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Abstract

This paper introduces a new type of intelligent agatied a constructiveinduction-basedearning
agent(CILA). This agentdiffers from otheradaptiveagentsbecauset hasthe ability to not only
learn how to assista user in some task, but also to incrementally adapt its knowledge
representation space to better fit the given learning Tdskagent'sability to autonomouslymake
problem-orientedmodifications to the originally given representationspace is due to its
constructive induction (CI) learning method. Selective induction (Sl) leaméthods,and agents
based on these methods, rely ogoad representatiospace A good representatiospacehasno
misclassificatiomoise, inter-correlatedattributesor irrelevantattributes.Our proposedCILA has
methods for overcoming all of these problems. In agent domains with poor representations, the Cl
basedearningagentwill learn more accuraterules and be more usefulthanan Sl-basedearning
agent.This papergives an architecturefor a Cl-basedlearning agentand gives an empirical
comparisonof a Cl and Sl for a setof six abstractdomainsinvolving DNF-type (disjunctive
normal form) descriptions.
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1. Introduction

The goal of researchin intelligentagentsis to constructsoftwarethat can provide individualized
assistance to users. Two approaches that have been usegdasttre 1) to force the end-useito

provide the necessargkills by programmingthe agent,or 2) to provide the agentwith a priori

domain-specifikknowledgeaboutthe applicationand user. The first approachs too difficult for

most users, anthe secondapproachs too hardfor applicationdevelopersywho mustaccurately
predict the current and future needs of users (Maes, 1994).

Another proposedapproachis to build into the agentsan ability to learn required skills from
experiencgDent, 1992, Maes,1994). In this method,the agentgainscompetencdy interacting



with the userasthe user performssometasks. This agentlearnsin four different ways: 1) by
observing the user, 2)om user'sfeedback3) from userprovidedtraining examplesand4) by
interaction with other agents. The ability to modify the representation spacerip@tantelement
in all four types of learning.

Previouslyreportedresearchin building learning agentsusesa pre-definedset of attributesto

describethe learning example.For example,in describinge-mail messagesthe Maxims agent
(Maes, 1994 usesfeaturessuchasthe senderandreceiverof the messagendkey wordsin the

"Subject” field. CAP, an agentfor meetingscheduling(Mitchell, 1994) uses featuressuch as
event_type, time and duration. CAP does automatically calculate the values of a atifeb&irres
such as number-of-attendees, single-attendee, but the feature set is still pre-defined.

The ability of an agentto learn useful, individualized skills is, like any learningtask, strongly
affected by the representation of the problem. For example, suppose &tiatterns a userwhich
prioritizes his e-mail messageaccordingto the numberof peoplereceivingthe messagei.e. a
message with 1 receiver (Blake) is prioritized as important, while thirty-five receivers (his class), is
prioritized lower. An e-mail agentwithout the ability to extract“number of receivers”’from the

FROM line will notquickly detectthis simple preferenceThis failure will resultin Blake’s agent

being of little value to him. An agent which can automatically extend its $eatfres,n this case

by addinga featurewhich countsthe numberof e-mail recipientswill be able to overcomethis
limitation and be of greatuseto Blake. Other simple modifications may include “Number-of-
messages-from-USER?”, or “Number-of-messages-about-SUBJECT".

The ability to simultaneoushysearchfor an ‘adequate’representatiospaceandfor a hypothesis
within that spaceis known as Constructivelnduction (CI) (Figure 1). Agentswhich have the

ability to automaticallymodify their representatiospaceof their given learningtask using Cl are

known as Constructive Induction-based Learrggnts(CILA). This ability allows theseagents
to overcome representatiorspace problems such as misclassification noise, inter-correlated
attributesand irrelevant attributes.Given a representatiorspacebetter suited to learning these
agents can more quickly adapt to the user needs.

By representatiospaceis meanta spacein which facts, hypothesesnd backgroundknowledge

are represented. The representation spaggeaisnecbver descriptorghat are elementaryconcepts
usedto characterizeexamplesfrom someviewpoint. Usually examplesare given as vectorsof

single argumentdescriptors (attributes). In this paper the discussionwill be limited to an
attributional representationTypical constructsof the hypothesislanguageinclude nestedaxis-
parallel hyper-rectangles (decision trees), arbitrary axis-pangiter-rectanglegconjunctiverules

with internal disjunction, as used in VL1), hyperplanes or higher degree surfaces (neural nets), an
compositions of elementary structures (grammars).
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Figure 1. Constructive Induction viewed as a search for both the best representation space and fol
the best hypothesis (decision rules).

Both the searchfor an adequateepresentatiospaceandthe searchfor a hypothesiswithin that

space are performed through the repeated application of available search operators. The search fc
hypothesisappliesoperatorgprovidedby the given inductive learning method. For example,the
AQ-type learning systemsuse methods such as "dropping conditions,” "extension against,"
"adding an alternative," "closing interval,” and "climbingeneralizatiortree." The representation
spacesearchoperatorscan generallybe classifiedinto "expanders,“that expandthe spaceby
addingnew dimensions(attributes),and "contractors"that contractthe spaceby removingless
relevant attributes and/or abstracting values of some attributes.

2. The Need for Representation Space Modifiers

Methodsfor building intelligent agentswhich use machinelearning basedon selectiveinduction
will have all the weaknesses thiis strategy.Theseweaknessebecomeincreasinglyimportantas
attemptsare made to move machine learning methodsinto real-world applicationssuch as
schedulingmeetingsand e-mall filtering. This section describessome of the weaknesseof
selectiveinduction methodsand describeswvork in constructiveinduction aimedat overcoming
these problems.

As mentioned earlier, constructive induction dividespghacessof creatingnew knowledgeinto a
phase that determines the "best" representation, and into atiphizesetually formulatesthe "best"
decisionrules. The reasonfor such a division is that original representatiorspaceis often
inadequatdor representing given learningtask. To illustrate this problem, considerFigure 2a.
Let us supposthatthe problemis to constructa generaldescriptionthat separatepoints marked



by + from pointsmarkedby -. In this case,the problemis easy, becausé'+" points are clearly
separated in the representation space from "-" points. One can place all "+"s in a remtalngie,
a straight line between "+"s and "-"s. Let us supposethatwe havea similar problem,but the

"+"s and "-"s are distributed as in Figure 2b. In this case, it is not easy to séipataie groups.
This is an indication that perhaps the representation space is inadequate for the problem at hand.

A. High quality RS B. Low quality RS C. Improved RS due to CI
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Figure 2. High versus low quality representation spaces for concept learning.

A traditional approach, implemented in selective induction systems, is tacdraplexboundaries
thatwill separatéhesetwo groups. The constructiveinductionapproachis to searchfor a better
representatiorspace(Figure 2c), in which the two groups are well separated.Conducting
constructiveinduction thus requires mechanismsfor generatingnew, more problem-relevant
dimensionsof the space(attributesor descriptiveterms),aswell as modifying or removingless
relevantdimensionsfrom amongthose initially provided. Therefore,a constructiveinduction
systemperformsa problem-orientedransformatiorof the knowledgerepresentatiospace.Once

an appropriaterepresentatiospacels found, a relatively simple learning methodmay suffice to
develop a desirable knowledge structure (in this case, a description that separates the two groups
points).

The type of hypotheses languages used can affect which problems are difficult andredaty.
This is sometimes known as inductive bias. Some problems, like the one repres€igackifb,
however, are difficult for any set of hypothesisconstructs.We categorizethe sourceof this
representationdaifficulty into two classesincorrectnes®r inappropriatenessorrectnessefers
to the accuracywith which datais given to the system. Incorrectnesscan manifestitself in
individual attributevalues,attributesthemselvesr exampleclassmembershipA commoncause
of incorrectness is noisbut it canalso be dueto error. Selectiveinduction methodsassumehat
the given dataarein an appropriateform so that exampleswhich are closeto eachotherin the
representation space are also close to, or identical in class membership as well rRdiSshu,
1990). When any of theseassumptionsare violated the representatiorspaceis inadequatefor
selective induction and poor descriptors (low predictive accuracy and high complexity) result.



Problemincorrectnes®ccurswhen someattribute-valuesattributesor instancesare incorrectly
labeled. This may occur if the user mistakenly labels an examplewith an unintendedclass.
Incorrectnesss mostoften associatedvith noisein the training datadue to inconsistencyin the
acquisition of examples. Some methodsdealingwith incorrectinstancesor attributevaluesare
basedon identifying noisy or exceptionalinstancesby using statisticalmethodsapplied to the
distribution of attribute values,or instancesor other significance measuresapplied to learned
hypothesesSometree-pruningmethodsinclude (Quinlan, 1986) and (Mingers, 1989). Pruning
methodsappliedto learnedrules include the AQ family of programs(Michalski, 1986; Zhang,
1989),and CN2 (Clark, 1989) and pruning appliedto the training databasedon rule-weightis
presented in (Pachowicz, Bala and Zhang, 1992).

The sourceof this inappropriatenessgan lie in the set of attribute values, or the attributes
themselvesAn exampleof inappropriateattributevalue setwould be onein which the provided
valuesblur the conceptboundariedy beingtoo broador too precise.Value setsthat containtoo
few valuescanbe difficult to learndiscriminatoryrulesfrom examplesbecausehe granularityis
too coarse. One approach for handlihg problemis to increasehe granularity.A value setthat
contains overly precise values, however, can also qgaotdéems.Many inductionmethods such
as decision trees and decision rules, perform best wdiaa setsare small and appropriateto the
problemat hand. The size of an attribute domain can sometimesbe a measureof the level of
granularity of an attribute: a large attribute domain means that exaanpla®ciselydefinedalong
that dimension and vice versa. Overprecisionresultin learneddescriptionghat aretoo precise
and overfit the dateDverprecisionn attributevalue setsis sometimedlifficult to avoid whenthe
dataprovidedto the systemis continuous.and meaningfuldiscretizationintervals are unknown.
Various methods foautomaticdiscretizationof attributedatahavebeenproposed.Someof these
methods are quite simple such as equal-width intervals, and equal-frequency inBtheissuch
as C4.5 (Quinlan, 1993) , and SCALE which implements the Chi-nadggathm (Kerber,1992)
are more complex.

Inappropriateattributesare thoseattributeswhich arerelevantto the problemat hand, but which
pose the problem in such a way that descriptiveconstructsof the languageare inadequateFor
example,the parity problemwhen statedin terms of the presenceof or absenceof individual
attributes is an attribute-inappropriately stapedblemfor any induction methodwhich usesaxis-
parallel hyperrectangless descriptive constructs.When inappropriateattributes exist attribute
construction methodsanbe invokedwhich try to combinethe given attributesin more problem-
relevant manner. A number of systems have loeelopedwith this goal. Thesesystemscanbe
classifiedinto data-driven,hypothesis-drivenknowledge-drivenand multistrategy (Wnek and
Michalski, 1994). Some representativeof each of thesetypes are: AQ17-DCI (Bloedorn and



Michalski, 1991), BLIP (Wrobel, 1989), CITRE (Matheusand Rendell, 1989), Pagallo and
Haussler'sFRINGE, GREEDY3 and GROVE (Pagalloand Haussler,1990), MIRO (Drastal,
Czako and Raatz, 1989) and STABB (Utgoff, 1986).

3. An Architecture for a Representation Space Adapting Agent

In order to build an intelligent agent that can gamoughcompetenceéo be usefulto an individual
that agentmust acquirea greatdeal of knowledge.A methodwhich usesmachinelearning to
automaticallyacquirethis knowledgeis only as successfuhsthe learning techniquebeing used.
Selectiveinduction basedintelligent agentswill fail when the provided representatiorspaceis
inadequate for théearningtask. An constructiveinduction-basedearningagentis ableto expand
or contract the provided representation space either automatically, or bdsenwbedgeprovided
by the user using one or more of the different types of CI: data-driven, hypothesis-driven,
knowledge-driven and multistrategy (Wnek and Michalski, 1994).

An architecturefor a constructiveinduction-basedearning agentis shownin Figure 3. In this
architecture the agent acts as an assistant to the wsslimgwith the environment.The usercan
access the environment directly or through the agent. In its passive monitor maderttiecords
the actions of the usevhenthe environments accessedlirectly. This recordallows the agentto
improve its performance without active involvement of the user. In the active mode theeagent
the skills it needs to be usefulttte user(suchasthe user’spreferencesn readingnewsarticles)
based on aiterativeinteractionwith the user. The agent’scurrentunderstandingf the problem,
suchasa userprofile andthe domainsof known featuresare storedin the knowledgebase.The
contents of the knowledge base are updated by the constructive induction learning algorithm.

The learning componentof this agentusesconstructiveinduction so both the profiles and the
representatiospacein which theseprofiles are describedis modified. The representatiorspace
modification modulemay 1) add a new feature,2) removea feature,3) adda new featurevalue
through interaction with the user, 4y removea featurevalue. Adding or removingfeaturesmay
be basedon data-drivenCl (DCI), hypothesis-driverCl (HCI) or knowledge-drivenCl (KCI).
Removing feature values is possible via DCI, HCI or KCI. Adding feature vauesrently only
possible via KCI. In knowledge-driven constructive induction the user provides gliideinceon
how to modify the representatiorspace.In data-drivenCl, the agentautomaticallygenerates
modificationsbasedon an analysisof the data,i.e., the examplesacquiredfrom observingthe
user. In hypothesis-driven Cl, the agent modifiesréipeesentatiospacebasedon an analysisof
the learned, or provided hypotheses. Using this approach Blake’s need for a new attribute could
detected, and corrected in many different ways.
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Figure 3. An architecture for a constructive induction-based learning agent.

The specific algorithms used in the representation space modification module are not detailed in thi
architecture. This architecture can thus descriv@la variety of approaches$o building Cl-based
learning agents. The most appropriateset of modification operatorsis difficult to determine
generally. The next sectiontries to find an answerto that problem. Section4 describesan
experimentin which a setof six different representatioispacemodification(RSM) operatorsare

each applied to a set of gixoblems.Rulesare learnedafter eachRSM application.Theseresults

are compared to thearnedrules without any modification. The resultsshow the superiorityof a

system which combines these six RSM operators over a system with only one opexaitbiQut

any automated representation space modification.

4. An Empirical Comparison

4.1 Descriptions of methods evaluated

In order to determinethe effectivenessof different CI methods,a set of experimentswas
performed. These experimerage describedn greaterdetail in (Bloedorn,et. al, 1994). This set
of experimentssamplesa wide variety of possiblelearning problemsincluding: misclassification
noise, attribute-valuenoise, overprecisionjnappropriateattributesandirrelevantattributes.In all

of these experiments the AQ15c program wsedasthe learningalgorithm (Wnek et al., 1995).
Each of the CI methods must transform the difficult problem into one in wA@dbc would learn
simple, predictively accurate rules. A singhethodfor hypothesisggenerationis usedbecausdghe
types ofruleslearnedby AQ are comprehensiblend efficient in decisionmaking. The modifiers



compared in these experiments are briefly described below:

1) Attribute construction

a) Hypothesis-driven CI (HCI) is a method for constructing new attributes bassdanalysisof
inductive hypothesesUseful conceptsin the rules can be extractedand usedto define new
attributes.Thesenew attributesare useful becauseexplicitly expresshiddenrelationshipsin the
data. This method of hypothesis analysis as a mafacsnstructingnew attributesis detailedin a
number of places including (Wnek, 1993; Wnek and Michalski, 1994).

b) Data-driven (DClmethodsbuild new attributesbasedon an analysisof the training data.One
such methodis AQ17-DCI (Bloedornand Michalski, 1991). In AQ17-DCI new attributesare
constructed based on a genemate testmethodusing genericdomain-independerarithmeticand
boolean operator$n additionto simple binary applicationof arithmeticoperatorsancluding +, -,
* and integer division, there are multi-argumentfunctions such as maximumvalue, minimum
value, averagevalue, most-commorvalue, least-commonvalue, and #VarEQ(x) (a cardinality
function which counts the number of attributes in an instance that take the value x).

2) Attribute value modification

Attribute-value modification can be either the addition, (concretion)of valuesto an existing
attribute domain, or the deletion (abstraction)of attribute values.Currently the program which
performsthis modification, SCALE, implementsboth a X2 method and an equal-interval-size
method. The2 method calculates the correlation betwaarattribute-valuenterval andthe class.
Using a x2 correlationto quantizedatawas first proposedby Kerber (Kerber, 1992). Attribute
value modification (AVM) selects a sét [J V (whereV is the domainof A) of allowablevalues
for attribute A. AVM can be used to reduce multi-valued nominal domains, or real-valued
continuous data into useful discrete, values.

3) Attribute removal

A hypothesis-drivermethodcan also be usedto perform attribute removal. Attribute removal
makes a selectioaf a subsetX' of attributesfrom the original attributesetX. In AQ17, a logic-
basedattribute removalis performed.The irrelevancyof an attributeis calculatedby analyzing
generatechypothesesFor eachattribute,a sum is calculatedof the total number of examples
coveredby a discriminantrule which includesthat attribute. Attributes that are irrelevantwill be
useful only to explain instances that are distant from the majority of examples in the distribution.

The effectivenessof the combinationof each of theserepresentatiorspacemethodsversusa



selective induction method was determined based on a set experiments.

4.2 Problem Descriptions

To testthe usefulnessof the availablemethodsfor representatiorspace modification a set of

abstractDNF—type problemswere generatedThe problemswere generatedo that the types of

problems tested couloe carefully controlled.In eachproblemthereare 500 total instances/0%
are used for training and 30% are used for testing. The goal concept for each opthblexsis

the same. However, in all but the first case the goatepthasbeenobscuredoy a different type
of problem. The five modificationsto the original problem are: 1) random incorrect instance
labeling (misclassificationnoise), 2) incorrect attribute-values3) inappropriateattribute values
(overly large attribute domain sizes)4) inappropriateattributes(attributesrelevantto the target
conceptbut causingdifficult to describedistributionof examples)andb5) irrelevantattributes.A

description of each of the six problems anddbal conceptfor the positive classin eachis given

below:

TO Original DNF
Positive class: [x1=4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

T1 (25% of the training instances misclassified)
Positive class: [x1=4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

T2  (attribute value noise: 187 of the training exampleshave one or more attributeswhose
values have been modified).
Positive class: [x1=4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

T3  (inappropriate attribute-value set/overprecision:dbmainof all of the attributeshasbeen
increased from 6 to 60)
Positive class: [x1= 40..59] & [x2=10..39] & [x3=10..29] v [x3=40..59] & [x4=20..29] & [x5=20..29]

T4  (inappropriateattributes:the decimalvalue of x3 hasbeenmappedusing a 6 place parity
coding, e.g. 3 =001011. The selection of a particular equivalent coding is random)
Positive class: [x1=4,5] & [x2=1..3] & [[#attributes(x6..x11)=1]=1,2] v
[#attributes(x6..x11)=1]=4,5] & [x4=2]& [x5=2]

T5 (40 irrelevant attributes added)
Positive class: [x1=4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

5. Results

Table 1 showsthe predictionaccuracyof ruleslearnedfrom examplesy the selectiveinduction
system AQ15c (with no representation space modification), and afteoetwhsix representation
space modification operators were applied.
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Prediction accuracy on selected problems of a variety of CI methods
M ethod T0 T1 T2 T3 T4 T5
AQ 100 71 83 66 91 86
AQ-HCI 100 76 90 76 91 68
AQ-HCI(ADD) 100 76 90 76 91 87
AQ-HCI (REMOVE) 100 71 83 66 91 68
AQ-DCI 100 65 84 70 100 78
AQ-SCALE 100 70 57 77 94 51

Table 1. Prediction accuracies of learned rules on six variations on a DNF—type problems.

The resultsof theseexperimentshow that no single RSM methodis bestfor solving the wide
variety of difficulties possible.Theseproblemsinclude (t1) misclassificatiomoise, (t2) attribute-
value noise, (t3) inappropriateattribute-valueprecision, (t4) inappropriateattributes and (t5)
irrelevantattributes.A simple methodfor combiningthe strengthsof eachof the individual ClI
methodsis to run themall separatelyand selectthe bestbasedon resultsof a secondarytesting
set. The results shown in Table 2 are based®ibA agentusingthe selectiveinductionlearning
module AQ15c, and CILA agent using AQ15c equipped with the best of the six RSM operators.

SILA vs. CILA prediction accuracy on selected problems

M ethod T0 T1 T2 T3 T4 T5
SILA 100 71 83 66 91 86
CILA 100 76 90 77 100 87

Table 2. Predictive accuracies of a selective induction-based agent versus a constructive induction
based learning agent using a simple combination architecture.

6. Conclusion and Future Work

This paper introduced a novel general architecture for an intelbgemtthat allowedthis agentto
learn from experienceput not be bound by the original representatiorof the problem. This
constructiveinduction-basedearning agent(CILA) is capableof modifying the representation
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space.The resultsof a comparisonbetweenan Sl learningmethodand a ClI learning method
(which includesmultiple methodsfor representatiorspacemodification) show that a Cl-based
learning agent will be more robust to a variety of representation probAanmselligent agentsare
appliedto problemsoutsidecareful controlsand by non-expertsthe ability of theseagentsto be
robust is increasingly important.

This preliminary work suggeststhat an agentwill needto have some form of constructive
induction in order to overcome the difficulties that exist in real-world learning situations. However,
because no single method for construcihauction performedbestfor all the problemsposedan
approach for combining methods is needed. Further work which dbmdseaof applicability of
individual constructive induction methodsnsededPreliminarywork in this areais describedn
(Bloedorn et. al, 1993).
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