "DNF-type" problem. Because symbolic methods work
well on such problems, the M1 problem can be viewed as favoring symbolic leaming methods.
Problem M2 is to learn an "m-of-n" description (if m out of n features occur in an object, then
the object is an instance of the concept). This is a "non-DNF-type" problem, because describing
such a concept in the form of a DNF expression would yield a very long expression. This
problem favors neural-net learning, because it is easy to express the target description in an
artificial neural net. Problem M3 is a DNF-type problem, like M1, but the learning data set
contains noise (3%). An expectation was that a neural net might perform bester on such a
problem, as neural nets are claimed to be more noise-resistant than symbolic methods. |

Below is a more detailed characterization of each MONK's problem. It should be noted that in
the original formulation of the problems (Thrun et al,, 1991), attributes represented
characteristics of imaginary robot figures. We changed them here to abstract attributes, x;,

becanse the nature of the attributes is irrelevant to the methods described.

Problem M1. The target concept (uoknown to the learning program) can be simply
characterized by a VL1 (variable-valued logic one) expression (Michalski, 1975):

[xs = 1] v [x4 = x5} = Mi

which can be interpreted: “If for an unknown entity, the attribute x7 iakes value 1, or the
attributes x4 and x§ take the same value (no matier which one), then—regardless of the values
of other attributes—classify the entity as an instance of the concept M1.”

The set of training events contained 124 training examples (62 positive and 62 negative), which
constituted 30% of the total event space (432 events). Fach exampie was described in terms of
six multivalued attributes. The set of testing examples included all possible examples (216
positive and 216 negative). Thus, the accuracies of the learned descriptions (Table 14) were
absolute, not estimates.

This problem represents a simple DNF concept, which is visualized in Fig. 12. The diagram in
Fig. 12 consists of small cells, each representing one possible example (a vector of attribute
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values). To read-out the values of attributes x1, x2...., xg, for any example, use the scales at the
bottom and the right of the diagram (numbers assigned to different intervals represent possible
values of the associated attributes). The dack area in the figure represents the target concept (the
coucept 10 be learned), and the white area represents the concept's negation (the set of all
possible counterexamples). Cells marked by “+* and “-* cormrespond to positive and negative
concept examples, respectively.

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2

Flg. 12. The target concept and training examples in the first MONK's probleni(MI).

Problem M2. The target concept can be characterized by a sentence;

"If exactly two of six given attributes take thelr first value for the given entity,
then classify the entity as an instance of the class M2."

It is not important which two of the six attributes take their first value, but it is important that
two and only two atiributes take such value. The “first value” means that the value sets of the
attributes are totally ordered sets, and the first element in the set represents the first value, This
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concept does not bave a simple DINF representation, and therefore poses a serious problem for
typical symbolic learning methods. In the AQ17-DCI program (listed in Table 14), which
performs a daia-driven constructive induction, this description can be expressed as a special case
of a general “counting” condition: [#Attrs(S, Rel, Value) = R} which states that the
number of attributes in the set S that are in relation Rel (=, #, <, >) to value v should be one of
the values stated in the set R {(in this case, S is the set of all initial attributes, Rel is “=*, v is
1, and R consists of just one element, namely 2). This general condition is part of the
program’s concept description language, similarly as a sigmoid or threshold logic
transformation is a part of the language of artificial neural nets.

The training set consisted of 169 examples (105 positive and 64 negative), which represented
40% of the total event space. The testing examples were all possible examples (190 positive
and 242=egative). Fig. 13 presents a diagrammatic visualization of the target concept and the
training examples for the problem M2,

|
1t
|-ﬁ-—-
!
1!

Fig. 13, The target concept and training examples in the second MONK's problem (M2).
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Problera M3. In this problem, the goal concept can be expressed in VL1 as:
[x2 #43] & (Ix5=1v2] v [x1 =11 &[x2=3] == M3

which can be interpreted: to classify an entity to M3, one of two conjunctive conditions must
be satisfied: x2 should take value different than 4 and x5 should take value 1 or 2, or x1 should
take value 1 and x2 should take value 3.

The purpose for introducing this problem was to test learning programs’ ability to leamm from
noisy data, that is, from examples that contain errors. There were 122 training examples (62
positive and 60 negative), which represented 30% of the total event space. The testing examples
were the set of all possible examples (204 positive and 228 negative). Noise was randomly
inserted into the training example set so that 5% of the training examples were misclassified.

Fig. 13 gives a diagrammatic visualization of the target concept and training examples for this

problem. The five minuses in the darken area and one plus in the white area represent errors
introduced into the training examples. ' |

Fig. 14. The target concept and training examples in the third MONK's problem {M3).
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The tested learning systems fall into four categories:

 Neural Networks:  Backpropagation (McClelland & Rumelhart, 1988)

Cascade Correlation (Fahlman & Lebiere, 1990)

* Decision Trees 1D3 (Quinlan, 1986)

Assistant Professional (Cestnik, Kononenko & Bratko, 1987)

IDSR (Ihgoff, 1990)

IDL (Van de Velde, 1989)
IDSR-hat (Utgoft, 1990)
TDIDT (Quinlan, 1986)
PRISM (Cendrowska, 1988)

* Inductive Logic Programming (TLP):
mFOIL (Dzeroski, 1991)

» Decision Rules AQ14-NT (Pachowicz & Bala, 1991)
AQR, CN2 (Clark & Niblett, 1989)
AQ15 (Michalski et al., 1936)
AQ15-GA (Vafaie & De Jong, 1991)

AQ17-DCI (Bloedom & Michalski, 1991)
AQ17-FCLS (Zhang & Michalski, 1993)

AQ17-HCI (Wnek & Michalski, 1991)
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Table 14 shows the results from applying of these systems to the MONKS’ problems. The
results show that the AQ17-HCI bas learned all three concepts with 100% accuracy. While its
good performance on problems M1 and M2 is relatively easy to explain, it is rather surprising
that it performed so well on the M2 problem, which is non-DNF problem. The reason for the
surprise is that the program performs only logic-type transformations on the representations
space and does not have the concept of a “counting” condition in its linguistic repertoire (like
AQI17-DCI). This counting condition is here a property directly relevant to this problem and it
is not easy to express in logical terms. Thus, the program does not seem to be equipped for
solving such problems. It may be therefore interesting to see how it expressed the M2 concept.

The concept was expressed by a structure of the following rules:

M2<: [c4=01&[c7T=11& [cB=1]1& [c9=0]or
[2=01&c7=11&[c8=01& [c@=1]l0or
[6=01&[c7T=01&[B=1]& [cO=1]or
[cl=0]&[c3=0]1&[cS=1}& [c6=0] or
[Cl=11&[c3=01&[c5=01&cT=01& [c9=0] or

[Cl=0i& [c2=01 & [c3=1] & [c5=0)] & {c6=1]& [c9=0]

where, ¢1 - ¢ are constructed attributes defined as follows:

cl=D<:{x4=1)} (2=D<:[x5=1]
(cl=0) <:: [xd =2 v 3] (c2=0)<:: [x5=2v3]
cA=1<:{xl1=1] C=D<:[x2=1]
cA=0)<:[x1=2v3] 5=0<:[x2+#1]

SB=D<:[x3=1]
AB=0)<:[x3=0]
co=1<: [x6=1]
(c6=0) <: [x6 =0]
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(cT=D<:[c3=11&[c6=0)or{c3=0] & [c6H=1]
(cB=1D<:[c2=11&[c5=0]loric2=0] & {c5=1]
{(D=D<:lcl=11&[c4=0]or{cl=0] &{cd=1]

The first representation space change involved construction of the cl- ¢6 attributes from value-
patierns. These are binary attributes and can be considered intermediate concepts. The
introduction of these concepis contracted the representation space from 432 to 64 instances. The
second change in the represcatation was done due to the construction of the ¢7 - ¢9 intermediate
concepls on the basis on rule-patterns. These concepts have a very regular form. All consist of
two rules and involve only two attributes, e.8. ¢7 is defined by ¢3 and c¢6. The attribute values
in the second rule are always complementary to those in the first rule. Because of this, such a
form of the rule-pattern is called xor-rule-pattern. The attributes constructed from xor-rule-
patterns merged examples of the non-DNF concept into regions that were easy to describe using
DNF-type expressions (Wnek, 1993),

The detecticn of the xor-patterns in rules generated in the second iteration of the Jeaming process
was the key transformation that enabled the program to learn the M2 concept correctly. These
results demonstrate that the AQ-HCI method is very versatile and can produce good results even
for the problems that appear alien to symbolic methods,

7 Summary

This paper addressed issues of concept learning when the original representation space is of low
quality, that is problems of constructive induction. It reviewed various methods and approaches
to building constructive induction learning programs capable of a self-improvement of the
original space. A hypothesis-driven method for constructive induction, AQ-HCI was described in
detail and compared with several other methods. It was interesting to see that a relatively simple
mechanism for constructive induction employed in this method was able to significantly
improve the learming capabilities of the original AQ-type method.

The AQ-HCI method used the A9-type rule leaming procedure implemented in AQ15 program.
The basic idea of the HCI procedure employed in the system is to search for different types of
patierns in the generated hypotheses and use them as new attributes. Three types of patterns
were identified: value-patierns, condition-patterns, and rule-patterns. If no patterns are found,
then the method does not change the representation space and concept descriptions are learned in
the original representation space.

The system AQ17-HCI implemeating the method was shown to be very effective in improving
the performance accuracy in a wide range of both DNF-type, and as well as non-DNF-type
concepts. The fact that it works well on some non-DNF problems shows the importance of
constructive induction in an automated dcsxgn of knowledge representation spaces for machine
learning. One drawback to the method is that the overall complexity of the descriptions is
increased if the generated attributes are complex.
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Table 14. Summary of results for MONK’s problems.

{ PREDICTION ACCURACY
PARADIGM PROGRAM Al Lab DNF<ype | Non-DNF | DNFype
{no noise) (m-of-n) {nolse) 1
Neural Nets Backprepagation CMU 100% 100% 93%
Cascade Correlation [CMU 100% 100% 97%
Pecision Trees Assistant Professional{Slovenia I 100% -81% 160%
11D3 Germany 99% 68% 94%
1D3 (no windowlng) [Germany 83% 69% %%
IDSR Belglum I 82% 69% 95%
IDSR-hat Belglum 90% 66% —
iDL Belginm 97% 66% —_
TBIDT Belgium 76% 67% —
PRISM Switzerland 86% 3% 9%0%
Relatlon Learning | mFOIL Slovenia 100% 69% 100%
Decision Rules AQ14.NT GMU 100% T1% 100%
AQR Germany 6% 80% 87%
CN2 Germany 100% 65% 89%
AQI1S GMU 100% Ti% 84%
AQI5-GA GMU 100% 37% 100%
AQ17-DCI IGMU 100% 100% 7%
AQ17-FCLS GMU 100% 93% 7%
AQ17-HCI GMU - 100% 100% 1006%

Experiments were performed at the following laboratories: (CMU) School of Computer Science,
Camegie Mellon University, Pittsburgh, Pennsylvania, USA; (Slovenia) Al Laboratory, Josef
Stefan Institute, Ljubljana,; (Germany) Institute for Real-Time Computer Control Systems and
Robotics, and University of Karisrube, Karlsruhe; (Belglum) Artificial Intelligence Laboratory,
Vrije Universiteit Brussel, Brussels; (Switzerland) Al-Lab, Institute for Informatics, University of
Zurich; (GMU) Center for Astificial Intelligence, George Mason University, Fairfax, VA, USA

The presented methodology can be potentiaily applied not only with the A9-type rule learning
method but with other inductive leaming methods that use different knowledge representations,
such as VL2, annotated predicate calculus (APC; Michaiski, 1983), Hom-clauses, decision trees,
etc. To do so, one needs to ideutify types of pattemns in hypotheses that are appropriate for the
knowledge representation used, and develop a method for their evaluation and employment as
new attribuies or intermediate concepts. It is likely that employing the proposed HCI
methodology within any "non-constructive” inductive learning system will improve its
performance.,

In multiple concept learning, it might be desirable to find class-patterns that characterize rulesets
of different classes. Such patterns would represent conditions that are common for a subset of
classes, and distinguish this subset from other classes.
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The representation space transformations done by the presented hypothesis-driven constructive
induction method are easy 1o determine and easy to make. They are, however, limited by the
representation language used. Thus, they are more limited than those that in whichk a new
repertoire of atiributes that can be constructed by direct, data-driven methods. Such data-driven
methods require much more search, but can potentially perform any type of transformation that

can be described by a matbematical or logical expression. This suggests a new line of research
aimed at a synergistic integration of the two approaches.
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