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Abstract

This chapter reports on three studies comparing symbolic and subsymbolic
methods for concept learning from examples. The first study compared five learn-
ing methods, three representing symbolic learning paradigm—decision tree learn-
ing (C4.5), rule lecaming (AQ1S5), and constructive rule leaming (AQ17-HCI)—and
the other two representing the subsymbolic paradigm~—neural net learning using
backpropagation (BpNet) and a classifier system employing genetic algorithm
(CFS). All methods have been applied experimentally to learn several different
DNF-rype concepts (i.e., concepts representable by a simple DNF expression). The
second study compared performance of a large number of learning programs on
leaming DNF-type concepts from data with and without noise and a non-DNF-type
“m-of-n" concept. The third study compared genetic algorithm based leaming
(GABIL and Adaptive GABIL) with decision tree learning (C4.5) and decision rule
learning (AQ14), on twelve DNF-type concepts. All studies have shown that gener-
ally, symbolic methods, in particular those applying constructive induction, out-
performed subsymbolic methods in learming DNF-type concepts from data both
without and with noise. In case of learning non-DNF-type concepts, symbolic
methods without constructive induction performed worse, but those with construc-
tive induction matched the performance of ncural network methods.
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19.1 INTRODUCTION

In view of a rapidly growing interest in multistrategy learning systems, it is
important to develop insights into the performance of diverse learning methods and
paradigms and to determine the areas of their most desirable applicability. To this
end, this chapter presents various studies of the performance of symbolic and sub-
symbolic methods as applied to the same learning problems. The first study (Sec-
tions 19.2-19.4) involved a companison of three symbolic and two subsymbolic

“methods. Symbolic methods were represented by C4.5, a decision tree leaming
program; AQIS, a decision rule tcarning program; and AQ17-HCI, a constructive
decision rule learning program. Subsymbolic methods were represented by CFS, a
genetic algorithm based classifier system, and BpNet, a ncural network leaming
program using backpropagation algorithm. The other two studies (Sections 19.5-
19.6) involved the same programs or their different variants.

An impornant difference between symbolic and subsymbolic learning ap-
proaches lies in the cognitive aspects of the employed knowledge representation.
Knowledge represented by logic-based rules or decision trees (especially when the
latter are small) is relatively casy to comprehend and relate to human knowledge.
This is not the case with knowledge represented by classifier systems or neural
networks. Although for some applications, it may not be important that the learned
concept descriptions are understandable to people, e.g., in an adaptive controller of
house temperature, in some other applications, e.g., in expert systems for human
disease diagnosis, business or military decision making, this requirement is crucial.

Despite various attempts, there is no established universal measure of cogni-
tive comprehensibility of concept representations (Michalski, 1983). Therefore, we
will make a simplifying assumption that the comprehensibility of a concept can be
estimated roughly by the number of rules needed to express it or the number of
disjuncts in an equivalent DNF expression. In this measure, called the R-complexity
(rule-complexity) of a concept, elementary conditions in the rules representing a
concept (or the components of disjuncts in DNF) are assumed to be simple condi-
tions involving given attributes. Based on this definition, one can distinguish
between two general classes of concepts:

1. Concepts that can be expressed by a simple DNF expression using given
attributes (or described by only few rules): we call them DNF-rype concepts.

2. Concepts that require a very complex DNF expression: we call them non-
DNF-rype.

It is important to point out that concepts that have a long DNF expression
using given attributes may have a short DNF expression if these attributes are
replaced by other attributes or are transformed into certain combined attributes
through the process of constructive induction (e.g., Wnek and Michalski {1991]).
Thus, whether a given concept is DNF-type or not depends on the attributes (gener-



WNEK & MICHALSKI 491

ally, descriptors)' that are available for constructing a concept representation. In
other words, the R-complexity is defined with regard to the assumed concept repre-
sentation space.

All three studies compared several methods by applying them to leaming the
same class of DNF-type concepts. We found that concepts generated by human
subjects who are asked to create classes of entities and to express them linguisti-
cally usually fall into such a category. Given a concept representation, its R-com-
plexity can thus be viewed as an approximate indication of the “cognitive™ com-
plexity of the concept. For representations other than rule-based, the R-complexity
can be determined by converting them to logically equivalent sets of rules. When
the description spaces arc not too large, this can be done using the DIAV concept
visualization method, outlined in Section 19.3.

Presented studies follow several other efforts to compare different leaming
methods and paradigms. For example, Fisher and McKusick (1989) compared 1D3
and a neural net using a backpropagation (BP) algorithm on the problems of learn-
ing diagnostic rules for thyroid diseases, soybean plant diseases, and a few artificial
problems. The comparison was based on the performance accuracy of descriptions
as applied to testing examples and the training time. Their conclusion was that the
neural net gave a better performance but required a significantly longer training
time and more training examples than ID3.

Mooney et al. (1989) compared ID3 with perceptron and a backpropagation
algorithm using the domain of soybean discases, chess-end games, audiological
disorders, and the Nettalk data set. Their conclusion was that the accuracy of classi-
fying new examples was about the same for all three systems, but the neural net
performed better than 1D3 when there was noise in the data. Weiss and Kapouleas
{1989) compared 1D3, predictive value maximization, neural net using BP, and a
few statistical methods. They found that the statistical classifiers performed consis-
tently better in terms of accuracy in classifying testing examples.

Dietterich, Hild, and Bakiri (1990) compared 1D3 with a neural net using BP
on the task of text-to-speech mapping. Their major conclusion was that the neural
net consistently outperformed ID3 in terms of the performance accuracy and attrib-
uted this result to the capture of better statistical information by the neural net.

Bergadano et al. (1992) compared POSEIDON (an extended version of AQ!5
using a rwo-tiered concept representation) with excmplar-based and decision tree
leaming programs. Their study involved two real-world domains: labor contracts
and U.S. congressional voting. In this study, descriptions learned by POSEIDON
outperformed those produced by all other methods, both in terms of performance
accuracy on new examples and in terms of the description's simplicity.

! . . . . . .
By descriptor is meant an attribute or function whose value characterizes the entity.
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The first study presented here differs from the above studies in that it experi-
mentally analyzes five different methods and comparces the learned descriptions in
terms of their exact error rare, rather than a statistical error estimate, and also in
terms of their R-complexity. In the study, the target and learned concepts were
represented graphically by a novel technique of diagrammatic visualization (Wnek
and Michalski, 1994). This technique permits one to display an image of the target
and learned concepts and an error image that identifies all errors.

The chapter consists of seven sections. Section 19.2 briefly describes the five
leaming systems used in the first study. Section 19.3 presents the methodology
used to compare the methods and describes training data and the concepts to be
leamed (five DNF-type concepts created by human subjects). The concepts are
illustrated by the diagrammatic visualization technique (DIAV). Secction 19.4
describes results of experiments with the methods. Sections 19.5 and 19.6 summa-
rize two related studies done by other research groups. The first one involved three
types of problems: learning a DNF-type concept, leaming a non-DNF-type concept,
and leaming a DNF-type concept from noisy data. The results were obtained using
a large number of leaming programs, which were grouped into four categories
" according to the representational paradigms used: decision tree, decision rules, neu-
ral networks, and inductive logic programming (Thrun et al., 1991). The second
study applied a decision tree learning program, a decision rule learning program,
and two genetic algorithm-based programs to learn twelve DNF-type concepts (the
original study was done by Spears and Gordon [1991]). Section 19.7 summarizes
results from the comparison of the systems in learning DNF-type concepts.

19.2 LEARNING SYSTEMS INVOLVED IN THE FIRST STUDY

As mentioned earlier, the symbolic paradigm is represented by a decision tree
leaming program, C4.5, and two rule learning programs, AQ15 and AQI17-HCL
The subsymbolic paradigm is represented by a backpropagation neural network,
BpNet, and a classifier system based on genetic algorithm, CFS. These programs
are widely known and well described in machine learning literature. To serve the
tutorial purpose of the book, we provide here a brief account of the basic algorithm
underlying each program and give references to the literature for readers interested
in further details.

19.2.1 Declislon Tree Learning Program C4.5

C4.5 learns concepts by building a decision tree that correctly classifies sup-
plied examples of the concepts. Each interior node of the tree is assigned an attri-
bute, and the leaf nodes are assigned concept names. A branch down from an
interior node represents a value of the attribute assigned to the node. Any path from
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the root to a leaf in the tree can be vicwed as a decision rule for the class assigned
to the leaf.

The input to the algorithm consists of sets of training examples for different
concepts (or decision classes). In the first step, the algorithm selects a random
subset of training examples from each set (a “window"). Then, for each attribute,
the information gain. i.c.. the information gained if the attribute were chosen for
testing, is computed. The attribute with the highest score is assigned to the root
node of the tree. Branches from this node represent different values of this attri-
bute. End-nodes of these branches (current leaves) arc assigned subsets of exam-
ples in which the attribute takes the value associated with the given branch. If a
subset contains examples of only one decision class, then the end-node becomes a
leaf of the decision tree. For all other subsets, the algorithm is repeated until all
leaves in the tree are assigned single decision classes.

At this point, the created tree correctly classifies all examples in the window.
Now the tree is used to classify remaining examples from the training sct (outside
the “window"). If the tree gives the correct answer for all examples, then the
process terminates. If not, misclassified examples are added to the window, and the
process continues until the trial decision tree correctly classifies all examples not in
the window.

The entire process is repeated by default 10 times. and the best decision tree
is selected. Because the examples used in the experiments had no noise, decision
trees were not pruned. The C4.5 program (Quinlan, 1993) is a derivative of the ID3
program (Quinlan, 1986). In addition to decision tree gencrating, C4.5 is able to
convert an unpruncd decision tree into sets of generalized (pruned) decision rules.
A tree is converted to rules by forming a rule corresponding to each path from the
root of the tree to each of the leaves. All rules are then examined and some of them
are generalized (pruned) by shopping conditions. Next, rules for each class are
considered separately and redundunt rules are removed. For uncovered examples, a
default class is assigned.

We have tested all three representations learned by C4.5 using default param-
eler setting, i.e., the best tree was selected out of ten generated from the same
training set, attributes were selected according to gainratio (ratio of information
gain and potential information) criterion. As expected, because the training exam-
ples did not have noise, on average, unpruned decision trees performed best in
terms of predictive accuracy. Pruned decision trees and decision rules were simpler
but more erroneous. Thus, here we report the results obtained for unpruned deci-
sion trees only.

19.2.2 Rule Learning Program AQ15

The AQIS program generates concept descriptions from concept examples.
The descriptions are in the form of decision rules expressed in an attributional logic
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calculus, called variable-valued logic, VL1 (Michalski, 1973). A distinct feature of
this representation is that it employs, in addition to standard logic operators, the
internal disjunction operator (a disjunction of values of the same attribute), which
can significantly simplify rules involving multivalued attributes. The program can
optimize the rules according to a user-defined (or default) preference criteria, such
as the overall simplicity or the evaluation and/or storage cost of the rules. The main
procedure of AQ1S is based on the AQ algorithm that builds a concept description
from a set of positive and negative examples (c.g., Michalski [1973}). Below is a
simplified version of the AQ algorithm:

1. Randomly select a seed example from the set of positive training examples of
the concept to be learned.

2. Generate a set of most general rules (a star) that cover the seed, and do not
cover any negative examples (this opcration employs the extension against
generalization operator (Michalski, 1983).

3. Select the “best rule” from the star (according to the assumed preference
criteria), and remove examples covered by this rule from the sct of training
examples.

4. If the set of training examples does not become empty, return to Step 1.
Otherwise, the obtained set of rules constitutes a complete and consistent
concept description.

The algorithm is repeated for each concept to be learned. It is biased toward
finding a conjunctive description of a concept (a single rule) because if such a
description exists for the given set of examples, it will be found in the very first
step (the description will be a member of the first star generated). The AQIS
program has various parameters whose default values can be changed by a user
according to the requirements of the domain. In all the experiments reported here,
the preference criteria were to minimize both the number of rules and the number
of conditions in them for each concept learned. Because training examples did not
have noise, there was no need for any rule truncation procedure. For further details,
see Michalski et al. (1986) and Bergadano et al. (1992).

19.2.3 Constructive Rule Learning Program AQ17-HClI

AQI17-HCI represents a recent major advance. in the development of the AQ-
based series of inductive learning programs, specifically, the above-described
AQIS system. The main new feature of it is an incorporation of a method for
hypothesis-driven constructive induction (HCI). Constructive induction, as intro-
duced by Michalski (1978), addresses the problem of changing the representation
space so that it is more suitable for the learning problem at hand. This involves
creating new attributes (or descriptors) that better characterize the concepts to be
leamed than the onginal descriptors. The last few years have witnessed an increas-
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ing interest in constructive induction methods because they can produce concept
descriptions that are more accurate and/or simpler than the traditional selective
induction methods (Pagallo and Haussler, 1990; Rendell and Seshu, 1990; Wnek
and Michalski, 1991).

The HCI method generates problem-relevant descriptors by analyzing consec-
utively created inductive hypotheses (Wnek and Michalski, 1991). Below is a brief
description of the algorithm used in AQ17-HCI. For the sake of simplicity, it is
assumed that the training sct consists of subsets of positive examples E® and nega-
tive examples E™. If the training set consists of subsets representing different con-
cepts, then E° represents the subset of training cxamples for the concept under
consideration, and the union of the remaining subscts plays the role of E™.

1. Divide randomly each of the training sets, E* and E7, into two subsets: the
primary set Ep and the secondary set Es. E' = EfUEL. E =E; UEs. (The
primary training subset is to be used for rule generation, and the secondary
subset is to be used for rule verification).

2. For each concept, induce the most specific (ms) cover of the set ES against
the set Ep. (Such a cover is denoted COVms (Ep / Ep) and represents the set of
the most specific rules that characterize examples in E; but no examples in
Ep).

3. Evaluate the performance of the rules on the secondary training set, Es. If the
performance exceeds a predefined threshold, or all changes in the representa-
tion space were exhausted, go to Step 8,

4. Analyze the rules in order to identify possible changes in the representation
space.

5. Change the representation space by removing irrelevant attribute values or
attributes or by adding new attribute values or aftributes.

6. Modify the training set of examples, E, according to the changes in the repre-
sentation space.

7. Goto Step 2.

For each concept, induce a set of the most specific rules from all positive
examples against all negative examples, i.e., a cover COVms (E* 1 E"), and
the most general cover of negative examples against positive examples,
COVig (E™/EY).

9. Build final concept descriptions by generalizing the most specific positive
rules against the most general negative rules, i.e., COVmg (COVms (E*1E)/
COVng (E7/EY).

The AQI7-HCI program has two important features that place it within the
class of multistrategy learning methods. The first one is an ability to change the
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representation space using HCI. This means that the method uses additional knowl-
edge transmutations allowing abstraction and concretion, apart from inductive gen-
eralization and specialization (Michalski, 1994, Chapter 1 of this book). The sec-
ond feature is an extended gencralization heuristic, employed in steps 8 and 9, that
additionally gencralizes the most specific generalization of the training set. This
extension was proposed by Wnek (1992).

19.2.4 Neural Net Program BpNet -

A neural network is defined by a set of processing units. Units can be of three
types: input, output, and hidden. The hidden units provide communication links
between input and output units in the task of translating the input training/testing
example into output classification.

Backpropagation, as originally introduced (Rumelhart, Hinton and Williams,
1986). is a learning algorithm for feed-forward networks (networks in which the
interconnections form no feedback loops) based on gradient minimization. We con-
sider a network of units in which a weighted sum of the inputs is performed, the
result of this sum (also called the activation level of the unit) being fed through a
non-linear element, with a differentiable input-output function, e.g., a sigmoid
function.

Learning by backpropagation involves two phases. During the first phase, an
example is presented and propagated forward through the nctwork to compute the
output values o, for each unit. These outputs are then compared with the target
values t, resulting in output errors e, for each unit. The second phase involves a
backward pass through the network (analogous to the initial forward pass) during
which the error message is passed (o cach unit in the network, and the appropriate
weight changes are made.

The two phases are repeated until the overall error reaches a predefined level.
The output error for a given training example is given by

€y =0, — 1,

Where o, and t, are the output and the target values of the output unit n. The
total squared error for that input example is

E= Zeﬁ
nell
Where U denotes the set of input units. Thus, learning by backpropagation
corresponds to gradient minimization of the average squared error. The average is
computed over all examples in a given training set. The BpNet program is an
implementation of the backpropagation algorithm (McClelland and Rumelhart,
198R).

T
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19.2.5 Classifier System CFS

A classifier system is a parallel rule-based (production) system that was first
introduced by Holland and Reitman (1978). The rules, called classifiers, have the
same simple form, so it is easy to determine whether a condition part of a rule is
satisfied. Because the rules can be active simultaneously, complex situations are
expressed by combinations of rules. The classifiers can be modified by a general-
purpose learning system (Holland, 1986; Riolo, 1988).

Classifier system leaming and classification are done in cycles. In each cycle,
an input example is translated into a message that has the same form as the condi-
tion part of the rules. Next, the message is compared with all rules. All matched
rules compete with each other in order to become active and to yield new mes-
sages. The new messages can cither store some intermediate information and then
be used in the next cycle or produce a final classification if matched with the
system's effectors. During the learning cycles, the final classification is compared
with the target class of the example, and payoff is distributed among active rules.
Payoff changes the rules’ strength and bidding chances in the next cycle. In order
to supplement the learning process, some classifier systems utilize genetic algo-
rithms. The genetic operators (e.g., crossover, mutation) provide means for rule
evolution.

The shell for the classificr system used in the experiments was developed by
Riolo (1988). The CFS package of subroutines and data structures is domain inde-
pendent and provides routines to perform the major cycle of the classifier system.
The CFS system was run in the stimulus-response mode, i.e., without generating
internal messages. Training cycles were repeated fifty times for each example.
Payoff for correct and incorrect answers was set to 6 and -1, respectively, with a
full payoff paid to all active classifiers. Final classification was produced by two
effectors. The CFS package uses more then 150 control parameters. The population
size of sixty classifiers, the number of training cycles, the payoff, and about 20
other parameters were determined experimentally. The remaining parameters were
set to default values.

19.3 METHODOLOGY

The testing domain in this study is the world of robot-like figures in the
EMERALD’ system. For simplicity’s sake. the robots are described by just six
multivalued attributes (Figure 19.1A). The attributes are Head Shape, Body Shape,

2

"EMERALD is a large-scale system integrating several different leaming programs for the purmpose of
education and rescarch in machine learning (Kaufman, Michalski. and Schuliz. 1989). It was developed
at the Center for Artificial Intelligence at George Mason University. An earlier version, ILLIAN, was
developed at the University of llinois at Urbana-Champaign.
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Smiling, Holding, Jacket Color, and Tie and can have 3, 3, 2, 3, 4, and 2 values,
respectively. Consequently, the size of event space (the space of all possible robot
descriptions) is 3 X 3 x 2 x 3 x 4 x 2 = 432. The space of all possible concepts in
this representation space is 2*~1 (=10™"). Undergraduate computer science stu-
dents unfamiliar with machine lcarning were asked to create five concepts from a
predefined set of robots in the EMERALD system (16 examples). Each concept
represented a certain class of imaginary robots. Below are descriptions of the con-
cepts (“Target concepts™) used in the experiments with the total numbers of posi-
tive and negative examples:

Ch: Head is round and jucket or head is square and is (84 positive, 348 negative)
is red holding a balloon

C2:  Smiling and is holding or smiling and head is round (120 positive, 312 negative)
balloon

C3:  Smiling and not holding (144 positive, 288 negative)
sword

C4:  Jucket is red and is wearing  or head is round and is smiling (117 positive, 315 negative)
no tie

CS:  Smiling and holding halloon o1

=4

holding sword (144 positive, 288 negative)

Each such concept represents a partitioning of the event space into robots that
belong to the concept (positive examples) and those that do not (negative exam-
ples). Based on the concepts C1-C5 the students generated initial sets of training
examples used in Experiment 1. Each initial training set consisted of approximately
6% of all positive examples (Posl) and 3% of all negative examples (Negl). The
remaining sets for Experiments 2-5 were generated by adding to the initial set an
appropriate number of randomly generated examples: Pos2 and Neg2 (10% posi-
tive and 10% negative), Pos3 and Neg3 (15% positive and 10% negative), Pos4
and Negd (25% positive and 10% negative), and Pos5 and Neg5 (100% positive
and 10% negative). These additional cxperiments were performed in order to
observe the convergence of the learned concepts to the target concepts.

The concepts C1-C5 are prescnted graphically in Figures 19.1B and 19.2
using a method for diagrammatic visualization. This method employs a General
Logic Diagram (GLD) that is a planar representation of a multi-dimensional space
spanned over multi-valued discrete attributes’ (Michalski, 1973; Wnek and Michal-
ski, 1993). Each cell in the diagram represents a combination of the attribute val-

.

The system DIAV implementing the visualization method (Wnek and Michalski, 1993) permits one to
directly display description spaces with as many as 10% cells {c.g.. about twenty binary attributes).
Larger spaces can also be displayed, but their representations have to be projected to subspaces.
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ues. e.g.. a concept example. For example, the cell A in Figure 19.1B represents the
following robot description:

Head Shape = round, Body Shape = round, SMiling = yes, HOlding = flag,
Jacket Color = green, Tle = no

Positive and negative training examples are marked with + and -, respec-
tively. Concepts are represented as sets of cells. The concept Cl can be viewed as
consisting of two rules. They are represented in the diagram by shaded areas
marked R1 and R2.

R1: Head Shape is round and Jacket Color is red.
R2: Head Shape is square and is HOlding balloon.

An important advantage of the diagrammatic visualization is that it permits
one to display steps in learning processes as well as the errors in concept learning.
The set of cells representing the target concept (the concept (o be learned) is called
target concept image (T). The set of cells representing the learned concept is called
learned concept image (L). The areas of the target concept not covered by the
learned concept vepresent errors of omission (T\ L), and the areas of the learned
concept not covered by the target concept represent errors of commission (L\T).
The union of both types of errors represents the error image. In the diagrams,
errors are marked by slanted lines.

Target and learned concepts are represented in the diagrams by shaded areas.
However, if the target and learned concepts are both visualized in the same dia-
gram, then the shaded areas represent learned concept. The location of the target
concept is implicitly indicated by correctly learned concept and errors of omission.
Because errors of commission are part of a leamed concept, corresponding areas on
the diagram are both shaded and slanted. Errors of omission are not part of the
learned concept: thus, the corresponding slanted areas remain white in the back-
ground. The parts of the target concept that were correctly learned are shaded only.

The descriptions learned by the methods were compared in terms of the exact
error rate, a representation-independent complexity. Exact error rate is the ratio
between exact error and the size of event space. It is measured as a function of the
number of training examples. Exact error is defined as the total number of errors of
omission and errors of commission or, equivalently, the cardinality of the set-differ-
ence between the union and the intersection of the target and learmmed concepts.

Exact_error
Exact_error_rate = = - ——- ===
#Event_space

Exact_error=# (T\LYU (L\D}=4# (Tu L)\N(T N L)}

There are many ways to define error rates in order to reflect certain inductive
capabilities of a learning system. In the definition above, for simplicity, we do not
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make any distinction between errors of omission and errors of commission, which
may be important in some real-world domains. Also, the domain is small and
well-structured. thus suited to the representation of the specific objects of the
domain. Therefore, we can avoid the well-known Hempel's paradox in which con-
firmation of a concept can be made by the lack of satisfaction of non-cxamples
(Hempel. 1965; Kodratoff, 1994, Chapter 3 of this book).

tn order to get complete insight into the performance of the tested methods,
we used all examples from the event space to lest the performance. Note, however,
that training examples are often excluded from the testing phase. The same kind of
testing was also used in the remaining two studies.

In addition to the exact error rate, we used a representation-dependent R-com-
plexity (rule complexity) measure of a method performance. The R-complexity of a
concept representation is defined by the number of conjunctive statements (rules)
in the minimal DNF expression that is logically equivalent to the given representa-
tion. Because finding such a minimal DNF expression for any given representation
may be difficult (it is generally an NP-hard task), we use an estimate of the R-com-
plexity. For a method that learns a rule-based representation, the number of rules
generated by the method is taken as such an estimate. For example, the R-complex-
ity of the C1-C5 target concepts is 2, 2, 1, 2, and 1, respectively. For a decision
tree learning method. the R-complexity is estimated by the number of leaves in the
tree (because each leafl corresponds to a rule). For neural nets and classifiers, the
R-complexity is estimated by dctermining the number of conjunctive statements
needed to re-express the leamed concept as a DNF expression.

19.4 EXPERIMENTS IN THE ROBOTS DOMAIN

19.4.1 Representations Learned

Figure 19.3 presents an example of representations learned by each method.
In the figure, the representations were learned in Experiment | from 6% positive
and 3% negative examples of the target concept Cl:

Head is round and jacket is red, or head is square and is holding a balloon.

A Decision Tree Generated by C4.5. Figure 19.3A shows the best, unpruned deci-
sion tree selected out of ten different trees generated from the training set. The
learned concept is described using two attributes: Jacket Color and Head Shape.
The learned concept can be read as follows:

IF Jacket Color is red, and Head Shape is round or
Jacket Color is red. and Head Shape is square or

Jacket Color is green, and Head Shape is square
THEN Cl
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Figure 19.3:  Representations of the concept Cl learned by different methods (from the initial set of
examples consisting of 6% of positive and 3% of ncgative examples)

The exact error rate is 16.7% and the R-complexity of this tree is 3. After
pruning, the tree is reduced to a root labeled ~C1. Such a tree classifies all exam-
ples as not belonging to concept C1 and, thus, produces 84 omission errors (19.4%
error rate). The R-complexity of the tree is I. The third representation learned by
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C4.5 are decision rules obtained from the unpruned decision tree. After rule prun-
ing and simplification, the final outcome consists of two rules: (1) If Head Shape is
octagonal, THEN ~C1. (2) DEFAULT CLASS is ~Cl. These rules are equivalent to
the pruned decision tree and produce the same errors. The R-complexity is 2.

A Decision Rule Generated by AQ15. The method generated one rule. It consists
of three conditions. Each condition tests one attribute. The internal disjunctions
simplify the rule (Figure 19.3B).

A Decision Rule Generated by AQ17-HCI. The rule leamed by AQI7-HCI is
exactly the target concept (Figure 19.3C). It was generated in a transformed,
smaller description space. Figure 19.4 shows steps in learning concept Cl by
AQ17-HCI. The input to the method is a set of training examples in the original
representation space, as shown in diagram A (the diagram also shows the target
concept). The method divides the training set into primary and secondary examples
and employs the AQIS5 learning algorithm to induce rules from the primary set of
training examples (diagram B). Because the performance test on the secondary
training set is not satisfactory, the representation space is reduced to contain rele-
vant attributes only, i.e., those atributes that are present or significant in the
induced hypothesis. Therefore, the method changes ROBOTS original representa-
tion space by removing three irrelevant attributes: Body Shape, SMiling, and Tle
(diagram C). In the new representation space, the number of training examples is
decreased by . It is because two positive examples, El and E2, from the original
event space have the same description in the new event space.

El: (round, round, yes, sword, red, no)
E2: (round. square, yes, sword, red, yes)

Although such an abstracted problem is simpler for learning, the resulting
hypothesis is still not accurate (diagram D). At this point, the training data set
scems to be insufficient to allow proper learning. The lacking information can,
however, be induced if both positive and negative hypotheses are considered at the
same time. Figure 19.4, diagrams D and E, shows two covers, COV, (E'/E") and
COV,, (E/E"), that were generated using all initial training examples. AQI17-HCI
generalized the positive concept description against the negative concept and, by
this means, improved the learned concept. The concept Cl was leamed precisely as
shown in diagram F.
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A Neural Net Generated by BpNet.  Figure 19.3D shows an architecture of the
neural net used in the experiments. There were seventecn input units, all having
either value 0 or 1, corresponding to attribute-values. All input units had connec-
tions to two hidden units. The number of hidden units was determined experimen-
tally. The two hidden units were connected to one output unit. The network was
trained by the BpNet backpropagation algorithm until it reached root mean square
error below 0.0007. The final connection weights for the concept C1 are shown in
the figure. Because of space limitations, the connections from the input units to the
left hidden unit and the right hidden unit are specified in the rows marked L and R,
respectively. The weights from the hidden units to the output unit are 2.4 and -1.3.
An input example is classified as a CI class member if it is translated into output
value 2 0.5.

Classifiers Generated by CFS. Each line in Figure 19.3E represents one classifier
in the following format: No, Id, Classifier, Strength, and BidRatio (Riolo, 1988).
The total population for representing the concept consists of sixty classifiers. Each
of the classifiers (condition-action rules) is in the following form:

conditionl, condition2 / action

Each condition consists of a string of a fixed length (16) built from the terti-
ary alphabet {0, I, #}. A condition string with prefix “m” is matched by any
message that has Os and Is in exactly the same positions as the Os and Is in the
condition string. The # in the condition is considered a “wildcard” symbol that can
match a 0 or a 1. A classifier’s condition-part is satisfied when both of its condi-
tions are matched. When the condition-part of a classifier is satisfied, the classifier
becomes active; i.e., its action-part produces one output message. The messages
generated by active classifiers are compared to effectors in order to produce final
classification. In Figure 19.3E, BidRatio is a number between one and zero that is a
measure of the classifier's specificity, i.e., how many different messages it can
match. Sirengrh is meant to be a measure of a classifier’s “usefulness” to the
system. The higher a classifier's strength, the more it bids.

19.4.2 Summary of Resulits

Figures 19.4 and 19.5 present the results of learning concept C1 by the five
leaming systems using diagrammatic visualization. In comparison to the represen-
tations in Figure 19.3, these diagrams give a uniform image of the learning results.
From the diagrams, one can easily determine learning accuracy (correct vs. error
areas—black vs. shaded areas) and interpret the errors (why certain areas were
covered or not). Most importantly, one can generate rules equivalent (o the learned
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Table 19.1: The average error rate of leamed duuipnunﬁ

The Relahve Size of the Scl of Trammg F\amples in Fach Experlmen!

E‘penmen(l Experiment 2 Experiment 3 Experiment 4 Experiment §
(6%, 3%)" (10%.10%)" (l‘% 10%)" (2<% IO%)* (100% 10%)'

Genetic Alg. 21.3% 20.3% 22.5% 19.7% 16.3%
(CFS)
Neural Nets 9.7% 6.3% 4.7% 7.8% 4.8%
(BpNet)
Decision Trees 9.7% 8.3% 1.3% 2.5% 1.6%
(C4.5)
Decision Rules 22.8% 5.0% 4.8% 1.2% 0.0%
(AQ1S)
Decision Rules 4.8% 1.2% 0.0% 0.0% 0.0%
(AQ!T7-HCH

*In cach (x%. y%). x denates posilive training examples and y negative training examples.

representation and determine an R-complexity of the description. This feature is
especially useful for subsymbolic systems that do not have easily understood
knowledge representation, as shown in Figure 19.3.

The final concept description learned by AQ17-HCI exactly matches the tar-
get concept, and thus, there are no slanted areas in diagram F in Figure 19.4. The
other four methods did not learn the concept C1 precisely: however, all the meth-
ods were consistent with the training examples (Figure 19.5). The error rate level is
almost even for all of them (about 20%), but one can note differences in their
generalization patterns. The symbolic methods yield regular, rectangular covers as
opposed to irregular covers of subsymbolic methods.

Tables 19.1 and 19.2 summarize the results of all the experiments. For each
leaming program, the final result in Experiment 1 is an average over results from
learning the five concepts from their initial training sets (column 1). In the remain-
ing experiments, because additional examples were generated randomly, the testing
was repeated 10 times for each concept. Consequently, for each learning program,
the result is an average from 50 learning sessions (cols. 2-5). Pairs (a,b) in the top
row of the tables denote the percentage of positive and negative examples used in
experiments.

Table 19.1 shows the average exact error rate of the descriptions learned in
five experiments, and Figure 19.6 presents corresponding learning curves. The
error rate of the CFS-generated descriptions was much higher than that of the other
descriptions, and what is most surprising, it did not improve much with the growth
of the training sets. Differences between decision tree leaming (C4.5), neural net-
work (BpNet), and decision rule learning (AQIS) are relatively small, although
only AQIS precisely learned all concepts in Experiment 5. The 4.8% average error
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Table 19.2: Numbers of rules representing concepls learned by different methods (R-complexity)

The Relative Size of the Set of Training Examples in Each Experiment
Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment §
(6%.3%)* (10%,10%)* (15%, 10%)* (25%, 10%)* (100%, 10%)*

Genetic Alg. 49 45 St 48 41
(CFS)
Neural Nets 35 26 12 22 12
(BpNet)
Degision Trees 31 28 25 2.5 2.5
(C4.9)
Decision Rules 26 22 20 1.6 16
(AQIS) :
Decision Rules 24 20 1.6 1.6 1.6
(AQIT-HCD

oin cach (x%, yFo)h x denotes positive training cxamples and y negative training examples.

pate of the BpNet-generated concepts was primarily because of an inadequate learn-
jug of concepts C1 and C4. Also, decision trees generated by C4.5 produced some
ciror even when 100% positive examples were given. This error may be reduced if
(he function for converting trees into rules is applied (this, however, involves prun-
jng a tree and simplifying rules). For AQ15-generated descriptions, errors in exper-
jments 2-4 were primarily the result of errors in learning concept C1. The results
of the constructive rule learning program AQ17-HCI show that all the concepts
were precisely learned when the program was given 15% positive and 10% nega-
live examples. Also, it generated the best performing descriptions in the first exper-
iment.

One interesting finding is that increasing the number of training examples in
experiments 1 to S resulted in only a slight improvement in the performance of the
CFS.gcncralcd descriptions (from 21.3% to 16.3%). Other interesting findings are
that even with 100% positive examples, the neural net, the genetic algorithm, and,
10 a smaller degree, the decision tree method did not learn the concept precisely.
The CES classifier system does not seem well-suited for classification-type prob-
lems. To further test this finding, this chapter reports results involving other genetic
a]gon'thm—bascd systems.

Table 19.2 gives the average R-complexity of the descriptions learned from
different training sets. This measure gives a clear division between symbolic and
subsymbolic methods. The symbolic methods generate descriptions that are ten
times simpler than the subsymbolic methods. The results in this table are correlated
with the results in Table 19.1. Methods that better perform in terms of predictive
accuracy consistently yield simpler concept descriptions.

As mentioned earlier, target concepts were generated by human subjects, and
thercfore, the study favored methods that use symbolic representations because
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Figure 19.6:  Learning curves for concepts in the ROBOTS domain for the fixed number of 0% neg-
ative examples

such representations are more closely related to human representations. Studying
how systems leam such human-generated concepts is important for applications
where knowledge that needs to be acquired is in such forms and/or applications
where the knowledge leamed nceds to be understood by human experts. There are
problem domains in which these factors are not relevant. Next, two studies present
a wider range of problems involving both DNF-type and non-DNF-type concepts.

19.5 SECOND STUDY: THE MONK'S PROBLEMS

This study reports results from a performance comparison of different learn-
ing algorithms on three problems defined in the ROBOTS domain (Thrun et al.,
1991). The so-called MONK's problems address three machine leaming problems,
Problem 1 is a DNF-type problem. Next is an “m-of-n," non-DNF-type problem.
The concept to be learned requires a very complex DNF expression to describe it in
terms of the available attributes. Problem 3 is a DNF-type. but the learning data set
contains noise.
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Problem M1:  Head shape is the same as the body shape, or color of the
jacket is red. Training set contains 124 randomly selected
examples. There is no noise.

Problem M2:  Exactly two of the six given attributes take their first value.
For example, if attributes Head Shape and Body Shape take
value round. which is the first value in their value set, then
no other attribute may take the first value in its value set.
Training set contains 169 randomly selected examples.
There is no noise.

Problem M3:  Jacket is green and holding a sword, or jacket is not blue
and body is not octagonal. Training set contains 122
randomly selected examples. There is 5% noise in the data.

The tested algorithms fall into 4 categories:

« Neural Networks Backpropagation (McClelland and Rumelhart, 1988),
Cascade Correlation (Fahlman and Lebiere, 1990)

¢ Decision Trees 1D3 (Quinlan, 1986), Assistant Professional (Cestnik,
Kononenko and Brotko, 1987),
IDSR (Utgoff, 1990), IDL (Van de Velde, 1989),
IDSR-hat (Utgoff, 1990),
TPIDT (Quinlan, 1986),
PRISM (Cendrowska, 1988)

* Decision Rules AQI4-NT (Pachowicz and Bala, 1991),
AQR, CN2 (Clark and Niblett, 1989),
AQ15 (Michalski et al., 1986).
AQ15-GA (Vafaie and DelJong, 1993),
AQ17-DCI (Bloedorn and Michalski, 1992),
AQ17-FCLS (Zhang and Michalski, to appear).
AQ17-HCI (Wnek and Michaleski, 1991),
AQ17 (Bloedorn, Michalski and Wnek, 1993)

* Inductive Logic Programming: mFOIL (Dzeroski, 1991)

Table 19.3 shows all reported results (Thrun et al,, 1991). No one classifier
based on genetic algorithms was tested as a separate program. In the AQI15-GA
program, genetic algorithms are used in conjunction with AQI15. Genetic algo-
rithms are used to explore the space of all subsets of a given attribute set, and
AQI15 is used to build concept descriptions. This multistrategy approach improves
performance accuracy of the symbolic lcaming system while the M3 problem is
learned.
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Problem M1 is of similar complexity to the C1-C5 ROBOTS problems, and it
is easily learned by decision rule algorithms, AQ-15 and AQI17-HCI. Backpropaga-
tion and ID3 cannot learn concept M1 precisely: however. in both neural nets and
decision trees paradigms, one can find programs that correctly learned descriptions
(Cascade Correlation, Assistant Professional).

Problems M2 and M3 are difficult for selective decision rule and decision tree
algorithms AQIS and ID3. The leamed descriptions have either high R-complexity
(problem M2) or contain rules that cover noisy examples (problem M3). These
problems were not learned as well by a hybrid of decision rules and decision trees,
i.e., decision lists (CN2 algorithm [Clark and Niblett, 1989]). This suggests that
techniques other than those implemented in these programs are required to solve
this kind of problem.

The hypothesis-driven constructive induction method implemented in AQI7-
HCI changes the representation space by narrowing and/or expanding the initial set
of attributes. The method analyzes inductive hypothesis generated by a selective
program and removes and/or generates new attributes. The new attributes are pat-
terns found either in conditions or in the rules. This is sufficient to solve the M3

program. The multistrategy constructive induction program AQI17 learned all three
MONK’s problems.

19.6 THIRD STUDY: THE nDmMC LEARNING PROBLEMS

This study uses another artificial domain to test twelve DNF-type concepts
and is based on the experiments conducted by Spears and Gordon (1991). The
experiments involved leaming concepts in g designed domain defined by 4 nominal
attributes, each having 4 distinct values. Therefore, the description space consisted

varied from | 1o 3.
Spears and Gordon first compare three learning methods. Two symbolic
methods represented by C4.5. a decision tree learning program, and AQI4, a deci-

4
Problem M2 was tater leamed with 100% accuracy by AQ17-HCI as a result of detecting xor-patterns
(Wnek, 1993),
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Table 19.3: Summary of results for MONK's problems

Prediction Accuracy

DNF-type

DNF-type

Non-DNF
Paradigm Program (no noise) ) (m-of-n) (noise)

Neural Nets  * (D) Backpropagation 100% 100% 93%
(h Cascade Correlation 100% 10% 97%

Decision Trees. (2) Assistant Professional 100% 81% 100%
(3 1D3 99% 68% 94%

) ID2 (no windowing) 83% 69% 96%

3.4 IDSR R2% 69% 95%

[C))] IDSR-hat 90% 6% —

4y IDL 97% 66% —

(4) TDIDT 76% 61% —

(5) PRISM 86% 73% 90%

Decision Rules  (6) AQI4-NT 100% 1% 100%
3) AQR 96% 80% 87%

(&3] CN2 100% 69% 89%

6)  AQIS 100% 7% 84%

(6) AQIS-GA 100% 87% 100%

(&) AQ17-DCI 100% 1% 97%

(&) AQ17-FCLS 10 % N% 97%

q (6) AQ17-HCI 100 % 93% 100%

1 6) AQ1Y7 100% 100% 100 %

Inductive Logic mFOIL 100% 69% 100%

Programming (2)

* Programs compared in the first study. § Constructive induction programs. Experiments were
performed at the following laboratories: 1) School of Computer Science, Camegie Mellon University,
Pittsburgh. Pennsytvania, USA; 2) Al Laboratory, Josef Stefan Institute, Ljubljana, Slovenia; 3)
Institute for Real-Time Computer Control Systems and Robotics and University of Karlsruhe,
Karlsruhe, Germany: 4) Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brusscls,
Belgium; 5) Al-Lab, Institute for Informatics, University of Zurich, Switzerland; 6) Center for
Antificial Intelligence, George Mason University, Fairfax, Virginia, USA.

sion rule lecarning program. Subsymbolic methods were represented by GABIL—
Genetic Algorithms Batch Incremental Leamer. They conclude that AQI4 is the
best performer and uses some of AQ's strategics to improve GABIL. The resulting
multistrategy system, Adaptive GABIL, is finally evaluated using the same prob-
lems. '

Tables 19.4 and 19.5 show the results from testing the systems according to
the prediction accuracy and the convergence criteria. The prediction accuracy is an
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Table 19.4: Prediction accusacy in the four DNFE categories

Prediction Accuracy

Paradigm (Program) 1DmC 2DmC 3DmC 4DmC
Genetic Alg.
(GABIL) 96% 9% 90% 89%
(Adaptive GABILY 97% 9% 95% 94 %
Decision Trees
(C4.5) * 98% 95% 89% 84%
Decision Rules
(AQl14) * 99% 97 % 96% 95%

*Programs compared in the first study
1 Multistrategy leaming program

average over all values on a learning curve. The convergence criterion is the num-
ber of events seen before a 95% prediction accuracy is maintained (Valiant, 1984).
The results in the tables were averaged for each DNF category over three cases
(m=1..3).

Problems labeled 1DmC and 2DmC are similar to problems C1-C5 defined in
the ROBOTS domain as far as the complexity of descriptions is concerned. In
leaming such problems, the symbolic learning program AQI14 outperformed the
other three programs both in terms of predictive accuracy and convergence 10 95%.
For the remaining problems, 3DmC and 4DmC, AQ14 maintains the best predic-
tion accuracy. However, the Adaptive GABIL algorithm that combines symbolic

Table 19.5: Convergence to 95% in the four DNF categories

Convergence (no examples needed to achieve 95% accuracy)

Paradigm (Program) 1DmC 2DmC 3DmC 4DmC
Genetic Alg.
(GABIL) 94 169 151 167
(Adaptive GABILY 63 83 84 88
Decision Trees -
(C4.5) * 96 135 209 206
Decision Rules
(AQ14) * 33 52 102 105

* Programs compared in the first study
§ Multistrategy learing program
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and subsymbolic strategies strongly outperformed the decision tree lcarning algo-
rithm.

19.7 SUMMARY AND FUTURE WORK

From the multistrategy leaming point of view, it is important that capabilities
and limitations of different leamming strategies and paradigms are well understood.
The goal of this study was to make experiments that would help to develop insights
into the performance of diverse learning approaches on selected classes of learning
problems.

One finding is that symbolic methods outperformed subsymbolic methods in
learning DNF-type problems. We found that the performance accuracy of symbolic
methods was high, the convergence to the target concept was fast, and the learned
descriptions matched or closely matched the target concepts and were easy to
understand. In addition, preliminary results show that the symbolic methods per-
formed very well with DNF-type problems with noise, which contradicts a some-
times cxpressed belief that neural nets are particularly good for such problems, and
symbolic methods are not. The most surprising result, however, was that symbolic
methods employing constructive induction performed on the par with neural nets
on learning non-DNF-type concepts, such as “m-of-n." For such problems, neural
nets were supposed to be superior because the problems are easily representable by
such nets. Multistrategy induction methods (such as those implemented in the
AQ17 family and Adaptive GABIL), although at an early stage of development,
have already shown an improved performance over monostrategy methods.

The performance of the programs was analyzed using a diagrammatic visual-
ization system, DIAV. This system, working on line with a learning program,
turned out to be a very useful tool for visualizing learned and target concepts,
comparing the learned concepts, and presenting errors in leamning (an “error
image"). The method was also exceptionally useful for visualizing concepts learned
by subsymbolic methods and comparing them with concepts learned by symbolic
methods. such as neural net learning and genetic algorithm leaming. Concept
images helped comprehending knowledge encoded in a neural network or in a
population of classifiers. In addition, the visualization method enabled us to deter-
mine the R-complexity of the concepts leamed by the subsymbolic methods.

Among important topics for the future is the application of the methods to a
wider range of non-DNF-type problems, such as learning a text-to-speech mapping
(Sejnowski and Rosenberg. 1987; Dietterich, 1990), and to randomly generated
problems in order to evaluate an overall performance of the methods. Future
rescarch might also compare the performance of the methods in learning from
noisy data and inconsistent examples and in learning imprecisely defined or flexi-
ble concepts (Bergadano et al., 1992).
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