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Abstract

This paper introduces a new type of intelligent agent called a constructive induction-based learning

agent (CILA). This agent differs from other adaptive agents because it has the ability to not only

learn how to assist a user in some task, but also to incrementally adapt its knowledge

representation space to better fit the given learning task. The agent’s ability to autonomously make

problem-oriented modifications to the originally given representation space is due to its

constructive induction (CI) learning method. Selective induction (SI) learning methods, and agents

based on these methods, rely on a good representation space. A good representation space has no

misclassification noise, inter-correlated attributes or irrelevant attributes. Our proposed CILA has

methods for overcoming all of these problems. In agent domains with poor representations, the CI-

based learning agent will learn more accurate rules and be more useful than an SI-based learning

agent. This paper gives an architecture for a CI-based learning agent and gives an empirical

comparison of a CI and SI for a set of six abstract domains involving DNF-type (disjunctive

normal form) descriptions.
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1. Introduction

The goal of research in intelligent agents is to construct software that can provide individualized

assistance to users. Two approaches that have been used in the past are 1) to force the end-user to

provide the necessary skills by programming the agent, or 2) to provide the agent with a priori

domain-specific knowledge about the application and user. The first approach is too difficult for

most users, and the second approach is too hard for application developers, who must accurately

predict the current and future needs of users (Maes, 1994).

Another proposed approach is to build into the agents an ability to learn required skills from

experience (Dent, 1992, Maes, 1994). In this method, the agent gains competence by interacting
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with the user as the user performs some tasks. This agent learns in four different ways: 1) by

observing the user, 2) from user's feedback, 3) from user provided training examples, and 4) by

interaction with other agents. The ability to modify the representation space is an important element

in all four types of learning.

Previously reported research in building learning agents uses a pre-defined set of attributes to

describe the learning example. For example, in describing e-mail messages, the Maxims agent

(Maes, 1994) uses features such as the sender and receiver of the message and key words in the

"Subject" field. CAP, an agent for meeting scheduling (Mitchell, 1994) uses features such as

event_type, time and duration. CAP does automatically calculate the values of a number of features

such as number-of-attendees, single-attendee, but the feature set is still pre-defined.

The ability of an agent to learn useful, individualized skills is, like any learning task, strongly

affected by the representation of the problem. For example, suppose student Blake is a user which

prioritizes his e-mail messages according to the number of people receiving the message. i.e. a

message with 1 receiver (Blake) is prioritized as important, while thirty-five receivers (his class), is

prioritized lower. An e-mail agent without the ability to extract “number of receivers” from the

FROM line will not quickly detect this simple preference. This failure will result in Blake’s agent

being of little value to him. An agent which can automatically extend its set of features, in this case

by adding a feature which counts the number of e-mail recipients, will be able to overcome this

limitation and be of great use to Blake. Other simple modifications may include “Number-of-

messages-from-USER”, or “Number-of-messages-about-SUBJECT”.

The ability to simultaneously search for an ‘adequate’ representation space, and for a hypothesis

within that space is known as Constructive Induction (CI) (Figure 1). Agents which have the

ability to automatically modify their representation space of their given learning task using CI are

known as Constructive Induction-based Learning Agents (CILA). This ability allows these agents

to overcome representation space problems such as misclassification noise, inter-correlated

attributes and irrelevant attributes. Given a representation space better suited to learning these

agents can more quickly adapt to the user needs.

By representation space is meant a space in which facts, hypotheses and background knowledge

are represented. The representation space is spanned over descriptors that are elementary concepts

used to characterize examples from some viewpoint. Usually examples are given as vectors of

single argument descriptors (attributes). In this paper the discussion will be limited to an

attributional representation. Typical constructs of the hypothesis language include nested axis-

parallel hyper-rectangles (decision trees), arbitrary axis-parallel hyper-rectangles (conjunctive rules

with internal disjunction, as used in VL1), hyperplanes or higher degree surfaces (neural nets), and

compositions of elementary structures (grammars).
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Figure 1. Constructive Induction viewed as a search for both the best representation space and for

the best hypothesis (decision rules).

Both the search for an adequate representation space and the search for a hypothesis within that

space are performed through the repeated application of available search operators. The search for a

hypothesis applies operators provided by the given inductive learning method. For example, the

AQ-type learning systems use methods such as "dropping conditions," "extension against,"

"adding an alternative," "closing interval," and "climbing a generalization tree." The representation

space search operators can generally be classified into "expanders," that expand the space by

adding new dimensions (attributes), and "contractors" that contract the space by removing less

relevant attributes and/or abstracting values of some attributes.

2. The Need for Representation Space Modifiers

Methods for building intelligent agents which use machine learning based on selective induction

will have all the weaknesses of this strategy. These weaknesses become increasingly important as

attempts are made to move machine learning methods into real-world applications such as

scheduling meetings and e-mail filtering. This section describes some of the weaknesses of

selective induction methods and describes work in constructive induction aimed at overcoming

these problems.

As mentioned earlier, constructive induction divides the process of creating new knowledge into a

phase that determines the "best" representation, and into a phase that actually formulates the "best"

decision rules. The reason for such a division is that original representation space is often

inadequate for representing a given learning task. To illustrate this problem, consider Figure 2a.

Let us suppose that the problem is to construct a general description that separates points marked
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by + from points marked by -. In this case, the problem is easy, because "+" points are clearly

separated in the representation space from "-" points. One can place all "+"s in a rectangle, or draw

a straight line between "+"s and "-"s. Let us suppose now that we have a similar problem, but the

"+"s and "-"s are distributed as in Figure 2b. In this case, it is not easy to separate the two groups.

This is an indication that perhaps the representation space is inadequate for the problem at hand.

A. High quality  RS B. Low quality  RS C. Improved RS due to CI

CI

Figure 2. High versus low quality representation spaces for concept learning.

A traditional approach, implemented in selective induction systems, is to draw complex boundaries

that will separate these two groups. The constructive induction approach is to search for a better

representation space (Figure 2c), in which the two groups are well separated. Conducting

constructive induction thus requires mechanisms for generating new, more problem-relevant

dimensions of the space (attributes or descriptive terms), as well as modifying or removing less

relevant dimensions from among those initially provided. Therefore, a constructive induction

system performs a problem-oriented transformation of the knowledge representation space. Once

an appropriate representation space is found, a relatively simple learning method may suffice to

develop a desirable knowledge structure (in this case, a description that separates the two groups of

points).

The type of hypotheses languages used can affect which problems are difficult and which are easy.

This is sometimes known as inductive bias. Some problems, like the one represented in Figure 2b,

however, are difficult for any set of hypothesis constructs. We categorize the source of this

representational difficulty into two classes: incorrectness or inappropriateness. Correctness refers

to the accuracy with which data is given to the system. Incorrectness can manifest itself in

individual attribute values, attributes themselves or example class membership. A common cause

of incorrectness is noise, but it can also be due to error. Selective induction methods assume that

the given data are in an appropriate form so that examples which are close to each other in the

representation space are also close to, or identical in class membership as well (Rendell and Seshu,

1990). When any of these assumptions are violated the representation space is inadequate for

selective induction and poor descriptors (low predictive accuracy and high complexity) result.
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Problem incorrectness occurs when some attribute-values, attributes or instances are incorrectly

labeled. This may occur if the user mistakenly labels an example with an unintended class.

Incorrectness is most often associated with noise in the training data due to inconsistency in the

acquisition of examples. Some methods for dealing with incorrect instances or attribute values are

based on identifying noisy or exceptional instances by using statistical methods applied to the

distribution of attribute values, or instances or other significance measures applied to learned

hypotheses. Some tree-pruning methods include (Quinlan, 1986) and (Mingers, 1989). Pruning

methods applied to learned rules include the AQ family of programs (Michalski, 1986; Zhang,

1989), and CN2 (Clark, 1989) and pruning applied to the training data based on rule-weight is

presented in (Pachowicz, Bala and Zhang, 1992).

The source of this inappropriateness can lie in the set of attribute values, or the attributes

themselves. An example of inappropriate attribute value set would be one in which the provided

values blur the concept boundaries by being too broad or too precise. Value sets that contain too

few values can be difficult to learn discriminatory rules from examples because the granularity is

too coarse. One approach for handling this problem is to increase the granularity. A value set that

contains overly precise values, however, can also cause problems. Many induction methods, such

as decision trees and decision rules, perform best when value sets are small and appropriate to the

problem at hand. The size of an attribute domain can sometimes be a measure of the level of

granularity of an attribute: a large attribute domain means that examples are precisely defined along

that dimension and vice versa. Overprecision can result in learned descriptions that are too precise

and overfit the data. Overprecision in attribute value sets is sometimes difficult to avoid when the

data provided to the system is continuous, and meaningful discretization intervals are unknown.

Various methods for automatic discretization of attribute data have been proposed. Some of these

methods are quite simple such as equal-width intervals, and equal-frequency intervals. Others such

as C4.5 (Quinlan, 1993) , and SCALE which implements the Chi-merge algorithm (Kerber, 1992)

are more complex.

Inappropriate attributes are those attributes which are relevant to the problem at hand, but which

pose the problem in such a way that the descriptive constructs of the language are inadequate. For

example, the parity problem when stated in terms of the presence of or absence of individual

attributes is an attribute-inappropriately stated problem for any induction method which uses axis-

parallel hyperrectangles as descriptive constructs. When inappropriate attributes exist attribute

construction methods can be invoked which try to combine the given attributes in more problem-

relevant manner. A number of systems have been developed with this goal. These systems can be

classified into data-driven, hypothesis-driven, knowledge-driven and multistrategy (Wnek and

Michalski, 1994). Some representative of each of these types are: AQ17-DCI (Bloedorn and
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Michalski, 1991), BLIP (Wrobel, 1989), CITRE (Matheus and Rendell, 1989), Pagallo and

Haussler's FRINGE, GREEDY3 and GROVE (Pagallo and Haussler, 1990), MIRO (Drastal,

Czako and Raatz, 1989) and STABB (Utgoff, 1986).

3. An Architecture for a Representation Space Adapting Agent

In order to build an intelligent agent that can gain enough competence to be useful to an individual

that agent must acquire a great deal of knowledge. A method which uses machine learning to

automatically acquire this knowledge is only as successful as the learning technique being used.

Selective induction based intelligent agents will fail when the provided representation space is

inadequate for the learning task. An constructive induction-based learning agent is able to expand

or contract the provided representation space either automatically, or based on knowledge provided

by the user using one or more of the different types of CI: data-driven, hypothesis-driven,

knowledge-driven and multistrategy (Wnek and Michalski, 1994).

An architecture for a constructive induction-based learning agent is shown in Figure 3. In this

architecture the agent acts as an assistant to the user in dealing with the environment. The user can

access the environment directly or through the agent. In its passive monitor mode the agent records

the actions of the user when the environment is accessed directly. This record allows the agent to

improve its performance without active involvement of the user. In the active mode the agent learns

the skills it needs to be useful to the user (such as the user’s preferences in reading news articles)

based on an iterative interaction with the user. The agent’s current understanding of the problem,

such as a user profile and the domains of known features are stored in the knowledge base. The

contents of the knowledge base are updated by the constructive induction learning algorithm.

The learning component of this agent uses constructive induction so both the profiles and the

representation space in which these profiles are described is modified. The representation space

modification module may 1) add a new feature, 2) remove a feature, 3) add a new feature value

through interaction with the user, or 4) remove a feature value. Adding or removing features may

be based on data-driven CI (DCI), hypothesis-driven CI (HCI) or knowledge-driven CI (KCI).

Removing feature values is possible via DCI, HCI or KCI. Adding feature values is currently only

possible via KCI. In knowledge-driven constructive induction the user provides direct guidance on

how to modify the representation space. In data-driven CI, the agent automatically generates

modifications based on an analysis of the data, i.e., the examples acquired from observing the

user. In hypothesis-driven CI, the agent modifies the representation space based on an analysis of

the learned, or provided hypotheses. Using this approach Blake’s need for a new attribute could be

detected, and corrected in many different ways.
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Figure 3. An architecture for a constructive induction-based learning agent.

The specific algorithms used in the representation space modification module are not detailed in this

architecture. This architecture can thus describe a wide variety of approaches to building CI-based

learning agents. The most appropriate set of modification operators is difficult to determine

generally. The next section tries to find an answer to that problem. Section 4 describes an

experiment in which a set of six different representation space modification (RSM) operators are

each applied to a set of six problems. Rules are learned after each RSM application. These results

are compared to the learned rules without any modification. The results show the superiority of a

system which combines these six RSM operators over a system with only one operator, or without

any automated representation space modification.

4. An Empirical Comparison

4.1 Descriptions of methods evaluated

In order to determine the effectiveness of different CI methods, a set of experiments was

performed. These experiments are described in greater detail in (Bloedorn, et. al, 1994). This set

of experiments samples a wide variety of possible learning problems including: misclassification

noise, attribute-value noise, overprecision, inappropriate attributes and irrelevant attributes. In all

of these experiments the AQ15c program was used as the learning algorithm (Wnek et al., 1995).

Each of the CI methods must transform the difficult problem into one in which AQ15c would learn

simple, predictively accurate rules. A single method for hypothesis generation is used because the

types of rules learned by AQ are comprehensible and efficient in decision making. The modifiers
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compared in these experiments are briefly described below:

1) Attribute construction

a) Hypothesis-driven CI (HCI) is a method for constructing new attributes based on an analysis of

inductive hypotheses. Useful concepts in the rules can be extracted and used to define new

attributes. These new attributes are useful because explicitly express hidden relationships in the

data. This method of hypothesis analysis as a means of constructing new attributes is detailed in a

number of places including (Wnek, 1993; Wnek and Michalski, 1994).

b) Data-driven (DCI) methods build new attributes based on an analysis of the training data. One

such method is AQ17-DCI (Bloedorn and Michalski, 1991). In AQ17-DCI new attributes are

constructed based on a generate and test method using generic domain-independent arithmetic and

boolean operators. In addition to simple binary application of arithmetic operators including +, -,

*, and integer division, there are multi-argument functions such as maximum value, minimum

value, average value, most-common value, least-common value, and #VarEQ(x) (a cardinality

function which counts the number of attributes in an instance that take the value x).

2) Attribute value modification

Attribute-value modification can be either the addition, (concretion) of values to an existing

attribute domain, or the deletion (abstraction) of attribute values. Currently the program which

performs this modification, SCALE, implements both a χ2 method and an equal-interval-size

method. The χ2 method calculates the correlation between an attribute-value interval and the class.

Using a χ2 correlation to quantize data was first proposed by Kerber (Kerber, 1992). Attribute

value modification (AVM) selects a set V' ⊂ V (where V is the domain of A) of allowable values

for attribute A. AVM can be used to reduce multi-valued nominal domains, or real-valued

continuous data into useful discrete, values.

3) Attribute removal

A hypothesis-driven method can also be used to perform attribute removal. Attribute removal

makes a selection of a subset X' of attributes from the original attribute set X. In AQ17, a logic-

based attribute removal is performed. The irrelevancy of an attribute is calculated by analyzing

generated hypotheses. For each attribute, a sum is calculated of the total number of examples

covered by a discriminant rule which includes that attribute. Attributes that are irrelevant will be

useful only to explain instances that are distant from the majority of examples in the distribution.

The effectiveness of the combination of each of these representation space methods versus a
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selective induction method was determined based on a set experiments.

4.2 Problem Descriptions

To test the usefulness of the available methods for representation space modification a set of

abstract DNF—type problems were generated. The problems were generated so that the types of

problems tested could be carefully controlled. In each problem there are 500 total instances, 70%

are used for training and 30% are used for testing. The goal concept for each of the six problems is

the same. However, in all but the first case the goal concept has been obscured by a different type

of problem. The five modifications to the original problem are: 1) random incorrect instance

labeling (misclassification noise), 2) incorrect attribute-values 3) inappropriate attribute values

(overly large attribute domain sizes) 4) inappropriate attributes (attributes relevant to the target

concept but causing difficult to describe distribution of examples), and 5) irrelevant attributes. A

description of each of the six problems and the goal concept for the positive class in each is given

below:

T0  Original DNF
Positive class: [x1= 4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

T1 (25% of the training instances misclassified)
Positive class: [x1= 4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

T2 (attribute value noise: 187 of the training examples have one or more attributes whose
values have been modified).

Positive class: [x1= 4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

T3 (inappropriate attribute-value set/overprecision: the domain of all of the attributes has been
increased from 6 to 60)

Positive class: [x1= 40..59] & [x2=10..39] & [x3=10..29] v [x3=40..59] & [x4=20..29] & [x5=20..29]

T4 (inappropriate attributes: the decimal value of x3 has been mapped using a 6 place parity
coding, e.g. 3 = 001011. The selection of a particular equivalent coding is random)

Positive class: [x1= 4,5] & [x2=1..3] & [[#attributes(x6..x11)=1]=1,2] v
[#attributes(x6..x11)=1]=4,5] & [x4=2]& [x5=2]

T5  (40 irrelevant attributes added)
Positive class: [x1= 4,5] & [x2=1..3] & [x3=1,2] v [x3=4,5] & [x4=2] & [x5=2]

5. Results

Table 1 shows the prediction accuracy of rules learned from examples by the selective induction

system AQ15c (with no representation space modification), and after each of the six representation

space modification operators were applied.
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Prediction accuracy on selected problems of a variety of CI methods

Method T0 T1 T2 T3 T4 T5

AQ 100 71 83 66 91 86

AQ-HCI 100 76 90 76 91 68

AQ-HCI(ADD) 100 76 90 76 91 87

AQ-HCI (REMOVE) 100 71 83 66 91 68

AQ-DCI 100 65 84 70 100 78

AQ-SCALE 100 70 57 77 94 51

Table 1. Prediction accuracies of learned rules on six variations on a DNF—type problems.

The results of these experiments show that no single RSM method is best for solving the wide

variety of difficulties possible. These problems include (t1) misclassification noise, (t2) attribute-

value noise, (t3) inappropriate attribute-value precision, (t4) inappropriate attributes and (t5)

irrelevant attributes. A simple method for combining the strengths of each of the individual CI

methods is to run them all separately, and select the best based on results of a secondary testing

set. The results shown in Table 2 are based on a SILA agent using the selective induction learning

module AQ15c, and CILA agent using AQ15c equipped with the best of the six RSM operators.

SILA vs. CILA prediction accuracy on selected problems

Method T0 T1 T2 T3 T4 T5

SILA 100 71 83 66 91 86

CILA 100 76 90 77 100 87

Table 2. Predictive accuracies of a selective induction-based agent versus a constructive induction-
based learning agent using a simple combination architecture.

6. Conclusion and Future Work

This paper introduced a novel general architecture for an intelligent agent that allowed this agent to

learn from experience, but not be bound by the original representation of the problem. This

constructive induction-based learning agent (CILA) is capable of modifying the representation
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space. The results of a comparison between an SI learning method and a CI learning method

(which includes multiple methods for representation space modification) show that a CI-based

learning agent will be more robust to a variety of representation problems. As intelligent agents are

applied to problems outside careful controls and by non-experts, the ability of these agents to be

robust is increasingly important.

This preliminary work suggests that an agent will need to have some form of constructive

induction in order to overcome the difficulties that exist in real-world learning situations. However,

because no single method for constructive induction performed best for all the problems posed an

approach for combining methods is needed. Further work which details the area of applicability of

individual constructive induction methods is needed. Preliminary work in this area is described in

(Bloedorn et. al, 1993).
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