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ABSTRACT

This paper describes a methodology for applying machine learning to problems of conceptual

design, and presents a case study of learning design rules for wind bracings in tall buildings.

Design rules are generated by induction from examples of minimum weight designs. This study

investigates the applicability of machine learning methods which are capable of constructive

induction, that is of automatically searching for and generating problem-relevant attributes beyond

those originally provided. The decision rules generated by machine learning programs specify

design configurations which are recommended, typical, infeasible, or those which are to be

avoided. The learned rules captured some of the essential expert's understanding of the design

characteristics involved in selecting wind bracings for tall buildings. These results are promising

and demonstrate a potential practical usefulness of the proposed methodology for automated

generating of design rules.
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INTRODUCTION

Machine learning is a scientific discipline concerned with understanding computational principles

of learning processes, and developing computer systems exhibiting learning capabilities. It

represents an interdisciplinary research effort that draws upon results from such disciplines as

computer science, cognitive science, and information systems.

Although efforts to build learning machines began in the early years of the computer era, major

progress in understanding how to build practical computer systems with learning capabilities has

occurred only relatively recently. In the last several years machine learning programs have been

experimentally tried in a variety of domains, such as medical diagnosis, economics, agriculture,

computer vision, financial decision making, and others.

The engineering disciplines are currently undergoing a paradigm shift. The analytical paradigm,

based on the use of analytical tools, is rapidly becoming insufficient.  At the same time, a new

paradigm is emerging, founded on the use of knowledge-based decision support tools.  However,

the development and subsequent use of such tools requires the acquisition of formal knowledge,

and decision rules are usually considered most convenient for engineering applications and

therefore their acquisition is the subject of this paper.

Traditional methods of manual knowledge acquisition are insufficient to deal with complex

engineering problems. Progress in using decision support tools has been delayed in part due to the

difficulties of knowledge acquisition.  The solution to this problem is automated knowledge

acquisition  based on the use of learning systems.  But this has been difficult until recently because

of a methodological gap between machine learning research and the problems of engineering

design. This paper attempts to bridge this gap by developing a methodology for applying learning

systems to the automated acquisition of engineering knowledge.



3

The paper also reports the results of an initial feasibility study on using two machine learning

methods to this problem. These methods apply different forms of constructive induction, an

advanced type of inductive learning that automatically searches for a suitable knowledge

representation space. The study was conducted in the Machine Learning and Inference Laboratory

at the Center for Artificial Intelligence at  George Mason University in Fairfax, Virginia. The

examples of optimal structural designs were prepared in the Intelligent Computer Laboratory of the

Civil Engineering Department at Wayne State University, Detroit, Michigan.

There have been several previous studies on the application of machine learning to conceptual

design knowledge acquisition. Gero (et al. 1989) (Mackenzie and Gero 1987) (McLaughlin and

Gero 1987) used an experimental learning system based on a decision tree learning algorithm (ID3)

to acquire architectural design knowledge. EXTASY, an expert system for analysis and design of

microwave towers, has been developed with a learning component and used in experiments

demonstrating the acquisition and use of design knowledge in conceptual design (Murlidharan et.

al, 1992). Reich (1991, 1992 and Fenves 1992) implemented BRIDGER, an application of the

clustering algorithm CLUSTER initially developed by Fisher (1987). BRIDGER was used to

acquire bridge design knowledge. Reich and Fenves also studied knowledge acquisition for floor

system design in buildings (Reich and Fenves, 1988) using an experimental system based on the

learning system SOAR (Laird, et. al., 1986). Maher has been working on automated acquisition of

preliminary design knowledge (Maher 1992, Maher and Li 1992, 1993) in which conceptual

clustering is augmented by numerical methods of linear regression analysis and probabilistic

approaches to pattern identification. A genetic algorithm was used by Maher and Kundu (1993) to

develop a system for adaptive design.  The same algorithm was also used by Grierson and Pak

(1992) in a system for the optimization of configurations in the conceptual design of skeletal

building structures and by Hajela for structural synthesis (1989). ROUGH, a learning system

based on the theory of rough sets (Pawlak 1982, Ziarko 1989), was used by Arciszewski et al.
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(1987) (Mustafa and Arciszewski 1992) for design knowledge acquisition in the area of structural

design of wind bracings in tall buildings.  Garrett and Ivezic (Ivezic and Garret 1993, Garret and

Ivezic, to appear) describe an experimental learning system, NETSYN, based on a connectionist

learning approach, for the acquisition of conceptual design knowledge.  Also, Adeli and Yeah

(1989) used a neural network to learn about engineering design. Milzner and Harbecke (1992) are

involved in the development of an experimental learning system, LEAR, based on constructive

induction, for learning design knowledge.  This system, however, has not been used yet for

experiments with engineering design examples. Whitehall, Stepp and Lu (1990) (Lu and Chen

1987) applied machine learning to design knowledge acquisition using several experimental

learning systems. The AQ15 and AQ17 learning systems, employing the STAR methodology

(Michalski 1983), were applied by Arciszewski and Dybala (1992) for learning design rules in the

area of conceptual design of wind bracings in steel skeleton structures of tall buildings.

The application area for our study has been selected for significant technical reasons.  At

present, the analysis, design, and optimization of wind bracings in steel skeleton structures can be

conducted using computer programs such as SODA (SODA is a Structural Optimization, Design

and Analysis computer program for analyzing planar steel frames and trusses under static load. It

was developed by Waterloo Engineering Software, Ontario, Canada). The use of these programs

makes the design of wind bracings easier, but it still does not eliminate the need for the proper

selection of a wind bracing type for a given design case.  This selection must be based, as before,

on the designer's experience.  The computer program can produce a feasible locally optimal design

of any type of wind bracing; however, this may not be the global optimum.  For example, the

computer program may produce a minimum-weight design for wind bracing in the form of a one-

bay wide rigid frame in a twenty-story skeleton structure.  This design may not be a global optimal

design: much better weight and stiffness characteristics might be obtained with a truss wind

bracing.  The problem of selecting the proper type of wind bracing is particularly important when

inexperienced designers use software tools for design and optimization; their lack of experience
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may lead to feasible designs which could be significantly improved through simple changes in

configuration.

For these reasons, research at Wayne State University on automated knowledge acquisition of

wind bracings selection for steel skeleton structures was initiated in cooperation with Donald

Grierson of Waterloo University, Ottawa, Canada.  The knowledge acquired will eventually be

used in a knowledge-based system which will be combined with SODA.  This knowledge-based

system will guide SODA users in the process of selecting the most appropriate types of wind

bracings for their individual design cases.  The research was initiated in 1986 by Arciszewski and

Mustafa (Arciszewski and Ziarko 1987, Mustafa and Arciszewski 1989, Mustafa and Arciszewski

1992) in the Intelligent Computers Laboratory of the Civil Engineering Department at Wayne State

University, Detroit.

The major novelty of the study reported here is that it concentrates on learning systems that

have advanced capabilities for constructive induction.  The research has two major objectives: 1) to

determine the feasibility of applying constructive induction to acquiring knowledge of structural

design, and 2) to determine the performance accuracy of constructive induction based learning

systems in structural engineering in the case of the conducted study.

The feasibility of constructive induction in structural design knowledge acquisition was

determined by the expert evaluation of machine generated rules which considered domain relevance

and significance, while the performance accuracy of constructive induction-based learning systems

was formally determined using two empirical error rates, as proposed for engineering applications

(Arciszewski et al. 1992; Breiman et. al. 1984; Kibler and Langley 1988).

This paper reports the initial results of the feasibility study of constructive induction in

structural design.  It provides a brief description of the two forms of constructive induction
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considered, including data-driven and hypothesis-driven constructive induction.  The preparation

of examples is discussed, and a detailed description of the knowledge acquisition process and its

results are given.  In conclusion, recommendations for further research are provided.

CONSTRUCTIVE INDUCTION

Basic Concepts

Machine learning studies mechanisms for creating or improving knowledge or skills by

exploiting experience.  Since learning is a fundamental characteristic of intelligent behavior,

machine learning has been a focus of research in artificial intelligence since the beginnings of AI in

the 1950's.  The last several years have marked a period of great expansion and diversification of

methods and approaches to machine learning.  Most of the research has been oriented toward

monostrategy methods that apply one primary type of inference and/or computational mechanism.

Such methods include, for example, learning decision rules from examples.  With the growing

understanding of the capabilities and limitations of monostrategy methods, there has been an

increasing interest in multistrategy learning systems that integrate two or more inference types

and/or computational mechanisms.  Such systems take advantage of the strengths of different

learning strategies, and thus potentially can be applied to a much wider range of practical problems

than monostrategy systems (Michalski and Tecuci, to appear 1993). One of the most important

concerns of machine learning research is the dependence of learning programs on the initial

attributes or predicates used to describe the data. The effectiveness of learning algorithms is very

sensitive to the choice of representation space, in particular to the quality of the attributes and

predicates used.

Constructive induction (CI) is a type of induction in which the formation of a new

representation occurs during inductive learning (Michalski 1978). Therefore, instead of

generalizing input information in the original description space, CI methods create a new space in

which it may be much easier to construct a simple, accurate rule. This is possible because CI
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methods modify the distribution of examples in the representation space making it easier to

describe in the language of the inductive learner (nested axis-parallel hyperplanes in the case of

decision trees, sets of axis parallel hyperplanes in the case of AQ). The two types of CI methods

reported here are data-driven (DCI) and hypothesis-driven (HCI). In data-driven methods

modifications to the representation space are based on relations found in the data such as attribute-

correlations, while in hypothesis-driven methods rules generated from the data are analyzed and

used to produce new attributes which make explicit patterns in these rules.

From the representational point of view, engineering applications provide a diverse set of

learning problems.  Some engineering applications have well defined concepts and require only a

few attributes to adequately describe, while other applications, not as well understood, have

complex descriptions, and potentially require modifications to the original representation space.

The former already have been well studied, and are available in the form of domain theories (e.g.

Theory of Elasticity, Theory of Plasticity, etc.).  In the latter case, regularities are not obvious, due

primarily to inadequate domain representations.  Inadequacy in the domain representation may

occur in three forms: 1) irrelevant attributes, 2) insufficient descriptors (hidden relationships

between descriptors), or 3) a combination of the previous two. To deal with these problems, we

investigated two methods of constructive induction:  1)     d    ata-driven    c   onstructive    i   nduction (DCI),

which constructs new attributes based on input data analysis and application of various

mathematical and logical operators, and 2)     h    ypothesis-driven    c   onstructive    i   nduction (HCI), which

builds new attributes by analyzing initially created inductive hypotheses, and detecting patterns in

their descriptions.

Data-Driven Constructive Induction: DCI

Most inductive learning programs perform "selective" induction, that is, they generate

descriptions (rules, decision trees, etc.) that  involve only attributes selected among those provided

in the examples (Michalski, 1983).  Thus, if the attributes used in the examples are weakly
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relevant, or concepts are distributed among many attributes and are not explicit, the learned

descriptions may be inaccurate and complex.  It is possible, however, that although the original

attributes may be of poor quality, there exist certain combinations or functions of these attributes

that are highly relevant to the problem.  For example, suppose there exist two sets of designs of

wind bracings in a building described by the number of vertical and horizontal trusses. Sample data

are shown in Table 1.

Table 1. Wind Bracings Described by Numbers of Vertical and Horizontal Trusses.

The rule which describes the characteristic of each class of building found by a selective

program such as AQ14 is fairly complex:

Class1 <:: [Number of Vertical Trusses = 2] and [Number of Horizontal Trusses = 0]  or

[Number of Vertical Trusses = 1] and [Number of Horizontal Trusses = 1]  or

[Number of Vertical Trusses = 0] and [Number of Horizontal Trusses = 2]

Class2 <:: [Number of Vertical Trusses = 3]  or

[Number of Vertical Trusses = 2] and [Number of Horizontal Trusses = 1] or

[Number of Vertical Trusses = 1] and [Number of Horizontal Trusses = 2] or

[Number of Horizontal Trusses = 3]

The complexity of the rule is due to a mismatch between the type of rules learned by AQ (axis-

parallel hyperplanes) and the distribution of examples in the representation space. By generating

new attributes, the representation is enriched, and the rules constructed can be simpler and also

more accurate.  Various combinations of attributes using a variety of operations can be calculated.

Useful combinations, which in this case involve addition, are kept.  In this example, the total
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number of trusses was calculated and found to be useful.  This value was then retained and named

Total Number of Trusses.  The rules produced using this constructed attribute were:

Class1 <:: [Total Number of Trusses = 2]

Class2 <:: [Total Number of Trusses = 3]

where Total Number of Trusses is Number of Vertical Trusses + Number of Horizontal Trusses.

The DCI method is based on the generate and test paradigm.  First, all numeric attributes are

identified and all possible combinations are generated. Then, the pairwise operations to be

performed on the individual pairs are selected from the list supplied by the user.  With the attributes

and operation selected, the values for the new attribute are calculated.  The discriminatory power of

these attribute values is then tested using the Attribute Quality Function (AQF). The AQF is the

ratio defined below:

AQF = Unique examples
Total number of examples in class

where, unique examples are those examples that are not covered by any rule in other classes.  The

AQF is calculated for each class and for each attribute.  A perfect discriminatory attribute, which

alone discriminates one class from all other classes, will have an AQF value of 1. Possible AQF

values range from 0 to 1. If a newly constructed attribute exceeds a predefined threshold for quality

(quality thresholds are defined for each operator) then this new attribute is added to the list of

available attributes and its calculated values are added to the training data. If the threshold for the

AQF is set too low, then many possibly low quality attributes are generated. This abundance of

low quality attributes can make the generation of simple, accurate rules more difficult. On the other

hand if the AQF is set too high, new attributes which may be useful (to describe outlying

examples, or to more simply describe large sets of examples) will be generated, but then discarded.

An appropriate threshold can only be found by trial and error, but the range from 0.4 to 0.8 is

generally sufficient.
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A number of different operations are available to construct new attributes. These operations can

be classified as either binary operators or multi-argument operators (functions).  The binary group

currently includes the Relational Operator, and a number of mathematical operators, including:

Addition, Subtraction (absolute difference), Multiplication, and Integer-Division. Examples of each

of these operations on fictitious data are shown in Table 2.

Table 2. Data-Driven Constructive Induction: Binary Operators.

The multi-argument class includes the following functions: Maximum, Minimum, Average,

Least-Common, Most-Common, and #VarEQ(x). Except for the latter, these function are self-

explanatory. #VarEQ(x) is a function which calculates the number of times the value x appears in

an example. For a vector of binary-valued attributes, #VarEQ(1) counts the number of attributes

that have a value of 1 in an example of a given class.  Examples of these operations are shown in

Table 3:

Table 3. Data-Driven Constructive Induction: Functional Operators.

The program has a default list of global functions, but allows the user to modify the list to fit

the problem at hand. The default list of functions includes maximum, minimum, average, most

frequent, least frequent, and #VarEQ(x).

Hypothesis-Driven Constructive Induction: HCI

The hypothesis-driven constructive induction method extends the capabilities of a selective

induction learning algorithm by constructing and using new attributes based on an analysis of the

hypotheses generated.  It relies on the capability of the selective algorithm to generalize from
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examples to more general classification rules, given fixed representation space, i.e., a set of

attributes and a set of concepts.  The HCI method changes the representation space with respect to

the set of attributes, or in general, descriptors.  The set of concepts, as initially defined by a

domain expert, remains unchanged. Figure 1 presents a diagram illustrating the HCI method

(Wnek and Michalski 1993).

Figure 1. The HCI method for hypothesis-driven constructive induction.

In the implemented system, the input consists of training examples of one or more concepts, and

background knowledge about the attributes used in the examples (a specification of their types and

legal value sets). For the sake of simplicity, let us assume that the input consists of positive

examples and negative examples of only one concept. If there are several concepts to learn,

examples of each concept are taken as positive examples of that concept, and the set theoretical

union of examples of other concepts are taken as negative examples of that concept.

The "Split of Examples" module randomly divides positive and negative training examples into

primary, P, and secondary, S. The primary training set, P, is used for initial rule learning, the

secondary set, S, for an evaluation of intermediate rules, and complete training set, P È S, is used

for the final rule learning. The "Rule Learning" module induces a set of decision rules from the

primary training set P, using the AQ15 inductive learning program (Michalski et al., 1986). The

program employs the algorithm Aq for solving the general covering problem, which has been

described in various sources, e.g., (Michalski, 1983). The "Rule Evaluation" module determines

the performance of the rules on the secondary training set, S. The performance is measured in

terms of predictive accuracy of the rules. The result is compared with the predefined threshold. If

the performance accuracy does not satisfy the Stopping Condition, the rules are analyzed to
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determine desirable changes in the representation space. The analysis of the hypothesis in the "Rule

Analysis" module determines which of the original attributes are redundant, and which rules

perform best for each decision class (or concept). In the "Representation Space Transformation"

module, redundant attributes are removed from the representation space based on their presence (or

lack) in generated rules. The best-performing rules are assembled into rulesets. The rulesets are

assigned names, and treated as new attributes that extend the representation space. Training

examples are projected into the new representation space ("Reformulation of Examples" module),

and the inductive process is repeated. If the performance accuracy exceeds a predefined threshold,

or chances for further improvement are estimated as being below a certain limit, final induction of

decision rules is performed in the "Rule Learning" module from the complete training set.

KNOWLEDGE ACQUISITION PROCESS

In the research reported, a relatively long and complex knowledge acquisition process was

followed, and its major stages are briefly described here. However, this process incorporates

several stages which could be avoided today, and therefore its simplifications and duration

reduction are also discussed.

The knowledge acquisition process which was used consists of five major stages:

1. Development of Mathematical Models.  In this stage, the available general structural

knowledge was used by Donald Grierson to develop a system of mathematical models for the

analysis, design, and optimization of steel structures, which could be consistently implemented in

computer programs.  Modeling was initiated in the early sixties at Waterloo University, and the

majority of work was completed in the late eighties (Grierson 1989, Grierson and Cameron 1989).
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2. Implementation of Models.  This stage involved the development of the computer

program, SODA, for the analysis, design, and optimization of steel structures.  This was

completed in the mid-eighties by Donald Grierson at Waterloo Engineering Software.

3. Building the Knowledge Representation.  The work included the identification of

relevant attributes describing wind bracings in steel skeleton structures and the determination of

their values.  The work was initiated in the early seventies by Tomasz Arciszewski at Warsaw

Technical University for the purposes of wind bracings classification and continued at Wayne State

University in Detroit for the purpose of wind bracings conceptual design (Arciszewski 1985).

4. Preparation of Examples.  This stage involved the preparation of a collection of 336

examples of SODA-generated minimum-weight wind bracing designs of various types.  It was

initiated in 1989 by Mohamad Mustafa and Tomasz Arciszewski at Wayne State University, and

took approximately two years to complete.

5. Constructive Induction of Decision Rules from Examples.  In this stage, two

experimental learning systems, based on data-driven and hypothesis-driven constructive induction,

were used to produce decision rules.  The work was conducted at the Center for Artificial

Intelligence at George Mason University in 1992, and it took several weeks to complete induction

and to interpret results.

Stage one in the knowledge acquisition process was concerned with the development of deep

models. In stage two, a simulation model for a wind bracing was produced. In stage three, relevant

attributes and their values were proposed. Stage four, Preparation of Examples, can be considered

as knowledge deduction from the deep model through the use of the simulation model. In this

stage, specific examples are generated through deduction applying the general deep knowledge. In

the last stage, design rules are learned from examples using constructive induction methods.
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In the case of research on conceptual design of wind bracings in tall buildings which ultimately

evolved into work on automated design knowledge acquisition, the first three stages could not be

avoided and therefore they were incorporated in our process. However, in the other areas of

structural engineering, mathematical models and computer programs based on them are easily

available. Therefore, stages one and two could be avoided, and this could significantly reduce time

to complete a similar project in the future. Also, building the knowledge representation has been a

long process in our case, but at the beginning its objectives were different than automated

knowledge acquisition. Today this process could be competed in several weeks, if necessary.

Preparation of examples took approximately two years to complete, but this was done by a

structural engineer working only part time on this project. That time could be significantly reduced

to approximately three months of a full time work of a single structural designer.

In stage five, Constructive Induction of Decision Rules from Examples, two knowledge

induction processes were conducted:

1. Generation of decision rules from examples using data-driven constructive induction, and

2. Generation of decision rules from examples using hypothesis-driven constructive induction.

The knowledge acquisition process is shown in Fig. 2. In this process, SODA is used to

generate examples, and two experimental learning systems, based on data-driven and hypothesis-

driven constructive induction, are used to induce decision rules.

Figure 2. Process of Learning Design Rules.
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BUILDING THE KNOWLEDGE REPRESENTATION

An eight-attribute description of the design problem and the wind bracing itself was developed

for our project (Mustafa 1989).  The attributes used are sufficient to describe various types of

planar frame, truss, and truss-frame bracings which are appropriate for buildings in the six to

thirty-story height range considered in our study.  These attributes are based on a general

description of wind bracings in tall buildings proposed by Arciszewski (1985) and used by

Mustafa and Arciszewski (1992) in earlier machine learning experiments in the area of knowledge

acquisition of conceptual wind bracing design.  The individual attributes and their values are given

in Table 4.

The first three attributes, Number of Stories, Bay Length, and Wind Intensity Factor, describe

the design case (design requirements) considered. The Wind Intensity Factor characterizes the

wind exposure of a tall building and is location dependent. Attributes No. 4 through No. 7

describe the structural system of wind bracing itself, while the last attribute, No. 8, Unit Steel

Weight, identifies the nominal value of the relative unit weight of the steel structural system of a

wind bracing described by attributes one through seven. This relative unit steel weight is

determined considering all normalized unit weights of various types of wind bracings of the same

height designed under identical conditions.  

Table 4. Attributes and Their Values.

The decision rules obtained are divided into four classes corresponding to the values of the

decision attribute Unit Steel Weight.  Values of the unit weight are specified in the examples as

low, medium, high, and infeasible when SODA could not produce a wind bracing under the given

assumptions which would satisfy all design requirements.  Therefore, the decision rules which
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specify designs with low unit weights are called Recommendation Rules.  Similarly, decision rules

which produce medium unit weights are called Standard Rules, and rules which produce high unit

weight are called Avoidance Rules.  Rules producing infeasible wind bracings are called

Infeasibility Rules.

PREPARATION OF EXAMPLES

In earlier research on machine learning about design of wind bracings in tall buildings (Mustafa

and Arciszewski 1992), a collection of examples of various designs was prepared by human

experts.  The results of learning were found to be only partially satisfactory.  Not all decision rules

were correct from the structural point of view, and their interpretation was difficult.  The problem

is believed to be due mostly to an insufficient number of examples (165), and the possible

misclassification of some examples. While knowledge acquisition techniques are improving it was

decided to follow a different route in which examples of optimal wind-bracing designs based on

computer models be used. In this way, a larger number of examples could be produced and their

quality monitored.

Therefore, decision rules were learned from a collection of 336 examples of minimum weight

(optimal) designs of wind bracings in steel skeleton structures of tall buildings.  Each example has

three major components: 1) a description of the building for which a given bracing is intended

(design case or design requirements),  2) a description of the wind bracing structural system, and

3) an evaluation of the unit steel weight of a given wind bracing for the design case considered.

Therefore, each example relates the design requirements to the selection of components of a wind

bracing structural system and the unit steel weight of this system.  Machine learning is used then to

produce decision rules which explain how design requirements can be satisfied through the proper

selection of individual components of a wind bracing structural system in order to minimize its unit

weight.
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Examples were prepared by Mohamad Mustafa (1989) as part of his doctoral research on an

engineering methodology of automated knowledge acquisition. All detailed design assumptions

regarding loads, dimensions, steel grade, etc., were determined in cooperation with practicing

structural designers and are reported in Mustafa (1993). All examples were prepared under

identical design assumptions for a three-bay skeleton structure of a tall building. Actual minimum-

weight designs were produced using SODA. All designs were verified by Mustafa, who is a

structural designer with the Wayne County Structural Division.

DATA-DRIVEN CONSTRUCTIVE INDUCTION

A number of experiments were performed with DCI. In these experiments the expert selected

the relationship, addition, subtraction and multiplication operators as being potentially useful.

These operators produced two new attributes (in separate experiments): x1*x2 (Bay_length *

#stories) and x5-x6 (#bays - #vertical trusses). Rules generated from datasets extended by these

new attributes resulted in rules which were slightly more complex (more rules per class) and

approximately the same accuracy. However, these new attributes lack a meaningful interpretation

(bay_length * #stories has no clear units). For this reason these generated attributes were

discarded. The process of analyzing these automatically generated attributes, however, spurred the

expert to generate a new attribute called Demand,  which is defined as:

Demand =
Number of Stories *  Wind Intensity

Bay Length

The new attribute Demand can be interpreted as a measure of demand for bracings: it increases

with the height of the building (measured by attribute No. 1, Number of Stories) and the

importance factor which is associated with the wind exposure (represented by attribute No. 3,

Importance Factor) and decreases with the width of the building (measured by attribute No. 2, Bay

Length).  In the collection of examples considered, the new attribute Demand has the domain



18

(0.214 .. 1.665).  This domain was arbitrarily divided into several subranges, and each subrange

was given a name:

1. Subrange 0.214 ..  0.500 Ð very low demand

2. Subrange 0.500 ..  0.780 Ð low demand

3. Subrange 0.780 ..  1.060 Ð average demand

4. Subrange 1.060 ..  1.340 Ð high demand

5. Subrange 1.340 ..  1.665 Ð very high demand

Seven Recommendation Rules, thirteen Standard Rules, ten Avoidance Rules, and one

Infeasibility Rule have been obtained.  All these decision rules, with the exception of Standard

Rules, are presented and their domain interpretation is provided.  Standard Rules are correct, but

their number and complexity exclude the possibility of discussion here.  Decision rules are shown

in parentheses as they were produced by the system. These rules could be directly used in a

knowledge based system for making predictions regarding unit steel weight for various structural

configurations of wind bracings. However, these rules should not be understood as rules which

explain how to optimally satisfy design requirements. The obtained decision rules were interpreted

using additional common sense heuristics which are also included. As a result design

interpretations were produced. These interpretations could be used by a novice designer to learn

about the structural shaping of wind bracings.

The decision rules given below were computer generated. The interpretation of these rules as

an evaluation of various structural configurations from the point of view of unit weight, used the

following heuristics:

1. Avoid designing wind bracings with high unit weight.

2. Design wind bracings with low unit weight.

3. Never design wind bracings which are infeasible.
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The following Avoidance Rules  (AR) were produced:

If demand for bracing is very low, then avoid designing a wind bracing in the form of
a single or double one-bay rigid frame without vertical trusses.

Design Interpretation:

If demand for bracing is very low, then avoid designing a wind bracing in the form of a rigid
frame, or in the form of a rigid frame with two horizontal trusses.

If demand for bracing is very low, then avoid designing a wind bracing in the form of a one-
bay bracing with mixed joints (braced rigid frame) or in the form of two braced rigid frames.

If demand for bracing is very low, then avoid designing a wind bracing in the form of a one-
bay rigid frame with one horizontal truss.

If demand for bracing is average, then avoid designing a wind bracing in the form of a single
bay rigid frame.

    AR1:   IF (Number of Bays  IS  1 or 2)  &
(Number of Vertical Trusses  IS  0)  &
(Demand  IS  very low)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR2:   IF (Joints  ARE  rigid or mixed)  &
(Number of Horizontal Trusses  IS  0 or 2)  &
(Demand  IS  very low)

THEN a high unit weight of bracing should be expected.

    AR3:   IF (Joints  ARE  mixed)  &
(Number of Bays  IS  1 or 2)  &
(Demand  IS  very low)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR4:   IF (Number of Bays  IS  1)  &
(Number of Vertical Trusses  IS  0)  &
(Number of Horizontal Trusses  IS  1)  &
(Demand  IS  very low)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR5:   IF (Number of Bays  IS  1)  &
(Number of Vertical Trusses  IS  0)  &
(Demand  IS  average)

THEN a high unit weight of bracing should be expected.

Design Interpretation:



20

If demand for bracing is average and the building is located in a high wind intensity zone, then
avoid designing wind bracings with rigid joints only without any trusses.

Avoid designing two-bay rigid frames with three horizontal trusses for narrow twelve-story
buildings.

Avoid designing a thirty story building with wind bracings in the form of two-bay rigid frames
with one or two horizontal trusses.

If demand for bracing is average, then avoid designing wind bracings in the form of a single-
bay rigid frame with one horizontal truss.

Avoid designing a 24-story building with three-bay wind bracing with three horizontal trusses
(a three-bay rigid frame with three horizontal trusses).

The following seven Recommendation Rules (RR) were obtained:

    AR6:   IF (Importance Factor  IS  high)  &
(Joints  ARE  rigid)  &
(Demand  IS  average)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR7:   IF (Number of Stories  IS  12)  &
(Bay Length  IS  20)  &
(Joints  ARE  mixed)  &
(Number of Bays  IS  2)  &
(Number of Horizontal Trusses  IS  3)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR8:   IF (Number of Stories  IS  30)  &
(Joints  ARE  mixed)  &
(Number of Bays  IS  2)  &
(Number of Horizontal Trusses  IS  1 or 2)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR9:   IF (Joints  ARE  mixed)  &
(Number of Bays  IS  1)  &
(Number of Horizontal Trusses  IS  1)  &
(Demand  IS  average)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

    AR10:   IF (Number of Stories  IS  24)  &
(Number of Bays  IS  3)  &
(Number of Horizontal Trusses  IS  3)

THEN a high unit weight of bracing should be expected.

Design Interpretation:
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If demand is very low, low, or average, then design wind bracings with vertical trusses.

For thirty-story buildings, design wind bracing systems using combinations of vertical and
horizontal trusses.

If demand for bracing is very low, design two- or three-bay wind bracings with horizontal
trusses.

Design thirty-story buildings with wind bracings containing one vertical truss.

Design wind bracings with three vertical trusses.

When demand for bracing is very low, then design wind bracings with three vertical and three
horizontal trusses.  (This case would very rarely occur because wind bracing with three vertical
trusses normally do not have any additional horizontal trusses.)

    RR1:   IF (Number of Vertical Trusses  IS  1..3)  &
(Demand  IS  very low or low or average)

THEN a low unit weight of bracing should be expected.

Design Interpretation:

    RR2:   IF (Number of Stories  IS  30)  &
(Number of Vertical Trusses  IS  1 or 2)  &
(Number of Horizontal Trusses  IS  1..3)

THEN a low unit weight of bracing should be expected.

Design Interpretation:

    RR3:   IF (Number of Bays  IS  2 or 3)  &
(Number of Horizontal Trusses  IS  1..3)  &
(Demand  IS  very low)

THEN a low unit weight of bracing should be expected.

Design Interpretation:

    RR4:   IF (Number of Stories  IS  30)  &
(Number of Vertical Trusses  IS  1)

THEN a low unit weight of bracing should be expected.

Design Interpretation:

    RR5:   IF (Number of Vertical Trusses  IS  3)
THEN a low unit weight of bracing should be expected.

Design Interpretation:

    RR6:   IF (Number of Vertical Trusses  IS  3)  &
(Number of Horizontal Trusses  IS  3)  &
(Demand  IS  very low)

THEN a low unit weight of bracing should be expected.

Design Interpretation:
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When demand for bracing is high, then design wind bracings in the form of two single one-bay
rigid frames.

In the decision rules produced, the attribute ÒWind Intensity FactorÓ has not been used. It is a

surprising result, because in structural engineering the location of a building and its related wind

exposure are usually considered significant when studying various types of wind bracings. In the

case of our experiments, this attribute has been found to be redundant in the conceptual design of

wind bracings. However, this result is valid only in the context of the 323 examples used, and can

be explained by the fact that all wind bracings considered were in buildings with relatively low

wind intensity values: buildings of thirty stories or less.

Interestingly, for thirty-story buildings two recommendation rules were produced: RR2 and

RR4. Both rules say that at least one vertical truss should be used in the wind bracing. The first

one is relatively specific and deals with the selection of both horizontal and vertical trusses, while

the second one is more general in this respect and specifies that only one vertical truss in bracing

should be used. The two decision rules are consistent, but intersecting.

The last decision rule, RR7, is incorrect.  It has been produced because of an error in the input

data.  Example No. 298 had an incorrectly entered value of the decision attribute - low unit weight

instead of high unit weight.  Therefore, a recommendation rule instead of an avoidance rule was

produced.  This decision rule is shown and discussed here to demonstrate how sensitive the

learning system is sometimes to incorrect examples.

Only one Infeasibility Rule (IR) was produced:

    RR7:   IF (Joints  ARE  rigid)  &
(Number of Bays  IS  2)  &
(Demand  IS  high)

THEN a low unit weight of bracing should be expected.

Design Interpretation:
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When demand for bracing is high,     never    design wind bracings in the form of a single one-bay
structural system with rigid or mixed joints.

HYPOTHESIS-DRIVEN CONSTRUCTIVE INDUCTION

The learning system conducted a three-stage knowledge acquisition process.  In the first stage,

abstraction of the knowledge in the form of examples was performed and the representation space

was reduced.  Attribute No. 3, Wind Intensity Factor, was eliminated.  This result is not entirely

unexpected, because wind intensity for low (<=30 story) buildings is rarely a decisive factor in

structural shaping: the configuration of structural components and connections in a wind bracing.

In the second stage of knowledge acquisition, the system conducted concretion of knowledge and

constructed a new attribute with five values.  This new attribute, called the Constructed Attribute,

or CA, is defined as follows:

    IR1:   IF (Joints  ARE  rigid or mixed)  &
(Number of Bays  IS  1)  &
(Demand  IS  high)

THEN wind bracing will be infeasible.

Design Interpretation:

IF (Number of Stories  IS  6)  &
(Number of Bays  IS  1 or 2)  &
(Number of Vertical Trusses  IS  0)  &
(Number of Horizontal Trusses  IS  0..2)
OR

(Number of Stories  IS  6)  &
(Bay Length  IS  30)  &
(Number of Vertical Trusses  IS  0)  &
(Number of Horizontal Trusses  IS  0..2)
OR

(Number of Stories  IS  6)  &
(Bay Length  IS  30)  &
(Number of Bays  IS  1 or 2)  &
(Number of Vertical Trusses  IS  0)

THEN CA = 1
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All values of the Constructed Attribute have a structural engineering meaning and can be

explained in the terms of structural shaping of wind bracings.  For example, the value 1, (CA = 1)

can be interpreted in the following way:

IF (Number of Stories  IS  12..30)  &
(Number of Bays  IS  3)  &
(Number of Vertical Trusses  IS  0)  &
(Number of Horizontal Trusses  IS  0..2)
OR

(Number of Stories  IS  12..24)  &
(Bay Length  IS  30)  &
(Joints  ARE  rigid or mixed)  &
(Number of Bays  IS  1 or 2)  &
(Number of Horizontal Trusses  IS  0 or 2 or 3)
OR

(Number of Stories  IS  18 or 24)  &
(Joints  ARE  mixed)  &
(Number of Horizontal Trusses  IS  1 or 3)

THEN CA = 2

IF (Number of Stories  IS  6..24)  &
(Number of Bays  IS  2 or 3)  &
(Number of Vertical Trusses  IS  1..3)
OR

(Number of Stories  IS  12..30)  &
(Joints  ARE  hinged)  &
(Number of Horizontal Trusses  IS  1..3)

THEN CA = 3

IF (Number of Stories  IS  30)  &
(Joints  ARE  rigid or mixed)  &
(Number of Bays  IS  1)

THEN CA = 4

IF (none of the above rules is satisfied)
OR

(more than one rule is satisfied)
THEN CA = 5
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In the third stage of knowledge acquisition, the system produced four classes of decision rules,

including five Avoidance Rules, five Standard Rules, three Recommendation Rules, and one

Infeasibility Rule.  All decision rules, with the exception of Standard Rules, are presented and their

design interpretation provided:

Avoidance Rules (AR):

 A six-story rigid frame with the following (Number of Stories  IS  6) &

 structural characteristics: (Number of Vertical Trusses  IS  0)

 (1) a single one-bay  or  two one-bay structural system (Number of Bays  IS  1 or 2) &

with or without one or two horizontal trusses  (No H. Trusses  IS  0..2)

OR

 (2) with a wide bay  and  (Bay Length  IS  30) &

with or without one or two horizontal trusses  (No H. Trusses  IS  0..2)

OR

 (3) with a wide bay  and  (Bay Length  IS  30)  &

as a single one-bay or two one-bay structural system (Number of Bays  IS  1 or 2)

    AR1:   IF (CA  IS  1)
THEN a high unit weight of bracing should be expected

Design Interpretation:

Avoid designing wind bracings for which the value of the constructed attribute CA is equal to
1.
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Three Recommendation Rules (RR) were produced:

    AR2:   IF (Number of Bays  IS  1 or 3)  &
(Number of Vertical Trusses  IS  0)  &
(Number of Horizontal Trusses  IS  1)  &
(CA  IS NOT  2)  &
(CA  IS NOT  4)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

Avoid designing a one- or three-bay wind bracing in the form of a rigid frame, with one
horizontal truss and make sure that the value of constructed attribute CA is neither two nor four.

    AR3:   IF (Number of Stories  IS  12)  &
(Bay Length  IS  20)  &
(Joints  ARE  mixed)  &
(Number of Bays  IS  2)  &
(Number of Horizontal Trusses  IS  3)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

Avoid designing twelve-story buildings with a narrow bay with wind bracings in the form of
two one-bay rigid frames and three horizontal trusses.

    AR4:   IF (Number of Stories  IS  18)  &
(Number of Vertical Trusses  IS  0)  &
(Number of Horizontal Trusses  IS  0)  &
(CA  IS NOT  2)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

Avoid designing eighteen-story buildings with wind bracings in the form of rigid frames and
make sure that the constructed attribute CA is not equal to two.

    AR5:   IF (Number of Stories  IS  18)  &
(Joints  ARE  mixed)  &
(Number of Bays  IS  1)  &
(CA  IS NOT  2)

THEN a high unit weight of bracing should be expected.

Design Interpretation:

Avoid designing eighteen-story buildings with wind bracings in the form of a single one-bay
rigid frame with horizontal truss or trusses  and with the constructed attribute CA not equal to two.
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A single Infeasibility Rule (IR) was produced:

This is equivalent to the rule:

    RR1:   IF (CA  IS  3)
THEN a low unit weight of bracing should be expected.

Design Interpretation:

In designing wind bracings in tall buildings, select bracings which are described by the
constructed attribute CA equal to 3.

    RR2:   IF (Bay Length  IS  20)  &
(Joints  ARE  hinged)

THEN a low unit weight of bracing should be expected.

Design Interpretation:

Use truss bracings for narrow bay buildings.

    RR3:   IF (Number of Stories  IS  12..30)  &
(Bay Length  IS  20)  &
(Number of Bays  IS  1 or 3)  &
(Number of Horizontal Trusses  IS  0 or 3)  &
(CA  IS NOT  2)  &
(CA  IS NOT  4)

THEN a low weight of bracing should be expected.

Design Interpretation:

Design wind bracings for twelve-,eighteen-, and thirty-story buildings with narrow bay in the
form of one- or three-bay structural systems without or with three horizontal trusses and make sure
that the value of constructed attribute CA is neither two nor four.

    IR1:   IF (CA  IS  4)
THEN the wind bracing will be infeasible.

Design Interpretation:

Never design wind bracings if the constructed attribute CA is equal to four.
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PERFORMANCE  ANALYSIS

One of this paper's objectives is to investigate the performance of constructive induction-based

learning  systems in the area of structural design knowledge acquisition.  This performance can be

formally measured by various empirical error rates, which are determined through tests.  In each

test, a learning system uses a given body of examples to make predictions about other known

examples which have not been included in its input.  Each test can be then compared to a real-life

situation, when a designer uses a decision support system to predict the structural attributes of a

wind bracing to minimize its weight.  Therefore, empirical error rates are highly relevant to both

machine learning research, which is concerned with the performance of learning systems, and to

structural design, which is concerned with the optimal decision making.

Two empirical error rates were used: 1) the overall empirical error rate, and 2) the omission

error rate.  The overall empirical error rate was used because it provides the most general

evaluation of performance of a learning system and the knowledge acquired.  Also, it has a simple

interpretation, convincing for structural designers.  The omission empirical error rate is also

important, because it measures the degree to which the learning system, using knowledge

acquired,  fails to recognize cases belonging to individual categories of the decision attribute.

The overall empirical error rate is defined (Weiss and Kulikowski, 1991; Arciszewski et al.,

1992) as:

    IR1:   IF (Number of Stories  IS  30)
(Joints  ARE  rigid or mixed)  &
(Number of Bays  IS  1)

THEN the wind bracing will be infeasible.

Design Interpretation:

In the case of a thirty-story building, never design wind bracings in the form of a single one-
bay structural system with rigid or mixed joints.
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Eov =
Number of errors
Number of tests

where: Number of errors  is the number of misclassifications on test examples,

Number of tests  is the number of classification tests.

The omission empirical error rate is defined (Arciszewski et al., 1992) as:

Eom =
Eom

i

i =1

n

å
n

where: n  is the number of classes

Eom
i =

Number of omission errors for class " i"
Number of tested examples of class " i"

Number of omission errors for class "i" is the number of errors when a positive

example is classified as a negative one

Number of tested examples of class "i" is the number of classification tests for class

"i"

Both error rates were calculated for the entire collection of examples using the leave-one-out

resampling method (Weiss and Kulikowski, 1991).  These error rates were determined for

"traditional" induction, based on the use of the AQ15 algorithm, and for two experimental learning

systems based on data-driven and hypothesis-driven constructive induction.  Individual error rates

are shown in the Table 5.  There is a significant improvement in performance (more than 50

percent) between the system based on "traditional induction" and systems based on constructive

induction.  When the error rate is considered, no performance difference between both types of

constructive induction is observed. However, for the omission error rate, data-driven constructive

induction produced marginally better results (3% difference), but it would be premature to make

any conclusions about it since this may change as the research progresses.
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Table 5. Comparison of Empirical Error Rates for Various Learning Systems.

CONCLUSIONS

The results demonstrate that the use of constructive induction in structural design knowledge

acquisition is feasible.  The decision rules produced are relatively simple and their structural

interpretation is possible, although not always easy, particularly when complex constructed

attributes are used.

The changes in the representation space, i.e., the introduction of constructed attributes, were

found to be acceptable to human experts. These changes could stimulate the process of human

learning, but much more research is necessary to determine how constructive induction could be

used in human learning.

The five-stage knowledge acquisition process used in this research is complete and should be

sufficient for practical purposes.  However, it is applicable only to those structural design domains

where mathematical and simulation models are available, or can be easily produced.  The

knowledge representation stage was found to be particularly difficult.  It required extensive study

and the cooperation of experts.  The identification of relevant attributes and their nominal values

began in the early seventies, and these attributes have undergone numerous changes and

modifications before a final acceptable set was produced.  Including mathematical modeling,

simulation and knowledge representation, the entire process of knowledge acquisition took about

thirty years, although its last two stages, Knowledge Deduction and Knowledge Induction, were

completed in about two years.

However, based on our experience, it can be estimated, that the entire process of knowledge

acquisition could be conducted in approximately three years in the other structural engineering
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domains in which mathematical models as well as analytical computer programs are available, and

descriptors are known.

The learning system based on data-driven constructive induction produced ten

Recommendation Rules, thirteen Standard Rules, seven Avoidance Rules, and one Infeasibility

Rule.  The learning system based on hypothesis-driven constructive induction produced four

Recommendation Rules, five Standard Rules, three Avoidance Rules, and one Infeasibility Rule,

respectively.  The rules produced by the two systems are different, but not inconsistent.  An

analysis of advantages and disadvantages of rules produced by individual systems is possible, but

it has not been conducted because the results would be subjective.  However, an objective analysis

of performance of learning systems based on the two forms of constructive induction was

completed.

The performance analysis shows that both forms of constructive induction are more effective in

terms of empirical error rates than traditional selective induction based on the AQ15 learning

algorithm.  An approximately 50 percent performance improvement is considered significant in

machine learning, and should be accepted as such in civil engineering.  The differences in

performance between two systems based on different forms of constructive induction are below 5

percent, and they are obviously insignificant.  Therefore, both forms of constructive induction

should be considered equivalent from the performance point of view in the area of structural design

knowledge acquisition.  It would be desirable to produce and analyze learning curves for empirical

error rates for both systems, to learn more about their performance in a multistage automated

knowledge acquisition process, and this work is planned.

The feasibility study was conducted in the area of structural design knowledge acquisition, and

therefore all conclusions produced are valid only in this area.  However, it could be inferred by
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analogy that similar results, in terms of clarity of decision rules and good performance, should be

expected in other areas of civil engineering.  

Machine learning research has already reached a fair level of maturity, and has resulted in

various experimental and commercial learning systems.  These systems could be used in civil

engineering to improve productivity in knowledge acquisition and the development of knowledge-

based decision support systems.  However, the application of learning systems has been difficult

because of the lack of a method of their use.  This paper proposes such a method. The results from

the case study demonstrate a high potential and its practical usefulness to the automated generation

of design rules.
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