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ABSTRACT

This paper describes a method for learning shape
descriptions of 2D objects in x-ray images. The
descriptions are induced from shape examples using the
AQ15c inductive learning system.  The method has
been experimentally compared to k-nearest neighbor, a
statistical pattern recognition technique, and artificial
neural networks. Experimental results demonstrate
strong advantages of the AQ methodology over the
other methods.  Specifically, the method has higher
predictive accuracy and faster learning and recognition
rates. The application considered is detecting blasting
caps in x-ray images of luggage.  An intelligent system
performing this detection task can be used to assist
airport security personnel with luggage screening.

INTRODUCTION

This paper concerns the development of a
methodology for shape learning and recognition, and its
application to learning symbolic descriptions of
blasting caps in x-ray images under varying perceptual
conditions.  Task-oriented segmentation and event
extraction are used to isolate objects of interest in
images and to form a set of training examples in a pre-
defined representation space.  The training examples are
passed to a learning system that produces general
descriptions of the concepts to be learned.

The concept descriptions are then validated using
testing examples of blasting caps and non-blasting
caps, prepared apriori by a human operator.  After
validation, the learned descriptions are ready to be used
for classifying unseen objects into blasting caps and
other objects.  The classification process uses a flexible
matching method that determines a degree of match
between an object to be classified and the obtained
concept descriptions, rather than a strictly logical yes-
or-no match.

This research intends to both make a contribution
to the methodology of vision through learning and
solve an important practical problem.  An intelligent
system capable of identifying blasting caps in x-ray
images could assist airport security personnel with
luggage screening.

The proposed method uses the AQ15c inductive
rule learning system for generating blasting caps
descriptions.  To evaluate the proposed method, the
descriptions obtained by the proposed learning system
and other systems were compared in terms of their
predictive accuracy and learning and recognition rates.
Experimental results demonstrated strong advantages of
the proposed method over k-nearest neighbor [17], a
statistical pattern recognition technique, and artificial
feed-forward neural networks [20].  Other experiments
using this methodology have been reported by Maloof
and Michalski [8] and Bala et al. [2].

The next section provides background on the
AQ15c learning system and flexible matching, and
reviews relevant applications of machine learning
techniques to problems in machine vision.  Section 3
describes the proposed method, and section 4 details
obtained results.  Section 5 discusses the contribution
and significance of the results and outlines plans for
future research.

BACKGROUND

An emerging new research area, Machine Vision
through Learning (MVL), investigates the applicability
of modern machine learning methods to problems in
machine vision and the development of vision systems
with learning capabilities [14].  From the computer
vision standpoint, research in this area may help
simplify the development of vision systems and
increase their flexibility and adaptability.  From the
machine learning standpoint, its goal is to produce new
learning methodologies capable of dealing with the
complexities of visual perception.  Potentially,
machine learning methods can be used for a great
variety of computer vision problems.  This paper
concentrates on one specific problem area, that of
application of symbolic learning to shape description of
2D objects.

The AQ Learning Approach
In the AQ learning approach that is used in this

study, a visual concept description is in the form of
decision rules.  Each rule is a conjunction of relational
statements, each involving typically (but not
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necessarily) one attribute.  The description is induced
from a set of training examples and problem domain
knowledge.  Each training example is a vector of values
of multitype discrete attributes (nominal, linear, or
structured) with an indication of the decision class
(visual concept) it belongs to.

Advantages of this approach include relatively high
speed of learning, the possibility of parallel rule
execution (and thus high speed of object recognition),
ease of introducing and utilizing domain knowledge, the
ability to work with large number of attributes to detect
irrelevant attributes, high understandability of the
learned concept descriptions, and the ability to generate
descriptions of different types and different levels of
generalization.  Disadvantages include the need for
quantizing continuous attributes, and a limited power of
the descriptive language (the use of axis-parallel
discriminating surfaces).  These disadvantages can be
reduced by introducing flexible concept matching
techniques (which create much more complex, non-axis
parallel concept boundaries), and constructive induction
which allows the system to create derived attributes that
can represent complex representation space
transformations and concept boundaries.

In this study, we use inductive learning system
AQ15c, in which concept examples, domain
knowledge, and concept descriptions are built using an
attributional representation language, called Variable-
Valued Logic One, or VL1 [1].  To make this paper
self-contained, we begin by characterizing very briefly
the description language.  VL1 decision rules (that can
represent concept examples, domain knowledge and
concept descriptions) are in the form:

Di  <:: Ci

where

Di is the decision part of the rule, and is typically in
the form of one elementary statement that assigns
a value to a decision variable,

Ci is the condition part of the rule, and stated in the
form of a conjunction of elementary statements
(such a conjunction is also called  a “complex”),
and

<:: is the decision  assignment operator  (logically
equivalent  to implication).

An elementary statement (also called an elementary
condition or “selector”)  is in the form:

‘[’ < referee> <relation> <referent> ‘]’

where

<referee> is a member of the finite set of
attributes,

<relation> is a relational operator (=, <>, >, <, >=,
<=), and

<referent> is a subset of the domain of <referee>.

For example, [length > 2mm] and [color = red v blue]
are elementary conditions.  An elementary condition is
satisfied by an object, if the value of the attribute stated
in the condition for this object satisfies the <relation>
between the <referee> and the <referent>.

In a crisp or strict matching convention, a given
decision class is assigned to an object if the properties
of an object satisfy the condition part of the rule.  In a
flexible matching convention, the rule is satisfied if the
degree of match between an object and the rule is higher
than the degree of match between the object and other
candidate rules.

In the default parameter setting, AQ15c creates a
maximally general hypothesis (a ruleset) that describes
all the training examples and no negative examples.
Negative examples of a given concept either are
explicitly labeled as such, or in the case of multiple
concept learning, are positive examples of all other
concepts to be learned.

Finding a hypothesis that contains the minimum
number of rules is a form of the general set covering
problem [9].  Since this problem is NP-hard, the AQ
algorithm (that underlies program AQ15c) solves this
problem in a quasi-optimal manner, that is, finds a
solution that is optimal or near-optimal.

Briefly, the AQ algorithm randomly selects one of
the positive training examples (referred to as the seed)
and then builds a set of alternative, maximally general
descriptions of this seed (referred to as the bounded
star).  A domain-dependent preference criterion is used
to select the most preferable rules from the bounded
star.  If the current description (the set of rules obtained
so far) covers all positive examples, then the algorithm
stops; otherwise, a new seed is selected from the yet-
uncovered positive examples and the process repeats.

The AQ algorithm guarantees completeness and
consistency of learned concepts.  (Completeness means
that the learned concept covers all positive examples.
Consistency means that a learned concept does not
cover any negative examples.) When examples are
noisy, the system may make hypotheses that are
partially incomplete or inconsistent.

Recognition Through Flexible Matching
After learning and validation, generated concept

descriptions are incorporated into a system and can be
deployed for concept recognition.  Under a strict
matching convention, if the example’s attribute values
satisfy the condition part of a rule, then the decision
class to which the rule belongs is assigned.

Conceptually, rules carve out decision regions in
an event (representation) space, defined by the attributes
chosen to characterize objects.  Figure 1 illustrates such
regions: the concept description C1, consists of three
rules (illustrated by overlapping rectangles), and
concept description C2 consists of two rules.
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Figure 1: An illustration of concepts examples and
their descriptions.
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If an unclassified example, such as example e1 in
Figure 1, falls within one of the decision regions, it is
assigned the decision class associated with that region.
Thus, example e1 would be assigned to decision class
D1.  If an example does not fall within any decision
region, as is the case with example e2, then in the strict
matching mode it is not assigned any decision. In the
flexible matching mode, a degree of match (some
function of the distance) between the example and all
the concept regions is computed, and the best match
indicates the decision class. Flexible matching thus
helps to alleviate the brittleness associated with strict
rule-based reasoning systems.

Several flexible matching schemes exist to
calculate the degree of match between examples and
concepts.  The method employed here works as follows
[18].  The degree of match σi between the example e2

and the concept description Ci consisting of n
complexes is given by:

σ i =
α ij

βijj =1

n

∑  −  
α ij

βijj =1

n

∏ (1)

where

αij is the number of conditions in rule j of concept Ci
satisfied by example e2, and

βij is the total number of conditions in rule j of concept
Ci.

Formula 1 yields a real number in the range [0, 1],
where 0 represents no match and 1 represents complete
match.

Related MVL Work
Shepherd [16] used a decision tree learning

algorithm to classify shapes of chocolates for an
industrial vision system. Using feature vectors to

represent examples, Shepherd compared a decision tree
algorithm, k-nearest neighbor (k-nn), and a minimum
distance classifier using classification accuracy.
Classification accuracies for these learning methods
were comparable with the minimum distance classifier,
which produced the highest accuracy of 82%.

Cromwell and Kak [5] characterized object shapes
using feature vectors for images containing electrical
components such as resistors, capacitors, and
transistors.  Concepts were learned by applying
inductive generalization rules and selecting the concept
that explains the most examples from the training set.
Their induction methodology was based on Michalski
[12]. The average classification accuracy for their
system was 72%.  No comparisons were made to other
learning systems.
 The foundations for applying AQ learning to
recognition problems in vision were laid by Michalski
[10, 11].  In those seminal papers, AQ was used to
learn relationships between image objects and concepts
for discriminating between classes of images (textures
and simple structures).  Windowing operators were used
to extract low-level features from texture samples,
which were presented to the AQ learning algorithm.
These ideas were further developed by Channic [4], who
used convolution operators (e.g., the Kirsch operator)
in conjunction with windowing operators for feature
extraction.  Channic proposed learning from sequences
of images and used iterative and incremental learning
for inducing multilevel texture descriptions from
ultrasound images of laminated objects.  Pachowicz and
Bala [15] used the above AQ methodology with a
modified set of Laws’ masks for texture feature
extraction and applied various description optimization
techniques (e.g., the SG-TRUNC method [19]) for
alleviating problems encountered by the introduction of
noise.  Bala [1] also introduced and applied to texture
recognition methods for concept optimization (AQ-
GA), and learning a large number of classes (PRAX).

METHODOLOGY

The symbolic learning methodology used here
closely parallels Michalski’s [11] and Bala’s [1], and
proceeds through a five step process: (1) Region of
Interest (ROI) Determination, (2) Event Extraction, (3)
Discretization, (4) Learning, and (5) Recognition (see
Figure 2).  These steps are described in the following
subsections.

Determination of Regions of Interest (ROI)
The first step involves determining which image

regions are of interest, i.e., likely contain blasting
caps. For illustration, Figure 3 shows two sample
images of luggage containing blasting caps.  In the
experiments, we used an image set consisting of 30
images.  The images were obtained by x-raying luggage
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Figure 2: Basic steps of the learning and recognition
methodology.
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containing blasting caps, as it be would in an airport
scenario: flat in relation to the x-ray source, but rotated
in the plane orthogonal to the x-ray source.

Examples of airport luggage were constructed by
placing different types of blasting caps at different
positions and orientations in the bag and adding other
objects, such as shoes, calculators, bolts, pens, and the
like.  For this initial study, 5 of the original 30 images
were selected.  The selected images were of low to
moderate complexity in terms of blasting cap
positional variability, degree of occlusion, and clutter.

Regions of interest were isolated and selected in the
following manner:

1. Convolve image with 5x5 Gaussian.
2. Convolve image with 5x5 Laplacian.
3. Equalize Histogram.
4. Threshold image at the mode of the pixel

distribution.
5. Select user-identified ROI or objects.

Operations 1–4 yielded binary images, from which an
expert selected 53 objects and divided into two classes:

blasting caps, containing 22 objects, and non-blasting
caps, containing 31 objects.

Event Extraction
After ROI determination, image objects are

described in terms of values of the attributes defining
the representation space for learning.  The attributes
included:

1. Area:  Area of an object
2. Length: Length of the object’s perimeter
3. Major:  Length of the major axis of a fitted ellipse,
4. Minor:  Length of the minor axis of a fitted ellipse
5. Compactness: Ratio between area and perimeter.

Table 1 describes the representation space for this
problem (the attributes and their ranges).

Table 1. Representation space for blasting caps.

Attribute Possible Range
Area 37....675
Length 22.40....169.80
Major 8.04....58.35
Minor 3.39...25.72
Compactness 0.16....0.87

Values of the selected attributes were computed for the
53 regions identified in the ROI determination phase.
Each object example was thus represented by a vector
of real-valued attributes, except for the Area attribute,
which is integer-valued .

Discretization
Since AQ15c [18] operates on discrete attributes,

the real-valued attributes, such as Length and Major
(Table 1), require discretization.  To further optimize
the representation space, integer-valued attributes, like
Area, can be projected into a smaller range.  Such a
process represents an abstraction operation on the
representation space (as defined in the Inferential Theory
of Learning [13]).

Several techniques exist for discretizing real-valued
attributes including equal-width-intervals and equal-
frequency-intervals [7].  With equal-width-intervals, the
real range is divided into n equal-sized intervals and real
values are mapped into the first n integers.  A problem
with this approach is that if the classification algorithm
needs to discriminate between two real values and these
values are mapped into the same range, any basis for
discrimination is destroyed.  In other words, the scaling
procedure excessively abstracts the data.

Equal-frequency-intervals involves discretizing
based on the frequency distribution of attribute values
over the real-valued range.  A problem associated with
this technique is that a small group of important
outliers could be grouped with a larger cluster of
attribute values.  Conversely, an important grouping of
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Figure 3: Sample x-ray images of luggage containing blasting caps.

Blasting Caps

attribute values could be divided and mapped into
different intervals because of outliers.  In both
instances, the scaling procedure excessively abstracts
the representation space.

The ChiMerge discretization algorithm [7] uses the
χ2 statistic to merge real and integer attribute values
into statistically relevant intervals.  In other words, the
algorithm groups and separates attribute values into
intervals based on a statistical measure of the
correlation between attribute values and their associated
class labels.

AQ15c, using the SCALE implementation [3] of
the ChiMerge algorithm, discretized all attribute values
into at least 5 intervals using a 99% significance level.
ChiMerge algorithm has the freedom to construct any
number of intervals; however, one of its parameters is a
lower bound on number of intervals.  The significance
level determines how parsimonious ChiMerge behaves
when grouping real-valued attributes.  For higher
significance levels (e.g., 99%), ChiMerge tends to
construct a small number of large intervals [7].

Table 2 illustrates the discretization of the Major
attribute by the ChiMerge method. Notice that
ChiMerge partitioned attribute ranges into differing
widths for the attribute (e.g., scaled intervals 1 and 2).
ChiMerge constructed discretization ranges, similar to
those in Table 2, for each of the 5 attributes.

Table 2: Discretization of the attribute Major.

Value Range of
Attribute “Major”

Abstracted
Attribute Value

8.03...13.50 0
13.51...14.72 1
14.73...22.49 2
22.50...23.03 3
23.04...26.94 4
26.95...38.29 5
38.30...58.35 6

Learning
ROI determination, event extraction, and

discretization produced 53 training examples divided
between two distinct classes: caps and noncaps.  Each
training example consisted of 5 linear multivalued
attributes, ranging between 6 and 13 value levels, a
result of the ChiMerge discretization.

Preliminary experiments were conducted to
establish learning parameters.  The best performance
resulted when AQ15c was set to generate characteristic
rules.  After learning parameters were determined, they
were held constant and additional experiments consisted
of 500 learning and recognition runs using a 2-fold
cross validation methodology [17].  For each run, the
complete set of pre-classified training examples was
divided randomly and evenly into training and testing
sets.  These sets were given to AQ15c, which learned a
set of decision rules from the training examples.
Figure 4 presents one of the hypotheses learned by
AQ15c.

Figure 4: Example of a hypothesis induced by AQ15c.

Cap <:: [Area=1 ∨ 3 ∨ 5 ∨ 7] &
[Length=9..13] & [Major=5..6] &

[Minor=0 ∨ 2 ∨ 4..6] &
[Compact=2..4]
(t-weight:10, u-weight:10)

Cap <:: [Area=1] & [Length=5 ∨ 7] &
[Major=5] & [Minor=0..1 ∨ 4] &
[Compact=2..4]
(t-weight:3, u-weight:3)

The hypothesis in Figure 4 consists of two rules.
Each rules is annotated by two numbers: the t-weight
and the u-weight. The t-weight indicates the total
number of the positive training examples the rule
covers. The u-weight indicates how many of those
examples are covered only by this rule (different rules
can potentially overlap, therefore some examples may
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Table 5: Performance summary for classification technique.

Learning
Method

Average
Recognition

Accuracy

Best
Single

Performance

Average
Learning

Time

Average
Recognition

Time
AQ15c 95% 100% 0.1s 0.02s
ANN 79% 95% 7.5s 0.003s
k-nn (k = 1) 69% 88% 0.07s 0.02s

be covered by more than one rule).  These weights
indicate the strength of rules.

Recognition
For each run, following the learning step, the

induced decision rules were used to classify the
examples in the testing set.  This produced a
classification rate for the run.  Four statistics were
computed for each 500 run experiment: average
recognition rate, best single performance, and average
learning and recognition times.  The average
recognition rate for an experiment is the average of the
recognition rates for each of the 500 runs.  The best
single performance is the highest classification rate
achieved by the learner on any single run of an
experiment.  The average learning time is the average
time spent learning a concept description from training
examples for each of the 500 runs.  Finally, the average
recognition time is the average time spent testing the
concept on testing examples for each of the 500 runs.
This testing and validation methodology was also used
for experiments involving other learning methods.
When testing examples using AQ15c, the flexible
matching scheme described in section 2.2 was used.

EXPERIMENTAL RESULTS

Three experiments were conducted using AQ15c,
k-nn, and an artificial feed-forward neural network,
using the testing and validation method described
above.  These learning methods were compared using
average classification accuracy, best single performance,
and average learning and recognition times.

k-nn works by taking a testing example and
finding its k closest neighbors in the representation
space using some distance measure.  Typically k is odd
to prevent ties. The class with the most closest
neighbors is assigned as the decision class for the
testing example.  k-nn is an example of a memory-
based learning technique.  Preliminary experiments
were conducted using 2-fold cross-validation, with k =
1, 3, 5, 7, 9, 11, 13 and 15 using an Euclidean distance
measure.  k  = 1 produced the best results.  A
subsequent experiment consisting of 500 runs using 2-
fold cross validation resulted in an average recognition
accuracy of 69% and a best single performance of 88%.

The second experiment was with the Quickprop
implementation [6] of a feed-forward neural network
[20].  An artificial neural network (ANN) is a non-
symbolic learning model inspired by the neuronal
architecture of the human brain.  The class of
multilayer feed-forward networks is capable of learning
non-linear statistical regularities from pre-classified
examples.  These models are considered non-symbolic
since learned concepts are represented as real-valued
weights distributed throughout the network’s
connections.

The neural network architecture chosen was a 1
hidden layer network with 5 input, 4 hidden, and 2
output units.  Training and testing data were uniformly
mapped into a continuous real range of [0, 1].  Output
patterns were encoded as a linear representation of each
of the two possible classes of objects.  Again,
preliminary experiments were conducted to determine
the network’s architecture and learning parameters.
Subsequently, 500 learning and recognition runs were
conducted using 2-fold cross-validation.  The average
recognition accuracy was 79%, while the best single
performance was 95%.

The final experiment involved AQ15c, described
earlier.  After preliminary experiments helped determine
learning parameters, 500 runs were conducted using 2-
fold cross-validation.  The average recognition accuracy
was 95%, while the best single performance was 100%.
Figure 4 shows an induced hypothesis for the cap class
that achieved 100% classification accuracy on testing
data.  Table 5 summarizes the performance of the three
learning methods.  Figure 5 shows the learning curves
for the three methods.  This graph represents how the
classification accuracy increases with respect to
increasing amounts of training data.

DISCUSSION

In our experiments, AQ15c, a symbolic rule
learning method used in this study, achieved
significantly better average predictive accuracy on
testing data than both k-nn and a neural network (95%
vs. 69% and 79%).  It learned somewhat  more slowly
than k-nn (0.1s vs. 0.03s), but an order of magnitude
faster than  neural network (0.1s vs. 7.5s). The
recognition times of new examples were comparable  in
for AQ15c and  k-nn,  but significantly slower than for



LEARNING DESCRIPTIONS OF SHAPE

7

Figure 5: Learning curves for the three classification
methods.
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neural net (20ms vs. 3ms).  One may observe,
however, that AQ15c decision rules can be executed in
parallel, for example, by executing them on a neural
network, in which case the recognition rates would be
equally  fast [2].

As mentioned earlier, one of the most important
trademarks of the AQ15c learning system is high
comprehensibility of knowledge (decision rules) it
generates.  VL1 decision rules are easy to understand
and interpret by a human expert.  They can be easily
translated into English.  Neural networks lack this
feature, because its knowledge resides in real-valued
weights distributed throughout the network’s
connections, and thus carry little meaning for an expert.
High understandability of the VL1 rules makes it
possible for human experts to modify and improve
them.  For example, human experts  drawing on their
domain knowledge might modify the ranges of rule
conditions determined by the ChiMerge discretization
step or remove some spurious condition.  Since experts
can understand the rules, they can also estimate the
consequences of  changes made to the rules.

It is precisely this kind of understanding and  a
possibility of human control that is needed for some
applications, especially those in which a system is
supposed to assist humans in making decisions
affecting other humans.

CONCLUSIONS

The work presented in this paper is a natural
progression and extension of our previous research on
applying symbolic machine learning to vision
problems [10, 11, 4, 15, 1, 2, 8].  Among the main
advantages of the method proposed here are relatively
high learning speed, high prediction accuracy and high
understandability of the decision rules.

Machine learning can be applied potentially at
differing levels of object representation (i.e., the pixel
level, the feature level, and so on), and can be used in
conjunction with a variety of vision processes, such as
model formulation, pose estimation, and segmentation.
This paper has demonstrated one such application,
specifically, to acquiring symbolic descriptions of 2D
shapes for object recognition.

The primary weakness of the current
implementation is the need for human involvement in
ROI determination.  Consequently, this is one of the
tasks of future research.  Another weakness (shared also
by many other learning programs) is the assumption
that the given representation space (as defined by the
chosen attributes and their domains) is sufficiently
relevant to the problem at hand.  This assumption can
be weakened by the application of a constructive
induction program, such as AQ17 [3], able to
automatically improve the knowledge representation
space.  In future work, we intend to investigate the
applicability of constructive induction to this and
related  problems.  We also plan to apply the proposed
method to other computer vision problems, such as
gesture recognition, medical image analysis, and
satellite image interpretation.

ACKNOWLEDGMENTS

The authors wish to thank Eric Bloedorn for reading
preliminary drafts of this paper.  The authors greatly
appreciate the support of a Doctoral Fellowship from
the School of Information Technology and Engineering
at George Mason University.  This research was
conducted in the Machine Learning and Inference
Laboratory at George Mason University.  The
Laboratory’s research is supported in part by the
Advanced Research Projects Agency under Grant No.
N00014-91-J-1854, administered by the Office of Naval
Research, and the Grant No. F49620-92-J-0549,
administered by the Air Force Office of Scientific
Research, in part by the Office of Naval Research under
Grant No. N00014-91-J-1351, and in part by the
National Science Foundation under Grants No. IRI-
9020266 and DMI-9496192.

REFERENCES

[1] Bala, J. W. (1993) Learning to recognize visual
concepts: development and implementation of a
method for texture concept acquisition through
inductive learning.  Ph.D. Dissertation, George
Mason University, Fairfax, VA.

[2] Bala, J. W.; Michalski, R. S.; and Pachowicz,
P. W. (1994) Progress on vision through
learning at George Mason University.
Proceedings of the 1994 Image Understanding
Workshop, 191–207.



LEARNING DESCRIPTIONS OF SHAPE

8

[3] Bloedorn, E.; Wnek, J.; Michalski, R. S.; and
Kaufman, K. (1993) AQ17 — A multistrategy
learning system: the method and user’s guide.
Reports of the Machine Learning and Inference
Laboratory, MLI 93–12.  Machine Learning and
Inference Laboratory, Department of Computer
Science, George Mason University, Fairfax, VA.

[4] Channic, T. (1985) TEXPERT: An application
of machine learning to texture recognition.
Master’s Thesis, University of Illinois, Urbana.

[5] Cromwell, R. L., and Kak, A. C. (1991)
Automatic generation of object class descriptions
using symbolic learning techniques.  AAAI-91,
710–717.

[6] Fahlman, S. E. (1988) An empirical study of
learning speed in back-propagation networks.
Technical Report CMU-CS-88-182. Department
of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA.

[7] Kerber, R. (1992) ChiMerge: discretization of
numeric attributes.  AAAI-92.  123–128.

[8] Maloof, M. A., and Michalski, R. S. (1994)
Learning descriptions of 2D blob-like shapes for
object recognition in x-ray images: an initial
study.  Reports of the Machine Learning and
Inference Laboratory, MLI 94–4.  Machine
Learning and Inference Laboratory, Department
of Computer Science, George Mason University,
Fairfax, VA.

[9] Michalski, R. S. (1969) On the quasi-minimal
solution of the general covering problem.  Fifth
International Symposium on Information
Processing, A3: 125–128.

[10] Michalski, R. S. (1972) A variable-valued logic
system as applied to picture description and
recognition.  IFIP Working Conference on
Graphic Languages, 21–47.

[11] Michalski, R. S. (1973) AQVAL/1 — computer
implementation of a variable-valued logic
system VL1 and examples of its application to
pattern recognition.  First International Joint
Conference on Pattern Recognition, 3–17.

[12] Michalski, R. S. (1980) Pattern recognition as
rule-guided inductive inference.  I E E E
Transactions on Pattern Analysis and Machine
Intelligence  2.4:349–361.

[13] Michalski, R. S. (1994) Inferential Theory of
Learning: developing foundations for
multistrategy learning.  In Michalski, R. S., and
Tecuci, G., eds., Machine Learning: A
Multistrategy Approach, Vol. IV, 3–61.  San
Francisco, CA: Morgan Kaufmann.

[14] Michalski, R. S.; Rosenfeld, A.; and
Aloimonos, Y. (1994) Machine vision and
learning: research issues and directions.  Reports
of the Machine Learning and Inference
Laboratory, MLI 94–6.  Machine Learning and
Inference Laboratory, Department of Computer
Science, George Mason University, Fairfax, VA.

[15] Pachowicz, P. W., and Bala, J. W. (1991)
Texture recognition through machine learning
and concept optimization.  Reports of the
Machine Learning and Inference Laboratory, MLI
95–4.  Machine Learning and Inference
Laboratory, Department of Computer Science,
George Mason University, Fairfax, VA.

[16] Shepherd, B. A. (1983) An appraisal of a
decision tree approach to image classification.
IJCAI-83, 473–475.

[17] Weiss, S. M., and Kulikowski, C. A. (1992)
Computer systems that learn: classification and
prediction methods from statistics, neural nets,
machine learning and expert systems.  San
Mateo, CA: Morgan Kaufmann.

[18] Wnek, J.; Kaufman, K.; Bloedorn, E.; and
Michalski, R. S. (1995) Selective induction
learning system AQ15c: the method and user’s
guide.  Reports of the Machine Learning and
Inference Laboratory, MLI 95–4.  Machine
Learning and Inference Laboratory, Department
of Computer Science, George Mason University,
Fairfax, VA.

[19] Zhang, J., and Michalski, R. S. (1989) Rule
optimization via the SG-TRUNC method.
Proceedings of the Fourth European Working
Session on Learning.

[20] Zurada, J. M. (1992) Introduction to artificial
neural systems. St. Paul, MN: West Publishing.


