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ABSTRACT 

LEARNING TO RECOONIZE VISUAL CONCEPTS: 
DEVELOPMENf AND IMPLEMENTATION OF A METIIOD 
FOR TEXTURE CONCEPTS ACQUISITION 
TIIROUGH INDUCTIVE LEARNING 

JERZY WOJCIECH BALA, Ph.D. 
George Mason University, May 1993 
Dissertation Director: Dr. Ryszard S. Michalski 

The goal of this research is to explore the application of symbolic learning methods 

to problems of computer vision. The research presented in this thesis has been concerned 

primarily with the development of methods for inductive learning of texture descriptions. 

Texture description learning is done in the following phases: (i) data pre-processing and 

attribute extraction, (ii) acquisition of texture concept descriptions, (iii) optimization of 

acquired descriptions, and (iv) recognition of unknown texture samples. The methodology 

adapted to the acquisition and recognition of complex vision data is based on an extension 

ofAQ [Michalski, 1986], a learning from-examples algorithm. This approach for inductive 

learning of texture descriptions was originally proposed by Michalski [1973] and was 

initially applied using ILL lAC III image recognition computer facilities. This research 

presents a novel extension to the initial approach, which is called Multilevel Logical 

Templates. The novelty lies in multilevel symbolic image transformations, new advanced 

concept description optimization methods for noise-tolerant learning, and a multistrategy 

approach to learning from vision data. An important contribution of the research is the 

experimental demonstration that symbolic inductive learning methods can be successfully 

applied to the domain of continuous attributes of low level vision in which non symbolic 

methods have been traditionally employed. 





Chapter 1 

1. Introduction 

Intelligent behavior is characterized by the ability to learn and to self-organize. 

Such abilities include self-creation of knowledge through experience, self~improvement 

of control through practice, discovery of new concepts and relationships through 

observation and analogy, and reorganization of knowledge to perform a given task better. 

Considering human or animal vision, it is clear that the ability to recognize and handle 

visual objects to a large extent is accomplished through learning. and only partially by 

genetic pre-programming. Thus, we should be aware of the need for learning in 

enhancing computational vision capabilities. However, relatively little effort has gone into 

actually using learning in vision and much of past learning in vision was restricted to 

statistical methods. Only until recently has there been some increased interest in learning 

in vision, mainly in the form of the renewed interest in neural networks. Even in the 

early 1980's, there were no learning paradigms in computational vision. As cited in 

Ballard and Brown's Computer Vision book [Ballard and Brown, 1982]; 

Learning is missing from the list above. Disappointing as it is, at this 

writing the problem oflearning is so difficult that we say very little about it 

in the domain of vision. • 

Further progress in computer vision depends on the implementation of various 

learning strategies in vision systems. The reasons for this view are based on the 

following observations (Michalski. Bala et al., 1993]: 

• page 315. aparagraph describing the organization and IOpics of chapter IV in Ballard's book. 
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• 	 The world changes in unpredictable ways. therefore it is impossible, in principle, to 

pre-program in the vision systems all the knowledge necessary for image 

understanding. 

• 	 Handcrafting the knowledge needed for image understanding into computer vision 

systems is a difficult and time-consuming process: learning provides a fundamental 

vehicle for simplifying this process. 

• 	 In biological vision systems, many aspects of image perception are genetically 

jJreprogrammed, but many are learned. Similarly, computer vision systems should be 

able to acquire some capabilities through learning. 

The goal of this research is to explore the application of machine learning methods 

to problems of computer vision. The research presented in this thesis has been concerned 

primarily with the development of methods. for inductive learning of texture descriptions. 

Learning of texture descriptio'.1 is separated into the following phases: 

(i) image pre-processing (volume optimization). 

(ii) attribute extraction, 

(iii) acquisition of texture concepts by inductive learning, 

(iv) optimization of concept prototypes. and 

(v) recognition of unknown texture samples. 

The texture description acquisition method. adapted to the acquisition and 

recognition of complex vision data. is based on an extension of AQ. a learning from­

examples algorithm. The approach for inductive learning of texture descriptions was 

originally proposed by Michalski [Michalski, 1973] and was initially applied using 

ILLIAC III image recognition computer facilities. This research presents a novel 

extension to the initial approach. It uses logic-style rules. called Multilevel Logical 

Templates. The novelty also lies in new advanced concept description optimization 

methods for noise-tolerant learning, and a multistrategy approach to learning from vision 

data. The following methods (and implemented systems) are described in the thesis: 
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TEXTRAL: 	 the primary method for learning texture descriptions described in 

this thesis. TEXTRAL employs multilevel symbolic image 

transformations called Multilevel Logical Templates (MTL) and 

the AQ 15 inductive learning program. 

a method for learning of reduced complexity rule sets, from noisy 

inputs, and 

AQ-GA 	 a method combining inductive rule learning with a genetic 

algorithm for rule enhancement. 

An important result of this research is a demonstration that symbolic learning 

methods can be successfully applied to selected problems of low-level vision, in which 

nonsymbolic methods have been traditionally employed. Specitically. the results obtained 

demonstrate that these methods have been very useful for creating descriptions of textures 

from their samples, obtained from the original camera-generated images. 

The texture data is the initial domain of experiments reported in this dissertation 

research. However, the presented methods can be applied to learning in any domain 

characterized by continuous attributes. noisy data, multiclass environments, and complex 

representation spaces. Characteristics of such a domain are apparent for engineering data. 

Learning from engineering data require new learning tools. that are noise-tolerant, capable 

of processing complex data including multiclass environments, and large training sets. 

These tools are expected to signiticantly extend the state of the art and open up a whole 

new application area for machine learning. 

1.1 Background 

1.1.1 Inductive Learning 

The problem investigated in this thesis falls into the category of inductive learning 

of visual concepts from examples. In the learning from examples paradigm, a set of 

training examples annotated with concept membership infOlmation is used as the basis for 
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automatically inducing a general description for each visual concept. The concept 

description learned is correct for the given examples. Since it extends its membership, 

information to unseen parts of the representation space it is also a good predictor for the 

classification of unobserved examples of the concept. 

An example in this paradigm may bt! anything that can be expressed in temts of 

representation language. An example can be a physical object, a situation, a cause, or a 

concept. Training examples are usually described in one of the two types of 

representation languages: attribute-based or predicate-based. In an attribute-based 

representation, an example is represented as an n-tuple of attributes values, where n is a 

number of attributes. All n attributes detine the event space. A domain is associated with 

each attribute used to describe examples. The domain indicates the values the attribute 

may assume. The values in a domain may be unordered (or nominal), ordered (or linear), 

or hierarchically structured [Michalski. 1983]. A predicate-based representation allows 

examples to be represented as structural descriptions. In structural descriptions, each 

example may consist of several objects. and a set of relationships among these objects. A 

predicate-based representation is more powerful than an attribute-based representation. 

but the limited expressiveness of an attribute-based representation allows relatively 

efficient learning algorithms to be designed. The attribute-based representation can be 

used in many real world applications. 

Concept descriptions may be described in either of the two representation 

languages. In this thesis, an attribute-based representation is selected to describe both 

examples and concepts of texture classes. 

Most inductive learning systems generate concept descriptions by detecting and 

describing similarities among positive examples and dissimilarities between positive and 

negative examples. Inductively constructing concept descriptions from training examples 

involves the transformation of training examples using a set of refinement operators 

[Michalski, 1983]. A retinement operator is either a specialization or a generalization 

operator. When applied to hypothesis or a training example, a 

generalization/specialization operator transforms it into a more general/special hypothesis. 
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Each hypothesis describes a subset of all examples, while all hypotheses 

representable in a given representation language from a hypothesis space. Learning can be 

viewed as a search process through the hypothesis space to nnd description of the target 

concept. Generalization/specialization operators are search operators. Search heuristics 

are some preference criteria (also called biases). One of the most important description 

preference criterion is accuracy. Hypothesis accuracy depends on the completeness and 

consistency of this hypothesis with regard to the learning examples. Simplicity and 

comprehensibility are two other preference criteria. 

, An inductively generated description should not only classify training examples, 

but also unseen examples, so it should be more general than training examples. 

Unfortunately, induction is an error prone process. Induction is falsity preserving rather 

than truth preserving. That is, a concept description inductively generated from examples 

cannot be guaranteed correct It may be only an approximation of the concept 

Concept descriptions ~roduced by early inductive learning algorithms, however, 

can be complete and consistent with respect to the training examples. A description is 

consistent if it covers all training examples of the concept (positive examples), while a 

description is complete if it does not cover any counter examples of the concept (negative 

examples). In order to achieve completeness and consistency in the presence of noise, a 

complex description can be generated. This is the well known phenomenon of overfitting. 

The prediction accuracy of a complex description for unseen examples may be inferior to 

a simpler, less complex description. For example, a fully expanded decision tree or 

highly disjunctive rule may cover training examples completely. However a smaller tree 

or rule set, with a larger apparent error on the training examples, may be more accurate in 

its predictions for unseen examples. Description complexity and prediction accuracy are 

highly related. Many newly developed approaches, such as AQ16 [Zhang and Michalski, 

1989], C4 [Quinlan, 1987]. CN2 [Clark and Niblett, 1989], and PLSI [Rendell, 1983], 

allow the descriptions produced to be incomplete andlor inconsistent with respect to the 

training data. The issue of learning reduced complexity rule sets in learning from complex 

texture data is addressed in this dissertation research. 
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1.1.2 The Texture Analysis Problem 

Texture can be described in a variety of ways. It can be gener.lted by primitives 

organized by placement rules or as the result of some random process. It can be found in 

a continuous spectrum from purdy deterministic to purely stochastic. The different 

textures in an image are usually very apparent to a human observer, but an automatic 

description of these patterns has proven to be complex. 

Visual textures arise from many sources. Cellular textures are composed of 

repeated similar elements called primitives. Examples are leaves on a tree or bricks in a 

wall. Other texture types include flow patterns, fiber masses, and stress cracking. 

Texture can be both structured and random (Figure 1-1). It is common to speak of a 

uniform texture or a homogeneous texture, despite the apparent contradiction. This 

homogeneity is a perceptual phenomenon. Somehow the human visual system analyzes 

images and measure texture properties. Some texture fields are seen to be equivalen~ 

others to differ in coarseness, linearity, or other texture dimensions. All, however, are 

unified by their perception as texture fields. 

(a) a structural texture (b) a random texture 

Figure 1·1: Examples of textures 
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Texture provides very useful information for the automatic interpretation and 

recognition of the image by a computer. Textural features can be crucial for the 

segm~ntation of an image and can serve as the basis for classifying image parts. Many, if 

not all, objects in one's familiar environment can be recognized on the basis of just these 

two properties (i.e., without information about their shape, size or other characteristics). 

Traditionally. all methods of textural analysis have taken either the statistical 

approach, in which the statistical properties of the spatial distributions of the gray levels 

are used ~ the texture descriptors, or the structured approach which conceives texture as 

an arrangement of a set of spatial subpatterns according to a certain placement rules. 

The structural texture models are best suited to situations in which complete 

descriptions of individual texture primitives are derivable from the image. This usually 

means that the texture primitives consist of relatively large numbers of pixels. and that the 

boundaries of the primitives are consistently discernible. The statistical model usually 

describes texture by statistical rules governing the distribution and relation of gray levels. 

This class of models involves the use of statistical tools. The statistical texture models are 

suitable when the sizes of the texture primitives tend to be on the order of few pixels. The 

statistical approach works well for many textures which have barely discernible 

primitives. However, it can also be effective in cases of large texture primitives if the 

boundaries of the primitives are highly convoluted, or if the interior areas are not 

completely homogeneous in intensity. A disadvantage of this statistical method is that it is 

highly dependent on the chosen resolution. 

The dichotomy between these two classes, however, is not clear-cut, since 

statistical tools and concepts are introduced into models which are basically structural, 

and statistical models can describe pattern-like textures and vice versa. This division is 

therefore sometimes artificial. 

Different statistical and structural techniques have been developed. These 

techniques include, for example: co-occun'ence matrices (e.g., [Haralick, Shanmugan et 

aI., 1973, Davis, Clearman et al., 1981]), coarseness measures (e.g., [Zucker, 

Rosenfeld et aI., 1975]), statistical measures (e.g., [Haralick, 1979. Pratt, Faugeras et 
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a1.. 1978]). texture filters and energy measures (e.g .• [Laws. 1980]). Fourier transfonn 

(e.g.• [Bajcsy and Liebennan. 1976]). Markov random fields [Cross and Jain. 1983], 

Gibbs random fields [Derin and Elliott, 1987]. and many others. Texture macro-structural 

properties were also modeled incorporating shape and tree grammars [Rosenfeld and 

Lipkin, 1970, Lu and Fu, 1978]. 

Recently model-based approaches have been used for texture characterization. 

Model-based approaches attempt to capture the dependencies among neighboring pixel 

values by fitting an analytical function (model) to the texture image. Most model-based 

techniques treat texture as a realization of a two-dimensional stochastic process, or 

random field. Once an appropriate model of a given texture has been found, the 

parameters of the model would completely specify the texture. Some of ~e well-known 

model-based techniques for texture classitication and segmentation are based on Markov 

random field (MRF) models [Besag. 1986. Chellappa. 1985], mosaic models [Ahuja and 

Rosenfeld. 19981], and fmctals [Pentland. 1984] 

In this dissertation, we are focus on a particular approach to texture analysis 

which is referred as the rule-based approach. The method generates symbolic 

descriptions of texture by first. deriving structural features from texture, and then 

generating covers (description) to tit texture data. Thus. it can be viewed as the fonn of 

model-based approach. The novelty of this approach lies in automatic generation of 

texture models (called the Multilevel Logical Templates) by the inductive learning 

process. Learned models are optimized to increase their descriptiveness for. the texture 

concepts they represent 

1.2 Motivation 

Intelligent behavior is characterized by the ability to learn and to self-organize. 

Such abilities include self-creation of knowledge through experience, self-improvement 

of control through practice. discovery of new concepts and relationships through 

observation and analogy. and reorganization of knowledge to perfonn a given task better. 

When we consider human or animal vision. it is clear that they acquire the ability to 

recognize and handle visual objects to a large extent through learning. and only partially 
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by genetic pre-programming. Yet, current computer vision techniques are almost devoid 

of learning capabilities. Further progress in computer vision will depend on the 

implementation of machine learning capabilities in vision systems. 

Many vision systems of the past have been successful at processing images or 

extracting useful information from images. With the interests in image understanding. 

processing images goes beyond that to a point where the content of an image can actually 

be conceptualized, Le., the system can describe what it sees in the image or scene. Until 

recently. most approaches to vision have been largely statistical in nature. They use 

mathematical fonnulas which transform the image into discernible objects. The primary 

processing stage in these approaches is the derivation of visual information. The research 

presented in this thesis is motivated by the belief that further progress in computer vision 

will depend not only on the derivation of visual information but on the intelligent 

manipulation of visual information as welL Symbolic learning techniques can enhance 

image understanding capabilities of computational vision systems by generating more 

expressive, conceptualized and meaningful descriptions of visual objects. Such 

descriptions can be intelligently manipulated to enhance their performance and utilization 

within the vision system. 

Object recognition is one of the most studied areas of machine vision. The 

development of computer systems capable of recognizing objects within images is a long­

tenn research problem of great practical signiticance. Several decades of research in this 

direction have produced many important results. but the progress has been slow. There 

is still no computer system that can reliably assign a generic class to natural objects on the 

basis of its image. One of the significant weaknesses of current computer vision systems 

is that they rely primarily on the structures programmed into them, and have very limited 

or no learning capabilities. Thus, they lack flexibility, adaptability, and cannot improve 

with experience. Intelligent behaviors. however. are characterized by the ability to adapt 

and self-organize according to the specitics of the environment and a given task. Humans 

adapt mainly through learning. Object recognition by humans deeply integrates learning 

with vision. This integration not only supports the basic capabilities of model 

acquisition, but it also supports the adaptability and robustness of object recognition in 

real-world noisy environments. 
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Although there have been many efforts to implement learning capabilities for 

object recognition, results are quite modest. In many cases, computer vision researchers 

still apply old pattern recognition techniques to the object recognition task. These 

techniques, developed in the 50s and 60s, do not represent the current state of the art in 

machine learning methodology. The most popular method. the minimization of Bayes 

risk [Duda and Hart. 1973]. is a strong parametric method that assumes the distribution 

of features to be known a-priori. This condition cannot be fulfilled in most situations 

and this method does not perform well in the case of a complex attribute distribution 

[Pachowicz and Bala. 1991]. If feature distribution is irregular. then non-parametric 

methods are more suitable. These methods. however. have many disadvantages. For 

example. Nearest-Neighbors classifiers require large storage capacity and extensive 

calculations during the recognition phase. Pattern recognition methods are more 

applicable to static problems. Their extension towards incremental acquisition or 

evolution of class descriptions over time is extremely difficult. Moreover, these methods 

are not suitable to the integration of numeric and symbolic .features in the acquisition of 

class descriptions. 

Machine learning and cognitive science have been investigating computational 

models of human learning. and building machines capable of learning as humans do. The 

goal of early research in machine learning was to demonstrate that machines can learn 

simple concepts and classification procedures. In the past, researchers often ignored the 

characteristics of real world environments. Since then, signiticant progress in machine 

learning has been made. New powerful learning methods and tools have been developed, 

and their usefulness has been demonstrated in solving quite complex problems 

[Bergadano, Matwin et al.. 1992]. The complexity of many problems. however. is very 

high and limits the broad application of currently available tools. This problem is 

particularly severe in computer vision. The creation of vision systems with learning 

capabilities requires the development of new learning methods, vision paradigms. and 

associated integration schemas. Learning technology provides a great-challenge for 

machine vision. particularly in learning and representing object descriptions. advancing 

flexibility, and adaptability of machine vision[ML V -92. 1992]. 
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New constrm.:livc indm.:tiun learning lOuIs <:an be useful in h.~a11ling from vision 

data [BaIa, Michalski ct aI., 1992J. Th~ general con<:ept of constmctive induction includes 

any method that self-modifies the <:om:ept representation space during the induction 

process. Generating additional. problem oriented attributes is an important fonn of such 

self-moditication of the representation space [Michalski. 1978]. In vision systems the 

key characteristic patterns within a hybrid attributional space can be detected by a 

constructive induction learning tool and detined as new attributes. 

1.3 Thesis Overview 

Chapter 2 introduces characteristics of sensory data and problems related to 

learning from such data. Presented characteristics include: noise in the 'data, complex 

problem spaces, large tr.uning sets, and a large number of classes. 

The general goal of the research reported in this thesis is to investigate the 

inductive learning approach to texture recognition. The approach is based on the idea 

proposed by Michalski [Michalski, 1973]. The basic ideas behind the approach are 

presented in Chapter 3. 

The approach has been implemented in the TEXTRAL lea~ing system, and 

experimentally tested on texture recognition domains. Chapter 4 describes all phases of 

the learning methods in detail. Initial concept description optimization methods are also 

described in Chapter 4. 

Experimental results of the TEXTRAL method are reported in Chapter 5. They 

include experiments with concept description optimization in learning from the first image 

level and experiments in the multilevel application of inductive learning to texture 

recognition. 

The AQ-NT and AQ-GA optimization methods are presented in Chapter 6. This 

chapter also reports on experiments with these methods. 
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Related work is presented in Chapter 7. The TEXTRAL method represents an 

extension and improvement of our earlier method implemented in the TEXPERT system 

(Channic. 1988]. This system is brieny desclibed in this chapter. A comparison of rule­

based (TEXTRAL type) approach versus a k-NN method (Pachowicz. 1991] and the 

constructive induction method (the PRAX method) (Baja. Michalski. et.al .• 1993] are 

also presented in this chapter. 

Finally. Chapter 8 summarizes accomplished work, and discusses limitations and 

possible future research. 



Chapter 2 

2. Learning from Sensory Data 

This chapter introduces characteristics of sensory data and problems related to 

learning from such data. Characteristics that can be expected in the vision data include: 

noise. complex representation spaces, large training sets, and large numbers of classes. 

2.1 Noise in the Data 

Sensor-driven characteristics of visual objects are rarely noise free and most often 

quite noisy. "The visual world is noisy. Even well posed visual computations are often 

numerically unstable. if noise is present in both the scene and the image. Scenes are 

usually corrupted by "noise" coming from various sources (dust, fog. sun glitter. etc.). 

The image formation process introduces additional noise. As a result, many problems 

which theoretically have unique solutions become very unstable in the presence ofinput 

noise." [Rosenfeld. Aloimonos et aI.• 1990]. 

To explore the application of learning techniques to vision domains. it is, 

therefore, very important to develop approaches that are successful despite a high level of 

noise in the data [Chien, 1991]. In traditional classitication problems. noise comprises 

non-systematic errors in the values of attributes or class information [Quinlan, 1986]. 

There are at least three types of noise that must be dealt with: (i) uncertainty, (ii) error, 

and (iii) imprecision. 

13 
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Uncertainty occurs when the correct value of an attribute cannot be determined. 

Error occurs due to a misreading or incorrect coding of the information. For continuous, 

(or fine grained) attributes another form of noise is imprecision; the best obtainable 

measurement for the value is imprecise. Although noise due to uncertainty and error is 

problematic, there is no method of avoiding imprecision. Therefore any learning 

algorithm must be able to handle some noise in those attributes. Additionally, learning 

tools have to deal with another source of noise; misclassification error. Traditionally. we 

assume that the training data is perfectly classitied. However, in the case of vision 

domains (e.g., image interpretation) data pre-classification is also very difficult and 

imprecise. The elimination of such misclassification error is therefore essential for 

learning tools applied to computer vision problems. 

It is also useful to differentiate between two levels at which noise can occur: the 

input level and the algorithmic level. On the input level, we are concerned with the n raw" 

data which is input to the system, and the focus is on acquisition errors. Acquisition 

errors are variations which are caused by the process of gathering the input data. Some 

of the variations which are caused by the properties of the camera.can also be modeled. 

Other variations. on the other hand, cannot be modeled so easily_ Consider, for example, 

a camera in which some of the sensing elements are defective in such a way that they 

either record a constant value (e.g., black or white) or an arbitrary value with an 

unknown probability distribution. Even if the fact that this problem exists is taken into 

consideration, information is still lacking on (i) the probability of its occurrence. (ii) the 

fraction of the defective pixels, (iii) the (unknown) probability distribution of the errors, 

and probably most importantly (iv) the spatial distribution of the defective pixels over the 

frame (e.g., are they randomly distributed or clustered). Considering the misclassification 

error, modeling of automatic or human interpretation of data is almost impossible. 

Another source of input level noise may be due to environmental conditions. For 

example. noise in vision data can be due to the masking of object properties by other 

objects (clutter), from object irregularities, by the variability of object characteristics, or 

by an incorrect classification given by a teacher. All of these noise sources are generally 

very difficult to model in that the distribution of the variations is usually unknown. 
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Noise on the algorithmic level oc<.:urs at a higher level than the types discussed 

above. In this situation an algolithm is viewed as being <.:omposed of modules each of, 

which can 00 considered individually as an algorithm. The inputs to higher level modules 

are the results produced by lower level modules. Thus. noise which was not handled 

correctly by lower modules can propagate errors to the higher levels. As before, 

variations caused by noise on the algorithmic level are difficult to model. If algorithmic 

noise could be modeled then it could be corrected and not propagated. 

Noise on the input and algorithmic level is caused by processes that are difficult to 

model a priori. Although there might exist models that govern these processes, these 

models are unknown a priori to the system. In engineering literature, theoretical 

modeling of noise effects on the system behavior is typically done using "white noise" 

(i.e.• white Gaussian noise). In practical situations, however, we have to deal with a 

combination of different classes of noise (including salt-and-pepper noise, pink noise) of 

very complex distribution. 

As indicated by Quinlan [Quinlan. 1986], regardless of the-source, noise can be 

expected to affect the formation and use of c1assitication rules. Inductive learning 

systems must perform some form of generalization in order to anticipate unseen 

examples. Ideally. a concept description generated by an inductive learning system 

should cover all examples (including unseen examples) of the concept (positive examples) 

and no examples of all other concepts (negative examples). Thus, most inductive 

learning systems generate a complete and consistent concept description which covers all 

positive examples and no negative examples [Pr.ltt. Faugeras et ai., 1978]. In the case of 

noisy data, complete and consistent descriptions are problematic because multiple concept 

descriptions can partially overlap in the attribute space. This is so. because attribute noise 

skews the distribution of attribute value from the correct value. Because of the existence 

of noise in the vision data, some positive examples are noise, that is, they are actually 

negative examples. We call such examples "positive noisy examples". These positive 

noisy examples are covered by the complete and consistent description. These examples, 

however, should not be covered. On the other hand. some negative examples can be 

noise, i.e., they are actually positive examples. Such negative examples are referred to as 

"negative noisy examples". Negative noisy examples are incorrectly left uncovered. 
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2.2 Complex Problem Spaces 

Another expected characteristic of sensory data is a highly complex attribute 

distribution. Figure 2-1 shows selected attribute distributions obtained in experiments 

with noisy texture data (Pachowicz and Bala, 1991]. An approximated normal 

distribution is also shown. The upper diagram (Figure 2-1 a) shows a sample of a multi­

cluster distribution for one class. The lower diagram (Figure 2-1 b) shows an extremely 

non-nonna! attribute distribution of an attribute that lacks the discriminating power (no 

sharp peak and no major clusters through the wide spectrum of attribute values). The 

distribution was obtained by extracting the attribute values from one texture class. The 

distribution of the same attribute, especially for discriminating it from other classes, may 

be quite appropriate for another class. Although the presented distributions are related to 

single attributes. the attribute space is multi-dimensional and its complexity increases 

significantly if distributions of single space components are complex. 

Figure 2-2 depicts examples of two classes distributed over the two attributes 

cross-section of the representation space obtained from vision data. A complex, 

overlapping distribution of examples of these classes can be observed. Learning from 

such complex overlapping data generates complex class descriptions. In the case of a 

DNF description (disjunctive normal form), a large number of disjuncts (rules) is needed 

to cover examples o~ a given class. Similarly for decision tree learning, complex and large 

decision trees will be generated. 

Recent research shows [Michalski, 1986] [Weiss and Indurkhya, 1991] that while 

an increasingly complex description can usually be generated to better cover training 

examples, the predictive accuracy of this description for new unknown examples may be 

inferior to a simpler, less complex description. For example, a fully expanded decision 

tree or highly disjunctive rule set may cover training samples completely, but a smaller 

tree or rule set, with a larger apparent error on the training examples, may be more 

accurate in its prediction for new unknown examples. Complex problem spaces, 

characteristic of sensory domains, inhibit the generation of simple, refined descriptions. 
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Figure 2-1: Examples of complex distributions of texture attributes extracted from a 
single class 

Figure 2·2: A cross-section over two vision attributes • 

• xl and x8 are Law's masks attribules, [Laws, 19801 , (Sel'lioll 4.3). 
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2.3 Large Training Sets and Multiclass Environments 

As different learning algorithms have been developed and refined, the size of the 

training sets attacked has grown. In some situations (e.g., low level vision) learning from 

vision data can involve examples with hundreds of attributes and thousands of examples 

and hundreds of classes. New learning tools are needed to handle such a large sets of 

training examples. Recently, some researchers reported experiments involving large 

training sets. For example. [Dietterich. Hild et al.. 1990] report on a decision tree 

technique applied to training set of about 20JX)O instances concerning the pronunciation 

of English. The Space Shuttle datsets described in [Catlett, 1991] comprise hundreds of 

thousands of examples: NASA's archives of night data contain more than 150 million 

training examples. Faced with such an enormous training set, one might ask the 

reasonable question whether the whole set should be used or some part of it. If a small 

sample turns out to give results as good as the full set, learning from a full set is an 

unnecessary expense. Very large sets can also yield descriptions that are too large (highly 

disjunctive rule sets, large decision trees) to be effectively utilized. The AQ-NT method 

described in this thesis reduces the complexity of concept description by reducing the size 

of training set. 

Very often a user requires a comprehension of the obtained description. The size 

of generated decision trees and rule sets is important for comprehensibility of the 

description. If the size of the description becomes too large, human experts will be unable 

to understand it Figure 2-3 depicts the description complexity (as the average number of 

. rules per class) for different number of classes and examples per class obtained from 

texture data using the AQ learning method. 

There are different important factors that should be taken into consideration in 

multiclass environments. First, how do multiclass learning methods compare in terms of 

their ability to classify unseen examples correctly? Second, are some methods more 

difficult to train than others (Le., do they require more training examples to achieve the 

same level of performance?) Third, should characteristic or discriminatory descriptions be 

generated? 
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Learning time is another important factor that should be taken into consideration in 

multiclass environments. The growth of learning time is largely due to the need to process 

large number of examples of different classes. For examples with continuous attributes 

some method is required to quantize the continuous values. turning them into a small set 

of ordered discrete values. which allows faster processing of the data. Some methods use 

sampling and statistical inference techniques to eliminate the size of the data. Other 

approaches are also suggested. such as constructive induction to improve the attributes 

used to express the concepts. 
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Figure 2-3: Average number of rules per class 



Chapter 3 

3. General Approach 

The developed approach, called "Multilevel Logical Templates" (ML T) (the 

approach was originally proposed by Michalski [Michalski, 1973] and was initially 

applied using the ILLIAC ill image recognition computer facilities) aims at automatically 

determining texture class descriptions from texture samples. This approach was 

implemented as the TEXTRAL system. The next chapter describes the 1EXTRAL system 

in greater detail. The basic step in the MIL approach is an iterative (multilevel) application 

of symbolic inductive learning to generate texture rules. These rules serve as "logical 

templates" that are matched against examples extracted from unknown samples of texture 

classes. 

The basic idea behind the ML T approach can be explained as follows (Figure 3­

1). Given an image with labeled samples of different textures (these samples are attribute 

vectors), the learning system generates sets of rules describing samples of different 

textures (Logical Templates). In the iterative mode of the method (not depicted in Figure 

3-1) these rules are used to transform this image to a "symbolic" image. in which picture 

elements are labels of corresponding texture areas. New sets of rules (next level template) 

can be learned from the symbolic image. A set of rules with extraction operators (Le., 

operators that are used to extract vector of attribute values from different position in the 

textural area to characterize a texture class) is called "texture signature". 

To recognize an unknown texture sample, the system matches it with all candidate 

texture descriptions. This is done by applying decision rules to the events in the sample. 

For each event, the class membership (texture class) is determined. the recognition 

20 
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accuracy for the sample is computed. The assignment of the sample to a given decision 

class (texture) is based on detennining which of the candidate classes gets the majority 

(or) plurality of votes. Thus, even if some events in lhe sample are incorrectly 

recognized, the classification of the sample may be correct Experiments described in 

this thesis report on recognition accuracy of the first level set of rules (the first level 

templates). Some experiments with multilevel sets of rules (multilevel template) are also 

presented. 

......... Learning 

--.. Recogntion 

Tt:xture Class 

5. Rule Application 

I 
t 

Class Me!Ilbo:rship Decision Ix=l 1[:c2=O..8/lx3=8I.... 

/ (xl=2..5j[x2=JO/lx3=6" 201.,,· 

........_. Optimized Rule Set 


"--~"A_/­

Figure 3·1: An illustration of the general approach 
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There are following phases of the TEX1RAL learning method (Figure 3-1): 

(i) image preprocessing (volume optimization), 

(ii) training events generation (selection of texture samples, detennining 

attributes, and fonnulating training examples), 

(iii) inductive learning of texture rules ( generation of "logical templates"), 

(iv) texture rules optimization, and 

(v) recognition of unknown texture samples. 

The first phase of the process reduces the spatial resolution of the image. The 

second phase extracts a set of spatial texture samples, called events, from classified 

texture regions (Module 2 in Figure 3-1). An event is a vector of attribute values that 

represent different image (texture) features. Attributes values are obtained by using two­

dimensional convolutions and simple moving-average techniques. Additional attributes 

can be detennined through the process of constructive induction [Wnek and Michalski, 

1991] [Bala, Michalski et al., 1992]. 

There are many possible attributes that could be determined to characterize 

textures. The most desirable are those that detine a descliption space in which points 

corresponding to the same texture class constitute easily describable clusters. In the 

texture recognition domain these attributes may fall into one of three categories:. 

neighboring gray-level values, statistical measurements. and convolution fl1ter outputs. 

Sets of events extracted from texture classes to be learned are used as training examples 

(events). 

3.1 Learning Method 

Texture rules are determined using the AQ-15 method for inductive concept 

learning from examples (Module 3 in Figure 3-1) [Michalski. 1986]. The rules leamed 

by the AQ method are represented in VLl (Variable-Valued Logic System 1); [Michalski. 

1972]. Advantages of this representation are that it is amenable for parallel execution. and 
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easy to interpret conceptually. A concept description is a logical expression in disjunctive 

normal form associated with a decision dass (here, a texture class). Each conjunction in 

this expression together with the associated decision class can be viewed as a single 

decision rule. The conjunctions (serving as condition parts of the rules) are logical 

products of elementary conditions in the form: 

[L #R] 

where: 

L, called the referee. denotes an atuibule. 


R, called the referent, is a subset of values from the domain of the attribute L. 


# is one of the following relational symbols: 


=, <, >, >=, <=, <>. 


Each rule is assigned two parameters: "t" (for "total weight")-measuring the total 

number of positive training examples covered by the rule, and "u" (for "unique 

weight"}--measuring the numqer of positive examples covered by the given rule and not 

covered by any other rule for the given decision class. Here is an example of an AQ-15 

decision rule: 

[CkJss=l] ::> [x2=1J[x4>3J[x6=1 . .7J: (1=6, u=2) 

This rule covers 6 examples of Class I, out of which 2 are covered only by this rule, and 

not by any other rule for this class. In the case of texture rules, xi are attributes 

characterizing a texture sample (in our experiments we used primarily 8x8 windows). 

The above rule is satisfied, if attribute x2 takes value I, attribute x4 has value greater than 

3, and attribute x6 takes value between 1 and 7. 

As mentioned earlier, a description of a texture class can be viewed a set of such 

rules (a "ruleset"). In such a ruleset, individual rules are ordered according to the 

decreasing values of the t-weight. As mentioned earlier, the extraction operators with the 

logical description generated by the AQ algorithms is called a texture signature. Figure 3­

2 is an example of the first level texture signature. This texture description is was 

optimized by truncating its less significant rules. The xl to x8 operators are: xl ­
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Laplacian edge operator, x2 - the Frequency spot. x3 -the horizontal edge operator, x4 ­

the vertical edge operator, - is the horizontal V -shape operator, x6 - the vertical V-shape 

operator, x7 - the vertical line opc!rator, and x8 - the horizontal line operator. 

Texture Signature: [Texture class =sweater surface] 

Operators 

xl,x2,x3,x4,x5,x6,x7,x8 

Optimized Description 

[xl =7,9,12]& [x2> ]&[x3=O . .4]&[x4=O ..5]&[x5=O . .3] & 
[x6=O..7] &[x7=2 . .4] (x8=O..3] (t:28, u.:21) 
OR 
[xl=5,7,9] &[x2>2]& [x3=O..2]& [x4=O . .4] &[x5;:1..4] & 
[x6=O..6] &[x7=O ..2]&[x8=O . .4] (1:27, 14:20) 
OR 
[xl;:2,5,7]&[x2=1 .. 12]&[x3=1 ..2] &[x4;:2..6]&[x5=3 . .4]& 
[x6=O. .4]&[x7=1..3,5,7] &[x8=O .. 1,3. .4] (t:16, u:11) 
OR 
[xl=5.. 14]&[x2>6J&[x3=O .. 2.4 ..5]&[x4=2..5] (t:5. u:3) 

, J 

Figure 3-2: An example of texture signature 

The method uses "truncated" descriptions of texture classes. A truncated 

description is obtained by the removing from the initially generated rules the ones with a 

very low t-weight. The reason for this is that rules with a low t-weight can be viewed as 

insignificant, or as representing noise. It has been discovered experimentally that 

truncated descriptions often give a higher texture recognition performance than non­

truncated descriptions. Since truncated descriptions are also simpler, then such a 

truncation process is highly desirable. A detailed study of this phenomenon (in the 
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context of non-vision applications) have been d('scribed in [Bergadano. Matwin et al .• 

1992]. 

3.2 Description Optimization 

One of the most important problems in application of machine learning to vision 

data is the influence of noise. Image data is corrupted with noise, and consequently. 

learned concept descriptions contain noisy components. The main objective of 

optimization methods (Module 4 in Figure 3-1) is to decrt!ase the influence of noise on 

learned descriptions according to some performanct! measure. 

In the rules optimization phase of the TEXTRAL method concept descriptions are 

analyzed and modified. Differt!nt methods for concept description optimization and their 

experimental validations are described in this thesis. 

3.3 Recognition Method 

The learned texture descriptions are generalizations of the observed texture events 

(Le.• attribute-value vectors characteIizing window-size texture samples). Therefore. they 

can be used to classify unobserved texture samples (Module 5 in Figure 3-1). There are 

two methods for applying the descriptions for recognizing the class membership of an 

event: the strict match and the flexible match. 

In the strict match. the system tests whether an event strictly satisfies (the 

condition part ot) a rule. The satisfied rule determines the classitication decision. In the 

flexible match. the system computes a degree of match between the event and candidate 

rules. The degree of match can vary in the range from O. (no match) to 1.0 (complete 

match). The rule with the highest degree of match determines the classitication decision. 

To explain the calculation of the degree of match. assume that a recognition rule 

contains a condition Ex = akJ. If the domain of the attribute x is a set of n numerical 
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values <al,a2, ... ,an>, and an event includes the statement [x=aij. the normalized degree 

of match between the rule and the condition in the event is de tined as: 

If the condition has several values in the referent (on its right-hand-side), the value closest 

to ak is used. The degree of match between a rule containing several conditions and an 

event was computed as the average of the degrees of match between the conditions and 

the event conditions. 

The degree of match between a class description (which may have several rules) 

and a given testing event (an example) is determined as the maximum of the degrees of 

match between individual rules in the description and the event. The description with the 

highest match among classes determines the recognition decision. The measure of 

recognition accuracy of a rule when applied to a set of testing events is the percentage of 

the number of correctly classitied test events to the total number of testing events in the 

set. 

The recognition phase of the MTL method is described in greater detail in Section 

4.5 of the next chapter. 



Chapter 4 


4. The TEXTRAL Learning Method 

This chapter describes the TEXTRAL method in detail. Different techniques that 

are part of this method are reported in: [Michalski, 1973], [Bala and Michalski. 1991] 

(the MTL approach). and [Bala and Pachowicz, 1991].(the description optimization). 

The process of learning such texture descriptions consists of the following phases: 

(i) image preprocessing (volume optimization), 

(ii) training events generation (selection of texture samples. determining 

attributes. and formulating training examples), 

(iii) inductive learning of texture rules ( generation of "logical templates"), 

(iv) texture rules optimization, and 

(v) recognition of unknown texture samples. 

4.1 Processing Texture Data 

This section presents image processing stages applied in order to transform raw 

image data of texture into texture charactelistics coded by a vector of attributes. 

4.1.1 Image Data Used by TEXTRAL 

Two sets of textures were used in experiments with the TEXTRAL system. One 

set, a twelve textures set, was acquired from the Brodatz Texture Depository [Brodatz. 
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1966] (Figure 4-1) and another one. a six textures set. from sweater surfaces (Figure 4­

2). 

Figure 4-1: Textures from the Brodatz's set of textures 
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Figure 4-2: Sweater surface textures 

Twelve textures in the first set are: pressed cork (d4). expanded mica (d5). grass 

lawn (d9), woolen cloth (d 19). pressed calf leather (d24). beach sand (d28), water (d37), 

beach pebbles (d54). handmade paper (d57), cotton canvas (d77), pigskin (d92), and fur 

(d93). For most textures, the illumination was regular and the resolution was fixed. 
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However, several textures presented in Figure 4-1 (i.e .. grass lawn, water and beach 

pebbles) were taken through an angled projection to the object surface. Thus, these 

textures were affected by the irregularity of resolution. 

The selection of twelve textures classes was motivated to include both visually 

different textures (e.g., pressed calf leather (d24), water (d37). fur (d93) ). and also 

those textures that are very similar and do not have directionality feature (e.g., pressed 

cork (d4). beach sand (d28). beach pebbles (d54». Another motivation for this selection 

is the interests of this research to test learning approach on the attribute space that includes 

highly separated andior also overlapping clusters of texture characteristics. 

Each texture was coded as an image of 512 by 512 pixels. where a single pixel 

was quantified to 256 gray levels (samples of twelve textures presented in Figure 4-1 are 

approximately 60 by 60 pixels). Each image was divided into two large sections. The 

first half of an image was used to extract learning examples while the second half was 

used to extract testing examples. 

4.1.2 Reduction of Spatial Resolution 

In the first phase of the TEXTRAL method an image data is prepared for attribute 

extraction and training set formation. The spatial resolution of an image is reduced. 

Images acquired for experiments by camera are digitized in 512 lines and 512 pixels per 

line. The spatial resolution is reduced by partitioning the digitized image into 

nonoverlapping neighborhoods of equal size and shape and replacing each of those 

neighborhoods by the average pixel densities in that neighborhood. The resolution is 

reduced with respect to the size of the extraction operators (section 4.3 describes 

extraction operators). The extraction operator size is related to the intersample spacing in 

the extraction process. In experiments presented in this paper, 5 by 5 extraction 

operators were used. To determine the lowest resolution for a given intersample spacing a 

second order statistic, in form of the gray level co-occurrence matrix [Haralick. 

Shanmugan et al .• 19731 was used. The gray level co-occurrence matrix method is based 

on the estimation of the second-order joint conditional probability density functions 

fii,jld, '}. Eachfi .. } is the probability of going from gray level i to gray levelj, given the 



31 

intersample spacing d with direction ri. The estimated values t.:an be written in matrix 

form. the so-called co-occurrence matrix. 

From a co-occurrence matrix a number of features can be derived. If a texture is 

coarse, and d is small compared to the sizes of the texture elements, the pairs of points at 

separation d usually should have similar gray levels. This means that the high values in 

the matrix should be concentrated on or near the main diagonal. For a nne texture, ifd is 

comparable to the texture element size, then the gray levels of points separated by d 

should often be quite different, so that the high values in the matrix should be spread out 

relatively uniformly. In different experiments [Bala. 1990] the best match between the 

intersample spacing d=5 and different spatial resolution levels was obtained after one 

consolidation operation. Thus, the spatial resolution of textures depicted in Figure 4-1 

and 4-2 was reduced from the 521 by 512 to 256 by 256 pixels. Because textures are 

quite fine. further reduction of the spatial resolution is blurring important characteristics 

of textures. 

4.3 Texture Attribute Values Extraction 

Many possibilities exist for computing features to recognize texture. The best 

features will be those which define an attribute space which most easily lends itself to the 

partitioning performed by the learning algorithm. Most of features fall into one of three 

categories: neighboring gray-level values. simple statistics, and convolution ftlter output 

Neighboring Gray-Level Values are the simplest attributes. They consist only of 

the gray-level values of pixels neighboring the pixel with which the event is associated. 

For example. one could take the value for each immediate neighbor of a pixel to construct 

an event with eight attributes for each pixeL The tirst atuibute would correspond to the 

value of the pixel to the central pixel's upper left, the second attribute would correspond 

to the pixel directly above the central pixel, and so on. 

Simple statistics are linear combinations of the neighboring pixel values. Some 

examples of such statistics are sum of values, mean pixel value, maximum pixel value, 

and minimum pixel value. One of the most often used statistics is a second order 
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statistics. in form of the gray level co-occurrence matrix [Haralick. Shanmugan et aI.• 

1973]. The gray level co-occurrence matrix method is based on the estimation of the 

second-order joint conditional probability density functions. The main advantage of the 

use of these statistics is that they incorporate regional information about the pixel in one 

fealUre with only minimal additional computation. 

The third type of feature of benefit to a texture learning system are those that are 

calculated using filters or convolution operators. A convolution operator can be thought 

of as a coefficient template - a grid which is centered over a pixel in the image where 

each coefficient in the template multiplies the corresponding pixel value in the grid and the 

sum of these products is the value of the operator at the central pixel. The convolution 

method is more accurate than gray level co-occurrence methods. It is local. operating on 

small image windows in much the same manner as human visual system. It can be 

invariant to changes in luminance and contrast. Thus. a convolution method was selected 

in this research for attribute extraction. 

4.3.1 Analysis of Local Subset of Pixels 

The most frequently used methods of texture feature extraction are based on the 

analysis of a local subset of pixels. This subset is defined by a small window in order to 

derive local characteristics of covered pixels. There are many methods applied to derive 

local characteristics of pixels. Since the development of lOW-level image processing 

techniques is not the scope of this research. well known and well performing Laws' 

energy filters [Laws. 1980] • were applied to extract texture characteristics. The Laws' 

energy filter are convolution operators. The extraction method using these convolution 

operators consists of the following two steps: 

0) 	the extraction of local micro-characteristics of raw texture data incorporating 

specially designed energy masks (tilters) detecting local pixel variations over a 

small window .. 

(2) 	 the computation of local macro-statistics applied to derive statistical measures of 

filtered images over a larger window. 
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In the first step, the original image is filtered with a set of small convolution 

masks. typically S by S masks with integer codTicients. The filtered images are then 

processed with a nonlinear "local texture energy" tilter. This is simply a moving-window 

average of the absolute image values. Such moving-window operations are very fast. The 

best window size depends on the size of image texture regions. 

Methods based on a similar approach were widely applied [Unser and Eden, 

1989]. [Hsiao and Sawchuk, 1989] to texture feature extraction, and they provided quite 

good discriminating power when compared with other methods [Du Buf, Kardan et al., 

1990]. Moreover. this class of methods is easily implemented on parallel architectures 

and these methods can be run in real-time. 

A slightly modified Laws' method of texture feature extraction was used in 

experiments [Pachowicz and Bula. 1991]. The modification induded (i) the extension of 

a feature list from four to eight features extracted from raw image data, and (ii) the 

reshaping of a square window used to compute local macro-statistics from flltered texture 

images. 

The proposed set of energy masks M={Mil (depicted in Figure 4-3) consists of 

four SxS masks (i.e .• RSRS, ESLS. ESSS, and LSSS*). This set includes one rotation 

invariant mask (Le., RSRS) and three masks that are sensitive on texture directionality 

(Le.• ESLS, ESSS and LSSS). 

A set of mask was extended by adding three directionality sensitive masks rotated 

by 90 degrees (i.e., masks: LSES, SSES and SSLS). A 3x3 Laplacian fllter (i.e., mask 

S3S3) was also added to perceive texture roughness of lower resolution. A geometrical 

interpretation of masks is depicted in Figure 4-4. Masks are shown as the functions of 

two variables, x and y, representing a position in a S by S grid. The function values 

represent mask's coefficients. 

All masks of a size (2a+ l)x(2a+ l)t pixels are applied to transform an input image 
fG,k) into a set of images of local micro-characteristics G={ gi} through the convolution 

operation; i.e .• 

*Naming after [Laws, 1980] 

t a=2 for masks depicted in Figure 4-3 
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IJ IJ 

gj (j,k) = L LM,(m,n) * j(j+m.k+n) 
m=-a "=-(1 

for j =1•....8 
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L5E5 S5E5 S5L5 

R5R5 - Frequency Spot Operator (F-Spot) 

E5L5 - Horizontal Edge (H. Edge) 

L5E5· Vertical Edge (V. edge) 

E5S5 - Horizontal V-Shape (H. V-Shape) 

S5E5· Vertical V-Shape (V. V-Shape) 

L5S5 - Vertical Line (V. Line) 

S5L5 - Horizontal Line (b. Line) 

S3S3 - Laplacian 

Figure 4·3: A set of convolution masks 
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In the second step. Laws proposed [Laws, 1980] to compute the average absolute 
value over a larger window applied to each tilten:u image gi separately; i.e., 

for i=I •.... 8 

where S corresponds to the local averaging window of the #S number of pixels. In 

this way, local averaging computes a statistical measure that can be considered a "texture 

energy measure". These statistics are considered a fast approximation to the standard 

deviation if a zero mean matched filter is applied. The computation of macro-statistics 

depends both on the shape and size of the moving window, and also on the weight 

coefticients within the window. Each pixel within the moving window has the same 

weight equal to 1, Le., its int1uence on the computation of a given feature does not 

depend on the distance from the center of the moving window. 

The large window improves the stability of the texture feature over the 

homogeneous area. Originally, Laws applied a square moving wind' ow of 15x15 pixels. 

Such a large window. however. causes classification errors when the method is applied 

to the texture segmentation problem. These errors occur frequently on the borders 

between different texture areas. Relatively small texture areas are blurred or even not 

distinguished at all for larger averaging windows. On the other hand, a small averaging 

window causes extracted texture features to be very noisy which has a significant 

negative intluence on the acquisition, representation, and recognition of textures. 

Modifications to the size of the moving window have already been proposed ( [Tomita 

and Tsuji. 1977], [Hsiao and Sawchuk, 1989] ) to deal with the application of the texture 

energy method to the texture segmentation problem. This research followed such an 

approach choosing several window sizes (i.e., windows of radius R=3.5, 5.5 and 7.5 in 

Figure 4-5) and reshaping the window from square to circular. A circular window 

stabilizes the distance variation from the central pixel to border pixels of the averaging 

window. 
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Figure 4-4: Geometrical interpretation of convolution masks 
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Figure 4·5: Circular averaging windows of different radius 

4.3.2 An Example of Texture Attribute Extraction 

Figure 4-6 and following Figure 4-7 and Figure 4-8 show an example of attribute 

extraction using Laws' masks. Areas on the left represent convolved and smoothed 

textures. A corresponding histogram for each area is also depicted. The histogram shows 

a percentage of pixels in the area with a given gray-level value. 

Figure 4-9 shows few pixel positions with their corresponding intensities in two 

areas obtained by convolving and averaging the original image sample with the F-Spot 

and H. V-Shape operators. All eight attributes values are extracted in the same way as 

depicted in Figure 4-9. 

4.3.3 Selecting And Coding Texture Events 

Acquired texture features are grouped for each (j ,k) pixel of the input image into 

a vector of learning attributes hU ,k)=(h 1, h2, ... , hg) ,where hi is a integer number 

greater or equal to zero. Because the number of possible values of each attribute is high. 



38 

an attribute coding is applied to decrease this number to an acceptable range for the family 

of AQ programs (see next section). The AQ programs allow a single attribute a range of 

only 58 levels. 

Attribute coding provides a good opportunity to compress data through the 

generalization of attributes values into symbolic intervals. Such generalization must be 

designed carefully in order to keep the discriminating power of acquired texture concepts. 

The decrease in discriminating power can occur when the number of intervals is low, 

there are textures both highly different and very similar, and the number of texture classes 

is large. 

Initial Texture 
Sample 

Reduced Resolution 
Sample 

i=-' 
A set of 8 operato~.~ 

and an averaging maS~ 

Resulting convolved and smoothed samples (Figure 4-7 and 4-8) 

Figure 4·6: An example of attribute extraction 
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Figure 4·7: Convolved and smoothed areas and their corresponding histograms 
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Figure 4·8: Convolved and smoothed areas and their corresponding histograms 
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F-Spot attribue values H. V-Shape attribute values 


Figure 4-9: Initial attributes values in the convolved and smoothed areas 


Numeric to symbolic conversion of attribute data can be performed by 

quantization (scaling) processes. A symbolic attribute corresponds then to an interval of 

numeric anribute. Pachowicz [Pachowicz. 1989] has already applied different methods of 

such scaling as an early generalization process of training data. In this work, the simplest 

scaling was applied [Pachowicz and Bala, 1991]. because the number of texture classes is 

given explicitly arid all training examples are computed before the learning step (i.e. 

concepts are not acquired incrementally). In such a case, the set of scaling parameters 

Lbmin, b.max, Mel}, where hmin=(hminl' ... ,hming), n.max=(hmaxl' ...• hmaxg), 

n.del=(hde1t •...• hdelg). is composed of maxima, minima and lengths of scaling intervals 

corresponding to each attribute, i.e.: 

hrnini = min { Zi } 

hmaxi =max {Zi } 

hdeli = (hmaxi - hminj)/#int for i= 1 ,2, ... ,8 

where Zi = Hi - Hi represents selected subset of tmining events of the i-th attribute. The 

subset Hi contains training events that are sele<.:ted from the Hi = {hi(j,k): for all (j,k) 

pixels} primary set of training data (the set obtained directly after the convolution and 

averaging operations). Hi contains both a given percentage number B of training events 
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from the Hi set that have minimal values, and also the same percentage number B of 

training events from the Hi set that have maximal values. Such a selection process 

creating Zi attempts to narrow the distance between minimum and maximum values of 

the scaling process. This selection improves the resolution of an attribute to the most 

useful range of values. For all experiments presented in this research. the value B was 

equal to 2% and the number of intervals lint was equal to 55. 

For the above determined scaling parameters {hmin, hmax, hdel}, the scaling 

process converts a vector of numeric attributes hU,k)=(hl, h2,... , hg) into a vector of 

symbolic attributes X=(Xp(2 •... , xg) in the following way: 

for m:=l to 8 do 

if (hi C!: hmaxj ) then Xi = lint 

else (if hi 5 hmini ) then Xi = 0 


else 

for n:=1 to #int 


do 

if (hi e [hmini+(n-l )*hdeli~ hmini+n*hdeli) then xi=n; 


4.4 Inductive Learning of Texture Rules 

The learning algorithm in the TEXTRAL method is a moditied version of the AQ 

algorithm, developed by Michalski, Reinke, Hong, Mozetic, and others [Reinke. 1984] 

[Michalski. 1986] [Hong. 1986]. The algorithm is a supervised covering algorithm. The 

fundamental input to the system are events, which are vectors in an n-dimensional 

attribute space where n is the number of attributes. Attributes can have values ofseveral 

types. Linear values are ordered values such as integers. Nominal values are non­

ordered. for example. a shape attribute might have nominal values square, circle, triangle. 

Values may also be structured that is, the values of the attribute may form a hierarchy. 

The shape attribute for example, may also have the value polygon. which could have as 

sub-values square and triangle, but not circle, which could be a sub-value of the value 

ellipse. 

The AQ15 program learns decision rules by performing inductive inference on 

examples and optional initial rules. Training examples are expressed as conjunction of 
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attribute values, and initial decision rules are logical expressions in disjunctive normal 

form. The program performs a heuristic s~arch through a space of logical expressions, 

until it tinds a decision rule that is satisfied by all positive examples and by no negative 

ones and optimized by a rules preference criterion. The program implements the STAR 

method of inductive learning [Michalski, 1983]. Specitically, it is based on the AQ 

algorithm for solving the general covering problem. 

Training examples are given to AQ in the form of events. Events belong to 

decision classes. Given a class, events belonging to it represent positive examples of the 

class, and all other events are its negative examples. For each class, a decision rule or a 

cover is produced that must be satisfied by all positive examples and by no negative ones. 

Each event and decision rule is described by extended selector. An extended 

selector, or briefly a selector. is a relational statement and is detined as: 

[L#R] 

where: 


L, called the referee, denotes an attribute. 


R, called the referent, is a subset of values from the domain of the attribute L. 

# is one of the following relational symbols: 

=, <, >, >=, <=, o. 

Each rule is assigned two parameters: "t" (for "total weight")-measuring the total 

number of positive training examples covered by the rule, and "u" (for "unique 

weight")-measuring the number of positive examples covered by the given rule and not 

covered by any other rule for the given decision class. 

Here is an example of an AQ-15 decision rule: 

[Class=1] :: > [x2=I][x4>3][x6=1..7]: (t=6, u=2) 

This rule covers 6 examples of Class 1, out of which 2 are covered only by this 

rule, and not by any other rule for this class. In the case of texture rules, Xi are attributes 
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characterizing a texture sample (in our experiments we used primarily 8x8 windows). 

The above rule is satistied, if atu"ibute x2 takes value 1, attribute x4 has value greater than. 

3. and attribute x6 takes value between 1 and 7. 

Given attributes with values of these lypes. the algorithm searches through a 

space of logical expressions relating attributes to values. The goal of the search is to find 

an expression. which is satistied by the values for every event in one class. and which is 

not satisfied by the values of any event in any other class of events. The search is limited 

by a heuristic called the lexicographical evaluation function (LEF) which can be user­

specified. The LEF evaluates candidate expressions and sub-expressions according to 

user-specitied criteria. Only a small number of expressions are expanded at each stage in 

the search. The number of expressions to expand at each stage is also a user-specified 

parameter. The algorithm can be viewed as a beam search through the hypothesis space 

associated with the vector space defined by the attributes. Figure 4-10 shows the 

flowchart of the AQ15 algorithm. 

The following is an example of a concept description gener.tted by the AQ algorithms. 

This concept description is a set of 7 rules describing texture class d24 (Figure 4-1). 

d24 classs => 

# cpx 
1 [xl=34..54] [x2=34 .. 54] [x3=4 .. 15] [x4=24.26.28 . .541 [x5=30..31.33 . .541 

[x6=24 .. 45.501 [x7=37 . .541 [x8=9..17.19..201 (total: 145. unique: 145) 
or 

2 [xl=29..33.35 .. 39.44.461 [x2=28 . .34.37 ..38,41,49] [x3=3 ..7.9.. 13] 
[x4=29.32.34.37 . .39,41 . .43.46,48,50,53 ..54] [x5=39 . .41,43,45 . .49,52 .. 54] 
[x6=24,26,28 .. 30,32.34 .. 35.38,40.42,48] [x7=42 . .46,49 .. 52,541 [x8::7 .. 15] 
(total: 19, unique:19) 

or 
3 {x 1=39,43 .. 44,46,48,51 ,54] [x2=38,4O,42,44..46.48.541 [x3=5,7 .. 14] 

[x4=19..21,23,26,31] (x5=32,34,38,48 . .49,52,54] [x6=31 ..32.34..35,40 . .41] 
[x7=26.29,31,34 .. 35] [x8=I1..13.15 .. 17.19,21] Ootal:ll. unique:l}) 

or 
4 [xl::27,29,32.34] [x2=24,26,29,31,37] [x3::3,8] [x4=23,31.33 .. 34,37] 

[x5=29 . .30] [x6=20,23 ..24,28..29] [x7=29.37,39,43.46] [x8=5 ..6,101 
(total:5. unique:5) 

or 
5 [xl=30] [x2=26] [x3=11] [x4=54] [x5=53] [x6=28] [x7=54] 

[x8=121 (total:1, unique:}) 
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Input Data 

Select a seed from the class 

Generate a partial STAR 
1. Generate all maximally general complexes 

that cover the seed against the 

negative example. 


2. Intersect the elementary Star with the 
previous partial Star. 

3. Trim the partial Star. 

Figure 4·10: AQ15 algorithm 
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Beside events, declarations of variables. and possibly input hypotheses, AQ15 

accepts parameters that specify how the rult: should be constructt:d. The user may select 

preference criteria according to which the rules are optimized. The criteria measure the 

quality of the rules from the viewpoint of the specific problem under consideration. 

4.5 Rule Application 

The learned texture descriptions are generalizations of the observed texture events 

(i.e., attribute-value vectors characterizing window-size texture samples). Therefore, they 

can be used to classify unobserved texture samples. There are two methods for applying 

the descriptions for recognizing the class membership of an event: the strict match and 

the flexible match. 

4.5.1 Strict Matching 

Strict matching is the simplest and fastest matching technique of test data with 

concept descriptions. In the strict match. one tests whether an example strictly satisfies 

the conditional part of a rule. Such matching gives the response of two possible logical 

values, i.e., True or False. Strict matching assumes that concept prototype does or does 

not cover a given testing examples. If typicality of matched rule is not considered then 

confidence level of such match can take only two values, i.e., c=l (an instance matched) 

or c=O (an instance not matched). There is no consideration of the degree of closeness 

between an instance and conditional part of a rule when an instance is not covered by a 

concept. Therefore, a strict match is not suitable for the c1assilication of noisy data that is 

usually displaced from clusters of training data. 

4.5.2 Flexible Matching 

If one assumes that the noisy training data does not truly represent the variability 

of texture characteristics then one has to accept that testing data can be shifted slightly 

from main clusters of training data in the attribute space. Additionally, if the recognition 

phase is preceded by an optimization step then the applied reduction of concept 

descriptions results in a description that does not even strictly match the entire set of 
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training data. Thus. to evaluate the membership of any training example one has to apply 

a flexible match. The flexible match procedure measures the degree of closeness between 

an unknown example and the conditional part of a rule. 

The calculation of the degree of closeness is executed according to the following 

schema. For a given condition of a rule [xn =valj 1 and an instance where Xn =valt ' 

the normalized value of a match of the instance to the conditional part of the rule is 

computed as: 

1 - ( I valj • valk II #levels ) 

where #levels is the total number of attribute values. A match to a rule is computed by 

multiplying evaluation values of matches to each condition of the rule. The total 

evaluation of class membership of a given test instance to a concept description (set of 

rules) is equal to the value of the best matching rule. For example, the match c of a test 

instance: 

x =< 4,5, 24, 34,0, 12,6,25> (with 55 levels of value each attribute can take) 

to a rule: 

[ Xl =0] [ x2 =1..2 ] [ x7 :: 10 ] [x8 =10 .. 20] 

is computed as follows: 

Cxt = I· ( 10 • 41/55) = 0.928 
cx2 = 1· ( 12 . 51/55) ::: 0.946 
cx1 = 1· ( 110 - 61/55) = 0 .928 
cx8 = 1 - ( 120· 2511 55) =0.91 
cx3. cx4, cx5' cx6:: 1 

c =Cd ... cx2 ... cx3 ... Cx.4 ... Cx.S ... Cx.6 ... cx7 ... cx8 =0.74 

An example of a matching function is depicted in Figure 4-11 (a). This function 

shows the degree of match for a simple two attributes rule: [xl::2..4] & [x2=3 .. 5] for all 

points of the representation space (xl, x2). There are 10 levels of values for.each 
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attribute. Figure 4-11 (b) shows four types of regions in the representation space created 

by the evaluation function. Region type 1 is strictly matched by the rule. Region type 2 

represents a part of the representation space satisfied by the selector x 1. Points of this 

regions are evaluated to I-Dx2 / Nx2 where Dx2 is a distance measure from a given point 

to the rule border lines (border line x2=3 or x2=5) and Nfl is the total number of the x2 

attribute values. Region type 3 represents a part of the representation space satisfied by 

the selector x2. Points of this regions are evaluated to I-Dxl / Nxl where Dxl is a distance 

measure from a given point to the rule border line (border line x 1=2 or x2=4) and Nxl is 

the total number of the xl attribute values. The last region (type 4) represents the areas 

that are not satisfied by either selectors of the rule. Points of this regions are evaluated to 

( I-Dxl / Nxl ) * ( J-Dx2 / Nx2 ). Figure 4-11 (b) shows that although logic style rules are 

used to represent class description, the tlexible evaluation of a match of unknown 

example not covered by the rule can be computed. Moreover, depending on the region in 

which example is located one can detect which selectors (rule conditional parts) are 

satisfied. This detection introduces some comprehensibility to the flexible matching 

function. 

Classification results for all testing examples are represented as a confusion 

matrix. The confusion matrix represents information on correct and incorrect 

classification results. This matrix is obtained by calculating the degree of flexible match 

between a testing instance and a given class description. The row entries in the matrix 

represent a percentage of matched instances from a given class (row index) to all class 

descriptions (column index). Because some of the testing events can be tlexibly matched 

by more than one class, the sum of the entries in a given row may be larger than 100%. 

Table 4-1 is an example of the confusion matrix for 12 classes. 

To recognize an unknown texture sample, the system matches it with all candidate 

texture descriptions. The assignment of the sample to a given decision class (texture) is 

based on determining which of tlie candidate classes gets the majority (or) plurality of 

votes by the set of examples extracted from unknown texture class. Thus, even if some 

examples in the sample are incorrectly recognized (non zero values for entries outside the 

diagonal of the confusion matrix), the classification of the sample may be correct. 
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Experiments described in this thesis report on rt!cognition accuracy of the first level set of 

rules. Some experiments with multilevel sets of rules are also prest!nted. 
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Figure 4-11: Flexible matching function for the rule [xl=2 . .4] & [x2=3..5], a) a 
degree of match, b) four types of regions in the representation space 
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Table 4·1: Confusion matrix for 12 t~xtur~ dass~s* 

Te);/ Class 

4.6 Texture Rule Optimization 

One of the most important problems in the application of machine learning to 

vision data is the influence of noise. Image data is corrupted with noise, and 

consequently, learned concept descriptions contain noisy components. The main 

objective of optimization methods is to d~creas~ the influence of noise on learned 

descriptions according to some performance m~asure. 

Most of the inductive learning systems generates concept descriptions according 

to some performance measures. These performance measures are expressed as the 

preference criteria that guide inductive search for the best local elements of a concept A 

single concept component is derived separately and then integrated with a concept 

structure. Thus, a single component is locally optimal according to a given preference 

.. 
From [Bala, Dejong et al., 1992]. 
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criteria. In the second phase. concept manipulation. the systl:.'!m analyzes sets of concept 

components and moditil:.'!s concept descriptions. Critl:.'!riu for the modification of concept 

descriptions are different from criteria of component acquisition. These criteria consider 

concepts performance and overill nlther than local structure. 

The problem of acquiring well performing concept descriptions has been studied 

intensely. One of the first approaches incorporated sl:.'!lection of most representative 

training data and the learning in the incremental mode [Michalski and Larson, 1978]. The 

problem of manipulation of concept descriptions was then discussed from different 

perspectives (see for example: [Fisher, 1988], [lba. 1988], [Markovitch and Scott, 

1988], [Tambe, 1988], [Holte. 1989], [Tcheng. 1989]. [Weiss and Indurkhya, 1991]. 

Concept description manipulation techniques were implemented within several learning 

programs, for example, pruning decision trees was implemented for ID family of 

programs [Quinlan, 1987], [Quinlan, 1989], and SG~TRUNC optimization method was 

implemented for the AQ family of programs ([Zhang and Michalski, 1989], [Bergadano. 

Matwin et aI., 1992]). These approaches. however, have common problem ~~- they learn 

from original noisy data without trying to improve training data during the learning 

process. 

4.6.1 Optimization Model 

This section introduces an optimization model [Pachowicz and Bala, 1991]. The 

optimization process is applied in order to modify concept descriptions in such a way that 

optimized descriptions reach a higher quality measure when compared with primary 

descriptions; Le., 
Q 

0: D xZ --------> D 

and Q[ r(d*.x)] :: max Q[ r(dz,x) ] 
Z 

where: d· e D is optimal concept description according to a given Q quality measure, 

dz =o(d,z) is an optimization process, Z is the space of optimization 

parameters. r(d,x) is a recognition process, and x e X. is a concept example 

(X is the representation space). 
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To follow the consequences of applied concept dl!scription optimization. let us 

study the characteristics of recognition processl!s under thl! following assumptions: (i) 

class descriptions are learned by the AQ ml!thod, (ii) training data is noisy, and (iii) 

hyper-spheres of training examples overlap for different classes through the attribute 

space. Let us consider the simplest case of class distributions; Le., there are only two 

classes, where the first class (ill) has uniform distribution of training data. and the 

second class (il2) has normal distribution of training data (NOl, (7 ». The ill class 

represents background noisy training data belonging to other hypothetical classes within 

attribute space that cause the partitioning of description of the il2 class. Learned 

descriptions of both classes will contain more than one concept component (rule) because 

the learning process derives a cover (a rule) over positive examples only and none of 

negative examples. 

Statement J: 	 For two classes in the atuibute space, where one of them (01) has 

uniform distribution and the second one (il2) has normal distribution. 

the relationship between acquired concept components (rule~) of the 

second class (il2) is as follows: 

t(il2.n) > t(il2.m) ==> 

P( p (ruleil2n• ~) < p (ruleill m. ~» > P( p (ruleil2n'~) > p (ruleil2m, ~) ) 


where. 


t(il2.n) and t(il2,m) are typicality measures of n. m components (rules) of the il2 class 


description. and p (ruleil2 
n• ~) is the distance from the center of ruleil2u to to ~ (the 


center of ilv. 


The presented statement means that more typical concept components (i.e., 

covering more training examples) are generally closer to the center of a cluster of training 

data than less typical concept components (the total-weight can be used as the measure of 

typicality of concept description components in the AQ method, Section 3.1). In this 

way, concept component typicality depends on the distance measure from the center of 

local cluster of training data to a concept component. If the area of concept components 

of class il2 is similar then the distribution of typicality measure t(il2.j) is a normal-like 

distribution regarding the center of data cluster. The assumption of similar area of 
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concept components of class Q2 is generally fulfilled by the distribution of examples 

belonging to class Q 1 that partition the description of class Q2. 

Statement 2: 	 For more than two overlapping classes in the attribute space, where one 

of them (Ql) has uniform distribution and the other classes (Q2, Q3, .. ) 

have nonnal distributions, the distribution of t(nk,j) typicality measure 

for k=2,3, ... ,n is not a normal-like distribution at the boarder area 

between classes. 

The irregular distribution of typicality measure is caused by the overlapping effect 

of two (or more) classes (Figure 4-12 ). It causes higher partitioning of concept 

descriptions within the border area between two classes if they are overlapped. The effect 

of a higher partitioning on concept descriptions is ct!nainly negative. It means that concept 

partitioning increases with an increase in the standard deviation of the distribution of 

training data. The increase in variance causes two classes to overlap with higher degree, 

i.e., the border line between both classes tends to disappear. The partitioning problem is 

much greater when the distance between cluster centers of two classes decreases. While 

the traditional pattern recognition method of Bayes risk minimization is able to 

approximate a cross-section between two overlapping classes, the introduced machine 

learning method is affected by the mentioned problems. The negative effect of 

description partitioning causes a single instance to be classified incorrectly (Le., matched 

with noisy concept component of any counterclass) even if it is in the center of its class 

membership. This situation occurs when a noisy concept component is derived across 

the border with an other class description (i.e., on the opposite site of the valley). This 

component can then be matched with test data incorrectly. The partitioning problem has 

been ignored by most previous research. Recently, [Whitehall, Lu et al., 1990] 

developed the CAQ algorithm that searches for the border between distributions of 

numeric attributes of different classes. Their approach, however. assumes that the 

distribution of training data is known explicitly. 

The effect of partitioning on concept descriptions can be utilized through the 

optimization of concept descriptions to increase system recognition effectiveness. 

Theorem I: 	 If 0* c D. d = < d I , d2, ... , d#classes> eO. and d* =o(d) e 0 

is optimized in such a way that if the number of less significant concept 
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components is reduced then the recognition process rCd*,x) matching 

an instance x with optimized description d* can perfonn better than 

the recognition process rCd,x) matching the same instance x with 

primary description d. 

Proof: 

Removing less significant concept components from the 

description d decreases the effect of class overlapping. 

(i) 	 the probability that the less significant concept component of a 

given Qi class is eliminated from the area of clusters typical for 

counter-classes is higher than from the area occupied by clusters 

of that class itself 

Cii) 	 removal of less significant concept components decreases 

negative partitioning of attribute space, and 

(iii) 	the decrease in partitioning of attribute space clears both the area 

of cluster centers and the border areas between class descriptions. 

113 attribute value 

Figure 4-12: Irregular distribution of typicality measure 

The optimization of a description d produces description d* that has clearer 

cluster areas and clearer border areas. The cluster area of one class has less noisy concept 

components than other classes. The border areas between class descriptions are more 
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distinct allowing them to match tt::st instanct::s with clost::r and more significant concept 

components. Thus, the probability that test instance x locatt::d within cluster areas of its, 

class membership is classified correctly, is higher for optimized description d* than for 

the primary description d. 

The degree of concept optimization plays a major role in a manipulation of concept 

descriptions. The increase in optimization parameters is expected to be followed by an 

increase in a quality value representing system perfonnance because the system will no 

longer m'!tch test instances with leSs significant concept components. Substantial 

increases in optimization parameters. however. will have a negative effect on system 

perfonnance. Such an increase can cause the removal of more significant concept 

components, especially when the distribution of such a concept is very irregular (e.g .• 

when the training data has many local clusters or it fonns a complex path through the 

attribute space). 

4.6.2 Optimization Criteria and Quality Measures 

The quality of a segmented and annotated image depends on the qUality of all three 

phases of the texture recognition and segmentation schema, i.e., (i) image processing 

perfonned to extract texture attributes, eii) matching image elements with learned texture 

class descriptions in order to annotate them by most probable classitication hypotheses, 

and (iii) local unification of classitication hypotheses in order to segment an image into 

homogenous areas corresponding to certain objects. Quality criteria for the evaluation of 

segmentation processes are precise [Zucker, Rosenfeld et at, 1975], [Davis, Clearman et 

aI., 1981], [Du Buf, Kardan et aL, 1990]. A perfect system should: (i) preserve sharp 

and precise borders between different texture areas, (ii) smooth homogeneous texture 

surface areas, and (iii) preserve small objects against their removal from the segmented 

image. These criterion are still difficult for current computer vision systems. The 

criterion of smoothing texture surface areas requires the extension of a radius of local 

operators extracting texture attributes. On the other hand, if a radius is enlarged then the 

operators blur borders between texture areas and they can remove small objects from an 

image. 
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Considering the hierarchical procl!sses of texture rl!cognition and segmentation 

schema and their mutual dependencies caused by the quality of their performance, the 

following performance criteria have been selected for texture recognition system 

[Pachowicz and Bala, 1991]: 

• 	 increase the classitication accuracy when matching a class description with 

examples of this class (maximum accuracy criterion), 

• 	 decrease the classification accuracy when matching examples with other 

class descriptions (minimum misdssification criterion), and 

• 	 perform on similar classification accuracy level for all classes when 

examples are matched with their class descriptions (system stability 

criterion). 

Considering the above requirements, a system should search for high recognition 

rate (recognition accuracy) and low misdassification rate. Moreover, the system stability 

criterion requires that each concept should have the same chance to be recognized. Highly 

negative effect is reached when one class can be recognized with the highest confidence 

(e.g., above 95%) and the other class with relatively low confidence (e.g., below 60%). 

Experiments presented in Section 5.3 (next chapter) were evaluated by testing 

optimized concept descriptions on separated sets of test data. For each subset of 200 

examples randomly extracted from a given homogenolls texture area representing i~th 

class (different than the area used for the extraction of leaming examples), the system 

computes a recognition rate (accuracy) for this class. The recognition rate for class rn 
was calculated by dividing the number of correctly classified test events from the 

TeventsOi rest dataset by the total number of test I!vents for this class; i.e., 

# { x: x E TeventsQi and r(d,x) =< ili matched> } 

# { x: x E TeventsQi } 

System recognition effectiveness was then evaluated through the computation and 

monitoring of the following measures: 
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1) average recognition rate computed through all twelve test datasets 

representing texture classes, 

2) standard deviation from the average recognition rate (system stability 

criterion prefers the standard deviation to be minimum), and 

3) minimum recognition rate representing the worst performing concept 

description (this rate should be as high as possible to allow all classes to be 

recognized). 

4.6.3 Concept Description Optimization Methods 

Two classes of concept description optimization methods can be distinguished; 

Le., direct and indirect. Direct optimization methods (Figure 4-13) directly manipulate 

acquired concept descriptions. This manipulation involves both specialization and 

generalization operations. Specialization operations shrink a concept through elimination 

of concept less signiticant components. On the other hand, generalization extends a 

concept description over nearest and hypothetically noisy (less significant) components 

belonging to counterclasses. The second approach to concept description optimization, 

indirect optimization, incorporates pre-optimized concept descriptions (Le., optimized by 

a direct method) to filtrate the final training data [Pachowicz and Bala, 1991]. The 

learning process is then repeated using modified (truncated) set of training data. This 

method is presented in chapter 6. 

4.6.3.1 Simple Truncation 

The first direct optimization method of concept descriptions is based on the theory 

of Two-Tiered Representation (IT) of nexible concepts [Michalski. 1987]. The theory 

assumes that an acquired concept description can be transfonned to its IT representation 

through a separation of the most significant concept properties (Base Concept 

Representation) from exceptions to these properties (Inferential Concept Interpretation). 

Since the concept descriptions learned by the family of the AQ programs are composed of 

ordered components (Le .• from the most to less signiticant components), one can truncate 

such descriptions by removing some less significant components. In experiments 

(Section 5.3), the truncation degree is controlled by a parameter corresponding to the 
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percentage number of training examples covered by removed components to all training 

examples. 

a) 

Training .. 
Learningdata 

Optimization degree Test data 

b) 

Trainin ,-----. Decision 
Learningdata 

Optimization degree 

Figure 4-13: Direct optimization methods 

4.6.3.2 SG-TRUNC Method 

The SG-TRUNC method is another direct optimization method applied to improve 

the performance of concept prototypes [Zhang and Michalski. 1989]. This method 

incorporates both specialization through the truncation of less significant concept 

components and also generalization of concept components. The generalization of concept 

components. however, is performed through the extension of attribute values within 

concept descriptions. In this way, a concept component covers not only positive training 

examples but it can cover some negative examples as well. The degree of allowed 

coverage is controlled by two parameters. 

The SG-TRUNC optimization method was implemented within the AQ16 

integrated learning system. The optimization process requires training data (Figure 10-13 

b). The authors of this method demonstrated its ability to improve system recognition 

effectiveness for different domains. 
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4.7 Multilevel Learning in TEXTRAL 

As was described in chapter 3, the TEXTRAL method incorporates an iterative 

(multilevel) application of symbolic inductive learning to generate texture rules. In this 

mode, a learning process is repeated iteratively until the desired textural area 

transformation is obtained. The transformation of textural area is accomplished by 

matching examples extracted from all pixel position in the learning area with description 

learned in the previous iteration. The results of this matching is a class membership 

decision obtained for each example. Since each example is extmcted from some position 

in the learning texture area, this position is labeled with class name. The new regenerated 

learning area of the given texture now represents a symbolic image. This symbolic area 

shows how well a texture class was segmented by its learned description. In all the 

following iterations, the system learns from segmented areas. In each iteration, average 

recognition accuracy is monitored. 

The method consists of two phases: one that extracts information from raw 

textural images by applying convolution operators and learns an initial set of rules; and a 

second that iteratively extracts symbolic information from the transformed representation 

of initial image and learns another set of rules. The first phase represents an application of 

Law's masks operators to learn the first set of rules. The second phase is the iterative 

process of symbolic image regeneration (based on rules learned in the previous iteration 

step) and the learning of a new set of rules by extracting symbolic events and applying 

the AQ inductive method. In the second phase, a new operator, different than in the first 

phase, is used to extract example from symbolic image. 

The extracted examples from each texture class are input into the AQ learning 

module. Generated descriptions (rule sets) describe discriminatory properties of a given 

set of classes and are stored in a D[J..kJ[J] (with i index equal 1, Figure 4-14). These 

descriptions form the first column of the D{]{] matrix. They are used to generate symbolic 

representations textural learning areas. The same extraction process is repeated, but this 

time to different pixel positions of the learning area. Each extracted event is evaluated by 

flexibly matching with D[J ..kllJJ (descriptions learned from the initial extraction 

process). The result of this evaluation is used to determine the class membership of a 
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given extracted examples. The determined class namt! (symbolic value) is used as a 

symbolic pixel value in a transformed symbolk representation of a given textural area. 

Each pixel position in the learning area is assigned its symbolic value based on the 

dominant symbolic value assigned by the evaluation process in the neighborhood of this 

position. To accomplish this, a small window (e.g., 5 by 5 pixel positions) is scanned 

through the learning area, and the central pixel position in this window is substituted by 

the dominant symbolic value inside the 5 by 5 area. This operation of symbolic image 

smoothing is necessary since not all pixel positions of the learning area are extracted for 

evaluation. This symbolic image represents a classification (or mis-classification) of the 

spatial characteristics of the first extraction and leaming processes (for i= 1). 

Initial Classes 

(Raw Textural Images) 


Initial and Symbolic Classes 
i~' 

C l .. k 
i, 

I 
I 

Learning Descriptions 
(AQ algorithm) 

t 

I
t t 
Symbolic Oass 

Stored Descriptions Regeneration Process & 
Performance Measure (Mulilevel Templates) 

D[1 ..kJ[1 . .i1 
~ 

Stop if Performance Measure> Threshold Value 

(Store Current Descriptions ) 

Figure 4·14: Multilevel learning .. 

.. k is the class index, i is the iteration index. shaded lines depict the regeneration process. 
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A different extraction process (than the one used for the initial image) is used to 

derive example sets for the next iteration of the signature learning algorithm. The 

extraction operator is a simple window of different sizes (5 by 5 was usually used in 

most experiments) which extracts symbolic values of neighboring pixels (xl,xl, .. ,x8) as 

depicted in a Figure 4-15. 

5 or 7 pixel locations ... ... 


x8 x4* 

Figure 4-1S: Extraction operator for symbolic image 

This operator is used in all subsequent learning and regeneration processes. Let 

us suppose that we have four classes (A,B,C,D). The extracted symbolic event might . 
look like this: 

<xl. xl, x3. x4, x5, x6. x7, x8> = <A. B, B. C, D, D, A. D> 

As we can see the extracted volume of information from symbolic representation 

is substantially reduced. 

. Each next iteration adds one column to the D matrix. A row in a matrix represents 

a sequence of descriptions. This sequence of descriptions together with extraction 

operators is called a texture signature (Chapter 3). Each description can be optimized as 

explained in the previous sections. 
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After each new symbolic image regeneration process is completed statistics for all 

classes in form of a confusion matIix are computed. Using confusion matrix the method 

estimates how well each class is represented by pixels with this class name value. A 

threshold is introduced to determine how well a given class should be represented in a 

transformed form by its name in a symbolic image. Let us say, if more than 90% of pixel 

location of a given class are assigned (by the matching process) its name we do not 

proceed with the next iteration step for this class. If more than 90% of the pixels are 

properly assigned, we say that this class is strongly represented by the descriptions 

derived from the previous extraction process. This also means that a given extraction 

process is relevant to the discriminatory characteristic of a given class. If less than 90% 

of pixel locations are assigned the name of lhe dass, the iteration process is repeated. If a 

class is mis-represented in its symbolic representation (majority of pixels are assigned 

other class name) the next step of the learning algorithm must proceed (probably yielding 

correct classification results in the next regeneration process). The ability to "force" the 

correct classification results by generating the next rule description of a given class (next 

step of regeneration and learning processes) is an important and novel feature of this 

method. This feature provides immunity to the eXlmction method chosen. 

The description matrix D is used to recognize unknown textural areas. The same 

sequence of extraction operators is used as describe previously (first convolution 

operators, followed by extraction window, as in Figure 4-15). The extraction events are 

flexibly matched against the first column of signature matrix. Based on matching reSUlts, 

the unknown textural image is transformed into its symbolic representation. The 

extraction process is repeated, but this time using a symbolic leve extraction operator 

(Figure 4-15). During each iteration step there may be fewer classes to be matched with 

the still unknown class. The determination of class membership can be made during each 

iteration step depending on the matching results. If the unknown class is matched 

strongly (above the threshold value) to some dass, the next iteration of the recognition 

algorithm is not needed. 



Chapter 5 

S. 	 Experimental Results 

5.1 Introductory Experiments 

This section presents introductory results of applying a learning approach to the 

acquisition of texture class descriptions [Pachowicz and Bala, 1991]. The experiments 

show the dependency of learning and recognition processes on variable learning 

conditions. The following conditions are tested: 

1. 	 the size of texture feature ext ...action window for the computation 

of local macro-statistics (explained in Section 4.3), 

2. 	 the number of training examples, and 

3. 	 the acquisition of specific and general concept descriptions. 

All experiments used 12 classes of texture presented in Figure 4-1. The extraction 

of texture attributes. learning processes. and tlexible matching processes were performed 

as explained in Chapter 4. 

5.1.1 Extraction Parameters 

The effectiveness of a learning schema applied to the acquisition and recognition 

of texture concepts depends both on the processes preceding the learning phase and the 

parameters of learning program. These processes are related to the extraction of texture 

attributes arid the selection of training data. The following parameters were investigated: 

63 
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(1) 	 the size of averaging window applil!d to compute local macro-statistics 

of texture energy (Laws'. 1980), and 

(2) 	 the number of tr.lining examples provided for the learning phase. 

Acquired characteristics of system fl!cognition etIl!ctivl!ness are presented in 

Figure 5-1. In this experiment the training dataset was adjusted from 50 learning 

examples per class to 300 learning examples per class. The tl!st dataset was constant and 

it consisted of 200 testing examples per class. The radius of the averaging window 

applied to acquire macro-statistics of texture enl!rgy (Figure 4-5) was 3.5, 5.5 and 7.5 

pixels. 

Figure 5-1 shows that the average recognition rate increased slightly with an 

increase in the number of training examples. At the same time, the standard deviation 

decreased and the minimum recognition rate increased rapidly for larger window size. 

This observation indicates that an increase in the number of training examples has 

substantial influence on system recognition stability. On the other hand. overall system 

recognition effectiveness. measured by the average recognition rate, is very sensitive to 

the window size. The overall effectiveness improved substantially with larger windows. 

Based on this evidence, one could consider an incrl!ase both in the window size 

and the number of training examples in order to improve system recognition 

effectiveness. An increase in window size, however. has significant influence on the 

image segmentation processes [Tomita and Tsuji, 1977J and must be limited to the area 

dependent on the content of texture image (i.e., size and shape of texture areas). A 

significant increase in the amount of training data is impmctical because of the increase in 

concept complexity. 

Considering the results of applying a learning approach to the acquisition of 

texture concepts from noisy texture data. one nnds that the improvement of system 

performance must be done in a way other than an adjustment in window size and the 

increase'in the number of training examples. A certain balance is required in order to 

support high recognition effectiveness, high stabilization of recognition decisions, and 

relatively low complexity of concept descriptions. In further experiments an extraction 
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5.1.2 Specific Versus General Concept Descriptions 

The difference between specific and general concept descriptions can be illustrated 

by the area of attribute space separated by these descriptions. General descriptions cover 
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a larger area than spedfic descriptions; Le., the conditiona1 part of a general rule contains 

larger range of attribute values than a specific rule. Moreover, general descriptions 

overlap a larger area than specitic descriptions. Thus. general descriptions can be matched 

strictly with test data over larger area of the attribute space. The AQ learning programs 

can generate both, specific and general concept descriptions, by using a trim parameter. 

For general description, the probability that an instance is classified to more than 

one class is higher than for a specific description. The primary effect of such matching is 

the increase in the average recognition rate - where the recognition rate is not a 

probabilitY measure and it is computed as the ratio of the number of instances classified 

correctly to the concept by the total number of test instances. A test instance, however, 

can be covered by more than one general concept which allows classification to more than 

one class (see Table 4-1 in previous chapter). In this way, a highly negative effect of 

such matching is seen as an increase in misclassification rate. The misclassification rate 

monitors both the number of instances that are classified incorrectly and the number of 

instances that are not uniquely classified to the correct class. 

Figure 5-2 presents the improvement in average recognition rate, standard 

deviation, and the minimum recognition rate when concept descriptions are learned as 

general descriptions (black dots) and specific descriptions (white dots). This 

improvement is illustrated for ditIerent sizes of the attribute extraction window and for 

different numbers of training examples. These results suggest it is better to learn general 

rather than specific concept descriptions. The misclassification rate, however, suggests 

otherwise. An example is shown in Table 5-1 and 5-2, where confusion matrices are 

presented both for general and specific concept descriptions. The average 

misclassification rate shows a nearly two fold increase when general descriptions are 

applied to recognize test data. The minimization of such misclassification rate is 

important for the image segmentation phase. Thus, the choice of general or specific 

concept descriptions must consider both the average recognition rate and the average 

misclassification rate. Considering the large difference in the misclassification rate, 

fUrther experiments will be based on the acquisition of specific rather than general concept 

descriptions. 
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Table 5-2: Confusion matrix for specilic concept description 

5.2 Experiments with Multilevel Learning 

Experiments presented in this section were performed using the iterative mode of 

the TEXTRAL method [Bala and Michalski, 1991J. 

Tables 5-3 and 5-4 show the confusion matrices characterizing the system' s 

recognition rates (in %) for individual texture events selected from testing areas of four 

texture classes. CI. C2. C3 and C4. Table 5-3 shows the recognition rate for first level 

rules. and Table 5-5 - for the second level rules. Recall that the conditions of the 

second level rules apply not to properties of the original image, but to the distribution of 

texture labels generated by the tirst level rules. 

The initial texture classes and their symbolic representations for the first and the 

second iterations of the learning algorithm are shown in Figure 5-3. 
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Table 5-3: Recognition rates using the tirst level rules 
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Table 5-4: Recognition rates using the second level rules 
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The average correct recognition rate of individual events for the 4 class 

experiment was 77% when using the tirst level rules, and 89.5% when using the second 

level rules. At the same time, the average misclassification rate decreased from 17.6% to 

6.6%, respectively. Thus, the experiment has demonstrated that multilevel learning 

(using higher level rules) can increase the system's recognition of individual events. The 

learning area for each class was chosen to be a 100 by 100 square. From each class 100 

events were derived to learn the rules in each iteration step. For each regeneration process 

500 events were randomly chosen inside the learning areas. After completing the 

matching process, a 5 by 5 window was scanned through all pixel positions (100 by 1(0) 

of the learning area and the dominant recognized class inside this window was used as 

the symbolic value of the pixel represented by the central position inside this window (see 

section 5). By using this technique all 100 by 100 pixel positions were assigned their 
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symbolic value (although only 500 had been used for regeneration/matching process). 

The same number of learning and regeneration events, and the technique of a dominant 

class inside a 5 by 5 window, were used in other experiments. 
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Figure S-3: Four texture samples and their symbolic representations 
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Figure 5-4 shows the results of the 8 classes experiment. The following average 

recognition accuracy are obtained from each iteration (averages of entries in the diagonal 

of three confusion matrices): 62.6%. 77.3%, 79%. This is an increase of 16.4% of the 

correct recognition rates between the first and the third iteration. The recognition rate of 

the class recognized increased from 53 % to 60 %. The average misclassification rate 

decreases from 32.1 % to 8%. 
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Figure 5..5: The eight textures experiment 
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Figure 5-5 presents the results of the 12 textures experiments (textures in Figure 

7). Each class was correctly recognized in each of four iteration steps. All classes were 

correctly recognized in each iteration step. The average recognition rate increased from 

48% to 58%. At the same time, the standard deviation decreased from above 20 to 15. 

Minimum recognition rate increased from 21 % to 36%. All these significant changes 

were obtained in only four iterations. 
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Figure 5-5: The twelve textures experiment 
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The obtained results are in accordance with the standard evaluation criteria 

for the recognition system that require: (i) an increase of the classitication confidence 

when matching a class description with data belonging to this class, (ii) a decrease of 

the classification confidence when matching data with other class description, and 

(iii) perform on the similar confidence level for all classes when data is matched with 

their class descriptions. These criteria are expressed by (i) an average recognition 

rate computed through testing all twelve texture classes (we require the highest 

averaged recognition rate), (ii) a low deviation in the distribution of recognition rates 

from their mean value (this system stability criteria prefers the minimum value of 

standard deviation), and (iii) an improved recognition rate for the worst performing 

concept description (we seek the improvement of the minimum recognition rate, 

searched through all classes of texture considered in the learning process). 

The most important conclusion drawn from these experiments is that the 

presented method is not greatly sensitive to the attribute extraction process selected. For a 

given extraction process, there might always be some texture class descriptions that 

cannot be used for the recognition because of incorrect classification results. The 

relevant/discriminatory information derived from these classes is not captured by the 

extraction process. Choosing other extraction process may help to generate better 

descriptions for these classes, but there might still be a different subset of texture set that 

performs poorly in the recognition phase. To alleviate this problem in the multilevel mode 

of the TEX1RAL method, correct/incorrect classification results are used as the essential 

class dependent information that help to discriminate between different classes by 

learning the next set of rules. This approach differs from traditional approach which tries 

to improve the effectiveness of recognition by designing more sophisticated extraction 

methods and which applies classifiers in such a way that they are adapted on the feature 

set to take optimal advantage of the extracted information. Such an approach belongs to 

the class of feature extraction oriented methods, where an extraction of relevant feature 

plays a very important role. The main problem with traditional approaches is the lack of a 

universal extraction method that works effectively with noisy data. 
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5.3 Experiments with Rule Optimization 

This section presents experimental results with indirect optimization texture 

descriptions [Pachowicz and Bala, 1991J. These experiments were run for twelve texture 

classes (shown in Figure 4-1). The training data was extracted applying modified Laws' 

method with the radius of averaging window equal to 7.5 pixels. Training data for each 

class consisted of 200 examples. The test data was extracted from different areas of the 

same texture and consisted of 200 test events for each class. 

5.3.1 Truncation of Less Significant Rules 

The effectiveness of the simplest concept optimization method that incorporates 

the truncation of less significant concept components complexes was already investigated. 

[Zhang and Michalski, 1989] demonstrated the increase in the recognition effectiveness 

when this method was applied to simple domains of symbolic data. This data, however, 

did not match noisy vision dom~in+ 

When truncation of less significant concept components was applied to texture 

descriptions no increase in average recognition rate was observed. The recognition rate 

(for 12 classes) was equal to 73% for a wide range of optimization degrees; Le., for 

removed complexes covering 2% to 30% of training examples. At the same time, the 

minimum recognition rate was constant and equal to 37%. The standard deviation applied 

to monitor system stability criterion oscillated randomly within a very small range of 

values; i.e .• between 23. and 23.5. A simple truncation was inefticient when applied to 

optimize texture descriptions. However. the lack of a decrease in system performance 

suggests that the truncation of less signiticant concept components could be applied to 

reduce the size of concept descriptions without negative effects in the recognition 

effecti veness. 

5.3.2 The SG·TRUNC Optimization Method 

The AQl6 integrated learning system [Bergadano, Matwin et al., 1992J as a 

program based on the SO-TRUNe optimization method was used for these experiments .. 
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The AQ 16 program differ mostly from the AQ 15 program in the implementation of the 

SO-TRUNC method and in the concept matching technique. The effectiveness of the 

AQ16 system was already demonstrated by [Zhang and Michalski. 1989] as an effective 

concept optimization method. The AQ 16 integrated system. however, was tested with 

simple non-engineering data and has never been applied to texture data. 

The flrst experiment with six textures was successfuL The optimization increased 

the average recognition rate and decreased the deviation of the recognition rate. The data 

for the flrst experiment, however, was much- simpler. Both training and testing data were 

less noisy, the attribute space was less complex, and number of classes was smaller to 

compare with 12 classes experiment. 

For all texture data presented in Figure 4-1 (twelve classes), concept optimization 

performed by the AQ 16 system gave poor results. These results are presented in Figure 

5-6. 
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Figure 5-6: Recognition results for the SO-TR UNC optimization method 
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Solid lines in the diagrams represent average rel.:ognition rate, standard deviation, 

and minimum recognition rate when the values of optimization level were increased. 

Dotted lines represent smooth characteristics. The average rel.:ognition rate dropped from 

about 72% to 63% and then recovered slightly to the 70% level with the increase in 

optimization level. This recovery, however, was associated with a very fast increase in 

the value of standard deviation and with a ntpid decrease in the minimum recognition rate. 

This means that the performance of well performing class descriptions was further 

increased while the perfonnance of worse performing classes was decreased deeply. 

Obtained results indicated deep decrease in the stabilization of system recognition 

perfonnance. At the same time the average recognition rate had no clear trend. These 

results motivated the research to seek other methods of concept optimization problem. 

The next chapter describes two newly developed methods. 



Chapter 6 

6. Other Concept Description Optimization Methods 

In order to achieve completeness and consistency in the presence of noise. one 

may generate overly complex and detailed descriptions. Such descriptions. however, may 

not perform well in future cases and suffer the disadvantage of excessive complexity. 

This is the well known phenomenon called overtitting. In addition, there is another effect 

of noise on the performance of inductive learning. A disjunct (rule) of a concept 

description is usually formed by selecting a set of common properties shared by a group 

of positive examples and none of negative examples. These properties are selected on the 

basis of the distribution of positive and negative examples. When the level of noise is 

high. noise tends to confuse the selection of properties. because noise may change the 

distribution. This effect results in an incorrect description, even when inconsistency and 

incompleteness are allowed in the description. 

Before advancing concept optimization methods, the following conclusions from 

the analysis of the optimization model (Section 4.6.1) can be stated [Pchowicz and Bala. 

1991]: 

• Removal 	of less significant concept components of negative class 

descriptions does not imply automatic generalization oj most significant 

components oj a given class over the space released by removed 

components. 

77 
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• The ultimate goal 	of such removal. h()H·t;'~·er. should be the increase in 

typicality of concept components ofa given class and the decrease in their 

number over the border areas between different concepts. 

• Such an increase in typicality of concept components and the decrease in 

their number over the border areas between different concepts can be 

achieved indirectly; i.e., when pre-optimized concept descriptions are used 

to filtrate a final set of training data and the learning process is repeated with 

the new dataset. 

In order to derive homogenous areas representing concept descriptions and to 

improve borders between concept descriptions of different classes, one has to merge 

partitioned concept components. This merging can be executed correctly over the space 

released by the removal of less significant concept components if these components were 

incorrectly acquired as components of counterclass descriptions. Such generalization 

over released areas of attribute space (1) extends concept components describing main 

cluster areas; i.e., increases the typicality of these L'oncept components. and (2) improves 

the separation of concept descriptions of different classes between themselves. 

To implement such generalization over released areas of attribute space, an 

indirect optimization method was developed. Introduced method uses pre-optimized 

concept descriptions to exclude less significant concept components by the filtration of 

training dataset. If some primary training examples were noisy and thus produce less 

significant concept components then some of these noisy examples can be mtered by pre­

optimized concept descriptions. It logically follows than that the t1ltered set of training 

data can be reused to learn fmal concept descriptions. The next section describes the AQ­

NT method that uses pre-optimized concept descriptions to remove noisy training 

examples. 

6.1 The AQ-NT Method 

The AQ-NT method represents a novel way of handling the problem of learning 

from noisy real-world data [Pachowicz and Bala, 1991]. It is based on the idea that 

events covered by rules with a low t-weight may be noisy. The assumption is that .the 
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system learning from a dataset that does not conlain such events has a greater chance to 

produce correct (in the sense of predictive accuracy) concept descriptions than when· 

learning from the original events. 

The process of learning concept descriptions (in the form of a ruleset) is done in 

the following two phases (Figure 6-1): 

Phase 1: Performs a rule-based ·'t1ltration" of the noise from the training 

data. This is done in the following way: 

J. 	 Induce decision rules from a given dataset using the AQ learning 
program. 

2. 	 Truncate concept descriptions by removing "the least significant" 
rules, defined as rules that cover only a small portion of the training 
data (have small t-weight relative to the t-weight ofother rules). 

3. 	 Create a new training dataset that includes only training examples 
covered by the modified concept descriptions. 

4. 	 If the size of the dataset falls below an assumfd percentage of the 
training data (which reflec:ts an assumed error rate in the data), then 
go to Phase 2. Otherwise, return to step 1. 

Phase 2: Acquire concept descriptions from the reduced training dataset 

using the AQ learning program. 

The second step of the algorithm identities a set of small disjuncts for each 

concept from the complete and consistent description generated in the first step. In the 

initial experiments small disjuncts are determined based on a threshold (TH) ranging from 

o to 1 provided by the user and the number of examples covered by the largest disjunct 

The largest disjunct covers the most examples. If the number of examples covered by the 

largest disjunct is N. then all disjuncts which do not cover more than N *TH examples 

are small disjuncts. The method used to defme small disjuncts is based on the number of 

examples covered by the largest disjunct rather than the number of total examples. Thus 

in the proposed algorithm. a concept description has small disjuncts only if it includes 

some large disjuncts. In the algorithm. the threshold TH controls the size of small 

disjuncts. Larger TH causes more small disjuncts to he selected and more examples may 
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be removed. When TH is set to I, all disjum:ts an:! small. Wh~n TH is set to 0, no 

disjunct is small. The TH should be set according to the degree of noise in a domain. 

Generally, in a highly noisy domain, TH should be set larger than in a less noisy domain. 

If TH is too large, many non-noisy example will be removed. If TH is small, the 

algorithm will do more iterations in which only a few examples are removed . 

.. J Filtration I 
- I I 

~~ 
Optimized 
Rules 

Optimization ,r
I Initial I .. of Learned!'" ILearning I Rules 

Data J Rules 

New Learning Data 

Figure 6·1: The AQ-NT nowchalt 

The proposed method has advanced rule truncation in two aspects. First, after 

negative noisy examples are removed from the u'aining set disjuncts (rules) broken by the 

removed negative noisy examples could merge into one larger disjunct. In the rule 

truncation method, the remaining disjuncts never get a chance to be merged. Second, the 

AQ-NT algorithm removes noisy examples grJdually, and each iteration removes only a 

subset of noisy examples that are easily identified. This prevents the removal of too many 

non-noisy examples. The descriptions generated from the initial training set may not 

include many large disjuncts. because of the noise. Many small disjuncts do not cover 

noisy examples. According to the measure we use to decide small disjuncts. only the 

disjuncts that cover one or two examples are chosen as small disjuncts. Therefore. only 

very few noisy examples are removed at the beginning. After some noisy examples are 

removed. some small disjuncts which cover non-noisy examples may merge into larger 
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disjuncts. Examples covered by some small disjum:ts which do not merge are removed in 

the next iteration. 

6.2 The AQ-GA Method 

The AQ-GA is the second optimization method described in this chapter [Bala. 

Dejong et al .• 1991]. [Bala, Dejong et aL, 1993]. This method integrates two forms of 

learning, symbolic inductive generalization and genetic algorithm based learning. The 

integration is done in a closed-loop fashion in order to achieve robust concept learning 

capabilities. The learning process cycles through two phases (Figure 6-2). 

In the first phase. initial concept descriptions are acquired by running a noise­

tolerant extension of the AQ 15 rule induction system. The resul ting concept descriptions 

may not be. optimal from the performance viewpoint, due to the AQ bias to generate 

simple, cognitively-oriented descriptions. Therefore. in the second phase, the system 

attempts to improve the performance of the descriptions by employing a genetic algorithm 

(GA). 

The descriptions obtained from AQl5 are semi-randomly modified, using basic 

genetic operators: mutation and crossover. The resulting descriptions are evaluated 

according to a performance criterion. The criterion was the recognition accuracy of the 

descriptions on the "tuning" data (a subset of the training set of events). The best 

performing descriptions are selected from lhe population, and a new generation is 

repeated. The process stops when a desirable performance level is achieved. or the 

number of generations exceeds some limit. 

Genetic algorithms typically represent individuals in a population (here. concept 

descriptions), using fixed-length binary strings. A novelty of the AQ-GA method is that 

it uses, instead of binary strings, concept descriptions (formally, VLl expressions) . 

produced by AQ15. To this end, a special mutation operator was designed to introduce 

small changes to selected condition parts of the ruies in each concept description. The 

condition parts are selected by randomly generating two pointers: the first selects a rule, 

and the second one selects a condition in this rule. 
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Figure 6-2: The AQ-GA method 

The most-left or the most-right values of the referent in this condition are slightly 

modified. For example, the condition [xl: 10..23] might be mutated to any of the 

following: [x 1 = 10.. 20], [x 1 = 10..24], [x I = 12..23] or (x 1 = 8 .. 23]. as well as 

others. Such a mutation process samples the space of possible concept description 

boundaries to improve the perfonnance criteria. The mutation process can be viewed as 

equivalent to various transmutations (knowledge transfonnations; Michalski, 1993) of the 

conditional part of a rule: 

• specialization: [x5 : 3, 10..23] ==> [x5 = 3, 10..20] 

• generalization: (x5 = 3, 10 ..23] ==> [x5 = 3, 10..24] 

• variation: [x5 = 3, 10..23] :::=> [x5 = 5, 10..23] 
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The crossover operation is performed by splitting concept description into two 

parts. upper rules and lower rules. These parts are exchanged between parent concept 

descriptions to produce new child concept descriptions. Since the degree of match of a 

given tuning event depends on the degree of match of this event to each rule of concept 

description. this exchange process enables inheritance of information about strong rules 

(strongly matching) in the individuals of the next evolved population. An example of 

crossover applied to short. four rules description is depicted below: 

Parent description 1 


1 [xl=7 ..8] [x2=8 .. 19] [x3=8 .. 13] [x5=4 .. 54] 


2 [xl=15.. 54] [x3=lLI4] [x6=O.. 9] [x7=O .. 1l] 


---------------crossover position ------------------­

3 [xl=9.. 18] [x3=16 ..21] [x4=9 .. 1O] 


4 [xl=1O .. 14] [x3=13 .. 16J [x4=14..54] 


Parent description 2 

1 [xl=16..54J [x5=O..6J [x7=5..12J 

2 [xl=8..25} [x3=8 ..13][x4=9..11} [x5:0. .3J 

-------------crossover position -------------------­

3 [x4=O . .22} [x5=8 ..9} [x6=O..7J [x7=11 . .48} 

4 [x2=5..8J [x3=7..8} [x4=8..11} {x5=O ..3} 

The result of the crossover operation (one of two child descriptions) is the following: 

1 [xl=7 ..8] [x2=8 .. 19] [x3=8 .. 13] [x5=4 .. 54] 

2 [xl=15..54] [x3=11..14] [x6=O.. 9] [x7=O .. 11] 

3 [x4=O..22} [x5:8..9J [x6=O..7} [x7:1 1 . .48} 

4 [x2=5..8} {x3=7..8} {x4=8..11J [x5=O . .3} 
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6.3 Experiments with AQ-NT and AQ-GA 

6.3.1 The AQ-NT Experiments 

The AQ-NT method for advanced concept description optimization have been 

implemented and applied to texture data. These introductory experiments have been 

described in [Pachowicz and Bala. 1991, 1992]. Texture data used in the introductory 

experiments was composed of 6 texture classes (Figure 4-2). 

The initial training set for learning induded 200 training examples for each 

texture, and 200 test examples were used in the recognition process. Each example was 

represented by eight attributes and the value of each attribute was obtained using one of 

eight Laws' masks. A misclassitication noise level of 30% was introduced to each class. 

n% misclassification noise level means n% of all training examples are noisy examples in 

the training set. n% of examples are randomly selected from all classes and the classes 

that they belong to are switched. The performance evaluation was based on two aspects. 

classification accuracy and description complexity. Classification accuracy was measured 

as the average percentage of correct classitications made by the concept description on all 

instances. Description complexity was measured by the average number of disjuncts 

involved in describing six classes. Figure 6-3 represents results obtained by the AQ-NT 

method. The best recognition rate (95.3%) was obtained for TH =0.2 (94.33% -86.0% 

= 8.33 % increase of average recognition rate was obtained after 12 iterations). Figure 6­

4 shows results obtained for a one-step noise removal, by truncating the small disjuncts 

according to the TH value. The best average recognition accuracy was obtained for TH = 

0.75. and is 94.6% (slightly lower than the one oblained in the iterative approach). 

Figure 6-5 shows the average number of disjuncts in the iterative approach. We 

can see that this number decreases from 37 to 3. In the one step truncation method the 

average number of disjuncts obtained for TH =0.77 is 10. These numbers show that the 

iterative approach outperfonned the one-step truncation method with regard to description 

complexity. These are the most encouraging results obtained by initial experiments with 

the iterative approach. 
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The average number of disjuncts for one-step method (with TH:O.16) is 10 

(dotted arrows in Figure 6-5). The iterative approach outperformed the one-step approach 

after seven iterations (9 rules). 
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Figure 6-6 depicts examples of two classes (A and F) distributed on the two 

attributes cross-section (x5-x6) of the representation space. One can observe the 

effectiveness of the AQ-NT method. Figure 6-6 (c) represents the situation after the AQ­

NT run. Almost all noisy examples have been successfully truncated and the cross­

section is similar to the cross-section without added noise. 
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Figure 6·6: Cross-sections through attributes x5 and x6 of examples from class A 
(white dots) and class F (black dots): (a) clean noise-free data. (b) noise-added data, (c) 

data after the AQ-NT noise removal 
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6.3.2 The AQ-GA Experiments 

The performed experiments [Bala, Dejong el al., 1991], [Bala, Dejong et al.. 

1993]. involving learning rules for describing texture classes, demonstrated that the 

classification results obtained with the hybrid learning algorithm (Figure 6-3) (AQ 

Training Data -> AQ and Tuning Data -> GAs) exceed the performance of the AQ 

algorithm used alone (AQ Training Data + Tuning Data -> AQ). 

In the experiment we used 12 classes of texture data. The initial descriptions were 

generated by the AQ module using 200 examples per class. Another set of 100 examples 

was used to calculate the performance measure for the GAs cycle. The testing set had 200 

examples extracted from differl:!nt image areas other than training and tuning data. The 

"weakest" class (with the lowest matching results with testing data) selected for the 

experiment was class d92 (Figure 4-1) with 40 disjuncts (rules). Figure 6-7 represents 

results of the experiment White circles of the diagrams represent characteristics obtained 

for tuning data used to guide the genetic search. Characteristics mapped by black circles 

were obtained for testing data. Figure 6-7 (a) shows the performance of genetically 

evolved description of d92 texture. When all 300 I:!xamples were uSc:!d to generate rules. 

the average classification rate for this class (when tested with 200 examples) was below 

45%. When the set of 300 examples was split into two parts, 200 for the initial inductive 

learning and 100 as the tuning data for GAs cycle, the correct classification rates obtained 

in the 30th evolution was above 60%. That is a signiticant increase in comparison with 

45% obtained from inductive learning only. Figure 6-7 (b) represents the evaluation 

function used by genetic algorithm in order to guide the genetic search. The evaluation 

function was calculated as a rate of the correct classifications to mis-classifications for all 

twelve texture classes and is depictl:!d for both testing and tuning data. The increases of 

CCIMC on both diagrams represent an overall improvement of system recognition 

per(ormance. The system performance was investigated for a larger number of GA 

generation steps. However, it appears, that the noticeable increase was reached both for 

the d92 class description and for the overall system performance in a very few generation 

steps (Le .• in 10 steps). 
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Figure 6·7: Experimental results of the AQ-GA method 


The effects on system performance due to running the GA for a larger number of 

generations was also investigated. However, it again appeared that most of the 
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improvement (both the decrease in complexilY of the d92 dass description and the 

increase in perfonnance) was obtained in a very few number of generations. 

6.3.3 The Segmentation Experiments 

This section describes results of the application of the AQ-NT and AQ-GA system 

to texture segmentation problem. The following experiment was perfonned. An image 

256 by 256 pixel positions with six areas of different textures was acquired --- Figure 4-2 

with indicated classes: A, B, C, D, E, and F. A set of 200 examples was extracted to 

represent each texture class. A 50 % misclassification noise was introduced by shuffling 

examples between different classes. After introducing the misc1assitication noise, 150 

examples in each class were examples from other classes. Such heavy m~sclassifcation 

noise was used to test how effectively obtained rules from these examples can be applied 

to texture segmentation task and how differem noise removal techniques can improve 

image segmentation. Additional 200 tuning examples were extracted for each texture 

class. This set of examples was used by the AQ-GA method. 

In the experiment, two methods were used to improve the rule perfonnance. The 

first method was the AQ-NT method and the second, directly following, the AQ-GA 

method. In each iteration, obtained descriptions were used to segment the textural image. 

After 13 iterations of the AQ-NT algorithm the peak perfonnance was obtained. Then, the 

worst performing concept description was idemitied and forwarded to the GAs module. 

Class F was the worst perfonning; i.e., the recognition rate was equal to 84%. In the 

GAs module, a population of 20 different variations of the rule description of class F was 

created. After 30 generations of GAs run the best version of class F description was 

plugged into the set of other class descriptions. The characteristics of the GAs run are 

presented in Figure 6-8 and 6-9. The recognition rate for the description of class F was 

improved significantly; Le., from 84% to 90% over 30 generations of GAs. The 

effectiveness of applied GAs modification of rule description for class F is illustrated in 

Figure 6-10 on segmented images, where class descriptions were applied to segment the 

textural image during the AQ-NT run and after the AQ-GA run. 



91 

~ ! 

~ 90 a Results for tuning data ..........,............._ ..........I-....._..q 

E • Results for testing data! I 
.. 

~ ······..·····..········..··t····...·····..·············!····_..····..··········1"··········..···············1·· ···..·..···············r·......···..·..·...._·q 

:~ 85 ...·..·..........·....·..l·....·..........·····....··j··..·_·..·..·..·..·· .. ·j-.............. :..........._ ........./'..................._..­

~ ·---"-r"---l-·"····""-t---·--~.!........q 
 ....._ ­

~ 80T-----~------~------~-----+------+-----~ 
o 10 20 Generations 30 

Figure 6-8: Recognition accuracy for the F class (AQ-GA run) 
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Figure 6-9: Evaluation function computed as the CC/MC for tuning data 

The experiments with texture recognition and image segmentation showed that 

methods which use some heuristics can be used only to some point, where the only 

possible further increase of the performance can be accomplished by using some form of 

data-driven method. The best performance of the AQ-NT method was obtained after 13 
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iterations of the algorithm. The only further improvement of the perfonnance was 

obtained by searching borderlines of condition subrang~s using a performance-based 

genetic algorithms. 

Step 9 Step 13 

Figure 6·10: Results of the segmentation experiment with added 50 % of 
misclassification noise 



Chapter 7 

7. Related Work 

7.1 Channic's TEXPERT System 

TEXPERT is a software system designed by Channic [Channic. 1988] to acquire 

and apply knowledge for recognizing digital ultra-sound images. Originally. GEM 

(Generalization of Examples by Machine) [Reinke. 1984] was used as the learning 

mechanism in the system. Some experiments were then performed using a LISP version 

of AQl1 developed by Jeff Becker at the University of lllinois. Finally. TEXPERT used 

the AQ15 algorithm [Hong. 1986]. 

Experiments were performed on two-dimensional digital images obtained from 

ultrasound analysis of laminated aircraft materials. These images represent areas of 

varying thickness or structural flaws in the material. Figure 7-1 shows one of the digital 

ultra-sound images used in experiments. 

In this image. there are two classes or areas. These are normal or class 0 

(background) area and abnormal or class 1 area. In order to learn rules for classifying 

pixels into one of these two areas, the user selects a training area from which TEXPERT 

generates events to give as input to the learning algorithm. In most experiments Channic 

used a simple three-by-three pixel event template to generate twelve attributes for each 

pixel. These attributes consist of the intensity value of the pixel. the intensity value of the 

eight neighboring pixel, the maximum and minimum values among these nine. and the 

difference between the maximum and minimum value. The rules classified 94% of the 

class 0 (normal) pixels correctly and 97% of the class 1 (abnormal) pixels correctly. 
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Figure 7-1: An example of ultra-sound image used by TEXPERT 

7.2 Rule-based Versus K·NN Method 

In [Pachowicz. 1989] a comparison of rule-based versus k-NN method is 

examined. The images used by Pachowicz were characterized by irregular lighting and 

several of them had smoothly changed resolution caused by the screw projection. The 

quality of images was low to create difficulties for the learning and recognition systems. 

Input gray-level images were processed by Laws' masks. A vector of k features (k=8) 

was extracted for a single pixel. and for each method of feature extraction. The scaling 

module performed the conversion of numeric features into their symbolic intervals. The 

consistency of learning data was checked. and in the case of inconsistent interval. the 

local scaling of higher resolution was performed. The AQ algorithm was applied to 

learn texture attributional descriptions from symbolic events. Next, these rules were 
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optimized incorporating two-tiered represt!ntation of imprecise concepts. Results are 

presented in Figure 7·2. 

PR 
approach 

k·NN 

ML 
approacb 

rules 

ML 
approacb 

optimal rules 

Average 
recognition 70% 80% 91% 

Highest 
recognition 99% 93% 98% 

Lowest 
recognition 40% 72% 83% 

Averaged 
deviation 16.3 7.0 4.0 

I I 

123456123456123456 
texture classes 

Figure '.2: Comparison of machine learning and pattern recognition approaches 

The best results (Figure 7-2) were obtained for the rule-based approach. The 

average recognition was equal to 91 % and the syslem recognized all (est textures 

correctly. The highest recognition rate was equal to 98% and the lowest recognition rate 
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was equal to 83%. The averaged deviation defined as d = liN I. Ix. - xii was the 

lowest and equal to 4.0. The experiments that applied texture classes description using 

inferred non-optimized rules showed the average. highest and lowest recognition rates 

equal 1080%, 93% and 72%, respectively. The averaged deviation was greater and 

equal to 7.0. In comparison, the average, highest and lowest recognition rates for the k­

NN (k=1O) pattern recognition method were equal to 70%.99% and 40%, respectively. 

In his work Pachowicz concluded: 

1. 	The application of ML methodology increases the recognition effectiveness and 

optimizes the description of texture concepl 

2. 	The improvement of recognition effectiveness possesses specific character, Le., 

there is the increase of recognition rates for those classes that were classified 

before with lower rates, and the decrease of recognition rates for those classes that 

were recognized before with very high recognition rates. 

3. 	Optimal rule description smoothes recognition rates; i.e., the deviation of the 

recognition rate is reduced. 

In summary, the observed advantage of the applied ML approach is a four fold 

decrease of the deviation of the recognition rate. This effect gives the system m!Jre 

stability and makes the recognition more uniform. 

7.3 Noise Tolerant Learning 

Most of the early inductive learning systems, such as AQl1 [Michalski and 

Larson. 1978] and ID3 [Quinlan, 1979] make the "noise free domain" assumption that the 

examples presented to the systems do not contain any errors, and also assume that the 

description language is complete. These systems consequently constrain their searches to 

only those rules that are both consistent and complete. The requirement of "noise free 

domain" is often difficult to satisfy in engineering data [Chien, 1991]. and therefore 

prevents many learning systems from being applied successfully to many practical 

problems. 
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There are two basic groups of approaches to learning from noisy data. One is to 

allow a certain degree of inconsistent classification of training examples so that the 

descriptions will be general enough to describe basic characteristics of a concept. This 

approach has been taken by the 10 family of algorithms [Quinlan. 1986]. The main noise­

handling mechanism for decision trees is tree pruning. There are two types of tree 

pruning: pre-pruning, performed during the construction of a decision tree, and post­

pruning, used after the decision tree is constructed. The second approach is to discard 

some of the unimportant rules and retain those covering the largest number of examples. 

The remaining rules are a general description of the concept Typical algorithms using 

these techniques are the AQ family of algorithms [Michalski. 1986]. Rule truncation in 

AQ 15 ([Michalski. 1986, Zhang and Michalski, 1989, Pachowicz and Bala, 

1991] [Michalski, 1986, [Zhang and Michalski. 1989]. and the significance test in CN2 

[Clark and Niblett, 1989] are also examples of that approach. Other approaches are based 

on the minimum description length principle [Quinlan. 1989] and cross validation to 

control over-fitting during a training phase [Breiman, Friedman et ::11., 1984]. 

For example. an original technique has been developed and implemented within the 

CAQ program. a machine leaming tool for engineering applications that integrates AQ and 

a statistical learning approach [Whitehall. Lu et a1.. 1990]. During the learning process, 

noisy events are removed during the process of building a consistent description by a 

method called distribution fit. The statistical approach in CAQ determines where the 

interval(s) for positive and negative events should be placed for a conditional part of a 

continuous valued attribute in the rule structure. An inconsistent conjunctive concept is 

constructed that still covers some negative events along with some positive events. The 

system needs to specialize the concept by adding a condition that will "uncover" the 

negative events and still leave covered as many positive events as possible. To reduce the 

amount of data that must be processed, the system looks at only the events currently 

covered by the conjunctive concept. It is in this section of Lhe algorithm that events can 

be identified as noise. Noise events are removed from the process of building a 

consistent concept. The CAQ algorithm. however. assumes that a distribution of 

attributes is known a priori; i.e .. the normal distlibution. 
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7.4 The PRAX Method 

In the TEX1RAL system, each texture class is represented by a ruleset. If there 

are very many texture classes, there will be correspondingly many rulesets. and the 

learning and recognition process may become complex. The PRAX method [Bala. 

Michalaki. Wnek. 1992] represents an alternative approach to the problem of learning a 

large number of concept descriptions. 

The idea behind the PRAX method is to designate some concepts to be basic. and 

describe the remaining concepts in terms of the relations to the basic concepts. This idea 

can be simply illustrated by the example in Figure 7-3. If the system already knows the 

concept of "orange" (Des!) and "lemon" (Des2), then it can learn the concept of 

"grapefruit" by relating properties of the grapefruit to those of the lemon and the orange 

(Des3"), rather than in terms of original properties (Des3'). 

Phase I. Learning Basic Concepts 

ORANGE LEMON 

j •
Des 1=F(color, faste, etc) 0es2 =F(color, taste, etc} 

Description of basic concepts 

Phase II. Learning New Concept 

GRAPEFRUIT 

Des3': Ftcola, taste, etc) Des3" =F( Des1, Des2) 

Figure 7·3: A simple illustration of the PRAX method 
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In the PRAX method, dt!scriptions of lht! basi(; (;Onct!pLS art! called "principal 

axes." They are learned in tht! similar way as in tht! TEXTRAL mt!thod. To learn a new, , 

non-basic conct!pt, tht! system determint!s a similarity matrix (SM) for that concept. The 

SM specifies the average degret!s of similarity betwet!n tht! training examples of the new 

concept and all the principal axes. 

The degree of similarity between an evt!nt and each principal axis is determined 

using flexible matching. The procedure determint!s the accumulated difference between 

the attribute values in the event and the conditions in eu(;h rule in tht! principal axis. To 

obtain a uniform rt!presentation of all class descriptions, the similarity matrix is also 

computed for all basic concepts. 

These degrees of similarity can be viewed as values of the new constructed 

attributes. Thus. this method rt!presents a special case of constructive induction. (The 

general concept of constructive induction includes any method that self-modifies the 

concept representation space during the induction process. Generating additional, 

problem oriented attributes is an important form of such self-moditication of the 

representation space [Michalski, 1978; Wnek & Michalski, 1991].) • 

To recognize an unclassitied event, the method creates an SM for it, that is, 

determines a matrix of similarities betwet!n the event and the principal axes. 

Subsequently, the system determines the best match between the SM of that event and 

SMs of all candidate concepts. The best match indicates the class membership. 

The method was empirically evaluated by applying it to the problem of learning 24 

texture classes from examples (Table 7-1). Each example was described in terms of eight 

multivalued attributes (representing detectors of various basic geometrical concepts, such 

as the presence of lines, edges. V-shapes, etc.). The performance of the PRAX-derived 

descriptions was compared with the performance of the k-NN classitier. Different level of 

misclassitication noise were added to test the robustness of the method. 

The main strength of the method lies in a problem-relevant transformation of the 

descriptor space. The new descriptors form generalized sub-spaces of the initial, training 

space. In addition, the method uses a non-linear distance met11c to calculate values of 
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constructed attributes. The distance metric based on the idea of t1exible matching is less 

sensitive to noise, then traditional Euclidean distancl! metric often used by pattern 

recognition methods. 

Table '·1: The results from comparing PRAX with the k-NN method 

METHODS 
The Recognition Rate 
(in %) of Examples 

from Unknown 
Texture 

PRAX 
No Noise 100% 
5% Noise 100% 
10% Noise 100% 

K-NN 
No Noise 96% 
5% Noise 92% 
10% Noise 87% 

The current problem with the method is that it does not have a mechanism for 

deciding how to choose basic concepts. Choosing the minimal subset of concepts to be 

used for principal axes generation is important for method to be efficient. This problem 

will be a subject of future research. Another weakness is that the similarity matrix is a 

relatively complex representation. 



Chapter 8 

8. A Brief Summary and Conclusions 

This dissertation research is a study of the applicability of machine learning 

methods to problems of computer vision. The tirst chapter discusses the background and 

motivations of the research. The specitic problem investigated in this research is inductive 

learning of texture descriptions. The proposed schema for learning texture description is 

separated into; 0) image pre-processing and attribute extraction, (ii) acquisition of texture 

concepts by inductive learning. (iii) optimization of concept prototypes. and (iv) 

recognition of unknown texture samples. 

In chapter 2, characteristics of sensory data and problems related to learning from 

such data are presented. Characteristics that can be expected in the vision data include: 

noise, complex representation spaces, large training sets, and large numbers of classes. 

The general approach to learning textures is presented in chapter 3. Given an 

image with labeled samples of different textures (these samples are attribute vectors), the 

learning system generates sets of rules describing the different textures (Logical 

Templates). In an iterative mode of the learning method these rules are used to transfonn 

this.image to a "symbolic" image, in which picture elements are labels of corresponding 

texture areas. New sets of rules (the next level template) can be learned from the symbolic 

image. 
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Chapter 4 is a detailed description of the learning method. A set of 12 textures is 

presented for experimental validation of the method. The set includes many random 

textures. This data results in attribute space with highly owrlapping clusters of texture 

characteristics. The convolution method, operating on small image windows, invariant to 

changes in luminance and contrast, has been selected for extraction of texture 

characteristics. Inductive learning of texture concept descriptions was based on the AQ 

algorithm, developed by Michalski [1986). The algorithm is a supervised covering 

algorithm. AQ learns decision rules by performing inductive inference on examples. 

Training examples are expressed as the conjunction of attribute values. The program 

performs a heuristic search through a space of logical expressions until it tinds a decision 

rule that is satisfies all concept examples, hut no counterexamples. and is optimized 

according to a preference criterion. Two classifications methods, the strict method and 

flexible method. were introduced to determine concept membership of an unknown 

example based on the descriptions generated. 

Chapter 4 introduces a concept description optimization model and initial 

optimization methods are presented. One of the most important problems in the 

application of machine learning to vision data is the intluence of noise. Image data is 

corrupted with noise. and consequently, learned concept descriptions contain noisy 

components. The main objective of optimization methods is to decrease the intluence of 

noise on learned descriptions according to some performance measure. The following 

three performance measures have been proposed for texture recognition system: (i) 

increase the classification accuracy when matching a class description with examples of 

this class (maximum accuracy criterion ). (ii) decrease the classitication accuracy when 

matching examples with other class descriptions (minimum misclassification criterion ). 

and (iii) perform on similar classitication accuracy level for all classes when examples are 

matched with their class descriptions (system stability criterion ). 

To maximize the accuracy criterion, the learning method incorporates an iterative 

(multilevel) application of symholic inductive learning to generate texture rules. In this 

mode. a learning process is repeated iteratively until the desired textural area 

transformation is obtained. The transformation of textural area is accomplished by 

matching examples extracted from all pixel position in the learning area with description 
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learned in the previous iteration. The result of this matl.:hing is a class membership 

decision obtained for each example. Since eal.:h example is extracted from some position 

in the learning texture area, this position is labeled with a dass name. 

The experimental results were reported in chapter 5. The main objective of all 

experiments was to show an improvement in perfOimance (i.e., average recognition rate, 

standard deviation from the average rate, and minimum recognition rate). A significant 

increase in perfonnance was achieved in the multilevel learning mode of the TEXTRAL 

method (12.5% increased of average recognition rate and 11% decrease of 

misclassification rate in the first experiment with multilevel learning). Experiments with 

the direct optimization of concept descriptions motivated the research to seek new 

optimization methods. In chapter 6, a novel indirect optimization method was proposed 

based on the analysis of a concept optimization model. The methods incorporates pre­

optimized concept descriptions used to nItrate training data. The indirect optimization 

method outperfonned direct methods. A method that uses genetic search was also 

introduced. The method is used to further improve the performance of the worst 

performing descriptions. and at the same time improve the whole set of concept 

descriptions. This methods signiticantly improved the system stability criterion. A 

surprising result for the Genetic AlgOlithms approach was that the method showed an 

improvement in just a few generations. The experimental results showed support for the 

proposed inductive learning from vision data. 

Chapter 7 reports on related work. Channic's TEXPERT method is presented 

[Channic. 1988] The TEXTRAL method presents a significant advancement over the 

TEXPERT method. The improvement of TEXTRAL over TEXPERT lies in its 

application of inductive learning to tine-grained, high resolution random textures, 

utilization of concept optimization methods, and in its application of inductive learning to 

a larger set of textures. 

Chapter 7 presents related work by [Pachowkz, 1989] on a comparison of rule­

based versus k-NN method applied to texture recognition. The main advantage of the 

observed advantage of the rule-based approach is a four fold decrease of the deviation of 
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the recognition mte. This effect gives the system more stability and makes the recognition 

more uniform. 

Finally, related noise tolemnt learning methods presented in chapter 7 use 

different approaches. One is to allow a certain degree of inconsistent classification of 

training examples so that the descriptions will be general enough to describe basic 

characteristics of a concept (e.g., in decision trees a pre-pruning, performed during the 

construction of a decision tree. and a post-pruning. used after the decision tree is 

constructed). The second approach is to discard some of the unimportant rules and retain 

those"covering the largest number of examples. Because the above methods try to remove 

noise in one step, they share a common problem - the tinal descriptions are based on the 

initial noisy data. For methods applying pn:!-pruning. the attributes used to split the 

instance space in a pruned tree are selected from initial noisy tmining data. For methods 

applying pre-truncation, the search for the best disjunct is also influenced by noise in 

training data. This problem is more severe for post-pruning and post-truncation. The post 

learning concept optimization cannot merge broken (by noisy examples) concept 

components (Le., disjuncts, subtrees). So. the "gaps" in concept descriptions remain 

unfilled. Post learning optimization will cause the complexity of concept descriptions to 

decrease only if the concept components are eliminated; i.e., without reorganizing concept 

descriptions. 

8.1 Contributions 

Texture analysis has been an active research area in computer vision for more than 

two decades, and has proved to be a very difficult problem. This difficulty largely stems 

from the diversity of natural and artiticial textures, which makes a universal definition of 

texture impossible. This dissertation focuses on a particular approach to texture analysis 

which is referred as the rule-based approach. The method generates symbolic 

descriptions of texture by first, deriving structural features from texture, and then 

generating covers (descriptions called Multilevel Logical Templates) to fit texture data. It 

can be viewed as the form of model-based approach to texture analysis (Section 1.1.2). 

Compared to other approaches, the rule-based approach is more general and applies to a 

large number of textUres (successful experiments have been performed with both random 
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and structural textures). This generality is a direct conseliuence of reliance on the 

automatic generation of models by the inductive learning process. Learned models are 

optimized to increase their descriptiveness for the t~xture concepts they represent 

It has been stated that the primary goal of this introductory research is to explore 

. inductive learning approaches to computer vision. Accord ingly, the major 

contribution of this work is a demonstration thal symbolic learning 

methods can be successfully applied to selected problems of low-level 

vision, in which nonsymbolic methods have been traditionally employed. 

To demonstrate this, three approaches were respectively implemented: 1EXTRAL, the 

primary method for learning texture descriptions, AQ-NT for learning of reduced 

complexity rule sets from noisy inputs, and AQ-GA for rule enhancement. More specific 

contributions of these methods are summarized bdow. 

TEXTRAL uses a novel representation of visual concepts. Visual concepts 

(texture class as in this thesis) are expressed in the VLl (Variable-valued Logic System 1) 

[Michalski, 1972]. This representation was used for the first time in learning from fine­

grained random visual textures. VL 1 consists of the decision rules expressed as symbolic 

descriptions involving relations among object attributes. Such descriptions can enhance 

image understanding capabilities of computational vision systems by being more 

expressive, conceptualized and meaningful with the regard to visual object that they 

represents. Such description can be intelligently manipulated to enhance their performance 

and utilization within the vision system. This thC!sis describes some methods that 

manipulate the structure of the description in order to achieve better performance. The use 

of rule-based descriptions of visual concepts can also be utilized by constructive induction 

learning method. Such methods self-modify the concept representation space during the 

induction process. One important form of self-modification is generation of new 

attributes. Generating new problem oriented attributes of visual concept can address the 

problem of initial attributes selection and can definitely enhanced performance of 

recognition systems. A constructive induction meLhod for texture recognition was address 

in the PRAX algorithm [Bala, Michalski et aI., 1992]. In experimental testing of the 

method on the problem of leaming descriptions of 24 visual textures, the PRAX method 

significantly outperformed the k-NN classifier. 
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A novel accomplishm~nt of the research is the use of an iterative learning method 

to generate rules from fine-grained, noisy texture data. In this method, the learning' 

process is repeated iteratively until the desired textural area transformation is obtained. 

The transformation of textural area is accomplished by matching examples extracted from 

all pixel position in the learning area with the description learned in the previous iteration. 

The results of this matching is a new symbolic image of the textural training area. The 

novelty of this approach is that correct/inco1Tt!ct classification results obtained from one 

level and represented by the symbolic image are used as the class dependent 

characteristics. These characteristics are input to the learning algorithm to generate next 

set of rules. 

The contribution and novelty of the AQ-NT approach is that the noise detection in 

training data is performed on the higher level of concept description rather than by 

analyzing training data. The AQ-NT method can be viewed as the model-driven data 

filtration. This resulted in a more effective methods than traditional data filtration applied 

to the raw data level only. The second novel aspect is that noisy examples are gradually 

removed by permanently searching for the least significant concept components as 

candidates for their removal. This gradual process enables the learning algorithm to 

reformulate new. better performing rules. 

Genetic algorithms typically represent individuals in a popUlation, using fixed­

length binary strings. A novelty of the AQ-GA method is that it uses. instead of binary 

strings. concepts descriptions (formally VL I expressions), Special mutation and 

crossover operators were designed to introduce semi-rand'om changes to the rule 

structures. The mutation process can be viewed as e4uivalent to various transmutations 

(knowledge transformations; Michalski, 1993) of the conditional part of a rule. 

The important contribution of the AQ-GA method is that it represents a new class 

of multistrategy learning approaches. The resulting concept description generated by 

inductive learning system may not be, optimal from the performance point of view, due to 

bias of inductive learning techniques to generate simple, cognitively-oriented 

descriptions. Therefore, inductive learning strategy is enhanced by performance-oriented 
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genetic search strategy. Thus, the method integrates two learning strategies - inductive 

and genetic. Although there exists substantial differt!nces bt!tween symbolic induction 

methods and genetic algorithms (learning algOlithm, performanct! elements, knowledge 

representation), their integration as presented in this thesis serves as a promising example 

that a better understanding of abilities of each approach can lead to novel and useful ways 

of combining them. 

The texture data was the initial domain of experiments presented in this thesis. 

However, the methods can be applied to learning in any domain characterized by 

continuous attributes. noisy data, multiclass environments, and complex representation 

spaces. Characteristics of such a domain are common for engineering data. Learning from 

engineering data require new learning tools that are noise·tolerant, capable of processing 

complex data including multiclass environments, and large training sets. These new tools 

are expected to significantly extend the state of the art and open up whole new application 

areas for machine learning. 

8.2 Limitations of Methods and Presentation 

There are several limitations of the presented methods and presentation. They are 

, listed below: 

(i) 	 Convolution operators were used in the presented experiments. They are invariant 

to small changes in luminance and contrast. However, the sensitivity of the 

methods to significant changes in environment were not addressed. This is the 

primary limitation of the current implementations. 

(ii) 	 It is unclear how the perfonnance of the basic method depends on a very large 

number of texture classes. Recently, a modification of the basic method for the 

incremental learning in a multiclass environment has been reported [Bala. 

Michalski, and Wnek, 1992] (the PRAX ml.!lhod). 
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(iii) 	 The question of efticiency for real-time applicalions was not directly addressed. 

Future research methods will aim at introducing paraUd computation techniques to 

the methods (e.g., parallel utilization of a rule set during the recognition phase) 

(iv) 	 The user must define a set of attributes for the TEXTRAL system. Although the 

basic method has been tested with different attributes [Bula. 19901. it is not quite 

evident how the choice of attribute sets affects the performance. Constructive 

induction methods are expected to alleviate this problem to some extent. 

(v) 	 The initial comparison between rule-based and nearest neighbor approaches has 

been performed (Section 7.2). It repolled better perfOimance and stability of rule­

based approach. However, it is yet not clear how the presented method compares 

to a neural-network approach. 

(vi) 	 To take the advantage of the genetic search in the AQ-GA method. it is required 

that a concept description has some minimum number of rules. Each rule 

represents a building block of a individual in population If the number of the 

building blocks is low the genetic search will have too few sampling points and 

may not converge. This limits the AQ-GA method applicability to highly 

disjunctive descriptions. 

(vii) 	 In the AQ-NT method the TH parameter (used to decide on a candidate rule for 

truncation) must be set up by the user. In the algOlithm, the threshold TH controls 

the size of small disjuncts. Larger TH causes more small disjuncts to be selected 

and more examples may be removed. When TH is set to I, all disjuncts are small. 

When TH is set to 0, no disjunct is small. The TH should be set according to the 

degree of noise in a domain. This is a limitation of the current implementation of 

the AQ-NT method. 

(viii) 	 In the evaluation of match between an unknown example and a rule a flexible 

matching method is used. It has not been established how other matching methods 

(based on different distance metrics) may perform. 



109 

8.3 Future Research 

There are several other major topics to be investigated in future rest!arch: 

(i) 	 Enhancements to the currt!nt learning mt!thodology to include capabilities for 

automatically generating higher It!vel problt!m-rdt!vant attributes (constructive 

induction). 

(ii) 	 Encoding rugher-Ievd knowledge of tht! imugt! scent! (e.g .. combining texture 

with shape of regions or boundarit!s to enhance tht! recognition capabilities) 

(iii) 	 Learning in a II differential attributt! space". Tht! main idt!a is thut the system must 

learn two descriptions; one that captures the learned concept itself, and the other 

that expresses changt!s in tht! concept dut! to t!nvironmental changes. These two 

descriptions can be used to achieve robust rt!cognition capabilities. 

(iv) 	 Devdopment of a method for dynamic recognition bast!d on the texture models 

stored in the memory. 

(v) 	 The applicability of multistrategy It!arning (e.g .• combining symbolic rule learning, 

with neural network learning; the issue of representing and learning of imprecisely 

defined visual concepts). 

(vi) 	 Extensions of the methodology to otht!r problems in Vision. e.g., learning of 

shape classes. 

(vii) 	 Learning new visual concepts in terms of differenct!s and similarities form known 

concepts. and developing a calculus for representing symbolic differences 

between visual concepts. 
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