MATCHING METHODS WITH PROBLEMS:
A COMPARATIVE ANALYSIS OF CONSTRUCTIVE
INDUCTION APPROACHES

by

E. Bloedorn
R. S Michalski
J. Wnek

Reports of the Machine Learning and Inference Laboratory, MLI 94-2, School of
Information Technology and Engineering, George Mason University, Fairfax, VA, May
1994.

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

DaVince Tools
This PDF file was created by an unregistered copy of the shareware program DaVince Tools. For more information about DaVince Tools and how to register your software (which will remove this notice), visit http://www.davince.com

MATCHING METHODS WITH PROBLEMS:
A Comparative Analysis of
Constructive Induction Approaches

E. Bloedorn, R.S. Michalski and J. Wnek

MLI 94-2

May 1994

Matching Methods with Problems: A Comparative Analysis of
Constructive Induction Approaches

Abstract

This paper provides a taxonomy of constructive induction problems and reports on an empirical
comparison of several constructive induction methods. In this paper a representation space 1s said
to be poorly suited for learning because of three types of problems: 1) inappropriate attributes or
attribute values, 2) incomplete attribute values, attribute sets or examples and 3) incorrect attributes
or examples. Most current constructive induction methods are designed to correct one of these
types (or sub-types) of problems which Iimits the types of problems for which this method is
effective. In order to build a more general multistrategy method of constructive induction an
understanding of when some methods for constructive induction are useful and when they fail is
important. Five methods of constructive induction are evaluated: DCI attribute construction (AQ-
DCI), HCI attribute construction (AQ-HCI{ADD)), HCI attribute removal (AQ-HCI{REMOVE)),
HCI construction and removal (AQ-HCI), and attribute-value removal (AQ-SCALE). The results
point to the need for a multistrategy constructive induction approach for solving a wide variety of
‘induction problems.

Key words: concept learning, constructive induction, multistrategy learning,

Acknowledgements

This research was conducted in the Center for Artificial Intelligence at George Mason University.
The Center's research is supported in part by the National Science Foundation under grant No.
IRI-9020266, CDA-9309725 and DMI-9496192 in part by the Advanced Research Projects
Agency under the grant No. N00014-91-J-1854, administered by the Office of Naval Research,
and the grant No. F49620-92-J-0549, administered by the Air Force Office of Scientific Research,
and in part by the Office of Naval Research under grant No. N0OG014-91-J-1351.

1. Introduction

The underlying idea of constructive induction {CI) is to view learning as a double search process.
This contrasts with standard machine leaming which performs only a single search. CI methods
perform a search both for an ‘adequate’ representation space, and for a hypothesis w1th1n that
space.

By representation space is meant a space in which facts, hypotheses and background knowledge
are represented. The representation space is spanned over descriptors that are elementary concepts
used to characterize examples from some viewpoint. Usually examples are given as vectors of
single argument descriptors (attributes). In this paper the discussion will be limited to an
attributional representation. Typical constructs of the hypothesis language include nested axis-
parallel hyper-rectangles (decision trees), arbitrary axis-parallel hyper-rectangles (conjunctive rules
with internal disjunction, as used in VL1), hyperplanes or higher degree surfaces (neural nets), and
compositions of elementary structures (grammars).

Both the search for an adequate representation space and the search for a hypothesis within that
space are performed through the repeated application of available search operators. The search for a
hypothesis applies operators provided by the given inductive learning method. For example, the
AQ17-MCI method (Bloedorn, Michalski and Wnek, 1993) uses operators employed in the AQ-
type learning systems, such as "dropping conditions,” "extension against,” "adding an
alternative,” "closing interval," and "climbing a generalization tree." The representation space
operators modify the representation space. These can generally be classified into "expanders,” that
expand the space by adding new dimensions (attributes), and "contractors” that contract the space
by removing less relevant attributes and/or abstracting values of some attributes.

Since the inception of this view of CI as a double search, several methods for CI have been
proposed (Wnek and Michalski, 1994, Wnek and Michalski, 1994). However, a comparison of
the relative strengths of various methods has not been performed. This paper performs a
comparison for five different CI methods: AQ-HCI(ADD), AQ-HCI(REMOVE), AQ-HCI (ADD
and REMOVE combined), AQ-DCI and AQ-SCALE. This analysis shows a strong need for
multistrategy CI in order to extend the range of problems performed by empirical induction.

2. Related Work

The goal of constructive induction is to find simple, accurate descriptions of the concepts to be
learned. One approach to finding such descriptions is to search for a induction method that was
well suited to the distribution of examples. This approach is taken by Brodley (Brodley, 1993} in
which a number of different methods, each with different type of constructs for building
descriptions, are combined. The selection of an appropriate induction method is based on a number
of heuristic rules.

Work on the automated selection an appropriate bias is also closely related to this research. Bias-
adjustment programs include STABB (Utgoff, 1986) and VBMS (Rendell, Seshu and Tcheng,
1993). STABB searches for a bias by searching for a better description language. STABB can both
weaken the bias (expand the representation space) and strengthen the bias (contract the
representation space). STABB does not, however, learn when certain bias modifications are
useful. The VBMS system does associate biases (different induction algorithms) with problem
characteristics using a similarity-based clusterer PLS1. VBMS did not, however, have any
mechanism for modifying the representation space by adding or removing terms.

Current methods for CI are limited because only one method for modifying the representation
space has been used. Real problems often have multiple difficulties associated with them such as
misclassified examples and a number of irrelevant attributes. A system that combines muitiple

methods for performing constructive induction has the potential for greatly extenchng the range of
problems susceptible to empirical induction. Introducing multiple tools, however, introduces a
number of questions of its own: Which methods should be used together? When should each
available method be used? Are there results complementary or destructive?

3. A Taxonomy of Representation Space Modifiers

The operators for searching for a hypothesis in a given a representation space are well understood
(Michalski, 1983), but the search operators for finding a good representation are less well
understood. In order to develop a taxonomy of constructive induction methods it is useful to
examine the assumptions made by selective mductlon methods because it is these assumptions that
are violated by real-world problems.

Selective induction methods make a number of assumptions about the representation, and the
distribution of examples. These assumptions can be categorized into three types: 1) completeness,
2} correctness and 3) appropriateness. Completeness refers to the extent to which the knowledge
provided to the system is sufficient for the system to generate a complete and consistent description
of the various classes. For example, a system will not be able to generate accurate useful rules for
medical diagnosis if it has no information concerning the physical condition of the patient.
Correctness refers to the accuracy with which data is given to the system. Incorrectness can
manifest itself in individual attribute values, attributes themselves or example class membership. A
common cause of incorrectness is noise, but it can also be due to error. Selective induction
methods assume that the given data are in an appropriate form so that exampies which are close to
each other in the representation space are also close to, or identical in class membership as well
(Rendell and Seshu, 1990). When any of these assumptions are violated the representation space is
inadequate for selective induction and poor descriptors (low predictive accuracy and high
complexity) result.

In this paper CI is viewed as a double search process. Some of the inadequacies raised here can be
corrected by changing the constructs in the hypothesis language or by changing the representation
space itself. In this research the hypothesis language is assumed to be fixed. Therefore, any
modifications to make the learning problem easier must come about by changing the representation
language. Thus, in this discussion, the emphasis is on finding an appropriate representation space
given a single hypothesis language. The VL] hypothesis language was selected because it is
comprehensible and powerful.

A representation space is inadequate when it is either incomplete, incorrect or inappropniate (Fig.
1). The role of the representation space modifiers in constructive induction is to correct the
inadequacies of the representation space so that good hypotheses can be found. To achieve a
learning method which can overcome any of the deficiencies of the representation space methods
for correcting each of these inadequacies must be developed.

Problems

Inappropriate Incomplete Incorrect

Figure 1. A taxonomy of representation space inadequacies

3.1 Inappropriateness

An induction problem is inappropriate to a representation language if there is a mismatch between
the concept boundaries in the space and the capabilities of the descriptive constructs of the language
to describe these boundaries. The source of this inappropriateness can lie in the set of attribute

values, or the attributes themselves.

An example of inappropriate attribute value set would be one in which the provided values blur the
concept boundaries by being too broad or too precise. Value sets that contain too few values can
be difficult to learn discriminatory rules from because the granularity is too coarse. One approach
for handling this problem is to increase the granularity. A value set that contains overly precise
values, however, can also cause problems. Many induction methods, such as decision trees and
decision rules, perform best when value scts are small and appropriate to the problem at hand (A
demonstration of this is given in section 2.1). The size of an attribute domain can sometimes be &
measure of the level of granularity of an attribute: a large attribute domain means that examples are
precisely defined along that dimension and vice versa. Over-precision can result in learned
descriptions that are too precise and overfit the data. Overprecision in attribute value sets is
sometimes difficult to avoid when the data provided to the system is continucus, and meaningful
discretization intervals are unknown. Various methods for automatic discretization of attribute data
have been proposed. Some of these methods are quite simple such as equal-width intervals, and
equal-frequency intervals. Others such as C4.5 (Quinlan, 1993), and SCALE which implements
the Chi-merge algorithm (Kerber, 1992) are more complex.

Inappropriate attributes are those attributes which are relevant to the problem at hand, but which
pose the problem in such a way that the descriptive constructs of the language are inadequate. For
example, the parity problem when stated in terms of the presence of or absence of individual
attributes is an attribute-inappropriately stated problem for any induction method which uses axis-
paralle]l hyperrectangles as descriptive constructs. When inappropriate attributes exist attribute
construction methods can be invoked which try to combine the given attributes in more problem-
relevant manner. A number of systems have been developed with this goal. These methods can be
classified into data-driven, hypothesis-driven, knowledge-driven and multistrategy (Wnek and
Michalski, 1994), Some representative of each of these types are: AQ17-DCI (Bloedorn and
Michalski, 1991), BLIP (Wrobel, 1989), CITRE (Matheus and Rendell, 1989), Pagallo and
Haussler's FRINGE, GREEDY3 and GROVE (Pagallo and Haussler, 1990), MIRO (Drastal,
Czako and Raatz, 1989) and STABB (Utgoff, 1986). |

3.2 Incompleteness

An induction problem is incomplete if attribute values, attributes (concepts), or examplés are
missing. Incompleteness with respect to examples is a fundamental problem in all but trivial
summative induction cases. Thus although selective induction methods do not assume a complete
set of examples will be available for learning, they do assume that the training set has a certain
degree of completeness. This degree of completeness is satisfied when the training set contains a
sufficient number of representative, or prototypical examples so that class boundaries can be
accurately determined. Example incompleteness is addressed in knowledge acquisition systems
such as DISCIPLE (Tecuci, 1990). In DISCIPLE machine learning methods are used to guide the
questioning of the expert to most efficiently fill gaps in the knowledge base.

A problem may also be incomplete due to attribute (concept) incompleteness. Attribute
incompleteness is present when identical examples are present in multiple classes (when
ambiguous examples exist in the data). This type of incompleteness is a common problem.
Methods for overcoming attribute incompleteness differ from those designed for overcoming
inappropriate attributes because in this case the attribute required is not a simple function of the
current attributes. Thus methods which ty combinations of current atributes will fail here. The
source for these attributes must come from a domain expert. This knowledge acquisition task is
most effective when it is focused on filling the known gaps in the knowledge base. One method for
overcoming this problem is CERI which is a part of NeoDICISPLE (Tecuci and Hieb, 1992). In
this approach a guided interaction with the user takes place in which the expert is asked to make
distinctions between concepts appearing in the positive and negative instances of the rule. In asking

very specific questions to the user, the elicitation of useful knowledge is easy for the expert. In
additton the questions are guided by the ‘gaps’ in the knowledge base so they are carefully
constructed and useful.

3.3 Incorrectness

Problem incorrectness occurs when some attribute-values, attributes or instances are incorrectly
labelled. Incorrectness or error can occur in any stage along the data acquisition process.
Incorrectness 1s most often associated with noise in the training data due to poor sensor readings.
Differentiating between the effects of instance noise (misclassification) and attribute-value noise is
extremely difficult as often the only manifestation of this noise is the distribution of exceptional
instances which are distant from other instances of the same class in the representation space.

Some methods for dealing with incorrect instances or attribute values are based on identifying
noisy or exceptional instances by using statistical methods applied to the distribution of attribute
values, or instances or other significance measures applied to learned hypotheses. Some tree-
pruning methods include (Quinlan, 1986) and (Mingers, 1989). Pruning methods applied to
learned rules include the AQ family of programs (Michalski, 1986; Zhang, 1989), and CN2
(Clark, 1989) and pruning applied to the training data based on rule-weight is presented in
(Pachowicz, Bala and Zhang, 1992).

4. An Empirical Comparison
4.1 Descriptions of methods evaluated

As mentioned earlier a number of methods for constructive induction have been developed. Most
of these methods modify the representation space by adding new attributes. Other methods exist
which abstract attribute values or remove irrelevant attributes. Although each of these methods has
been developed with a specific representation space transformation in mind it is important to
empirically measure how effective each of these methods are in achieving this goal and, in the case
of competing methods, determining differences. AQ17 is a system which combines a number of
different methods for representation space modification. The selection of different methods is
performed by the user. All of the methods use the AQ inductive learning module for performing
the search for inductive hypotheses. A single method for hypothesis generation is used because the
types of rules learned by AQ are comprehensible and powerful and it eases the control of the
double search problem by forcing the representation space modifiers to correct the space for a
single type of hypothesis language construct.

The AQ17 system includes a number of representation space modifiers. These modifiers are briefly
described below:

1) Attribute construction

a) Hypothesis-driven CI (HCI) is a method for constructing new attributes based on an analysis of
inductive hypotheses. Useful concepts in the rules can be extracted and used to define new
attributes. These new attributes are useful because explicitly express hidden relationships in the
data. This method of hypothesis analysis as a means of constructing new attributes is detailed in a
number of places including (Wnek, 1993, Wnek and Michalski, 1994),

b) Data-driven (DCI) methods build new attributes based on an analysis of the training data. One
such method is AQ17-DCI (Bloedorn and Michalski, 1991). In AQ17-DCI new attributes are
constructed based on a generate and test method using generic domain-independent arithmetic and
boolean operators. In addition to simple binary application of arithmetic operators including +, -,
*, and integer division, there are multi-argument functions such as maximum value, minimum
value, average value, most-common value, least-common value, and #VarEQ(x) (a cardinality
function which counts the number of attributes in an instance that take the value x).

2) Atribute value modification

Attribute-value modification can be either the addition, (concretion) of values to an existing
attribute domain, or the deletion (abstraction) of attribute values. Currently the program which

performs this modification, SCALE, implements both a 2 method and an equal-interval-size
method. The ¥2 method calculates the correlation between an attribute-value interval and the class.
Using a ¥2 correlation to quantize data was first proposed by Kerber (Kerber, 1992). Attribute

value modification (AVM) selects a set V' < V (where V is the domain of A) of allowable values
for attribute A. AVM can be used to reduce multi-valued nominal domains, or real-valued
continuous data into useful discrete, values.

3) Attribute removal

A hypothesis-driven method can also be used to perform attribute removal. Attribute removal
‘makes a selection of a subset X' of attributes from the original attribute set X. In AQ17, a logic-
based attribute removal is performed. The irrelevancy of an attribute is calculated by analyzing
generated hypotheses. For each attribute, a sum is calculated of the total number of examples
covered by a discriminant rule which includes that attribute. Attributes that are irrelevant will be
useful only to explain instances that are distant from the majority of examples in the distribution.

To empirically determine the effectiveness of these methods for representation space modification
they were applied to a set of artificial problems.

4.2 Problem Descriptions

One goal of this report is to empirically determine the types of problems that are best suited to two
methods for constructive induction: data-driven and hypothesis-driven, To this end a set of
artificial DNF type problems were generated. In each problem there are 500 total instances, 70%
are used for training and 30% are used for testing. The goal concept for each of the six problems 1s
the same. However, in all but the first case the goal concept has been obscured by a different type
of problem. The five different problems are: 1) random incorrect instance labelling
(misclassification noise), 2) incorrect attribute-values 3) inappropriate attribute values (overly large
attribute domain sizes) 4) inappropriate attributes (irrelevant attributes) and 5) inappropriate
attributes (relevant to the target concept, but resulting in an example distribution which 1s difficult
for the given hypothesis language to describe).

‘The artificial problems consist of a set of six DNF type concepts. A description of each of the six
problems and the goal concept for the positive class in each 1s given below:

1) Problem t0 original DNF
Positive class: [x1=4,5] [x2=1..3])[x3=1,2] v [x3=4 5][x4=2][x5=2]

2) Problem t1 (25% of the training instances misclassified)
Positive class: [x1=4,5] (x2=1..3][x3=1,2] v [x3=4,5][x4=2][x5=2]

3) Problem t2 (attribute value noise: 187 of the training examples have one or more attributes
whose values have been modified).
Positive class: [x1=4,5] (x2=1..3]1[x3=1,2] v [x3=4 5]{x4=2][x5=2]

4) Problem t3 (inappropriate attribute-value set/overprecision: the domain of all of the attributes

has been increased from 6 to 60) |
Positive class: [x1= 40..59] (x2=10..39][x3=10..29] v [x3=40..59][x4=20..29][x5=20..29]

5) problem t4 (inappropriate attributes: the decimal value of x3 has been mapped using a 6 place
parity coding, e.g. 3 = 001011. The selection of a particular equivalent coding is random)
Positive class: [x1=4,5] [x2=1..3][[#attributes(x6..x11)=1]=1,2] v [#attributes(x6..x1 1)=1]}=4 5] [x4=2]{x5=2]

6) Problem t5 (40 irrelevant attributes added)
Positive class: [x1=4.5] [x2=1..3]{x3=1,2] v [x3=4,5][x4=2][x5=2]

4.3 Results

These results show the predictive accuracy of AQ (no representation space modification), AQ-HCI,
AQ-HCI{ADD), AQ-HCI(REMOVE), AQ-DCI and AQ-SCALE.

% Correct (strict match)

Problem To|T1] T2| T3| T4 | TS

AQ 1001 71 83 | 66 | 91 | 86
AQ-HCI 100 76 } 90 | 76 | 91 | 68
AQ-HCI (ADD) 1001 76 { 90 | 76 | 91 | 87

AQ-HCI (REMOVE) 100 711 83 | 66 | 91 | 68

AQ-DCI 100 65 84 | 70 { 100 | 78

AQ-SCALE 100 70| 57 | 77 | 94 | 51

Table 1. Test results of 6 representation space modifiers on 6 artificial problems

These test results reveal some of the characteristics of the six methods for representation space
modification. It is helpful in this discussion to analyze pairs of results. The pairs being compared
are:

1) Representation space change vs. no change (AQ-HCI, AQ-HCI(ADD), AQ-HCI{REMOVE),
AQ-DCI and AQ-SCALE vs. AQ).

2) AQ-DC(I attribute construction vs. AQ-HCI attribute construction

3) construction vs. contraction (AQ- HCI(ADD) and AQ-DCI vs. AQ-SCALE and AQ-
HCIH{REMOVE))

Representation change vs. No change

Invoking representation space modifications to a simple problem (t0) do not adversely affect the
ability of AQ to learn the goal concept. Despite the construction of new attributes or the removal of
attribute values (AQ-HCI(REMOVE) made no changes to the space) the simple correct rules were
found. If the problem is not so clear, the effects of representation space change can be either
helpful or destructive.

AQ-HCI vs. AQ

AQ-HCI(ADD) significantly improved the performance over AQ alone for the problems of
misclassification (t1), attribute value noise (t2), overprecision (t3) and irrelevant attributes (t5).
AQ-HCI(ADD) construction caused no change in accuracy for the distributed coding problem (t4).

HCI removal made changes to only the distributed coding problem (t4) and, as expected the
irrelevant attribute problem (t5). In the latter problem it removed 14 of the 45 total attributes.
Unfortunately AQ-HCI(REMOVE) also removed two relevant attributes without which the goal
concept for the positive class could not be found. This result highlights the importance of
understanding how an attribute removal is performed. In AQ-HCI{REMOVE) removal is based on
the presence (or lack) of attributes in the generated rules. If an attribute is used by AQ it is
considered irrelevant and removed. This removal can occur independent of the information value
of an attribute: x2, x3 and x6 were retained despite an information value of (.00 while x44 and x45
with information values of 0.08, and 0.06 respectively were removed. When a threshold-filter
using individual information value was used to filter the data AQ was able to learn a set of 7 rules
that had a predictive accuracy of 100%.

AQ-HCI achieved the same results as AQ-HCI(ADD) for all but the irrelevant attribute problem
(t6). In this problem the negative effects of the removal of two relevant attributes (x44 and x45)
was slightly offset by the construction of two new attributes.

AQ-DCI vs. AQ

AQ-DCI attribute construction slightly improved the performance of AQQ for problems that had
attribute value noise (t2: 84% accuracy and 29 rules vs. 83% accuracy and 33 rules) and
overprecision (13;: 70% vs. 66% accuracy). As expected DCI construction significantly improved
performance for the distributed coding problem (t4: 100% accuracy and 7 rules vs. 91% accuracy
- and 26 rules).

AQ-DCI attribute construction resulted in decreased performance of AQ for problems of
misclassification (t1: 71% accuracy vs. 65% accuracy each with 53 rules) and irrelevant attributes
(t5: 78% accuracy vs. 86% accuracy). AQ-DCI attribute construction appears to build attributes
which strongly fit the training data. If this data has is correct and appropriate, then these strong
new attributes will help the leamer find simple, accurate rules, otherwise the training data will be
overfit and poor rules will result.

AQ-SCALE vs. AQ

AQ-SCALE attribute value abstraction resulted in improved performance of AQ for problems of
overprecision (t3: 77% accuracy vs. 66% accuracy) and distributed coding (14: 94% accuracy vs.
91% accuracy). AQ-SCALE atwibute value abstraction resulted in decreased performance for
misclassification noise (t1: 70% vs. 71%), attribute value noise (t2: 57% accuracy vs. 83%
accuracy), and irrelevant attributes present (51% accuracy vs. 86% accuracy). As can be expected
for a method that removes information, AQ-SCALE can significantly increase performance for
problems that are defined too precisely, but it can also significantly reduce performance by
removing relevant attribute values.

AQ-HCI anribute construction vs. AQ-DCT attribute construction

AQ-HCI(ADD) attribute construction performed better than AQ-DCI attribute construction on all
problems except the distributed coding problem (t4: AQ-DCI 100% accuracy and 7 rules vs. AQ-
HCI{ADD) 91% accuracy and 12 rules). This suggests that AQ-DCI is capable of correcting
specific inadequacies in the data (and significantly increasing the accuracy of resulting rules) , but
that AQ-HCI(ADD) is a more general tool for improving the representation space and does not
cause a significant decrease in performance. There is tradeoff here between power and simplicity in

the DCI approach and the generality, but complexity of the resulting AQ-HCI(ADD) generated
attributes. |

Representation space expansion vs. representation space contraction

Not surprisingly the construction of new attributes 1s a safer modification to the representation
space than the contraction of that space through attribute value abstraction (AQ-SCALE) and
attribute removal (AQ-HCI{(REMOVE)). The average performance of the two attribute construction
methods over all 6 problems is 84.75% while the average for the destruction methods is 77.33%.

5. Conclusion

~ In this paper four different methods for representation space modification were applied to six
different artificial problems. The methods performed representation space expansion (AQ-DCI, and
AQ-HCI{ADD)) and contraction (AQ-SCALE, AQ-HCI(REMOVE)). The results highlighted the
strengths and weaknesses of the different approaches. Expansion methods are safer than
contraction methods, and can significantly increase performance when such methods are well mned
to the problem at hand. Domain knowledge can be very useful in achieving this. Although only one
example from each was tested, it appears data-driven methods are very sensitive to irrelevant
attributes and misclassification noise and therefore should be avoided when such problems are
known to be present. In addition, hypothesis-driven construcuon was found to be generally useful,
although it achieved this at the sacrifice of some simplicity. Contraction methods can result in
significant reduction in performance accuracy and should be used very carefully.

References

Bloedorn, E., and Michalski, R.S., “Constructive Induction from Data in AQ17-DCI: Further
Experiments,” Center for Artificial Intelligence, George Mason University, MLI 91-12, 199].

Bloedorn, E., Michalski, R.S. and Wnek, J., “Multistrategy Constructive Induction: AQ17-MCL,”
Second International Workshop on Multistrategy Learning, pp. 188-203, Harpers Ferry, WV,
1993.

Brodley, C., E., “Addressing the Selective Superiority Problem: Automatic Algorithm/Model
Class Selection,” Proceedings of the Tenth International Conference on Machine Learning, pp. 17-
24, 1593,

Clark, P., and Niblett, T., “The CN2 Induction Algorithm,” Machine Learning, Vol. pp. 1989.

Drastal, G., Czako, G. and Raatz, S., “Induction in an Abstraction Space: A Form of Constructive
Induction,” Proceedings of IJCAI-89, pp. 707-712, Detroit, MI, 1989.

Kerber, R., “ChiMerge: Discretization of Numeric Attributes,” Proceedings of the Tenth National
Conference on Artificial Interlligence, pp. 123-128, San Jose, CA, 1992,

Matheus, C.J., and Rendell, L., “Constructive Induction on Decision Trees,” Proceedings of
IJCAI-89, pp. 645-650, Detroit, MI, 1989.

Michalski, R.S., Mozetic, L., Hong, J., and Lavrac, N., “The Multi-Purpose Incremental Learning
System AQ15 and its Testing Application to Three Medical Domains,” Proceedings of AAAI-86,
pp. 1041-1045, Philadelphia, PA, 1986.

Michalski, R.S., “A Theory and Methodology of Inductive Learning,” Machine Learning: An
Artificial Intelligence Approach, Vol. I, R.S. Michalski, J.G. Carbonell and T.M. Mitchell (Eds.),

Palo Alto, CA: Morgan Kaufmann, 1983.

Mingers, J., “An Empirical Comparison of Pruning Methods for Decision-Tree Induction,”
Machine Learning, 2, Vol. pp. 1989,

Pachowicz, P.W., Bala, J. and Zhang, J., “Tterative Rule Simplification for Noise-Tolerant
Inductive Learning,” Proceedings of the Fourth International Conference on Tools for Artificial
Intelligence, pp. 452-453, Arlington, VA, 1992.

Pagallo, G., and Haussler, D., “Boolean Feature Discovery in Empirical Learning,” Machine
Learning, Vol. pp. 1990.

Quinlan, J.R., C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann, 1993,

Quinlan, J.R., The Effect of Noise on Concept Learning, Morgan Kaufmann, Los Altos, CA,
1986. . |

Rendell, L., and Seshu, R., “Learning Hard Concepts Through Constructive Induction:
Framework and Rationale,” Computer Intelligence, VYol. pp. 1990.

Rendell, L., Seshu, R. and Tcheng, D., “More Robust Concept Learning Using Dynamically-
Variable Bias,” Tenth International Workshop on Machine Learning, pp. 66-78, 1993,

Tecuci, G., and Kodratoff, Y., Apprenticeship Learning in Imperfect Domain, Morgan Kaufmann,
Palo Alto, 1990.

Tecuci, G., and Hieb, M., “Consistency-driven Knowledge Elicitation: Using a Learning oriented
Knowledge Representation that Supports Knowledge Elicitation in NeoDISCIPLE,” Machine
Leaming and Inference Laboratory, GMU, MLI 92-8, 1992. |

Utgoff, P.E., “Shift of Bias for Inductive Learning,” Machine Learning: An Artificial Intelligence
Approach, Vol. II, J.G. Carbonell and T.M. Mitchell (Eds.) R.S. Michalski (Eds.), Morgan
Kaufmann, Los Altos, CA, 1986.

Whnek, I., Hypothesis-driven Constructive Induction, George Mason University, PhD, 1993,

Wnek, J., and Michalski, R.S., “Discovering Representation Space Transformations for Learning
Concept Descriptions Containing DNF and M-of-N Rules,” Working Notes of the ML-COLT94
Workshop on Constructive Induction, pp. New Brunswick, NJ, 1994,

Whek, J., and Michalski, R.S., “Hypothesis-driven Constructive Induction in AQ17-HCL: A
Method and Experiments,” Machine Learning, 14, pp. 139-168, Vol. pp. 1994.

Wrobel, S., “Demand-driven Concept Formation,” Knowledge Representation and Organization in
Machine Learning, K. Morik (Eds.), New York: Springer-Verlag, 1989.

Zhang, J., and Michalski, R.S., “A Preference Criterion in Constructive Learning: A Discussion
of Basic Issues,” Proceedings of the 6th International Workshop on Machine Learning, pp. 17-19,
Ithaca, NY, 1989, |

