Reports of the GMU Machine Learning and Inference Laboratory, MLI 95-3, March 1995.

HOW DID AQ FACE THE EAST-WEST CHALLENGE?

An Analysis of the AQ Family’s Performance in the 2nd International
Competition of Machine Learning Programs

E. Bloedorn, I. Imam, K. Kaufman, M. Maloof, R.S. Michalski*, and J. Wnek

Center for Machine Learning and Inference
George Mason University
Fairfax, VA 22030
*Also with the Institute of Computer Science, Polish Academy of Sciences
01-237 Warsaw, Poland

ABSTRACT

The “East-West Challenge” thetitle of the secondinternationalcompetitionof machinelearning
programs,organizedin the Fall 1994 by Donald Michie, StephenMuggleton, David Pageand
Ashwin Srinivasanfrom Oxford University. The goal of the competition was to solve the
“TRAINS problems”, that is to discovehe “simplest” classificationrulesfor train-like structured
objects. The rule complexity was judgeddi?rolog programthat countedthe numberof various
components in the rule expressed in the frorRm@iog Horn clausesTherewere 65 entriesfrom

severalcountriessubmittedto the competition. The GMU team’s entry was generateddy three
membersof the AQ family of learningprograms:AQ-DT, INDUCE and AQ17-HCI. The paper
analyseghe resultsobtainedby theseprogramsand compareshem to those obtainedby other
learning programs. It also presents ideas for further research that were insgiveddiypetition.
One of theseideasis a challengeto the machinelearningcommunityto developa measureof

knowledge complexity that would adequate§pturethe “cognitive complexity” of knowledge A

preliminary measure of such cognitive complexity, called C-complexity, diffén@mtthe Prolog-
complexity (P-complexity) used in the competition, is briefly discussed.

Acknowledgment

The authors thank ProfessorsDonald Michie, Steve Muggleton, David Page and Ashwin
Srinivasanfor organizingthe “West-EastChallenge’competitionof machinelearning programs,
which provided us with atimulatingchallengefor our learningprogramsandinspirednew ideas
for improving them. The authors also thax&bil Allkharouf and Ali Hadjarianfor their help and
suggestions in the efforts to solve problems posed by the competition.

This researchvas conductedn the Centerfor MachineLearningand Inferenceat GeorgeMason
University. The Center's research is supported in part by the AdvRaese@rctProjectsAgency
underGrantNo. NO0014-91-J-1854administeredby the Office of Naval Researchand Grant
No. F49620-92-J-0549, administered by the Air Force Office of Scientific Research, loy piaet
Office of Naval Research under Grant No. N00014-91-J-1351, and in part by the Natenak
Foundation under Grants No. IRI-9020266, CDA-9309725 and DMI-9496192.

1. Introduction

Recentyearshave seena great proliferation of efforts to apply machinelearning methodsto
practical domains. Theseefforts have brought a better understandingof the strengthsand
weaknesses the existing methods, and produced useful insigbtalast domainsthesemethods
best apply. An important part of these efforts was an international competitizerchinelearning
programsorganizedoy Tom Mitchell, SebastianThrun and John Chengfrom CarnegieMellon
University in 1991. The competitionoriginatedduring the 1991 SummerSchool on Machine
Learning at the Priory Corsendonk in Belgium, and in reflection ofttiegroblemsposedin the
competition were called “MONKS problems”. This was first such competition of Machine
Learning programs. About 20 machine learnimggramswere appliedto the posedproblemsby
research teams from the US and various countrisiiope. The researchiteamsthat participated
in the competitionswere from CarnegieMellon University, George Mason University, Josef
StefanlInstitute, University of Karlsruhe,University of Zurich, and Vrije Universiteit Brussel.
The problemsandthe resultsof the competitionhavebeendescribedn (Thrun et al., 1991; see
also Wnek and Michalski, 1994a for additional information). The MONKS problems have
subsequently become a tested for many other learning programs.

The Cornsendonkcompetition has demonstrateda significant interest of machine learning
researchers in applying their learning programs to the sata# problemsin orderto developan
insight into their performancand limitations. Following the succes®f the first competition,the
secondinternationalcompetitionof machinelearning programs,called the East-WestChallenge,
was organizedin 1994. Organizerswere Donald Michie, StephenMuggleton, David Page and
Ashwin Srinivasanfrom Oxford University in England(Michie, et al, 1994). In contrastto the
MONKS’ problems designedto test programsfor learning attributional (or attribute-based)
descriptions, the new challenge was designedsiprogramsfor learningrelationaldescriptions.
These problems were particularly suitable for programs emplaythugtive logic programming—
a new and very active research subarea in machine learning, particularly in Europe.

The East-WestChallengeinvolved learning simplestrules for classifying TRAINS or train-like
structures into “Eastbound” 6Westbound”. The trainshavea variablenumberof cars;carsare

of different shapesand can carry different loads. A natural characterizatiorof such structures
requiresa languagefor representingelationaldescriptionssuchasfirst order predicatelogic or
annotatedpredicate calculus (Michalski, 1983). Inductive logic programmingis therefore a
particularly suitable approach to such problems. The original TRAINS problem was first proposed
by R.S. Michalski over 20 yearsago, and was usedto testthe INDUCE programfor learning
structural descriptions (Michalski, 1980).

2. Rules of the Competition

The competitionincluded many more trains than in the original TRAINS problem presentedn
(Michalski, 1980). The new TRAINS problem consistedof three separatelearning problems,
called Competition 1, 2, and 3, respectively, as described by Michie, et al. (1994):

Competition 1

As in scientific discovery, its requiredto conjecturesomeplausibleLaw, in this case
governing what kinds of trainsre Eastboundand what kind are Westbound Merging
the new trains (Figure 2) with Michalski’s original ten (Figure 1) the competition
organizers applied a freshly conjectured Law to yield class labels forghkantset of

twenty. Can inductive inference recover the new Law, orasgmod or better,fitting

all 20? The best entry is to be judged on accuracy and simplicity.

The additionalten trains were selectedrom a randomly generatedoool and assigned
class labels, all in a way that ensured that the resulting 26twés split into Eastand
Westsubsetdy a new Law known as Theory X. The trains generatoritself applied
attribute constraints suggest by Michalski’s original ten train example as follows:

1. A train has two, three or four cars, each of which can either be long or short.
2. A long car can have either two or three axles.

3. A shortcar cab be rectangularu-shaped pucket-shapedhexagonalor elliptical,
while a long car must be rectangular.

4. A hexagonal oelliptical caris necessarilyclosed,while any othercar canbe either
open or closed.

5. The roof of a long closed car can be either flat or jagged.

6. Theroof of a hexagonakaris necessarilyflat, while the roof of an elliptical caris
necessarily an arc. Any other short closed car can have either a flat of a peaked roof.

7. If a short car is rectangular then it can also be double-sided.

8. A long car canbe emptyif it cancontainone, two or three replicasof one of the
following kinds of load: circle, inverted-triangle, hexagon, rectangle.

9. A short car contains either one or two replicathefollowing kinds of load: circle,
triangle, rectangle, diamond.

10. No sub-distinctionsare drawn amongrectanguladoads, eventhough some are
drawn square and others marelessoblong. The presumptionis thatthey aredrawn
just as oblong as they need to be in each case to fill the available container space.

11. In Michalski’s original version a possibledistinction betweenhollow and solid
wheels was ignored, as is also done here.

Muggleton’s Prolog train-generatorembodiesthe above constraintstogether with

certaindistributionalassumptiongoncerningvaluesof descriptors,so as to preserve
statistical coherence with Michalski’s origirtah. ... The simplestlaw Y receivedthat
correctly classified the twenty trains of Figures 1 and 2 (see Tdbtetfieir equivalent
Prolog representation) won competition 1. (Michie et al., pp. 2,3)

1. TRAINS GOING EAST 2. TRAINS GOING WEST

il e S
1. Lo o FHaHoookB 1. Lo HoooHE—

» lpgHe Ry

Figure 1. Michalski's original set of trains (Michie et al., 1994).

1. TRAINS GOING EAST 2. TRAINS GOING WEST

B o] o LBy L A ey
. | © o LA = o ooo
.. @\ o Mol B s lalooo
)

.. [oool o A . [Oooooo) A

a1
s. \aflotdalla s. [© H a7

Figure 2. A new set of 10 trains created using Muggleton's train generator (Michie
et al. 1994).

Competition 2

The rules in Competition 1 failed to allow for subsymbolic and semi-symtaotics of
inductive analysis,rangingfrom multivariatenon-linearstatisticalapproacheshrough
neural networks and genetic algorithms to paranormabdret intuitive humanmental
skills. A separateeompetitionwas accordinglyavailablefor entriesin the form of an
allocationof Eastbound/Westboundbelsto the 100 trainsof Figure 3 (and Table 2)
unaccompaniedby any classifyingrule or formula. Since X [the intendedrule for
Competition 1] was the simplest knowntte organizersthey provisionallytook it as
the oracle for adjucating a subsymbolically derived classifications of theetedgt100.
But what if a subsymbolic learner uncovered a classification that was closegtrtinyan
Z eithertakenfrom Competitionl or otherwiseunknownto them?Providedthat the
complexity of the scoreof Z lay within the bottom quatrtile of the scoresof all such
theories thenZ’s classlabellingswould be usedfor assessmentf that subsymbolic
learner.... For this sub-symbolicsectionthe solution that classified, on the above
assessmenprinciple, the highest number of new trains would win the second
competition. (p. 5)

Competition 3

Returningto theorydiscovery,a further challengewas proposed,this time basedon
induction from traingeneratedand pre-classifiedentirely randomly(strictly speaking,
pseudo-randomly). For this final exercisethe cross-ruling shown on Figure 4
partitioned50 trains into five setsof ten. Arbitrarily assigning“Eastbound’to the
trainsin the left columnand”Westbound”to thosein the right column, five separate
induction tasks were set up analogous to Michalski’s original. ... First place went to the
entry with the lowest grand total complexity summed over the five sub-tasks...” (p. 6)

3. Applying AQ Programs to West-East Challenge
3.1 General Comments

The MLI researcheamappliedthreeprogramsfrom the AQ family: AQDT (Michalski & Imam,
1994), INDUCE (Hoff, Michalski & Stepp, 1980) and AQ17-HCI (WnekvBchalski, 1994b)to
the problemsof the competition. The programsand resultsobtainedfrom their applicationare
briefly describedin the following sections. The application of each program involved a
transformation of the originarolog representatioof the problemsinto the form requiredby the
program.

s 8T 0 o Mo o - s (a7 v\ oo - D

Figure 3a. 1-50 out of 100 trains used in Competition 2.

Our early resultsrom applyingthe programsto the TRAINS problemsindicateddifficulties with
the metric for measuringcomplexity of the solutionsproposedoy the organizers. The proposed
metric measuredhe complexity of the learneddescriptionexpresseds a Prolog program. The
complexity scorewas computedautomaticallyalso by a Prolog program. To distinguish this
measureof complexity from other measurethat we proposed(see below), we called it P-
complexity (Prolog-complexity; see Appendix 5). We found gwdtitionswith low P-complexity
might havehigh complexity as evaluatedntuitively by a person,and conversely,a solution that
seemed simple to a person and easy to express in English, might have high P-complexity.

Figure 3b. 51-100 out of 100 trains used in Competition 2.

In order to rectify this problem, weroposedanothermeasureof complexity, which we called C-
complexity (Cognitive-complexity). Details of this metric are provided in Section 3.2. For
comparison, results from each of program have been evaluated using both measures of complexit
Section 4 provides a summary of results.

3.2 Measuring Complexity of Knowledge Learned by the Programs

Although the TRAINS domain seemsrelatively simple, it is not easyfor a personto find the
simplestsolutions. Thereis a tremendoushumberof classificationrules that are completeand
consistenwith the given training examplesetin eachproblem. (If the data containednoise, the
best solutions may not be consitent and/or complete with regard to the input examples (Bergadanao

s 8T 0 o Mo o - s (a7 v\ oo - D

Figure 4. 50 trains grouped into five classes used in Competition 3 (Michie et al., 1994).

etal., 1992). An importantissuethenis how to decidewhich of the many logically acceptable
solutions is the most desirable. This calls for some metric for evaluating solutions.

The natureof the domainoften hasanimpacton the ranking of rules. Someattributesmay be
more complex or more costly to measure than others, and rul@othat involve their evaluation
would bepreferred. In somedomainssimple,generalrules may be more useful, while detailed,
specific rules may be better in others. Butl@signeddomains,suchasthe TRAINS world used

in the competition, there are no external cues or implicit goals to guide one’s preference tmiteria.
such cases, humar automatedearnerstypically use preferencecriteria basedon somemeasure

of simplicity of the solutions.

Thefirst criterionis syntactic simplicity. Why bring in many conditionsin a rule if fewer would

suffice? For example, “Eastbound trains have a car with a triarigatiirwould, all thingsbeing
equal,be preferredover “Eastboundtrains havean evennumberof carsand two wheelson the
rearmost car.”The other criterionis ease of understanding. Simple, interrelatedconceptswithin

the rule will be morereadily rememberedhan a haphazardcollection of conditions,evenif the
latter is shorter.For example,The third car on an eastboundrain is rectangularsingle-walled,
jagged-topped, and carries a single load” ibayreferableto the simpler“A train is eastboundf

its first car haghreewheelsandit hasa carwith aflat top in front of a double-walledcar.” We
propose that eonceptual complexity (C-complexity)metric be basedon thesetwo principlesthat
closely mirror typical human preference criteria.

It is clearthatit will take a substantialeffort and experimentatiorto captureaccuratelysuch a
criterion. However, other metricsbasedupon simplicity and easeof understandingvill tend to
rank rulesetssimilarly. A version of C-complexity introducedand used here to evaluatethe
complexity of learned descriptions is:

The number of words it takes to describe the concept
concisely, accurately and under standably in correct English.

We view the measuras a rough approximationof "true” cognitive complexity. The advantageof

the measure is its simplicity. Its weakness is that for each description learned by alsystean
be many English translations.In order to make the measuremore operationaland speaker-
independent, we propose to selectshertestexpressioramongthoseprovidedby k (e.g. three)
English speakers.

The proposed C-complexity is more closely linked to simplicity tharntdt éaseof understanding.
However, combinations of conditions with high conceptual cohesion may reduce to a shorter form,
as did the example above in which tfearacteristic®f the third car could be enumeratedavithout

the redundant “The third car is”.

In the competition,rules were evaluatedusing a complexity metric basedon the simplicity of the

Prolog representation diie rules. This metric, which we call P-complexity, would appearto be

less of an indicator of conceptualcomplexity than C-complexity, becausesome of the easily
representableonstructsof Prologsuchaslist representatiomnd predicaterecursiondo not have
simple representationsn our mind or in our written language. The elegant Prolog rule

“eastbound(A| B) if (closed(A) or has-load(B,triangle)) and (short(A) or eastbound(B))”
translates to an English representation something likiediA is eastboundf its first caris closed
or one of its other cars hagrangularload, andalso eitherthe first caris shortor the restof the

train has the eastbound property.” Not only isEmglishlengthy, but peoplewill generallyhave
trouble assimilating the last clause they haveto divide the restof the train into a first andrest,

and then reapply the entire rule, only once if they are lucky.

In any applicationor competition,the criteria usedfor rankingthe variouspossibilitiesare of the
utmost importance. In applications in which inductiegic programmingwill be the sole method
of rule generation and application and the efficiency rather than the understandébiégyulesis
of paramount importance, a preference metric such as P-comkgitydbe used. However,in
most domains, something more like C-complexity is likely to be a better preference criterion.

The competition’s firseandthird problemswere judgedby P-complexity(assumingcompleteand
consistentulesets),and hencewas orientedtoward certainclasseof rules. Sincethe programs
describedin this papertend to be orientedtoward lower C-complexities,some of the “good”
results they obtained would have scopedrly in the competition. Nonethelessywe found many
of the P-complexrules “good” and/or “interesting” in their own regard, often due to low C-

complexities. Hence this paper will discuss rules that were subnattad competitionandthose
that were not, those with lower P-complexities and higher C-complexities and vice versa.

The bestrules in most of these competitionshad P- and/or C-complexitiesbelow 20. But
sometimes one complexity measure would be low while the other was very high. For ink&ance,
winning entry from Competitiod, “The train haseithera closedlast car or a triangularloadin a

car other than the last one. Also, either the last car is short or the train, after the last car is
removed, has the above property,” has a P-complexity of 16 and a C-complexity of 40.
Converselythe INDUCE-generateule, “All carshavetwo wheelsandthe secondcar doesnot
have a rectangular load,” has a P-complexity of 31 and a C-complexity of 15.

4. AQDT-2 System
4.1 Program description

The AQDT-2 system(Michalski & Imam, 1994) learns task-orienteddecision structuresfrom
decision rules or from examples. This approach was motivated by the rimeld @learningand
discovery system able not only generateand storeknowledge,but alsoto useit effectively for
decision making.Knowledgecanbe easily acquiredand storedin declarativeform; howeverthe
form in which knowledge can be most readily used is procedurdécidon structure is a directed
acyclic graph that specifies an order of tests to be apjaliad object(or a situation)to arrive at a
decisionaboutthat object. The nodesof the structureare assignedndividual tests(which may
correspondo a single attribute,a function of attributes,or a relation),the branchesare assigned
possible test outcomes (mngesof outcomes)andthe leavesare assignedne specificdecision
or a set of candidate decisions (with corresponding probabilitieah undetermined decision. A
decision structure reduces tdeaniliar decisiontreewhen eachnodeis assigned single attribute
and has at most one parent; the branches from each node are assigned single values of that attribi
and leaves are assigned single, definite decisions.

A decision tree/decision structure can be an effective tool for describing a decision @sless,

as all the required tests can be performed easily, and the decision-making situations it was designt
for remain constant. Problems arise when tlasseimptionslo not hold. For example,in some
situations measuring certain attributes may be difficult or costly. In such situations it is desirable to
reformulatethe decision structure so that the “inexpensive” attributes are evaluatedfirst (by
assigning them to the nodes closéthteroot), andthe "expensive'attributesare evaluatedonly if
necessarythey are assignedo the nodesfar away from the root). If an attribute cannotbe
measured at all, is usefulto eithermodify the structureso thatit doesnot containthat attribute,

or, whenthis is impossible,to indicatealternativecandidatedecisionsandtheir probabilities. A
restructuring may also be desirable if there is a significant change in the frequencyroénceof
different decisions.

The restructuringof a decisionstructure(or atree) in order to suit new requirementds usually
quite difficult. This is becausea decisionstructureis a proceduralknowledgerepresentation,
which imposes an evaluation ordmar the tests. In contrast,no evaluationorderis imposedby a
declarativerepresentationsuch as a set of decisionrules. Tests (conditions) of rules can be
evaluatedn any order. Thus, for a given setof rules, one canusually build a large number of
logically equivalent decision structures (trees), which differ in the test orderingtofheslack of
“order constraints,’a declarativerepresentatior{a ruleset)is much easierto modify to adaptto
different situationsthan a proceduralone (a decisionstructureor a tree). On the other hand, to
apply decision rules to make a decision, one needs to decide in which order tests are esatliated,
thus, needs a decision structure.

In the AQDT method a test is selected from an available $estsbasedon its utility (seebelow)
for the given set of decision rules. The test (attribute) utility is a combinatimmeafr more of the

following elementarycriteria: 1) disointness, which capturesthe effectivenessof the testin
discriminating among decision rules for different decision classes; 2) importance, which
determineshe importanceof a testin the rules; 3) value distribution, which characterizeghe
distributionof the testimportanceover its of values;and4) dominance, which measureghe test
presence in the rules. These criteria are defined below.

The description of each classin the form of a ruleset. Assumethatthis setis the initial ruleset
context.

Step 1: Evaluate eaclttributeoccurringin the rulesetcontextusing the LEF attributeranking
measure. Selectthe highestranked attribute. Let A representthis highest-ranked
attribute.

Step 2: Createa nodeof thetree (initially, the root; afterwards,a nodeattachedo a branch),
andassignto it the attribute A. In standardnode,createas manybranchesrom the
node as there are legal values of the attribute A, and assignthesevalues to the
branches. In compact mode, create as many branches as trdisgarevalue setsof
this attribute in the decision rules, and assign these sets to the branches.

Step 3: For each branch, associate with it a grouputés from the rulesetcontextthat contain
a condition satisfied by the value@gsignedo this branch. For example,if a branch
is assignedraluesi of attributeA, thenassociatevith it all rules containingcondition
[A=1i v ...]. If abranchis assignedvaluesi v j, then associatewith it all rules
containing conditionA=ivj v ...]. Remove these conditions from the ruldsthere
are rules in the ruleset context that do not contain attriyuaed theserulesto all rule
groupsassociatedvith the branchesstemmingfrom the node assignedattribute A.

(This stepis justified by the consensudaw: [x=1] = {[x=1] & [y= a] v [x=1] &
[y=b]}, assuming that a and b are the only legal values ofl.)rules associatedvith
the given branch constitute a ruleset context for this branch.

Step 4. If all therulesin a rulesetcontextfor somebranchbelongto the sameclass, createa
leaf node and assign that classtiolf all branchesf the treeshaveleaf nodes,stop.
Otherwise, repeat steps 1 to 4 for each branch that has no leaf.

The AQDT approach allows one to generate a decision structure that avoedaysevaluatingan
attribute that is difficult to measure,restructuresthe values of an attribute basedon their
importance and weights eachexample. Initial researchon this approach,and the first system
implementation, AQDT-1, is describéu (Imam & Michalski, 1993). AQDT-2 generates goal-
oriented decision structure from examptegecisionruleslearnedby eitherthe AQ15c (Wnek et
al., 1995) or AQ17 (Bloedorn, et al, 199®)e learningsystem,the latter of which hasextensive
constructive induction capabilities.

4.2 Problem Formulation

Because the examples in the train problems were originally described irofePmdog clausesit

was necessaryo translatetheseclausesinto representationsuitablefor the different programs.
The AQDT-2 programacceptsulesor examplesn the form of arraysof attribute-valuevectors,
and canacceptexampleswith different numbersof attribute-valuepairs, so thata train with two
cars can be expressed in terms of a smaller set of attributes than a train with three or four cars.

To describethe train problemin a format suitablefor AQDT-2, a set of eight (8) attributeswas
generated that could completelgscribeany carin the train. To recognizethe number(position)
of a given car in thérain, eachof the eight attributesis associateavith a two-digit code;the first

digit identifies the location of the car and the second identifies the attribute Fsglexample the

number 3 in the attribute-name “x32” refers to the third @adthe number2 refersto the second
attribute (as shown below, the car shape).

10

x*1 = Car_top
0 = open 1 = closed

x*2 = Car_shape
0 =rectangle 1 =hexagon

x*3 = Car_length
0 = short 1=long

x*4 = Car_frame
0 = not_double 1 =double

x*5 = Car_top_shape
0 = none 1 = peaked

x*6 = Number_of wheels
2 =two 3 =three

x*7 = Load_shape
0 =rectangle 1 =hexagon

x*8 = Number_of loads
O0=no_loads 1=one

2 = bucket 3 =u_shaped 4 =ellipse

2 =flat 3=arc 4 = jagged
2 =circle 3 = triangle 4 = utriangle 5= diamond
2 =two 3 =three

Figure4.1 The set of attributes used in the experiments

Prolog Format

eastbound([c(1,rectangle,short,not_double,flat,2,I(circle,2)),
c(2,bucket,short,not_double,none,2 |(rectangle,1)),
c(3,u_shaped,short,not_double,none,2,I(triangle,1))]).

AQDT-2 Format
eastbound-events

[x11 = 1][x12 = 0][x13 = 0][x14 = 0][x15 = 2][x16 = 2][x17 = 2][x18 = 2]
[x21 = 0][x22 = 2][x23 = 0][x24 = 0][x25 = 0][x26 = 2][x27 = 0][x28 = 1]
[x31 = 0][x32 = 3][x33 = 0][x34 = 0][x35 = 0][x36 = 2][x37 = 3][x38 = 1]

Figure4.2 An example of Prolog and AQDT-2 descriptions of the same train.

Figure 4.1 showsthe attributesand their legal valuesas they were defined for AQDT-2. The
symbol *' refers to the car number. Figure 4.2 sh@amgxampleof a descriptionof onetrain in

Prolog and its corresponding representation in this AQDT-2 format.

4.3 Deriving Decision Structures for the Trains Problem

AQDT-2 hasa set of parametersand criteria for generatingdecisionstructuresoptimizedfor a
given task. AQDT-2 allows the user to use different settingsto generatedifferent decision

structures for any given set of data

AQDT-2 uses a cost criterion tgnore attributesthat are of no interest. The costcriterion canbe
definedfor one or more attributesand/orone or morevaluesof a given attribute. AQDT-2 uses
weightsto definethe strengthof eachexampleif thereis any differenceamongthem. There are
many otherpropertiesand parametersn AQDT that canadaptthe learningprocesdo achievethe

11

requiredgoal. To solve the trains problem, several AQDT-2 runs were made with different
settings of the cost criteria.

In the original problemsomeof the characteristic®f a given carin thetrain are implicitly given
higher costs than others. In other words, the use in rules of certain properties of a givamaar
result in a higher P-complexity than using other properties.

In the search for the simplest decision structure, we designed an algoritbeekorgthe simplest

and more accurate decision structure. The algorithm uses some heuristics such as:

1) If the attribute at the root of the decision structure has many branches, then increase its cost.
2) If by reducing the cost of some attribute at the second or higher ¢é\tbbsdecisionstructure,

the complexity (number of nodes) the decisionstructuredecreaseghenreducethe costof that
attribute so that it occupies the root.

3) if the predictive accuraayecreasesvhenthe costsof oneor more attributeareincreasedthen

do not increase their costs or select another attribute to be the root of the decision structure.

4.4 AQDT-2 Results
4.4.1 Competition #1

The AQDT-2 results are presented in four different forms: 1) The decision tree @ufRDT-2,
2) APC (the “Annotated PredicateCalculus” descriptionlanguage)syntax, 3) English, and 4)
Prolog. When AQDT-3)eneratedh setof different decisionstructuresdor a given problem,they
were combined into a single rule. The P-complexity of most of thisgrangesbetween20 and
22; however the reported rules are those with either the best P-complexity or C-complexity.

Solution #1

Decision Tree:

x37 =else

| x34 =0

| | x23 =0

| | | x12 =0: eastbound
| | | x12 =2: westbound
| | x23 = 1: westbound

| x34 = 1: westbound

x37 = 3: eastbound

Number of nodes: 4
Number of leaves: 5

APC syntax:
[Ishape(car3)=triangle] OR
[cshape(carl)=rectangle][length(car2)=short][double(car3)=false]

English:
"The third car has a triangular load, or the first car is rectangularly shaped, the second car is shothieshdahies
not double.”

Prolog:
eastbound([Carl,Car2,Car3|_]) :-
has_load0(Car3,triangle);
(rectangle(Carl),

short(Car?2),

\+ double(Car3)).

P-complexity: 20
C-complexity: 26

12

Solution #2

Decision Tree:

x37 =else

| x12 =0

| x31 =0

| | x22 = 0: westbound
| | x22 =1: eastbound
| | x22 = 3: westbound
| x31 =1: eastbound
x12 = 2: westbound

7 = 3: eastbound

Number of nodes: 4
Number of leaves: 6

APC syntax:

[Ishape(car3)=triangle] OR

[cshape(carl)=rectangle]
([top(car3)=closed] OR
[cshape(car2)=hexagon])

English:
"The third car has a triangular load, or the firstisarectangularlyshapedandthe third caris closed,or the second
car is hexagon-shaped."

Prolog:
eastbound([Carl1,Car2,Car3|_]) :-
has_load0(Car3,triangle);
(rectangle(Carl),

(closed(Car3);

hexagon(Car2)).

P-complexity: 20
C-complexity: 26

Solution #3
Decision Tree:

x37 = 0: westbound
x37 = 1: eastbound
x37 =2

| x34 =0: eastbound
| x34 = 1: westbound
x37 = 3: eastbound

Number of nodes: 2
Number of leaves: 5

APC syntax:
[lshape(Car3)=triangle or hexagon] OR
[Ishape(Car3)=circle][double(Car3) = false]

English:
"The third car contains a triangular or hexagonal load, or contains a circular load and is not double."

13

Prolog:
eastbound([, ,Car3|]) :-
has_load0(Car3,triangle);
has_load0(Car3,hexagon);
(has_load0O(Car3,circle),
not(double(Car3))).

P-complexity: 22
C-complexity: 18

4.4.2 Competition #2

In this competition,the labeling of the seconddata set was generatedbasedon the decision
structure shown above in Solutioh@nd?2. As this decisionstructurewasin the bottom quartile

of oracles received for competition #1, there wagidectmatchbetweenthis oracleandthe class
labeling given. However, the judges determined later that prizes for competition #2 be biwsed on
average degreef matchbetweenthe submittedclasslabellingsandall lowestquartile oraclesfor
competition #1. Below is the official results for the labellings submitted by AQDT-2 for
competition #2:

Solution 1: aqdtl
40 eastbound and 60 westbound

Train 1 E | Train 2 E | Train 3 E | Train 4 E | Train 5 E |
Train 6 W | Train 7 E | Train 8 W | Train 9 W | Train 10 W |
Tran 11 E | Train 12 W/| Tran 13 W/| Tran 14 E | Train 15 W |
Train 16 W | Train 17 W/| Train 18 W | Tran 19 W | Train 20 E |
Train 21 W /| Tran22 E | Train 23 E | Tran24 E | Tran 25 W |
Train 26 W | Train 27 E | Tran 28 W /| Tran 29 W | Train 30 E |
Tran 31 E | Tran 32 E | Tran 3 W/| Tran 34 E | Train 35 W |
Tran 36 W | Tran 37 W/| Tran 38 E | Tran 39 W /| Train 40 W |
Train 41 W | Train 42 W /| Train 43 W/| Train 44 W | Train 45 W |
Train 46 E | Tran 47 E | Train 48 W | Tran 49 W | Train 50 W |
Tran 51 E | Tran 52 E | Tran 53 W | Tran 54 W | Train 55 E |
Train 56 W | Train 57 E | Tran 58 W | Tran 59 E | Train 60 W |
Train 61 W | Train 62 W /| Train 63 E | Tran 64 W | Train 65 W |
Tran 66 E | Tran 67 W/| Tran 68 E | Tran 69 W/ | Tran 70 E |
Tran 71 E | Tran72 E | Tran 73 W /| Tran74 W/| Tran 75 W |
Train 76 W | Tran 77 E | Tran 78 W /| Tran 79 E | Train 80 W |
Tran 81 E | Train 82 W /| Tran 83 W /| Tran 8 W /| Train 85 W |
Tran 86 E | Tran 8 E | Tran 8 E | Tran 8 E | Train 90 W |
Tran 91 W | Train 92 W/| Train 93 W | Train 94 W | Train 95 W |
Train 96 E | Tran 97 W/| Tran 98 W | Tran 99 W | Train 100 W |
Solution 2: aqdt2
32 eastbound and 68 westbound.
Train 1 W | Train 2 W | Train 3 E | Train 4 E | Train 5 E |
Train 6 W | Train 7 W | Train 8 W | Train 9 W | Train 10 W |
Train 11 W | Train 12 W /| Train 13 W | Tran 14 E | Train 15 W |
Train 16 W | Train 17 W/| Train 18 W | Train 19 W | Train 20 E |
Tran 21 E | Tran22 E | Tran23 E | Tran24 E | Train 25 W |
Tran 26 W | Tran 27 W/| Tran 28 W /| Tran 29 W /| Train 30 E |
Tran 31 E | Tran32 E | Tran 3 W/| Tran 34 E | Train 35 W |
Train 36 W | Tran 37 W/| Tran 38 E | Tran 39 W | Train 40 W |
Train 41 W | Train 42 W /| Train 43 W | Train 44 W | Train 45 W |

RN
N

Train 46 W | Train 47 E | Train 48 W /| Tran 49 W /| Train 50 W |
Tran 51 W /| Train 52 E | Tran 53 W/| Tran 54 E | Train 55 W |
Train 56 W | Train 57 E | Tran 58 W | Tran 59 E | Train 60 W |
Train 61 W | Train 62 E | Tran 63 E | Tran 64 W | Train 65 W |
Train 66 E | Tran 67 E | Tran 68 W | Tran 69 W | Train 70 W |
Tran 71 E | Tran72 E | Tran 73 W /| Tran74 W/| Tran 75 W |
Tran 76 W | Train 77 E | Tran 78 W /| Tran 79 E | Train 80 W |
Tran 81 W/| Tran8 E | Tran 83 W/| Tran 8 E | Train 85 W |
Train 86 W | Tran 87 E | Tran 8 E | Tran 89 W | Train 90 W |
Train 91 W | Train 92 W /| Train 93 W | Train 94 W | Train 95 W |
Train 96 E | Train 97 W | Train 98 W | Train 99 W | Train 100 W |

4.4.3 Competition #3

In the third competition, AQDT-2 was applied to eachof the 5 subproblems. The best P-
complexityand C-complexityrulesfound arereportedbelow. The sumof the P-complexitiesof
the AQDT-2 Prolog rules is 85.

Set #1:

Best solution
Decision Tree:

x21 =0

| x22 =0: eastbound
| x22 =2: westbound
x21 =1

| x22 = 0: westbound
| x22 =2:eastbound

Number of nodes: 3
Number of leaves: 4

APC syntax:
[top(carl)=none][cshape(carl)=rectangle] OR
[top(Carl)#none][cshape(carl)=bucket]

English:
"The second car is open and rectangle, or it is closed and bucket shaped."”
Prolog:
eastbound([_,Car2|_]) :-
(open(Car2),
rectangle(Car2));
(closed(Car2),
bucket(Car?2)).

P-Complexity: 16
C-Complexity: 14

Set #2

Best solution
Decision Tree:

x13 =0

| x12 = 0: westbound
| x12 = 2: westbound
| x12 =3

15

= 0: eastbound
= 1: westbound
4: westbound

1: eastbound
3: westbound

Number of nodes: 6
Number of leaves: 7

APC syntax:
[length(carl)=long][lgty(car2)=1] OR
[cshape(carl)=u_shaped][length(car2)=short]

English:
"The first car is long and the second car has one load, or the first car is u-shaped and the second car is short."

Prolog:

eastbound([Carl,Car2|_]) :-
(long(Carl),
has_load(Car2,1));
(u_shaped(Carl),
short(Car2)).

P-Complexity: 17
C-Complexity: 24

Set #3

Best solution

Decision Tree:

x15 =else

x22 = 0: westbound
x22 = 1: westbound
x22 = 2: eastbound
x22 =3

| x12 = 0: westbound
| x12 =1: westbound
| x12 = 4: eastbound
x15 = 4: eastbound

Number of nodes: 3
Number of leaves: 7

APC syntax:

[top(carl)=jagged] OR

[cshape(car2)=bucket] OR
[cshape(carl)=ellipse][cshape(car2)=u_shaped]

English:

"The top of the first cais jagged,or the secondcaris bucket,or the first caris elliptical andthe secondcaris u-
shaped."

16

Prolog:

eastbound([Carl,Car2|_]) :-
arg(5,Carl,jagged);
bucket(Car2);
(u_shaped(Car2),
ellipse(Carl)).

P-Complexity: 19
C-Complexity: 26

Set #4
Best solution
Decision Tree:

| x21 =0

| | x12 =0: eastbound
| | x12 = 3: westbound
| | x12 = 4: eastbound
| x21 = 1: eastbound
x13 =1: westbound

4 =1: westbound

Number of nodes: 4
Number of leaves: 6

APC syntax:

[length(carl)=long] OR
[double(carl)=true] OR
[cshape(carl)=u_shaped][top(car2)=none]

English:

"The first car is long or double, or the first car is u-shaped and the second car is open."

Prolog:

westbound([Carl,Car2|_]) :-
long(Carl);
double(Carl);
(u_shaped(Carl),
open(Car2)).

P-Complexity: 17

C-Complexity: 21

Set #5

Best solution

Decision Tree:

x12 =0

| x32 =0: eastbound

x32 =3

|
| | x22 =0: eastbound
| | x22 = 4: westbound
| x32 =4: eastbound
x12 = 3: westbound

Number of nodes: 3

17

Number of leaves: 5

APC syntax:
[cshape(carl)=rectangle][cshape(car2)#ellipse] OR
[cshape(carl)=rectangle][cshape(car3)#u_shaped]

English:
"The first car is rectangular and the second car is not elliptical, or the first car is rectangular and is not u-shaped."

Prolog:
eastbound([Carl1,Car2,Car3|_]) :-
rectangle(Carl),
(\+ (u_shaped(Car3),
ellipse(Car2))).

P-Complexity: 16
C-Complexity: 22

5. INDUCE
5.1 Program Description

INDUCE is an empirical induction programcapableof learningfirst-order concepts(Michalski
1980; Hoff etal. 1986). Examplesandconceptsarerepresentedn VL2, which is a first-order
version of Variable-ValuedLogic (Hoff et al. 1986). Consequently,INDUCE can learn
universally and existentially quantified concepts. Available operatorsinclude disjunction,
conjunction, and internal disjunction. INDUCE allows two types of background knowiledge
form of logical rules (L-rules) and arithmeticrules (A-rules). Thesemechanismdacilitate the
construction of generalizationhierarchiesand the expressionof structural and arithmetic
relationshipghat often simplify learnedconcepts. In addition, INDUCE can expressconcepts
using meta-selectors,which can be described as higher-order expressions. Universal
guantification isone exampleof a meta-selector.Another examplemight be a featurethat counts
the number of cars that have some property.

A sketch of the INDUCE algorithm is as follows:
1. Select a class to cover. A-rules, L-rules, and meta-selectors are applied to the input examples
2. Star Generation. Select one of the positive examples to beeth@nd generate gar for this
event. Star generation in INDUCE is a two phase process:
a. Find a consistent generalization of the seed. This process is guided by userietneeters
and cost functions.
b. Convert the consistent generalization fromp\fliles to V13 rules, and use the AQ algorithm to

extend references. This process is guided by user-defined parameters and cost functions.
c. Convert the resultant VWLrules back into VR rules.

3. Select the best generalization according to the Lexical Evaluation Function (LEF).
See Hoff et al. (1986) for more details of the INDUCE algorithm.

5.2 Problem Representation

Representing Muggleton’s trains in ViZas a straightforwardiransformationalthoughin a pure
sense Muggleton’sProlog representatiomf Michalski’'s trainswas not in the samespirit as the
original INDUCE representatiorfsee Section5.5). Figure 5.1 shows an exampleof one of
Muggleton’s trains. For this competition, Figure 5.2 shows the equivalent INDUCE

18

representation of the train appearing in Figure 5.1. The translation is inantivBrect; however;
noticethatin Figure 5.2, the decisionclasseastbounds representedy assigningthe decision
variabled the value 1.

eastbound([c(1,rectangle,short,not_double,flat,2,l(circle,2)),
c(2,bucket,short,not_double,none,2,I(rectangle,1)),
¢(3,u_shaped,short,not_double,none,2,I(triangle,1))]).

Figure5.1. Prolog representation of a train.

[infront(carl,car2)=1][infront(car2,car3)=1]
[pos(carl)=1][cshape(carl)=rectangle][In(carl)=short][double(carl)=false]
[top(carl)=flat][nwis(carl)=2][Ishape(carl)=circle][lgty(carl)=2]
[pos(car2)=2][cshape(car2)=bucket][In(car2)=short][double(car2)=false]
[top(car2)=none][nwls(car2)=2][Ishape(car2)=rectangle][lqty(car2)=1]
[pos(car3)=3][cshape(car3)=u_shaped][in(car3)=short][double(car3)=false]
[top(car3)=none][nwlis(car3)=2][Ishape(car3)=triangle][lgty(car3)=1]
=>[d=1].

Figure5.2. INDUCE representation of a train.

5.3 Problem Solving Methodology

Over the six week period that the Center was involved with this competiteomy variationswere
attempted. Thes@cludedusingbackgrouncknowledge(e.g., a generalizatiorhierarchyof load
shapes),derived attributes (e.g., whetherthe number of loadsin the train is odd), various
combinationsof parametesettings,and removingtraining examples. Unfortunately,the use of
background knowledge did not prove useful for tompetitionandthe useof derivedattributes,
while producinginterestingrules, producedrulesthat were too costly since Prolog predicatesto
compute the derived attributes had to be included in computing the P-Complexity.

Early in Competition1, threetypes of backgroundknowledgewere used: (1) a generalization
hierarchyfor load shapegseeFigure 5.3a), (2) a generalizatiorhierarchyfor car shapes(see
Figure 5.3b), and (3) logical transformationrules for car shapessimilar to those usedin the
original trains data set (see Figure 5.3c).

Load Shape

Polé \E”I /wShaF)e\

Triangle Hexagon Polygon Ellipse Open Shape
Upside-down Rectangle
Triangle
Diamond _ Hexagon Rectangle Bucket U-Shaped
a) Load shape generalization hierarchy b) Car shape generalization hierarchy

[cshape(carl)=rectangle] & [top(carl)=none] & [double(carl)=true]
=>[ctype(carl)=doubleOpenRectangle]]
c) Example of a car shape transformation rule.

Figure5.3. Background knowledge used by INDUCE

19

Several derived attributes were also tried. Table 5.1 lists the derived attributes used for
Competition 1. It was hoped that derived attributes wer@aogssaryo win the competition. If
this was the case thenthe competitionwould be reducedto someonefinding the right piece of
background knowledge or the right derivatttibuteand giving it to a learningprogramandnot a
test of the power of the learning algorithm used.

Total Number of Cars

Total Number of Loads

Number of Even Loads

Number of Even Cars

Number of Odd Loads

Number of Odd Cars

Cars Having the Same Load Shape
Cars Having the Same Car Shape
Cars Having the Same Number of Wheels
Cars Having the Same Top

Cars Having the Same Length

Cars Having the Same Load Quantity
The First Car

The Last Car

Table 5.1. Derived attributes used for Competition 1.

INDUCE hasa large setof parametersso any attemptto exhaustivelyattemptto optimize these
parameterss virtually impossible. Whenrunning INDUCE, a good approachis to start with a
base set of parametsettingsand then makemodificationsto single parametersind seewhich of

thesemodificationsyields the bestresultusing somequality criteria (suchas P-complexity),and
then usehe parametershat producedbetterresults. Essentially this is a hill-climbing technique
through the parameter space.

Initially, the parametersare set to their defaults. The LEF for the VL and AQ phasesof
generalizatiorwere setto maximize coverageof all positive examples,minimize the numberof
selectors, and minimize coverage negaéixamples. All tolerancedor theseparametersvere set
to 0, which causedthe parametergo be consideredequally, and strictly in the order that they
appeared. At this point, rules were induced for both decision classesl (eastbound)and 2
(westbound).

Next, either the coverageparameterswere re-orderedor the positive example coveragewere
changedo maximize coverageof new positive examples. Oncethe coverageparametersvere
determined, the affect of meta-selectors was investigated by turning all meta-selectorsaffie In

cases, the complexity of the induced concepts increased when no meta-selectors were active.

If meta-selectordid indeedsimplify learnedconceptsthenstargeneratiorparametersand meta-
selectors were set to large numbers (usuly If at this point, resultswere still unsatisfactory,
then minimizing the cost of functions and variables would be investigated.

Of course,determiningwhat valuesand variablesto costand by how muchis also a complex
procedure. Several schemes were employed. One scheme was to weight pteied®stheir
P-complexity score. For example, the car shape predicate would have a weight of &)\susme
of the car shape predicate in a concept expressed in Rvoldd evaluateto a P-complexityof 3.
The square of a predicate’s P-complexity, as weliliger powersof a predicate’sP-complexity,
were alsousedto weight predicates. Another schemeused,which was more interactive,was to

examine a concept and determine which selectors had a high P-complexity and weight the function

andvariablesof this expensiveselectorin an effort to eliminateit from further considerationby

20

INDUCE. On occasionwe hada conceptin mind, for example,oneinducedby AQDT. So a
final costingschemewould be to cost those functions and variablesappearingin the AQDT
solution in an effort to encourage INDUCE to find the same conddpfiortunately,thesecosting
methods did not work and the reason for this is discussed further in Section 5.5.

5.4 Results

The INDUCE results are shown in four differéatms: 1) INDUCE output, 2) APC syntax(the
“Annotated Predicate Calculus” description language), 3) English, and 4) Prolog.

5.4.1 Competition 1 Results

Competition 1 Results

Induce:
[cshape(carl)=bucket,hexagon][pos(carl)=2] OR
[lshape(carl)=hexagon,triangle][pos(carl)=3]

APC:
[cshape(car2)=bucket or hexagon] OR
[Ilshape(car3)=hexagon or triangle]

English:
The third car contains a triangular or hexagonal load, or the second car is either hexagon or bucket shaped.

Prolog:
eastbound([_,Car2,Car3|_]) :-
bucket(Car2);
hexagon(Car2);
has_load0(Car3,hexagon);
has_load0(Car3,triangle).

p-Complexity: 22
c-Complexity: 19

5.4.2 Competition 3 Results

Competition 3 Results-Set 1 Rules:

Induce:
[cshape(carl)=ushaped] OR
[num-diff-pos=3][nwls(carl)#3][top(carl)#none]

APC:
[cshape(carl)=ushaped] OR
[num-diff-pos=3][nwls(carl)#3][top(carl)#none]

English:
There is a u-shaped car or the train has three cars with some closed car having two wheels.

Prolog:
eastbound(Train) :-
has_car(Train,Car),
(u_shaped(Car);
(len1(Train,3),
closed(Car),
arg(6,Car,2))).

21

p-Complexity: 18
c-Complexity: 18

Competition 3 Results-Set 2 Rules:
Induce:
[Ishape(carl)#triangle][num-car(top=peaked)=0][num-diff-cshape=2]

APC:
[Ishape(carl)#triangle][num-car(top=peaked)=0][num-diff-cshape=2]

English:
There are no peaked topped cars, some car has no triangle
load and the train has cars of two different car shapes.

Prolog:
eastbound(Train) :-

\+ has_load1(Train,triangle),

\+ (has_car(Train,C),arg(5,C,peaked)),

findall(C,(has_car(Train,C1),
has_car(Train,C2),
arg(2,C1,S1),
arg(2,C2,S2),
S1\==S2),[,].

p-Complexity: 39
c-Complexity: 22

Competition 3 Results-Set 3 Rules:

Induce:
[top(carl)=peaked] OR
[cshape(carl)#crect,ushaped][num-car(cshape=hexagon)=0]

APC:
[top(carl)=peaked] OR
[cshape(carl)#crect or ushaped][num-car(cshape=hexagon)=0]

English:
There is a peaked-topped car, or there is a non-rectangle or u-shaped car and there are no hexagonal cars.

Prolog:
eastbound(Train) :-
has_car(Train,Car),
(arg(5,Car,peaked);
\+ (rectangle(Car);u_shaped(Car)),
\+ (has_car(Train,C),hexagon(C))).

p-Complexity: 23
c-Complexity: 20

Competition 3 Results-Set 4 Rules:

Induce:
[forall-car(nwls=2)][Ishape(carl)#rectangle][pos(carl)=2]

22

APC:
[forall-car(nwls=2)][Ishape(car2)#rectangle]

English:
All cars have two wheels and the second car does not have a rectangular load.

Prolog:
eastbound(Train) :-
findall(C,(has_car(Train,C),arg(6,C,2)),List),
len1(List,N),
len1(Train,N),
append([_,Car],_,Train),
\+ has_loadO(Car,rectangle).

p-Complexity: 31
c-Complexity: 15

Competition 3 Results-Set 5 Rules:

Induce:
[Ishape(carl)#rectangle,triangle][num-car(cshape=bucket)=0]
[num-car(pos=3)#0]

APC:
[Ilshape(carl)#rectangle or triangle][num-car(cshape=bucket)=0]
[num-car(pos=3)#0]

English:
There is a third car, no bucket cars, and the load shape of some car is not rectangular or triangular.

Prolog:

eastbound(Train) :-
has_car(Train,Car),
\+ (has_loadO(Car,rectangle);has_loadO(Car,triangle)),
\+ (has_car(Train,C),bucket(C)),
append([_, ,], ,Train).

p-Complexity: 30
c-Complexity: 20

5.5 Discussion

5.5.1 Problems with Muggleton’s Prolog Representation

In a pure sense, Muggleton’s Prolog representation of Michalski’s trains is not in the sanas spirit
the trains were originally represented in INDUCE. This argument is subtle, but Masidalski's
original INDUCE representation for the trains is a clausal representdif@tis, eachattributeof

a car correspondents to a ¥predicate. Trains were then represerted conjunctionof all VL2

predicates related to a given train.

Muggleton also uses a conjunctirgpresentatiorut the conjunctsin his representatiomare cars.
Individual characteristicef carsarerepresentecs argumentdo the term representinghe train’s
cars. While this distinctionis subtle, Muggleton’s representatiorgives rise to certainunsavory
artifactsnot presentin Michalski’'s original representation.For instance severalof the trainsare
pictured with no loads. However, in the Prolog representation, while the load quantity nfight be

23

the load shape would actually be defined as a rectangle or circle. Clearly, this is incon&istient.
in some caseghis artifact causedhe inductive learnerto learnvalid conceptswith respecto the
training examples, but these concepts would be judged incorrecttrahstatednto Prologusing
the given Prolog predicates sinte predicatethat checkedoad shapealso checkedoad quantity

to ensurethat it was greaterthan zero. In short, the trains generatedby Muggleton’s train
generator were not semantically correct.

This situation would not arise in Michalski’s original INDUCE representation of the trains. If a car
was not carrying a load, then taad shapepredicatewould appeatin the clause. The deficiency

in Muggleton’s representation could be patched by adding the symbol none when loadvetnapes
zero. NeverthelessMuggletonstill representeachcar as a term in a conjunctiveexpression.
Several arguments could be made that Muggleton’s representation is clausal emfasipnis a
resultof syntacticaberrationsput the term clause hasa very precisedefinition in both VL2 and

Prolog. Consequently, in ordéar Muggleton’strainsto be clausalin the sensethat Michalski’'s
original trains were clausal, trains should be represented in Prolog as Figure 5.4 illustrates.

eastbound :
bucket(carl),
short(carl),

_ Hés_load(car4,1_). o
Figure5.4. Clausal representation of a train in Prolog.

5.5.2 Selectivity of Cost Functions

The selectivity of INDUCE cost functions proved inadequate for precisely focusing attention in this
problem. One of the features of AQDT tlh&pedfocus attentionto specific attributesof specific

cars was a highly precise cost function. In AQDibjvidual attributesof a specificcar (e.g., the

top of the third car) canbe assigneccosts. Converselywith INDUCE, this selectivity is not as
fine-grained. Costing functions can be set fgpacificcar (e.g., the third car) andfor a specific
attribute that ranges over all cars (e.g., the tops of cars), but we cannot cost the top of¢he third

It would also be useful to be able to costthe valuesthat individual attributescan take. For
instance, there is often a need to make circular load shapes in the third car expensive.

5.5.3 Logical Errors in INDUCE and ASTRA

In spite of this lack of selectivity of the cost function, logical errors exist in INDAGEASTRA,
a knowledgediscoveryshell that incorporategshe INDUCE program. The following discussion
applies primarily to ASTRA since it was used predominantly in the Trains Competition.

Appendix A.1 contains an ASTRA run demonstrating problems with the costing functionss This
using the secondset of trains from the third competitionin which ASTRA induced a selector
stating that the number of different shaped cars in a train was either 2 obél(sselector). The
second parametacreenshowsan attemptto removethis selectorby high costingboth the num-
diff function and the cshape attribute and minimiziagction costin the VL 1 phaseof execution.

In spite of setting the cost for both of these parameters at 10000, ASTRA induced the same rule.

Appendix A.2 contains an ASTRA run demonstrating problems withntipe parameterwhich is
a parameter to maximize coverage of positive examples. Giv@athmetesettingsappearingn
the screendump, ASTRA core dumpsin the procedurephase2prepwhich presumablyis a
preparation procedure for phase 2 or AQ generalization.

AppendixA.3 clearly demonstrateproblemswith the forall meta-function. Metamaxis setto a
high value of 30, which bringsin numerousmeta-functionsjncluding the forall metafunction.

24

2

This meta-functionbasically tries to capturerelationshipsthat apply to all train cars. In this
particularexample,ASTRA included the meta-functionforall-car(Ishape=triangle)=falsayhich
states that for all cars in a tragoing eastbound, no carshavea triangularload shape. However
by inspecting the individual events from event set 1, we see that the first car of the thetelanje
is carrying a triangular load.

Appendix A.4 demonstrates problemgh ASTRA'’s eventcoverage. This particularrun is with
the Competition 1 trains. The first rule states that the secondahucket-shapedar. This rule
is reported to cover event 3. In reality however, the second car of evemh8xagonaktar. The
rule that covers the reported examples is as follows and was included in the submission:

[cshape(carl)=bucket,hexagon][pos(carl)=2]

The problem could be something as simple as ASTRA not printing out the second internal disjunct.
The precedingdiatribe on ASTRA'’s problemsis intendedto be constructive. ASTRA is an
excellentprogramthatis much easierto use for problem-solvingthan INDUCE becauseof the

level of interactivity ASTRA permits. Consequently,in addition to addressingthe above
problems, the following are additional recommendations for enhancing ASTRA:

1. Add functions to load parameter sets from a file. INDUCE has this functioASIRA does
not. During some runs of ASTRA as many as 10 or so parameterswere changed.
Rememberingand changingtheseparameteravhen beginninga new day of experimentsor
when ASTRA crashedis tedious. Being able to load parametersfrom a file and save
parameters to a file, while preservitig level of interactivity for changingparameterswould
be a useful and simple feature to add to ASTRA.

2. Replace the old AQ engine in ASTRA with a more modern verstanrently, we believethat
ASTRA and INDUCE contain an AQ11 engine and some experimentshave identified
erroneous results produced by this engine. Incorporating the AQ15c erigifédDUCE and
ASTRA might solve some of the existing problems.

3. Port ASTRA and INDUCE to C. Botprogramsarecurrentlyin PascaINDUCE alsohasa
LISP implementation). If any future work with thesesystemsis planned,they should be
ported to C and modernized.

6. AQLl7-HCI
6.1 TheMethod

The AQ17-HCI systenmplementsthe AQ-HCI methodfor combiningan inductive rule learning
algorithm with a hypothesis-drivenconstructive induction (HCI) procedure for iteratively
transforminga representatioispace(\WWnek & Michalski, 1994b). In eachiteration, the method
changeshe representatiorspaceby adding new attributesdeterminedon the basis of detected
patterns, and removing insufficiently relevant attributes. The quality of the hypothesis geinerated
each iteration is evaluated by applying the hypothesasstdosetof training examples. The setof
training examplegreparedor a giveniterationis split into the primary set(the P set), which is

used for generating hypotheses, and the secondary set (the S setjswhkaidifor evaluatingthe
predictionaccuracyof the generatechypotheses. Figure 6.1 presentsa diagramillustrating the
method.

25

INPUT : Examples & Definitions
of Initial Attributes

Phase 1 A

Iterative Determination . . .
of the Representation Split of Examples into P & S [«@— Reformulation of Examples

Space * *

Representation Space
Transformation

v 4
Rule Evaluation (on S) Rule Analysis
\\

< Stopping Condition No

Rule Learning (from P)

Satisfied
mmmmmmmmmmmm VoD T e e
Phase 2
Learning the Final Final Rule Learning (from P&YS)

Concept Description

in the Acquired *

Representation Space OUTPUT : Rules & Definitions of
Constructed Attributes

NOTE: P — Primary Training Examples
S — Secondary Training Examples

Figure6.1. The method for Hypothesis-driven Constructive Induction.

The input consistsof training examplesof one or more concepts,and backgroundknowledge
about the attributes used in the examples (which specifies their types and legaétgluEor the

sakeof simplicity, let us assumethat the input consistsof positive examples,E* and negative

examples, E of only one concept. If there are several concepts to learn, examples of each conceg
aretakenas positive examplesof that concept,andthe set-theoreticalinion of examplesof other
concepts is taken as negative examples of that concept.

The method consists of two phasd2hase 1 determineshe representatiospaceby a processof
iterative refinement. In eachiteration, the method preparestraining examples,createsrules,
evaluatestheir performance,modifies the representatiorspace,and then projects the training
examplednto the new space. This phaseis executeduntil the Stopping Condition is satisfied.
This conditionrequiresthat the predictionaccuracyof the learnedconceptdescriptionsexceedsa
predefinedthreshold,or thereis no improvementof the accuracyover the previous iteration.
Phase 2 determinesfinal conceptdescriptionsin the acquired representationspace from the
complete set of training examples. The outmuisistsof conceptdescriptionsand definitions of
attributes constructed in Phase 1.

The training setlefining problem1 in the competitionwas very small. It consistedof 5 positive
and 5 negativeexamplesonly. Therefore,the systemwas run without splitting the training
examplesnto P andS sets. All exampleswvereputin the P set,andthe S set remainedempty.
The stopping criterion was formulated accordingly, with addition of the following constraint

26

2

reflecting the goal of the competition of learning descriptionswith minimal complexity. The
learning task for AQ17-HCI could be paraphrased in the following way:

Beginning with a one-attribute representation space, search for minimal descriptions
that cover 100% of training examples. If no such descriptions are found, then add
one mor e attribute into the representation space (up to maximum of 3).

6.2 Problem Representation

AQ17-HCI was run on amput file similarto AQDT-2 (seeSection4.2). The only modification
concernecexampleswith fewer thanfour cars. AQ17-HCI, like its predecessoAQ15c, allows
fixed-lengthexampledefinitionsonly. Sincetherewere eight attributesdescribingeachcar, and
the maximum number of cars was four, therefore, each train was described@2iattriputes. In
shortertrains, the attribute-value®f non-existingcarswere setto an additional “not applicable”
(“na”) value. Figure 6.2 shows an example of a shorter train, and its AQ representation.

6.3 Problem Solving Methodology

The original representatiorspaceconsistedof 48 attributes. Given this spaceand the set of
training examples, the AQ17-HCI system searched for a minimal represestaigpacen which
the examplescould be expressedvithout ambiguity. There were no single attributesfound that
would give 100% unambiguous coverage. The systemsearchecamongcombinationsof two

attributes. This search resulted in finding 4 pairs of attributes that describe the input examples

distinct way (Figure 5.3). Each pair included the c3_LoadShapeattribute, and one of
cl TopShape¢l LoadShapes2_ Shapeandc3_Frame.The whole processof searchingfor
thesesubspacesogetherwith generationof the four rules took less than 1 secondon a Sun
Sparcstation-2. From among these rules, the simplest one was selected manually.

Prolog representation

eastbound([c(1,rectangle,short,not_double,flat,2,I(circle,2)),
c(2,bucket,short,not_double,none,2 I(rectangle,1)),
c(3,u_shaped,short,not_double,none,2,I(triangle,1))]).

AQ17-HCI representation
eastbound-events

cl Top cl1 Shape cl Length cl Frame cl TopShapecl NoWheels cl LoadShape c1_NolLoads
c2_Top c2_Shape c2 lLength c2_Frame c2_TopShape c2_NoWheels c2_LoadShape c2_NolLoads
c3 Top c¢3 Shape c¢3 Length c3 Frame c3_TopShape c3_NoWheels ¢3 LoadShape c3_NolLoads
c4 Top c4 Shape c4 Length c4 Frame c4_TopShape c4d _NoWheels c4 LoadShape c4 NolLoads

closed rectangle short not_double flat 2 circle 2
open bucket short not_double none 2 rectangle 1
open u_shape short not_double none 2 triangle 1
na na na na na na na na

Figure 6.2. An example of Prolog and AQ17-HCI descriptions of a three-car train

parameters
run mode ambig trim wts maxstar echo criteria verbose
1 ic neg mini cpx 1 p default 1

Active atts: 5 23 Unanmbig: 100%

27

eastbound-outhypo

cpx

1 [c3_LoadShape=hexagon,triangle] (t:8, u:8)

2 [c1l_TopShape=peaked,flat] [c3_LoadShape=circle] (t:2, u:2)

westbound-outhypo

cpx

1 [c3_LoadShape=rectangle] (t:8, u:2)

2 [c1_TopShape=none,jagged] [c3_LoadShape=rectangle,circle] (t:8, u:2)

Active atts: 7 23 Unanmbig: 100%

eastbound-outhypo

Cpx

1 [c3_LoadShape=hexagon,triangle] (t:8, u:8)

2 [c1_LoadShape=rectangle,utriangle] [c3_LoadShape=circle] (t:2, u:2)

westbound-outhypo
cpx

1 [c1_LoadShape=rectangle,hexagon,circle,triangle] [c3_LoadShape=rectangle] (t:8, u:6)

2 [c1_LoadShape=hexagon,circle] [c3_LoadShape=circle] (t:4, u:2)

Active atts: 10 23 Unanmbig: 100%

eastbound-outhypo

cpx

1 [c3_LoadShape=hexagon,triangle] (t:8, u:6)
2 [c2_Shape=hexagon,bucket] (t:4, u:2)

westbound-outhypo
cpx
1 [c2_Shape=rectangle,u_shaped] [c3_LoadShape=rectangle,circle] (t:10, u:10)

Active atts: 20 23 Unanmbig: 100%

eastbound-outhypo

cpx

1 [c3_Frame=not_double] [c3_LoadShape=hexagon,circle triangle] (t:8, u:3)
2 [c3_LoadShape=triangle] (t:7, u:2)

westbound-outhypo

cpx

1 [c3_LoadShape=not_double] (t:8, u:2)

2 [c3_Frame=double] [c3_LoadShape=circle] (t:8, u:2)

Systemtime: 0.750 seconds

Figure 6.3. Output produced by AQ17-HCI.

6.4 Results

The AQ17-HCI resultsare statedin four differentforms: 1) AQ17-HCI output, 2) APC syntax
(the “Annotated Predicate Calculus” description language), 3) English, and 4) Prolog.

6.4.1.Competition 1 Results

28

21

AQ17-HCI:
1 [c3_LoadShape=hexagon,triangle] (t:8, u:6)
2 [c2_Shape=hexagon,bucket] (t:4, u:2)

APC:
[lshape(car3)=hexagon or triangle] OR
[cshape(car2)=hexagon or bucket]

English:
The third car contains a hexagonal or triangular load, or the second car is either hexagon or bucket shaped.

Prolog:
eastbound([_, Car2, Car3|_]) :-
has_load0(Car3, hexagon);
has_load0(Car3, triangle);
hexagon(Car2);
bucket(Car2).

P-Complexity 22
C-Complexity 19

6.4.2 Competition 2 Results

The rule obtained for competition 1 was tested against various oracles that scored less or equal 2(
Below are results from testing.

Entry Oracle Accuracy Contestant
AQ17-hci aqdtl 57% MLIC - AQ17-HCI
aqdt2 54%
inglis 53%
mpage 51%

pfahrl 53%
pfahr2 58%

turney 53%
weka 53%
X 52%

7. AQ Family Results Versus Those Obtained by Other Programs

The AQ family programsused do not have the ability to involve recursionin the created
descriptions. Thereforethey were handicappedvith regardto the inductive logic programming
algorithmsthat strongly emphasizerecursion,and to the Prolog complexity measureghat were
usedin the competition.Neverthelessthe results obtainedcomparequite favorably with those
obtained by many inductive logic programs.

East-West Challenge: Results of Competition 1

Legend:

Entry is a codeword used by us for scoring purposes

Coverage is a pair of numbers E/W denoting number of East/West trains
covered by the theory

Size is the complexity score of the theory submitted, as calculated by

Ashwin Srinivasan's Prolog program (complex.pl)

29

Contestant is the name of the contestant

Notes:

1. Entry names prefixed by "comput” were entries received by the British mag&ingputing”, in response
to Donald Michie's article published on August 4.

2. Multiple entries by the same contestant are suffixed by a number to indicate entry number.

3. Winner is decided on the basis of lowest complexity score.

Entry Coverage Size Contestant

pfahr2 10/0 16 Bernhard Pfahringer
inglis 10/0 19 Stuart Inglis

pfahrl 10/0 19 Bernhard Pfahringer
turney 10/0 19 Peter D Turney
weka 10/0 19 WEKA ML Project
aqatl 10/0 20 MLIC - AQDT-2
aqadt2 10/0 20 MLIC - AQDT-2

akay 10/0 22 Andrew Kay
aql7hci 10/0 22 MLIC - AQ17-HCI
gambl 10/0 22 Dragan Gamberger
mli 10/0 22 MLIC - INDUCE
quin 10/0 22 Ross Quinlan
rudy 10/0 23 Rudy Setiono
comput2 10/0 24 Richard Lawrence
computl 10/0 25 Nicholas Knowles
comput9 10/0 25 T M Bradshaw
computl0 10/0 25 Alan D Cox
computll 10/0 25 Tony Yule
pfahr3 10/0 27 Bernhard Pfahringer
computl3 10/0 27 Stephane Deom
computls 10/0 27 Stephane Deom
computl5 10/0 27 R M Yaxley
computl8 10/0 27 Jane Flanders
comput22 10/0 27 lan Thirkettle
comput24 10/0 27 P Smith
comput25 10/0 27 D P Sayers
comput27 10/0 27 Nick Henfry
computl2 10/0 28 John Brown
comput28 10/0 29 Nick Henfry
comput3 10/0 30 Peter Guy
comput21 10/0 30 A R Archer
vogt 10/0 31 Chris Vogt
comput6 10/0 32 Andrew Davies
comput8 10/0 32 Sue Wood
comput23 10/0 32 David Nelson
mcdon 10/0 38 mcdonald@edu.kestrel
comput4 10/0 42 Bernard Lucas
gamb2 10/0 42 Dragan Gamberger
comput46 0/10 43 R D Scott Westbound rule
——————————— Too complex----------

30

hart hart@uk.ac.ox.vax

computl6 _ _ G E Tyack
comput20 _ _ Demetrios Papacharalambous
comput5 _ _ Judy BroadwaY
comput29 _ _ S Roy
comput30 _ _ Melvyn Maltz
comput31 _ _ Mark Henry
comput32 _ _ Kevin Ferriday
comput33 _ _ J Gibbons
comput34 _ _ Donald Mcleod
comput35 _ _ R Millar
comput37 _ _ M White
comput38 _ _ Gianni Pischedda
comput39 _ _ Chris Derry
comput40 _ _ Hans Wrang
comput4l _ _ Peter Young
comput42 _ _ Chris Bergman
comput43 _ _ Peter Young
comput44 _ _ Tim Binney
comput45 _ _ lan Barker
comput4?7 _ _ Frank Smith
——————————— Inconsistent----------
computl? _ _ Jane Moch just fits 10 trains
computl9 _ _ Demetrios Papacharalambous
comput26 _ _ Simon Towner
comput29 _ _ Marcus Sean Rebel
comput36 _ _ Dennis Collie

Prolog encoding and English translation of theories in bottom quartile

Bernhard Pfahringer (pfahr2)

English:
The train has either a closed last car or a triangular load inathemthan the last one. Also, eitherthe last caris
short or the train, after the last car is removed, has the above property.

Prolog:

eastbound([Car|Cars]) :-
(closed(Car);has_load1(Cars, triangle)),
(short(Car);eastbound(Cars)).

P-Complexity 16
C-Complexity 28
Michie-Page effort inspired by pfahr2

English:
There is a short car that either is closed or is somewhere behind a car with a triangular load.

Prolog:

eastbound([Car|Cars]):-
short(Car),
(closed(Car);has_load1(Cars,triangle));

31

eastbound(Cars).

P-Complexity 16
C-Complexity 13

Bernhard Pfahringer (pfahrl)
Stuart Inglis (inglis)

Peter D Turney (turney)
WEKA ML Project (weka)

English:
There are at least three cars, and the second and third cars from the end do not contain the same shape load.

Prolog:

eastbound([Carl,Car2,Car3|_]) :-
has_load0(Carl,),
has_load0(Car3,Load),
not(has_loadO(Car2,Load)).

P-Complexity 19
C-Complexity 15

Theory X (x)

English:
There is eather a short, closed car, or a car with a circular load somewhere behind a car with a triangular load.

Prolog:

eastbound([Car|Cars]):-
(short(Car), closed(Car));
(has_loadO(Car,circle), has_load1(Cars,triangle));
eastbound(Cars).

P-Complexity 19
C-Complexity 16

MLIC - AQDT-1 (aqdtl)

English:
The third [from the end] car contains a triangular load, or it is not double, while the last car is rectambphlacar
inbetween is short.

Prolog:

eastbound([Carl,Car2,Car3|[_]) :-
has_load0(Car3,triangle);
(rectangle(Carl),
short(Car2),
not(double(Car3))).

P-Complexity 20
C-Complexity 20

MLIC - AQDT-2 (aqdt2)

32

English:
The third car [from the end] has a triangular load, the second[to last] car is hexagon-shapedyr the last car is
rectangularly shaped and the third [from the end] car is closed.

Prolog:

eastbound([Carl,Car2,Car3|_]) :-
has_load0(Car3,triangle);
rectangle(Carl),
(closed(Car3);
hexagon(Car2)).

P-Complexity 20
C-Complexity 25

East-West Challenge: Results of Competition 2

Legend:
Entry is a codeword used by us for scoring purposes
Oracle is a codeword used to denote theories known to us to be within
the bottom quartile of complexity scores
Accuracy is the accuracy of the subsymbolic entry, taking as oracle the
theory in the Oracle column
Contestant is the name of the contestant
Notes:
1. Accuracy is measured as follows. For each oracle/entry pair the following 2x2 table is calculated:
Oracle class
| East | West
East | N1 | N2
Entry | |
class
West | N3 | N4

| |
Accuracy = (N1 + N4) /(N1 + N2+ N3 + N4)

2. We know of 9 theoriesin the bottom quartile of complexity scoresrelevantto Competition1. Orderedby
complexity score, these are:

Theory Size Details

mpage 16 Michie-Page inspired by Theory pfahr2
pfahr2 16 Bernhard Pfahringer

inglis 19 Stuart Inglis

pfahrl 19 Bernhard Pfahringer

turney 19 Peter D Turney

weka 19 WEKA ML Project

X 19 Theory X

aqatl 20 MLIC - AQDT

aqdt2 20 MLIC - AQDT

3. Winner is decided on the basis of the highest accuracy using any of the theories listed above as oracles. If two
more entrieshave the sameaccuracy,then a tie-break rule comparesaccuracieswhen using the winner of
Competition 1, (Theory pfahr2) as oracle.

33

Entry Oracle Accuracy Contestant
agl7hci aqdtl 57% MLIC - AQ17-HCI
aqdt2 54%
inglis 53%
mpage 51%
pfahrl 53%
pfahr2 58%
turney 53%
weka 53%
X 52%
aqdtl aqdtl 100% MLIC - AQDT-1
aqdt2 81%
inglis 69%
mpage 54%
pfahrl 69%
pfahr2 61%
turney 69%
weka 69%
X 47%
aqdt2 aqdtl 81% MLIC - AQDT-2
aqdt2 100%
inglis 60%
mpage 57%
pfahrl 60%
pfahr2 60%
turney 60%
weka 60%
X 52%
hart aqdtl 53% G R Hart
aqdt2 52%
inglis 60%
mpage 51%
pfahrl 60%
pfahr2 56%
turney 60%
weka 60%
X 48%
imam aqdtl 69% Ibrahim F Imam
aqdt2 66%
inglis 70%
mpage 63%
pfahrl 70%
pfahr2 60%
turney 70%
weka 70%
X 58%
quin aqdtl 60% Ross Quinlan
aqadt2 65%
inglis 45%
mpage 46%
pfahrl 45%
pfahr2 55%

34

turney 45%

weka 45%
X 51%
turney aqadtl 43% Peter D Turney
aqdt2 48%
inglis 52%
mpage 85%
pfahrl 52%
pfahr2 72%
turney 100%
weka 52%
X 90%

East-West Challenge: Results of Competition 3

Legend:

Entry is a codeword used by us for scoring purposes

Coverage is a pair of numbers E/W denoting number of East/West trains
covered by the theories for each of the 5 subtasks

Size is the complexity score of the theories submitted, as calculated

by Ashwin Srinivasan's Prolog program (complex.pl)
Contestant is the name of the contestant

Notes:
Winner decided on the basis of lowest total complexity score for the five subtasks.

Entry Coverage Size __ Contestant
pfahr 5/0 15 Bernhard Pfahringer
5/0 16
5/0 15
5/0 14
5/0 13
74
dm2 5/0 26 Donald Michie
0/5 15 (Westbound rule)
5/0 29
0/5 22 (Westbound rule)
0/5 22 (Westbound rule)
114
mli 5/0 18 MLIC - INDUCE
5/0 56
5/0 23
5/0 31
5/0 30
158

aqdt 5/0 16 MLIC - AQDT-2

35

5/1 17 has_load(Car,N) wrongly interp as exactly N

5/0 19
0/5 17 Westbound rule
5/0 16
85
turney 5/0 18 Peter D Turney
0/2 15 assumes generative infront/3
0/5 16 Westbound rule
5/0 17
0/5 16 Westbound rule
82

Prolog encoding of winning entry (pfahr)

Subtask 1:

English:
The last car is rectangular and closed, or the last car is short and the rest of the train does not have this property.

Prolog:
eastbound([A|B]) :-
(rectangle(A),
closed(A)
; short(A),
not(eastbound(B))

P-Complexity: 15
C-Complexity: 17

Subtask 2:

English:
Either the train does not have a carrying a triangularload, or the train hasa car carrying a rectangulatoad, and
one of its cars is u-shaped.

Prolog:
eastbound(A) :-
(' not(has_load1(A,triangle))
; has_load1(A, rectangle),
has_car(A, B),
u_shaped(B)

P-Complexity: 16
C-Complexity: 21
Subtask 3:

English:
Either the train does not have a car carrying a triangular load, or one of its cars is bucket-shaped.

Prolog:
eastbound([_|A]) :-

36

(not(has_load1(A rectangle))
has_car(A, B),
bucket(B)

P-Complexity: 15
C-Complexity: 14

Subtask 4:

English:
The last car is short and not double, and no other car carries a hexagonal load.

Prolog:

eastbound([A|B]) :-
short(A),
not(double(A)),
not(has_loadl(B,hexagon)).

P-Complexity: 14
C-Complexity: 16

Subtask 5:

English:
The third car from the engine is rectangularly shaped.

Prolog:
eastbound([A|B]) :-
rectangle(A),
(len1(B, 2)
; eastbound(B)
).

P-Complexity: 13
C-Complexity: 8

References

Bergadano, F., Matwin, S., Michalski, R.S. and Zhang, J., "Learning Two-Desctiptionsof
Flexible Concepts: The POSEIDON SysteMAchine Learning, Vol. 8, No. 1, pp. 5-43, 1992.

Bloedorn,E., Wnek, J., Michalski, R.S. and Kaufman, K., “AQ17: A Multistrategy Learning
System: The Method and User’s GuidBgports of Machine Learning and Inference Laboratory,
MLI-93-12, Center for Artificial Intelligence, George Mason University, 1993.

Bloedorn, E. and Michalski, R. S., “Data Driven Constructive InductiohQid7-PRE:A Method
and Experiments,Proceedings of the Third International Conference on Tools for Al, SanJose,
California, November 9-14, 1991a.

Bloedorn, E. and Michalski, R.S., “Constructive Induction from Data in AQ17-DCI: Further
Experiments,’Reports of the Machine Learning and Inference Laboratory, MLI 91-12, Centerfor
Artificial Intelligence, George Mason University, Fairfax, VA, December, 1991b.

37

Hoff, W., Michalski, R.S. and Stepp, R.E., “INDUCE 3: a program for learning structural
descriptions from examples,” Technical Report, TR-UIUCDDS-F-86-960, Department of
Computer Science, University of lllinois, Urbana, 1986.

Imam, I.F. and Michalski, R.S., “Should Decision Treesbe Learnedfrom Examplesor from
DecisionRules?”,Lecture Notes in Artificial Intelligence (689), Komorowski, J. andRas,Z.W.
(Eds.), pp. 395-404, from theroceedings of the 7th International Symposium on Methodologies
for Intelligent Systems, ISMIS-93, Trondheim, Norway, June 15-18, Spring Verlag, 1993a.

Michalski, R. S., “PatternRecognitionas Rule-guidedinference,”|EEE Transactions on Pattern
Analysis and Machine Intelligence, PAMI, Vol.2, pp. 349-261, 1980.

Michalski, R.S.“"A TheoryandMethodologyof Inductive Learning,” Artificial Intelligence, Vol.
20, pp. 111-116, 1983.

Michalski, R.S., Mozetic, I., Hong, J. and Lavrac, Nthe Multi-Purposelncremental_earning
System AQ15andIts TestingApplication to ThreeMedical Domains,”Proceedings of AAAI-86,
pp. 1041-1045, Philadelphia, PA, 1986.

Michalski, R.S. and Imam, I.F., “Learning Problem-OptimizedDecision Trees from Decision
Rules: The AQDT-2 Systemlecture Notesin Artificial Intelligence, Spring Verlag, from the 8th
International Symposium on Methodologies for Intelligent Systems, 1SMIS, Charlotte, North
Carolina, October 16-19, 1994.

Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K.A.,
Dzeroski, S., Fahlman, S.E., Hamann, R., Kaufman, K., KélerKononenko,l., Kreuziger,
J., Michalski, R.S., Mitchell, T., PachowiczP., Vafaie,H., Van de Velde, W., Wenzel,W.,
Whnek, J. and Zhang, J., "The MONK's problems:A PerformanceComparisonof Different
Learning Algorithms,” Computer Science Reports, CMU-CS-91-197, Carnegie Mellon
University, Pittsburgh, PA, December [991.

Whnek, J. and Michalski, R.S., "Comparing Symbolic and Subsymbolic Learftimge Studies,”
in Machine Learning: A Multistrategy Approach, Vol. 4., R.S. Michalski and G. Tecuci (Eds.),
Morgan Kaufmann, San Mateo, CA, 1994a.

Whnek, J. and Michalski, R.S., "Hypothesis-drivenConstructivelnduction in AQ17-HCI: A
Method and Experimentsiachine Learning, Vol. 14, No. 2, pp. 139-168, 1994b.

Whnek, J., Kaufman, K., Bloedorn, E. and Michalski, R.S., "Selective Induction Learning System
AQ15c: The methodanduser'sguide," Reports of Machine Learning and Inference Center, MLI
95-04, Center for MLI, George Mason University, 1995.

38

APPENDIX A: Sample Runs Demonstrating ASTRA’s Logical Errors
Appendix A.1l: Problems with the Cost Function

File: set2.astra from competition 3
ALL PARAMETERS SUMMARY

gl = 2 (grmaxrules) |------------------—-—|TRACES|FUNCTION ftype fcost
g2=2(alter) | el= 2 (exmaxrules)|tl=i|NAME (f1) (f2)
g3 = 4 (nconsist) | e2=false (exstrip) |t2=i|num-p's lin 1
g4 = 1 (regenstar) | e3=20 (excutoff) [t3=i|num-part lin 1
gn= 4 (gmumcrit) | en= 2 (exnumcrit) | t4=i | num-diff lin 1
gc(1)=mnfc gt(l)= 0|ec(l)=mxpa et(l)= 0 |t5=i|
gc(2=mxpa gt(2)= 0|ec(2)=mnsl et(2)= 0 |t6=i|
gc(3)=mnsl gt(3)= O]ec(3)= et3)= |t7=i|
gc(d=mnna gt(4)= O|ec(d)= et(d)= |t8=i|
gc(5)= gt(B)= |ec(B)= et5)= |t9=i]|
gc(6)= gt6)= |ec(6)= et6)= [STOPS|
gc(7)= gt(7)= lec(r)= et(7)= |sl=i|

I | s2=i]
rl= 4 (metamax) | 11=5 (Irmax) | s3=i |
r2 =false (endpoint) | In=4 (Imumcrit) |s4=i|
r3 =false (equal) |Ic(1)=mxpa It(1)= O |s5=i|
----------------------- [lc(2)=mnna It(2)= 0 |s6=i|
cl=disc (gentype) |lc(3)=mxls It(3)= 0 |s7=i|
c2= 100 (mincover) | Ic(4)=mnrs It(4)= 0 |s8=i|
c3= 0 (maxback) |lc(5)= It5B)= |[s9=i|

THE FOLLOWING RULE COVERS SET 1.

This rule covers event(s) 54321 (0 new):

Rule 42:
[Ishape(carl)#triangle][num-car(top=peaked)=0] [num di ff-cshape=2, 4]
Costs: 1. (mnfc)= 3
2. (mxpa)= 5
3.(mnsl)= 3
4. (mnna)= 0
The selected meta-selectors are:
ms type function value poscov hegcov
1 num-diff cshape 2 5 2

2 num-p's cshape =elipse 0 5 3
3 num-p's top =arc 0 5 3
4 num-ps top =peaked O 5 3

ALL PARAMETERS SUMMARY

gl = 2 (grmaxrules) |------------------—-—|TRACES|FUNCTION ftype fcost
g2=2(alter) | el= 2 (exmaxrules)|tl=i|NAME (1) (f2)
g3 = 4 (nconsist) | e2=false (exstrip) |t2=i|num-p's lin 1
g4 = 1(regenstar) | e3=20 (excutoff) [t3=i|num-part lin 1
gn= 4 (grnumcrit) | en= 2 (exnumcrit) | t4=i | numdiff lin 10000
gc(l)=mnfc gt(1)= 0| ec(l)=mxpa et(l)= 0 |t5=i]| cshape nom 10000
gc(2=mxpa gt(2)= 0|ec(2)=mnsl et(2)= 0 |t6=i|
gc(3)=mnsl gt(3)= O]ec(3)= etB)= |t7=i|
gc(d)=mnna gt(4)= O|ec(d)= et(d)= |t8=i|
gc(5)= gat(B)= |ec(B)= et5)= |t9=i]|
gc(6)= gt6)= |ec(6)= et6)= [STOPS|
ge(n)= o(7)= ec(7)= et(7)= |sl=i|

I | s2=i]
rl= 4 (metamax) | I1=5 (Irmax) | s3=i |
r2 =false (endpoint) | In=4 (Imumcrit) |s4=i|
r3 =false (equal) |Ic(1)=mxpa It(1)= O |s5=i|
----------------------- [lc(2)=mnna It2)= 0 |s6=i|
cl=disc (gentype) |lc(3)=mxls It(3)= 0 |s7=i|
c2= 100 (mincover) | Ic(4)=mnrs It(4)= 0 |s8=i|
c3= 0 (maxback) |lc(5)= It5B)= |[s9=i|

39

31

THE FOLLOWING RULE COVERS SET 1:

This rule covers event(s) 54321 (0 new) :
Rule 58:

[Ishape(carl)#triangle][num-car(top=peaked)=0]
Costs: 1. (mnfc) = 10002

2.(mxpa)= 5
3.(mnsl)= 3
4.(mnna)= 0
The selected meta-selectors are:
ms type function value poscov hegcov
1 num-diff cshape 2 5 2
2 num-p's cshape =elipse 0 5 3
3 num-p's top =arc 0 5 3
4 num-p's top =peaked 0 5 3

40

[numdi ff-cshape=2, 4]

Appendix A.2: Problems with the mxpe Parameter

file: set3.astra
ALL PARAMETERS SUMMARY

gl = 2 (grmaxrules) |------------------—-—|TRACES|FUNCTION ftype fcost
g2=2(alter) | el= 2 (exmaxrules)|tl=i|NAME (1) (f2)
g3 = 4 (nconsist) | e2=false (exstrip) |t2=i|num-p's lin 1
g4 = 1(regenstar) | e3=20 (excutoff) [t3=i|num-part lin 1
gn= 4 (gmumcrit) | en= 3 (exnumcrit) | t4=i | num-diff lin 1
gc()=mnna gt(1)= 0]ec(l)=mxpe et(l)= O |t5=i|
gc(2=mxpn gt(2)= 0| ec(2=mnsl et(2)= 0 |t6=i|
gc(3)=mnsl gt(3)= 0] ec(3)=mnvc et(3)= 0 |t7=i|
gc(d)=mnfc gt(4)= O|ec(d)= et@d)= |t8=i]
gc(5)= gt(B)= |ec(B)= et5)= |t9=i]|
gc(6)= gt6)= |ec(6)= et6)= [STOPS|
gc(7)= gt(7)= lec(r)= et(7)= |sl=i|
I | s2=i]
rl= 4 (metamax) | 11=5 (Irmax) | s3=i |
r2 =false (endpoint) | In=4 (Imumcrit) |s4=i|
r3 =false (equal) |Ic(1)=mxpa It(1)= O |s5=i|
----------------------- [lc(2)=mnna It(2)= 0 |s6=i|
cl=disc (gentype) |lc(3)=mxls It(3)= 0 |s7=i|
c2= 100 (mincover) | Ic(4)=mnrs It(4)= 0 |s8=i|
c3= 0 (maxback) |lc(5)= It5B)= |[s9=i|

Core dumps in phase2prep().

41

Appendix A.3: Problems with the forall Meta-Function

ALL PARAMETERS SUMMARY

gl = 2 (grmaxrules) |------------------—-—|TRACES|FUNCTION ftype fcost
g2=2(alter) | el= 2 (exmaxrules)|tl=i|NAME (1) (f2)
g3 = 4 (nconsist) | e2=false (exstrip) |t2=i|num-p's lin 1
g4 = 1(regenstar) | e3=20 (excutoff) [t3=i|num-part lin 1
gn= 4 (gmumcrit) | en= 3 (exnumcrit) | t4=i | num-diff lin 1
gc()=mnna gt(1)= 0] ec(l)=mxpn et(l)= O |t5=i|
gc(2=mxpn gt(2)= 0| ec(2=mnsl et(2)= 0 |t6=i|
gc(3)=mnsl gt(3)= 0] ec(3)=mnvc et(3)= 0 |t7=i|
gc(d)=mnfc gt(4)= O|ec(d)= et@d)= |t8=i]
gc(5)= gt(B)= |ec(B)= et5)= |t9=i]|
gc(6)= gt6)= |ec(6)= et6)= [STOPS|
gc(7)= gt(7)= lec(r)= et(7)= |sl=i|
I | s2=i]
rl= 30 (metamax) | I1=5 (Irmax) | s3=i|
r2 =false (endpoint) | In=4 (Imumcrit) |s4=i|
r3 =false (equal) |Ic(1)=mxpa It(1)= O |s5=i|
----------------------- [lc(2)=mnna It(2)= 0 |s6=i|
cl=disc (gentype) |lc(3)=mxls It(3)= 0 |s7=i|
c2= 100 (mincover) | Ic(4)=mnrs It(4)= 0 |s8=i|
c3= 0 (maxback) |lc(5)= It5B)= |[s9=i|

THE FOLLOWING RULE COVERS SET 1.

This rule covers event(s) 54321 (5new):
Rule 102:
[forall-car(lshape=triangl e)=fal se] [num-car(lshape=hexagon)=0]
[num-car(Ishape=diamond)=0][num-car(top=arc)=0]
Costs: 1. (mnna)= 0

2. (mxpn)= 5
3.(mnsl)= 4
4. (mnfc)= 4

#ERROR This car obviously has a triangle load:

Rule 3: Event set: 1
[cshape(carl)=ushaped][cshape(car2)=crect][double(carl)][double(car2)]
[forall-car(pos=3)=false][forall-car(top=flat)=false]
[forall-car(top=arc)=false][forall-car(top=peaked)=false]
[forall-car(pos=4)=false][forall-car(double=false)]|[forall-car(nwis=3)=false]
[forall-car(In=long)=false][forall-car(lgty=2)=false][forall-car(Igty=3)=false]
[forall-car(Ishape=rectangle)=false][forall-car(cshape=ushaped)=false]
[forall-car(Ishape=utriangle)=false][forall-car(Ishape=hexagon)=false]
[forall-car(Ishape=diamond)=false][forall-car(cshape=bucket)=false]
[forall-car(cshape=crect)=false] [forall-car(lshape=triangle)=fal se]
[forall-car(cshape=ellipse)=false][forall-car(pos=2)=false][infront(carl,car2)]
[In(carl)=short][In(car2)=short][lqty(carl)=1][lgty(car2)=1]

[I shape(car 1) =triangl e] [Ishape(car2)=rectangle][num-car(cshape=ellipse)=0]
[num-car(Ishape=diamond)=0][num-car(lqty=3)=0][num-car(Ishape=hexagon)=0]
[num-car(pos=2)=1][num-car(pos=1)=1][num-car(top=arc)=0][num-car(top=peaked)=0]
[num-diff-cshape=2][num-diff-double=1][nwis(car1l)=2][nwlis(car2)=2][pos(carl)=1]
[pos(car2)=2][top(carl)=none][top(car2)=flat] => [d=1]

42

Appendix A.4: Problems with Event Coverage

ALL PARAMETERS SUMMARY
g1 =10 (grmaxrules) [-----------------------—| [TRACES|FUNCTION ftype fcost
g2=10(alter) | e1=10 (exmaxrules)|tl=i|NAME (f1) (f2)
g3 =10 (nconsist) | e2 =true (exstrip) |t2=i|num-p's lin 1
g4 =10 (regenstar) | e3=20 (excutoff) |t3=i|num-part lin 1
gn= 3(gmumcrit) | en= 3 (exnumcrit) | t4=i | num-diff lin 1
gc(L)=mxpn gt(1)= 0|ec(l)=mxpn et(l)= O |t5=i|
gc(2=mnsl gt(2)= 0]ec(2=mnsl et(2)= 0 |t6=i|
gc(3)=mnna gt(3)= 0]ec(3)=mnna et(3)= 0 |t7=i|
gc(d)= gtd)= |ecd)= et(d)= |tB=i|
gcd)= gtB)= |ec= et(5)= [19=i|
gc(6)= gt6)= |ec(6)= et6)= |STOPS|
gc(7)= gt(7)= lec(7)= et(7)= |sl=i|

I | s2=i|

rl= 0 (metamax) | 11=5 (Irmax) | s3=i|

r2 =false (endpoint) | In=4 (Imumcrit) |s4=i|
r3 =false (equal) |Ic(1)=mxpa It(1)= O |s5=i|
----------------------- | le(2)=mnna It(2)= 0 |s6=i|
cl=disc (gentype) |lc(3)=mxls It(3)= 0 |s7=i|
c2= 100 (mincover) | lc(@)=mnrs It(4)= 0 |s8=i|
c3= 0 (maxback) |lc(5)= I5E)= |s9=i|

THE FOLLOWING RULES COVER SET 1:

This rule covers event(s) 86 32 (2 new) :
Rule 7116:
[cshape(carl)=buckef][pos(carl)=2]
Costs: 1. (mxpn) = 2

2.(mnsl)= 2

3.(mnna)= 0
#
In reality the above rule does not cover event 3, since the car shape for that car is
actually hexagon.
#

This rule covers event(s) 109765421 (8 new):
Rule 6780:
[Ishape(carl)=hexagon,triangle][pos(carl)=3]
Costs: 1. (mxpn)= 8
2.(mnslh)= 2
3.(mnna)= 0

43

Appendix A.5: Prolog Complexity Tester

%%%%% Ashwin Srinivasan's Prolog code
%%%%% for measuring theory complexity.

% dynamic statements are only for compiled Prologs
% (not Clocksin and Mellish standard)

- dynamic counts/2.

% count clauses, literals and terms in file FileName
count(FileName):-

reset_counts,

see(FileName),

count_clauses,

seen,

print_theory_counts.

count_clauses:-
repeat,
read(Clause),
count_clause(Clause),

Clause =end_of file,
|

count_clause(end_of_file):- !.
count_clause((Head:-Body)):-
|
inc(clauses,1),
get_litterm_count((Head,Body)).
count_clause(UnitClause):-
inc(clauses,1),
get_litterm_count(UnitClause).

get_litterm_count((LitTerm;LitTerms)):-
|
inc(litterms, 1), % for ;12
get_litterm_count(LitTerm),
get_literm_count(LitTerms).
get_litterm_count((LitTerm,LitTerms)):- % no charge for',/2
1
get_literm_count(LitTerm),
get_litterm_count(LitTerms).
get_litterm_count(LitTerm):-
inc(litterms, 1), % for Lit
functor(LitTerm,Name,Arity),
get_arg_count(LitTerm,Arity,0,TO),
inc(litterms, TO).

get_arg_count(_,O,LT,LT).
get_arg_count(Expr,Arg,T,LitTerms):-
arg(Arg,Expr,Term),
var(Term), !,
ArgOis Arg - 1,
TlisT+1,
get_arg_count(Expr,Arg0,T1,LitTerms).
get_arg_count(Expr,Arg,T,LitTerms):-
arg(Arg,Expr,LitTerm),
functor(LitTerm,LitTermName,LitTermArity),
inc_term_count(LitTermName/LitTermArity, T,T1),
get_arg_count(LitTerm,LitTermArity,T1,T2),
Arg0is Arg - 1,

44

get_arg_count(Expr,Arg0,T2,LitTerms).
inc_term_count(,/2,T,T):- % no charge for',/2
|

inc_term_éount(_,T,Tl):-
TlisT+1.

reset_counts:-
retractall(counts(_,_)),
asserta(counts(clauses,0)),
asserta(counts(litterms,0)).

print_theory_counts:-
counts(clauses,C),
write('clauses:'), write(C), nl,
counts(litterms,LT),
write(lits+terms:"), write(LT), nl, nl,
Total is C + LT,
write(‘total:"), write(Total), nl.

inc(Parse,N):-
retract(counts(Parse,N1)),
NOisN1+N,
asserta(counts(Parse,N0)).

45

APPLYING AQ TO THE EAST-WEST CHALLENGE

For a possbile journal paper:
HOW DID AQ FACE WEST-EAST CHALLENGE?

Results and Lessons from the the 2nd International Competition of
Machine Learning Programs

46

4

