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Abstract

The goal of the diagrammaticvisualization system DIAV is to provide a tool for a visual

interpretationof various aspectsof conceptlearning. Theseinclude: visualizationof knowledge
representation spaces and relationships between training examples arahthlegainedconcepts,
and visual comparisoaf knowledgetransmutationperformedby variouslearningsystemse.g.
visualizationof changesn the representatiorspacedone by constructiveinduction. The system
employs a planar model of a multidimensiospacespannecbver a setof discreteattributes.The
model is in the form of diagram,in which eachcell represents uniquecombinationof attribute
values.The diagramcan representexamples rules, and rulesets(DNF) in the form of concept
images The systemis very usefulfor analyzingbehaviorof existing learning algorithmsand in

every stage of development of a new learning system.

1. Introduction

The diagrammatic visualization system DIAV employdanarmodel of a multidimensionakpace
spannecdver a setof discreteattributes.The modelis called GeneralLogic Diagram (GLD) and
was introducedy Michalskiin 1978. The modelis in the form of a diagram,in which eachcell

represents a unique combination of attribute values. Each atfpiédigonsthe diagraminto areas
corresponding to individual values of the attribi@enjunctiverules correspondo certainregular
arrangements of cells that cha easilyrecognizedvisually. The diagramcanrepresenexamples,

rules, and rulesets (DNF) in the formaaincept images

The main goal of the diagrammaticvisualizationsystemDIAV is to provide a tool for a visual
interpretationof various aspectsof conceptlearning. Theseinclude: visualizationof knowledge
representation spaces and relationships betivaging examplesand targetandlearnedconcepts
(Wnek et. al. 1990); visual comparisorof generalizatiorperformedby various learning systems
(Wnek et al. 1990, Wnek and Michalski, 1994a);visualizationof changesn the representation
space done by constructive induction (Wnek, 1993; Wnek & Michalski, 1994b).

An importantfeatureof the diagrammaticvisualizationis that it permitsone to display stepsin
learning processes as well as the errors in concept leafitiagetof cells representinghe target
concept (the concept to be learned) is caldeget conceptimage(T). The setof cells representing
the learned concept is calll@drned concept image (L)he areas of thrrget conceptnot covered
by thelearned conceptepresengerrors of omission (T \ L. while the areasof the learnedconcept
not covered by the target concept represents of commissionL \ T). The union of both types
of errors represents tleeror image

The systemcan also display results of any operationon the concept,such as generalization,
specification, or any change of the description space, such as addielgtingattributes,or their
values. Another interestingatureis thatit canalsovisualizeconceptsacquiredby non-symbolic
systems, such as neural nets or genetic algorithms. Usinliaframone canexpresshe learned
concepts irthe form of decisionrules. Thus, the diagramallows oneto evaluateboth the quality
andthe rule-complexityof the resultsof symbolic and non-symboliclearning. The implemented
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system, DIAV, can display description spaces up to 4M events, i.e., spaces spannpd@er
binary variables (or correspondingly smaller number of multiple-valued variables).

The system is very useful for analyzing behavior of existing learning algorithms audry stage
of development of a new learning system.

Following are the features implemented in the current version of the system DIAV 2.0:

1. The maximumeventspace(ES) sizefor a directdisplayis 4 M events(22 binary attributes),
andfor avirtual displayis 32 M events(25 binary attributes)on a workstationwith 8 MB
memory.

2. System is window and menu driven.
An input to the system comes from a graphical terminal and from data files generatedheithin
system or generated by a learning system (e.g. AQ15).
Outputis directedto a graphicalterminalwith regardsto visual effects,and to datafiles for
communication with a learning system or for a further use by DIAV.
The graphical terminal is able to display and control multiple windows. Windowsraished
with standardcontrol boxesfor zoomingin and out the window. Scroll barson sidesof the
panesenableto display larger then screensize imagesand to have an convenientcharacter
input/output.
DIAV inheritsall standardSmalltalk/V features.A user can take advantageof, for instance,
built-in text editor, cut/copy/pastdeature,or font chooser(see Appendix A - DIAV system
menus).

3. The DIAV 2.0 system enables:

* Visualization of target and learned concepts

* Visualization of arbitrary rules either by specifying their description or by direct drawing

* Visualization of errors of commission, omission and the complete error image

* Construction of complex concepts by using AND, OR, DIFF, NOT, and XOR operators

* Projection of a given representation space into another one by removing and/or adding attributes

4. Future features of the DIAV system will include the following AQ-specific operators:
* operator refunion

* extension against (EA)

* square-root (the set of all maximal complexes inside the set

» star-of-event ( SR ( EA( e, NegEvents)))

2. Getting Started



2.1 System Requirements

In order to usethe DIAV visualizationprogram (hereafterreferredto as DIAV), the following
system requirements must be satisfied:

* Macintosh System 7 or later.

* Installed Smalltalk/\VV Mac from Digitalk Inc.

* At least 2M of free RAM.

2.2 DIAV Distribution

The complete DIAV distribution is provided on a single diskette entitled D2X)/ which contains
the following:

* DIAV - the DIAV application.

» ReadMe - the ReadMext file. Be sureto readthis file asit may containimportantinformation
and instructions not provided in this manual.

» Example- the Examplefolder with an exampleknowledgerepresentatiorspace(Robots.rs),
target and learned concepts (Robots.tcl, Robots.Ic1)

2.3 Running DIAV

To start DIAV, double-clickon its icon to openthe program.You can use DIAV without any
additional setting. If you wish, however,you can changedefault font style from the Window
menu.

DIAV is run under the control of Smalltalk/\VV Mac. This way, DIAV inherits whiniectionality of
Smalltalk/V, allowing for file and string manipulation,as well as window control. It is easyto
distinguishbetweenSmalltalk/VV and DIAV environmentsby checkingwhich set of menusis
currently available.Smalltalk/V usesthe following menus:File Edit Smalltalk Window.
DIAV uses:File DIAV.1 DIAV.2 Window.

After the start, two windows are displayed (Figure 1). One window, Diagrammatic
Visualization System DIAV 2.0, is used for visualization of knowledgerepresentation
spaces. This window comes with the DIAV menfisotherwindow is System Transcript.
This is Smalltalk'swindow, andwhen selected,Smalltalk'smenuswill becomeavailable.This
window is usedoy DIAV to display textualinformationaboutvarioustransformationgperformed
on diagrams,such as, the number of commissionerrors, which file the representatiorspace
description was read fronetc. Throughthis window, you canalso specifyrulesto be displayed
by DIAV. At the beginningof the SystemTranscriptthereis a command:(DIAV new open:” on
nil) to open moreDIAV-type windows. In orderto createan additionalwindow select(highlight)
the text of the command, including brackets, and sBledt from Smalltalk menu.This way
you can visualize many DIAV windows at the same time.
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jwnek®aic.gmu.edu (703> 993-1717

dsmal ltalk compressSources
dSmal | talk compressChanges

HD1AY new open: '’ on:nil?2

2.4 Text Editing

Text editing in DIAV is oneof the featuresinheritedfrom Smalltalk/V. It conformsto text editing
conventionsof the Macintoshsuch as, moving the insertion point, deleting/insertingcharacters,
selectingwords/lines/textdeselectingext, deleting selectedtext, cutting/coping/pastingelected
text.

The File menu contains all commands neddedext exditing and printing. Theyinclude, New,
Open ..., Save, Save As ..., Revert to Saved, Page Setup, andPrint ... .

2.5 Taking a Snapshot of the DIAV Screen

In order to make a snapshot of the cursareenpressthe following keys Shift-[-3. A "Picture”
file will be createdin the main folder. You can "cut and paste"a desired segmentinto your
publication.

2.6 Exiting DIAV

To exit DIAV and returnto the MacintoshOS, selectQuit from the File menu.You will be
prompted with a dialog box which asks whether or not to save your camgnbnment— a kind
of snapshotf all existing objectson your DIAV desktop,including window placementand
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contents. This way, when you restart DIAV program, you will begin right where you left off.

3. Visualization of the Knowledge Representation Space

DIAV employsa planar model of a multidimensional space spannedover a set of discrete
attributes. The model is in the form of a diagram, in which each cell representsa unique
combinationof attributevalues.Eachattributepartitionsthe diagraminto areascorrespondingo
individual values of the attribute.

A representation space descriptiomssumedo be in aform of atextfile. This file hasto begin
with a domainnamefollowed by a specificationof a size of the domain (for every attribute, the
numberof valueshasto be specified).If thereis no attribute and value definition following,
system will assume default names for attribatedtheir values(attributescanbe thenreferredas
x0, x1, x2, ..., xn; valueswill be defaulthumericalnumbers0,1,2, ... ). Valuesof an attribute
can be expressed as a list of nominal values (e.g., red, green, blue, yellow) or an(grvED
. A7),

The following is an EBNF syntaxspecificationfor domain description(see Appendix A. DIAV
Syntax, for detailed specification).

domainDescription = domainName "(* number { "," number } ")"
{ attributeName "=" interval |

attributeName "=" attributeValue { "," attributeValue }

Example 1The following description of the representation space is in the Robots.rs file.

Robots (3, 3, 2, 3, 4, 2)

hs = round, square, octagonal
bs = round, square, octagonal
sm = yes, no

ho = sword, balloon, flag

ic =red, green, blue, yellow
ti =yes, no

The Robots domain consists of six attributes. The header line defines the domain space: 3 x 3 x 2
3 x 4 x2. Thelines following the headlinedefine namesof attributesandtheir values.Figure 2a
showsthe graphicalrepresentatiof this domainafter readingthe descriptionfrom the file. The
name of the representation space is placed as the window title. The disgetitionedinto cells
by horizontaland vertical lines. Horizontallines correspondo attributesdescribedon the side of
the diagram (hs, bs, sm). Vertidales correspondo attributesdescribedoelow the diagram(ho,
jc, ti). The most outside attributes (asd bs) generatdhe largestgrid in the diagram(markedby
thickest lines). The most inside attributes (sm tindeneratehe smallestgrid and are markedby



thinnest lines.

The attributes can be rearranged in the diagram by changing their sequence in the file déseribing
representation space. Each example irdépeesentatiospacehasits uniquerepresentatiom the
diagram.

Example 2
Robots (3, 3, 2, 3, 4, 2)

Given this domaindescription the systemwill generateahe diagramshownin Figure 2b. Please
note default attribute names and values.

S[[=—————— Robots Robots

g 3|-: Sluc 3|\c 3|-: Sluc 3|\c 3|-: Sluc 3|c

R R

bs |hs

Infulnfulnfulnfulnfulnfulnfti
rlalblu rlalblu rlalblulic
S b

f ho

A. Attribute names and values defined by a user. B. Default attribute names and values.

Figure 2. Diagrammatic representations of the ROBOTS domain.



4. Diagrammatic Representation of Concepts

DIAV provides a visual interpretationof various aspectsof conceptlearning. Theseinclude:
visualizationof knowledgerepresentatiorspaces relationshipbetweentraining examples target
andlearnedconcepts visualizationof changesn the representatiorspacedone by constructive
induction.

4.1 Visualization of Training Examples
There can be a number of ways to visualize preclassified exaofpiesny classesin the context
of concept learning, we use the following two modes for visualizing training examples.

1) Multi-class - mode. Training examplesof different classesare visualized using consecutive
numbers. This mode allows seeing distribution of examples in the representation space.

2) Binary-class - mode. Training examples are visualized using "+™and distinguishbetween
positive and negativeexamples Examplesof someclassexanbe markedas positive examples,
and the remaining classesregjativeexamples. A special case of this typeludessituationwhen

one class is selected as positive and other classesgative.This is a typical strategyin multiple

concept learning (Example 3b).

A set of training examples for visualization is read from a text file. The file can be cusatgdhe
Smalltalk's editor (se8ection2.4 Editing Text). Training examplesare groupedinto classesand
representeads relationaltables.Eachclasshasto be identified by its name,and followed by the
line with attribute namesdefining their order in the table. Training examplesare listed in the
following lines.

In orderto display examplesin the multi-class mode selectMulticlass examples from
DIAV.2 menu,and than selectthe file with training examplesas in Example 3a. In order to
dispaly the sametraining examplesn the binary-clasanmode,changeclasslabelsto Positive and
Negativeas in Example 3b, selettaining Examples from DIAV.1 menu,andidentify the
data file. If you want to display Positive or Negative examplesonly, select Positive
Examples, or Negative Examples, respectively.

Ambiguous examples,e. exampleghat havethe sameattributevaluesbut different classlabels,
are marked with # in the multi-class mode, and @hn the binary-classmode.In Figure 3, the
examplghs=square] & [bs=round] & [sm=no] & [ho=flag] & [jc=yellow] & [ti=yes] belongsto both Classland
Class2, and therefore is ambiguous.
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Example 3a. Multi-class examples

Example 3b. Positive and negative examples

! Classl ! I Negative !
hs bs sm ho jc ti hs bs sm ho jc ti
round round no sword red yes round round no sword red yes
round square no sword red yes round square no sword red yes
round square no sword red no round square no sword red no
square round yes sword red yes square round yes sword red yes
square round yes sword red no square round yes sword red no
square round no flag yellow yes square round no flag yellow yes
! Class2 ! I Positive !
hs bs sm ho jc ti hs bs sm ho jc ti
square square yes sword yellow no square square yes sword yellow no
square octagonal yes sword vyellow no square octagonal yes sword vyellow no
square square no sword vyellow no square square no sword yellow no
square octagonal no sword yellow no square octagonal no sword yellow no
square round yes flag yellow yes square round yes flag yellow yes
square round no flag yellow yes square round no flag yellow yes
I Class3 ! I Negative !
hs bs sm ho jc ti hs bs sm ho jc ti
round octagonal yes sword yellow yes round octagonal yes sword yellow yes
octagonal octagonal yes sword yellow no octagonal octagonal yes sword yellow no
round octagonal no sword yellow yes round octagonal no sword vyellow yes
I Class4 ! I Negative !
hs bs sm ho jc ti hs bs sm ho jc ti
round octagonal yes flag yellow yes round octagonal yes flag yellow yes
round octagonal yes flag yellow no round octagonal yes flag yellow no
square octagonal yes flag yellow yes square octagonal yes flag yellow yes
square octagonal yes flag yellow no square octagonal yes flag yellow no
octagonal octagonal yes flag green yes octagonal octagonal yes flag green yes
octagonal octagonal yes flag green no octagonal octagonal yes flag green no
octagonal octagonal no flag green yes octagonal octagonal no flag green yes
octagonal octagonal no flag green no octagonal octagonal no flag green no
En Robots Robots =E|
L L
1 n - n
11 % 1" = % =|"
3 ala] [u] - == ],
3 n - n
s H B = B-
g %‘ s s I %‘ s s
z Bl : b
Lul Lul
n n
%‘ s o %‘ s o
: e o =[= FoT
sm |bs |hs sm |bs |hs
ulnfulnfuln]uln]ulnfulnJuln]ulnJulnfulnJuln]uln]ti ulnfulnfuln]uln]ulnfulnJuln]ulnJulnfulnJuln]uln]ti
rlalbolulrlal udrlalb]ulic rlalbolulrlal uflrlals|ulic
b

# - ambiguous example

EI - ambiguous example

Figure 3. Visualization of multi-class and binary-class training examples

4.2 Visualization of Target and Learned Concepts
In DIAV, conceptsare expressedusing a modified version of variable-valuedlogic (VL1)
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languageA conceptcanbe describedusing eitherrulesor examplegFigures4 & 5). The rules
consist of conjunctive conditions enclosed in brackets. The ruleepagatedy semicolonsThe
conditions relate attribute with their possible values.

If the conceptis specifiedusing examples.a list of attribute namesshould appearbefore the
examples to define order of attribute values in the table.

The conceptrepresentatiorin the form of rules is useful for symbolic learning systemsthat

produceoutput of this kind, e.g. AQ15 (Michalski et al, 1986), C4.5 (Quinlan, 1993). For

nonsymbolic learning systems, such as, neural networks, genetic algorithms, the concept
representation in the form of examples facilitates visualization of results from those S\#§teeks
et al., 1989).

concept = rule{""rule} |

listOfAttributeNames example { example }

rule = condition { condition }
condition = "[" expression "T"
expression = attributeName REL attributeValue { "," attributeValue} |
attributeName "=" interval
REL = "< | R | =" t=>" ">
interval = attributeValue ".." attributeValue
listOfAttributeNames =  attributeName { attributeName }
example = attributeValue { attributeValue }

Figure 4. Concept representation using rules or examples

An important feature of DIAV is that it permits displaying steps in concept learning. The set of cells
representinghe targetconcept(the conceptto be learned)is calledtarget conceptimage(T). The

setof cellsrepresentinghe learnedconceptis calledlearnedconceptimage(L). Conceptimages

are represented in the diagrams by shaded areas. Target ¢oragEps representedby light gray
shade, learned concept image is represented by dark gray shade.

If the targetand learnedconceptsare both visualizedin the samediagram, then their overlap
becomes black. One of the three casay occur. If the learnedconcepttotally matcheshe target
concept then the whole image is black. If there are some ardastafgetconceptnot coveredby
the learnedconceptdescriptionthentheseareasreflect errorsof omission(light gray area).If the
learnedareais largerthanthe target(overgeneralizatiof the concept),then the dark gray area
represents errors of commission (Figure 6).
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round square no flag blue no
Example 5a. The concept represented as a setround square  no  flag yellow — no
of examples octagonal square no balloon red yes
octagonal square no balloon  green yes
. . octagonal square yes balloon red yes
hs bs sm  ho IC t octagonal square yes balloon green yes
round square  no  sword red YES  octagonal square no  balloon  red no
round square  no  sword green  yes octagonal square no  balloon green no
round square no sword blue yes octagonal square yes balloon red no
round square  no  sword  yellow yes  ,oao0na| square  yes balloon  green  no
round square no sword red no
round square no sword green no
round square no sword blue no
Igﬂﬂﬂ 2332{2 23 ﬁ;“g rd ﬂow ;gs Example 5b. The concept represented as a set
round square no flag green  yes of rules
round square no flag blue yes
round square no flag yellow yes [hs=round] [bs=square] [sm=no] [ho=sword, flag] ;
round square no flag red no [hs=octagonal] [bs=square] [ho=balloon] [jc=red, green]
round square no flag green no

O=—— Robots =————1|

TEREFEREFEFEREFRRE

-
T
(=]

bs

Ir[a[blu]rlalblulrlalblulrlalblulr[alblulrlalblufic
y n y n y n =sm
r S =] hs

Figure 5. Concept visualization from descriptions in the form of examples or rules.



13

Robots Robots EE’E]
I | [T . [T,
n n
g |y | |y |
blr b
BRERENEE n n "
L ul . ki
n n
Ll L 5
n n
B |y | | Y |
b b
EREREREE n s n #
[ ul . ki
n n
[l L 5
n n
151 20001 A0 RRI AR BRI AN m m
b b
EREREREE n ° n °
[yl . i
| INEEEEEN| n HEEEEEEEEEREN n
ti |ho |bs ti |ho |bs
rlalblu]rlalblulrlalblulrlalblulrlalblulralblulic rlalblulr[alblulrlalblu]r[alblulrlalblu]rlalblulic
y n y [ y n sm y n Y n sm
r =S =] hs

Robots

f
| | L1

ho |bs
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°] n °] n *] n i Y n Y n Sm
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s 3}1: 3}1: 3}1: 3}1: 3}1: 3}1: 3}1: 3}1: 3}1:

ho |bs

C. Target and learned concept image D. Error area image

Figure 6. Target and learned concept images and their relationship.

4.3 Concept Construction

DIAV enablesconstructionof arbitrary conceptimages.A conceptimageis constructeceitherby
direct selectionof exampleson the screenor by combining current conceptimage with other
concept descriptions using predefined operagachas, AND, OR, DIFF, NOT, and XOR. The
direct selectionof exampless doneby clicking on selecteccellsin the diagram.Clicking on an
empty cell adds the cell into the concept image. Clickingrocell belongingto the conceptimage
removes the cell from the concept image. The concept image can be combined withcanotyr
by selectingone of the predefinedoperatorsand the conceptdescriptionstoredin a file. The
concept description can be in the form of rules or examples.
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The constructecconceptimagecanat any time be transformednto the conceptdescriptionin the
form of positive and negativeexamplesand storedin afile. It canlater be usedasaninput for a
learning system.

In orderto constructa conceptimage, display a new Representation  Space or select
Clear Diagram to clearthe currentone. Next, selectConstruct a Concept to initialize

the concept image by either diréaput or visualizationof the conceptdescriptionstoredin afile.

Next, combinethe imagewith otherconceptdescriptionausingthe AND, OR, DIFF, NOT, and
XOR operators fronthe DIAV menu.At any time, the conceptimagecanbe changedby directly
switching on/off concept examples.

Figure 7 illustratesapplicationof various operatorsusedin constructingconceptimagesin the
Robots representation space. The descriptions of the initial concept A and other q@cepts,
andH) usedasoperandsvere storedin separatdiles. Below arethe conceptdescriptionsn the
form of rules.

A [ho=sword,flag];

[ho=balloon] [hs=square]

B [hs=square];

[ho=balloon] [hs=octagonal] [bs=square]
D [bs=square]

F [ho=balloon] [hs=square];

[ho=flag] [hs=round,octagonal] [bs=round]
H [jc=red,blue]

The following sequenceof commandsconstructsthe imagesshown in Figure 7. It startswith
displayingthe initial conceptA. This conceptimageis combinedusing operatorAND with the
concept B. The resulting image (concept C) is combined with concept D using operator OR, etc.

Construct a Concept Input: A Output: A
AND Input: A, B Output: C
OR Input: C, D  Output: E

DIFF Input: E, F  Output: G



XOR Input: G, H Output: |
NOT Input: | Output: J

The following transcript is created in the System Transcript window:

Donai n description read fromfile:
....Qonstructing concepts: Robots.rs

A concept read fromfile:

....Qonstructing concepts: Const ruct Concept . a

AND concept fromfile:

...:Qonstructing concepts: Construct Concept.b AND
CR concept fromfile:

....Qonstructing concepts: Construct Concept.c CR
D FF concept fromfile:

....Qonstructing concepts: Construct Concept.d D FF
XCR concept fromfile:

...:Constructing concepts: Construct Concept.e XCR
NOT
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Figure 7. Constructing concept images.
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Figure 7 (cont.). Constructing concept images.

The following example(Figure 8) shows constructionof symmetricalconceptsusing the XOR
operator (Wnek and Michalski, 1994). time 4-dimensionatepresentatioispacerepresentedby 4
binary attributes, x0, x1, x2, x3, the initial concept is [x0=0]. Consecutive coraremeatedoy
executingthe XOR operationwith [x1=0], [x2=0], [x3=0] rules, respectively.The resulting
concept Dis symmetricalwith respectto all four attributes.(It representshe parity concept’'odd
number of attributes have value 1").
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A = [x0=0] B := A xor [x1=0] C := B xor [x2=0] D := C xor [x3=0]

Figure 8. Constructing concept images: symmetrical concepts.

A concept can be saved in the form of training examples in two formats: one is AQ-typedondmat
second is C4.5 (ID3)-type format. The following commands allow satmgonstructecconcept:

Save Concept AQ andSave Concept C4.5. The examplesbelow show descriptions
created for the concept D.

Example 5. Examples defining the constructed concept as saved in AQ and C4.5 formats

5a. AQ format 5b. C4.5 format
p-events x0 x1 x2 x3
X0 x1 x2 x3 0,0,0,1,p
0001 0,0,1,0,p
0010 0,1,0,0,p
0100 0,1,1,1,p
0111 1,0,0,0,p
1000 1,0,1,1,p
1011 1,1,0,1,p
1101 1,1,1,0,p
1110 0,0,0,0,n
n-events 0,0,1,1,n
X0 x1 x2 x3 0,1,0,1,n
0000 0,1,1,0,n
0011 1,0,0,1,n
0101 1,0,1,0,n
0110 1,1,0,0,n
1001 1,1,1,1,n
1010

1100

1111

The next example (Figure 9) shows symmetry of the Monk2 concept.Diagram A shows a
symmetrical conceptconstructedby performing XOR operationon all first attribute values.
Therefore the diagramshowsconceptodd(FirstValue(Attribute)) Diagram B shows the Monk2
concept.DiagramC showsthe odd(FirstValue(Attribute))conceptin light gray shadingand the
Monk2 concept irgray shading.Thereis no intersectionbetweenthe two. DiagramD showsthe
negated concept odd(FirstValue(Attribute)) and the Monk2 concepblablearea(intersectionof
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the two concepts)is exactly the Monk2 concept.The negationof odd(FirstValue(Attribute))is
even(FirstValue(Attribute)). Monk2 is a subconcept of even(FirstValue(Attribute)).

Robots =F———————| =—————— Robots

ulnJuln]uln]uln ulnfulnfulnfuln]ti ulnfuln]uln]uln
r g b y | alb | r -] b Y]

ulnJuln]uln]uln ulnfulnfulnfuln]ti ulnfulnulnfuln]ti
r lalbfu | b | rlalbluli b | r lalb|u
b f b f

C. odd(FirstValue(Attribute)) or Monk2 D. even(FirstValue(Attribute)) or Monk2

Figure 9. Constructing concept images: the symmetry of the Monk2 concept.
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5. Changing the Representation Space

The representatiorspace transformationsmay involve contraction, expansion, or exchange
operations.In the contextof the attribute-valueconceptrepresentationcontractionis done by

removing attributespr combiningattributevaluesinto largerunits. Expansionis doneby adding
new attributes or by adding new attribute values to the value sets of existing attEkatesges

done by replacing original attributes with new ones.

All transformationsof the representatiorspace are performed using the Project to
command. DIAV prompts for aew descriptionfile, and createsan internalmappingbetweenthe
representationsh new window with a diagramis createdfor the new representatiorspace.The
diagram is labeled with its predecessor's name followeskbycolonand new domainnameread
from the description file (e.@riginal_RS:New_RS). Next, by selectingcommandssuchas
Training Examples, Target Concept, etc., DIAV will project examplesor concepts
from the previous representation space to the new one (instead of reading them form a file).

The new representatiorspacedescriptionfile has similar syntax to the descriptionfile of the
original representation space. Additional components consist of definitions @itimiwtevalues.
Those definitions use original attributes and are in the DNF form (see the DIAV Syntax section).

5.1 Contraction

In some situations, there is an interestin displaying an image of a reduced (abstracted)
representationspace. For example, some constructive induction learning systems reduce
knowledgerepresentatiospacego removeredundancyor insignificant attributes(Wnek, 1993;
Whnek & Michalski, 1994). The representatiorspacecan be reducedeither by removing some
attributes,or by replacingsomeattribute valuesby more generalvalues. Representatiorspace
contraction can lead to interesting observations,like finding strong relationships between
attributes, or on the other hand, finding irrelevant attributes.

The examplebelow, illustratesthe two ways of contractingthe representatiorspace.We begin
with the Robots representation space and four positive and one negative example (Figure 10a).



Ei=———— Robots=——— |

I Positive ! ¥
hs bs sm ho ic ti
octagonal round no balloon red yes
octagonal round no balloon green yes
square round no sword red yes =
round square yes flag red no

I Negative !
hs bs sm ho ic ti
square square yes flag yellow no

] 3|-c Blc Slc 3|-c Blc Slc 3|-c Blc Slc

ulnfulnlulnlulnfulnluln]ulnfulnfuln]ulnfulnfulnfti
r q b y r a b u r a b g lic

S b f ho

Figure 10a. Original representation space with 5 training examples.

Figure 10b illustrates the representation sgardractionby removingthe attribute”jc”. The new
domaindescriptionfile was createdby simply changingthe domainnameand by removing"jc"
attributedescription.In the abstractedepresentatiorspace,someexamplesfrom one classmay
end up having the samedescriptionand thereforebe placedin the samediagramcell. This
operation combined two different examples of the positive class into two equivalent examples.

I Positive !
hs bs sm ho e ti
octagonal round no balloon red yes
octagonal round no balloon green yes

JI111T)
L]

Robots:Robots_jc_removed EEE'

r
+ s|r
o

Robots_jc_removed (3,3,2,3,2)

hs = round, square, octagonal
bs = round, square, octagonal
sm = yes,no

ho = sword,balloon,flag

ti = yes,no

Figure 10b. Contracted representation space by removing an attribute.
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Figures10c, 10d illustrate the contractionoperationby both removing the attribute "jc* and the
attributevalue "hs=square".In order to removeattribute valuesthey haveto be combinedinto
largerunits with otherattributevalues.Figure 10c shows how the representatiorspacechanges
when the "hs=square" is combined with "hs=round" antargerunit "Hs=x". Figure 10d shows
"hs=square'combinedwith "hs=octagonal’into "Hs=x". Note, thatthe attribute with combined
values haglifferent nameand attributevalues.The modified attributeis definedby specifyingits
attribute values in relation to the original values. &mmple,"Hs=x" in Figure 10cis definedas
"hs=round" or "hs=square"”. "Hs=octagonal" is just a copy of "hs=octagonal".
Contractionoperationmay causeambiguity of someof the training examplesFigure 10c shows
how two different examples of two different classes were combined into two ambiguous examples

I Positive !
Hs bs sm ho ti
X square  yes flag red no
I Negative !
Hs bs sm ho ti
X square  yes flag yellew no

== Robots:Robots_jc_hs_s_removedl =

Robots:Robots_jc_hs_s_removed?2

+ » 1o
o o+ (s | »
o |
+ |+ B
-— s X
o |
bs|Hs
gln yln gln y]n gln ti
s ho
y n sSm 6
[

Robots_jc_hs_s removedl (2,3,2,3,2)

Hs = x, octagonal

bs = round, square, octagonal
sm = yes,no

ho = sword,balloon,flag

ti = yes,no

IHs=x!
[hs=round];
[hs=square]

IHs=octagonal!
[hs=octagonal]

Figure 10c. Ambiguity caused by contraction

Robots_jc_hs_s removed2 (2,3,2,3,2)

Hs = round, X

bs = round, square, octagonal
sm = yes,no

ho = sword,balloon,flag

ti = yes,no

IHs=round!
[hs=round]

IHs=x!
[hs=square];
[hs=octagonal]

Figure 10d. Alternative combination of attribute values
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5.2 Expansion
The representatiospaceexpansioroperationis done by adding new attribute definitions or by
adding new attribute vales to the value sets of existing attribtheshangesaveto be specified
in the file defining the new representatiorspace.The new attribute values are defined using
original attributes in DNF expressions.

Expansionmay remove ambiguity of examplesin the representatiorspace. There may be,
however,different side effect of this operation.In the process,someimpossibleareasmay be
created (Wnek, 1993). The impossible areas consistdssibleinstancesj.e. instanceghatdo
not have equivalent descriptions in the original representation space.

Figure 11a shows a five-dimensional binary representation spameldrio show how examples
of a given conceptare projected,the completeset of examplesis used. Figure 11b showsthe

expanded representation space. Oinary attributewas addedthat separatesnostof the positive

examplesfrom negative examples.This operation caused,however, creation of impossible
instances. (For an analysis of impossible areas and ways of informing learning s\stettiseir

existence, see Wnek, 1993).

FiveD_Space:SigD_Space
<
+| [ ][] LB
e
1
e e — 1
s[I=—— FiveD_Space =—=—C01= r e
+ |+ |+ ][] |2 -
e
o —— @
x2|x1l|cl
1(ef1]|e]1]|e]xs
%) 1 %) x4
] x3 |
[
Concept <:: [x1=1] [x2=1]; lc1=1!
[x3=1] [x4=0] [x5=1] [x1=1] [x2=1]
11a. The Concept in 5D representation space. 11b. The Conceptin the expandedrepresentatiorspace.

Blank cells indicate impossible instances(no instances
from the original representation space were projected onto).

Figure 11. Expansion of the representation space.
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The representatiorspaceexchangeoperationoccurswhen someattributesare replacedby new
attributes.In orderto maintainprojectioncapability betweenthe two representatiorspacesthere
haveto be a relationshipbetweerthe original and the new attributes.Similarly to the expansion
operationthe new attribute valuesare expressedising original attributesin DNF expressions.
Attributes that are being replaced have to be removed from the domain description.

Figure 12 presentstwo consecutiveexchangeof the representatiorspace. The first exchange
occurs betweenthe bin4—four dimensional binary representationspace and the xor—two
dimensionalthree-valuedrepresentatiorspace. The secondexchangeoccurs betweenthe xor
representation space and the ca—one dimensional representation space.

12a. bin4: the original
representation space

bind (2, 2, 2, 2)

x0 = 0,1
x1 = 0,1
x2 = 0,1
x3 = 0,1

12b. bin4 representation space
projected onto xor

xor(3,3)
s0O = 0,1,2
sl = 0,1,2
1s0=0!
[x0=0] [x1=0]

1s0=1!
[x0=0] [x1=1];
[x0=1] [x1=0]

1s1=0!
[x2=0] [x3=0]

1s1=1!
[x2=0] [x3=1];
[x2=1] [x3=0]

12cxor representation space
projected onto ca

ca(b)
ca = 0.4

Ica=0!
[s0=0] [s1=0]

lca=1!
[s0=0] [s1=1];
[s0=1] [s1=0]

lca=2!

[s0=0] [s1=2];
[s0=1] [s1=1];
[s0=2] [s1=0]

lca=3!
[s0=1] [s1=2];
[s0=2] [s1=1]

Figure 12. Two exchanges of the representation spaces.
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In the first mappingfrom bin4 to xor, attributesx0 and x1 are replacedby the sO attribute.
Symmetrically, x2 and x3 are replaced by #ieattribute.Value sO=0 representinghe top row in
the bin4:xor diagramreplacesthe conjunction[x0=0] & [x1=0], i.e. the top row in the bin4
diagram. Value s0=1 representing the middl in the bin4:xor diagramreplaceghe disjunction
[x0=1] & [x1=0] or [x0=0] & [x1=1], i.e. two middle rows in the bin4 diagram.The two rows
can be mergedithout causingambiguity becausehey are symmetrical.Value sO=2 representing
the bottom row in the bin4:xor diagram replacesamejunction[x0=1] & [x1=1], i.e. the bottom
row in the bin4 diagram. Since this value complements other values itnecegsaryo specify it
in the attribute definition.

In the secondmappingfrom xor to ca, attributessO ands1 arereplacedby the caattribute.As a
result of the two transformationsa 16-elementrepresentatiorspacewas compressednto 5-
element representation space.

The presentedperationsdo not causeambiguity or impossibleareasin the new representation
spaces. This is due to the symmetry indhiginal representatiospaceand properoperatorsused

in changingthe representatiospace.The changesn the representatiorspacepresentechere are

relatedto the problem of detectingsymmetriesin the representatiorspacesand constructing
counting attributes (Wnek and Michalski, 1994).
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6. Demo: STAR generation

EE| A. Generating the 1st STAR.
{3

’ STAR []

e Selected examples for the next specialization step:
2 1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
. 1- [x1=1] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]

R AQ starts with the most general cover, i.e. the whole
representatiorspaceis covered(light gray area). The first
positive example (seed) (1+) is selected for STAR
o generation. Since the current STAR also covers negative
examples,AQ selectsits first negative example (1-) for
uncovering. The selectednegative exampleis as close as
2 possible, in termsof different attribute values, to the seed
positive example. In this case, the tegamplesdiffer only
in the x1 attribute (boldfaced descriptions).

T EEFEREEREFEEEERER

X
w
X,
[N}
X

ositive example Negative example

eed positive example

As a result of the first "extend against" operation the
o negative example(1-) is no longer coveredbecausex1=1]
was removed from the coverage. The current cover is
equivalent to a simple rule [x1=0, 2].

S(I=———————— MONK2 %E@

21 o

- B. Generating the 1st STAR: after the 1st specialization.
— 1] 0

1
_01 2 STAR [x1=0,2]
Lof, Selected examples for the next specialization step:
- 1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
e 2- [x1=0] [x2=2] [x3=1] [x4=1] [x5=3] [x6=1]
Rl

1

0
(1]

0
(1]

0
(1]

|
ﬁ@@@@@@%
5t G ot

AQ continues building the STAR around the same seed
positive example(1+). The next negative example (2-) is
selected. The examples have different x2 attribute values.

X
w
X
[N}
X

%] Positive example Negative example [:] Uncovered

1 Seed positive example elected negative example STAR

C. Generating the 1st STAR: after the 2nd specialization.

EE)
o STAR [x1=0,2] [x2=0,1]
1|o Selected examples for the next specialization step:
A 1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3][x6=1]
3- [x1=0] [x2=0] [x3=1] [x4=1] [x5=3][x6=0]

The STAR was further specialized by adding condition
[x2=0,1]. Therearestill uncoverednegative examples,e.g.

T RFFEEERFEERERER

X
W
X,
[N]
X
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EE| D. Generating the 1st STAR: after the 3rd specialization.
{3

L sTAR  [x1=0,2] [x2=0,1] [x6=1]

Selected examples for the next specialization step:
1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]

4- [x1=2] [x2=0] [x3=1] [x4=2] [x5=3] [x6=1]

The STAR was further specialized by adding condition
[x6=1]. The next uncoverednegative example (4-) differs
with the seed on two attributes, x1 and x4.

[ | | =] |
EREEEEE DD
e e P L L]

o E. Generating the 1st STAR: after the 4th specialization.

] STAR [x1=0] [x2=0,1] [x6=1] (t:8)
[x1=0,2] [x2=0,1][x4=0,1] [x6=1] (t:12)

Selected examples for the next specialization step:

1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]

5- [x1=0] [x2=1] [x3=1] [x4=2] [x5=3] [x6=1]

The cover under considerationconsists now of two rules.
This is aresult of two-way specializationbasedon the two
different values of attributes x1 and x4. In the next steps, AQ

will maintain at most 2 rulesin the partial star becausehe
maximum number of rulesin the partial cover parameter
MAXSTAR is setto 2. The rules maintainedin the partial
cover competewith eachother accordingto the preference

ARERCRCAERCRCRERERE

(selection) criteria. For the currentrun, the rule with the

higher coverage of positive examplesis assumedto be
better. The first rule covers8 positive examples(t:8), the
second rule covers 12 positive examples (t:12).

The two rules overlap over the area thaversthe seed.The
area of overlap is described hy1=0] [x2=0,1] [x4=0,1] [x6=1]

~ F. Generating the 1st STAR: after the 5th specialization.

STAR  [x1=0,2] [x2=0,1] [x4=0,1] [x6=1]
[x1=0] [x2=0] [x6=1]

Selected examples for the next specialization step:

1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
6 - [x1=0] [x2=0] [x3=1] [x4=2] [x5=0] [x6=1]

As aresult of the specializationof the STAR from step E,

+
ENEN R

three rules are generated:
1 [x1=0,2] [x2=0,1] [x4=0,1] [x6=1] (t:12)
2 [x1=0] [x2=0] [x6=1] (t:2)
3 [x1=0] [x2=0,1] [x4=0,1] [x6=1] (t:3)

ARERCECRERCRC EERERE

o[ 1ol 1Jol1Jol 1ol 1]l 1]o1]o]1
o |1 lz2lz2Jol1]z21]s3

Since rule #3 is subsumed by rule #1, rule #3 is removed from
the cover. This way, thereareonly two rulesin the partial

> cover, andtherefore,thereis no needto trim the cover as
[ required by the MAXSTAR parameter.
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G. Generating the 1st STAR: before the last specialization.

STAR #1 [x1=0,2] [x2=0] [x4=0,1] [x5=1,2,3] [x6=1]
#2 [x1=0,2] [x2=0,1] [x4=0,1] [x5=3] [x6=1]

Selected examples for the next specialization step:
1+ [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
n- [x1=0] [x2=0] [x3=0] [x4=0] [x5=1] [x6=1]

Some steps uncovering consecutivegative exampleswere

skipped. When we resumethis demonstrationthere is one
negative exampleleft to uncover. This negative example
differs from the seedpositive example on three attributes,
x3, x4, and x5.

+[(1]+]1

H. Selecting the best rule from the first STAR.

STAR #1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1](t:5)
#2 [x1=0,2] [x2=0] [x4=1] [x5=1,2,3] [x6=1](t:4)

Therulesin the stardo not cover any negative examples.
The best rule (#1) is selected(light gray area and the
overlapping with rule #2 area; also bkck areain the next
Figure). The rule covers 5 positive examples versus 4

examples covered bthe secondrule. The bestrule is saved
in the current cover.

cEfEEEE nrar
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EEEEC BERRERRREE

Partial STAR

|. Before generating the 2nd STAR.

Cover
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)

STAR []

Selected examples for the next specialization step:
2+ [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]
1- [x1=1] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]

The bestrule (black area)covers’5 positive examples.The
rule is saved in the current cover.

There are still positivexamplesnot coveredby the Cover.
AQ selects a seed example for the second STakR the first
negative example for STAR specialization based on its
@] proximity to the new seed.

Il Current cover

Training examples
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J. Generating the 2nd STAR: after the 1st specialization.

Cover
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)

STAR  [x1=0,2]

Selected examples for the next specialization step:
2+ [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]
2- [x1=2] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]

K. Generating the 2nd STAR: after the last specialization.

Cover
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
STAR 1 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)

2 [x1=0] [x2=0,2] [x4=2] [x5=1,3] [x6=1] (t:3)

The rule with the higher (t:5) coveragé positive examples
is selected for the Cover (see Figure L).

L. Before generating the 3rd STAR.

Cover

1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
STAR []

Selected examples for the next specialization step:

3+ [x1=0] [x2=1] [x3=0] [x4=1] [x5=2][x6=1]

1- [x1=0] [x2=1] [x3=0] [x4=1] [x5=2] [x6=0]

The Cover was expandedby the secondrule. The total
number of positive examples covered is now 10.
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M. Before generating the 4th STAR.

Cover

1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
3 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:4)
Selected examples for the next specialization step:

4+ [x1=0] [x2=1] [x3=0] [x4=2] [x5=2] [x6=1]

1- [x1=0] [x2=1] [x3=1] [x4=2] [x5=2] [x6=1]

N. Before generating the last STAR.

Cover

1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
3 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:4)
4 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9)
5 [x1=0,2] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4)
6 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3)
7 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4)
8 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4)
9 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8)
10 [x2=0] [x3=1] [x5=1] [x6=0] (t:3)
11 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3)
12 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t:9)
13 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4)
14 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7)
15 [x1=1,2] [x2=2] [x4=0] [x5=1,2] [x6=1] (t:2)
Selected examples for the next specialization step:

n+ [x1=2] [x2=1] [x3=0] [x4=1] [x5=0] [x6=1];
1- [x1=2] [x2=0] [x3=0] [x4=1] [x5=0] [x6=1]

O. After generating the last STAR.

Cover

1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
3 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:4)
4 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9)
5 [x1=0,2] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4)
6 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3)
7 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4)
8 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4)
9 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8)
10 [x2=0] [x3=1] [x5=1] [x6=0] (t:3)
11 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3)
12 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0]  (t:9)
13 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4)
14 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7)
15 [x1=1,2] [x2=2] [x4=0] [x5=1,2] [x6=1] (t:2)

16 [x1=2] [x2=1,2] [x4=1] [x5=0,3] (t:3)
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Description (cover) optimization

After all positive examples are covered, AQ optimizescthver accordingto the "trim™ parameter.

For general(discriminant)descriptiongwith the trim parametersetto "gen") the cover remains
unchanged. The following figures illustrate the differences between the general description and twc
additional description typespecific (characteristicandminimal complexity. All descriptiontypes

are consistentand completewith regardto the training setof examplesj.e. noneof the negative
examples is covered and all of the positive examples are covered.

Since each condition applies a furtltenstrainton the exampleghat satisfy the rule, the removal
of conditions willgeneralizehe rule. Sinceeachvaluein a conditionloosensthe constraintgiven
by that condition the removal of values in a condition spkcializethe rule.Hencethe coverscan
be described as follows:

General (discriminant) descriptiofGD) consists of rules as general as possible, i.e. involving
the minimum number of conditions, each condition withaximumnumber of values.

Minimal description(MD) consists of rules as simple as possib&e, involving the minimum
number of conditions, each condition witmaimum number of values.

Specific (characteristic) description (SD) consistsof rules as specific as possible, i.e.
involving themaximumnumber of conditions, each condition witmalimum of values.

General cover Minimal cover

1 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t 9, u:8)/| 1 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t 9, u:8)
2 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1 ] 9, u:d)|| 2 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9, u:7)
3 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t 8, u:6)/| 3 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t 8, u:6)
4 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (7, w5)|| 4 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7, u:6)
5 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:5, u:3)|| 5 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5, u:2)
6 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5, u:2)|| 6 [x1=0] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4, u:4)
7 [x1=0] [x4=1,2] [x5=1] [x6=1] (t5, u1) | 7 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0]  (t:4, u:4)
8 [x1=0,2] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4, u:4)|| 8 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4, u:3)
9 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4, u:4)|| 9 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4, u:2)
10 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4, u:3)[| 10 [x2=0] [x3=1] [x5=1] [x6=0] (t:3, u:3)
11 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4, u:2)|| 11 [x2=1] [x3=0] [x4=0] [x5=1,2,3] [x6=1] (t:3, u:3)
12 [x2=0] [x3=1] [x5=1] [x6=0] (t:3, u:3)[| 12 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)
13 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)|| 13 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)
14 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)|| 14 [x1=0] [x4=2] [x5=1] [x6=1] (t:3, u:1)
15 [x1=2] [x2=1,2] [x4=1] [x5=0,3] (t:3, u:1)|| 15 [x1=1,2] [x2=2] [x4=0] [x5=2] [x6=1] (t:2, u:2)
16 [x1=1,2] [x2=2] [x4=0] [x5=1,2] [x6=1] (t:2, u:2)[| 16 [x1=2] [x2=1] [x4=1] [x5=0] (t:2, u:1)

Specmc cover
x1=0] [x2 1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1]

t:9,
GD 7 [x1=0] [x4=12] [x5=1] [x6=1] (t5, 1) | 3 piogg] feom 1,2] [x3=0] [x4=1,2] [x5=1.2,3] [x6=0] &:g,u.s)
MD 14 [x1=0] [x4=2] [x5=1] [x6=1] (t:3, u:l)| 3 [x1= 12 x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] = (t:8, u:8)
SD 16  [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1] (t:1, w:l)| 4 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] [x6=0] (t:7, u:7)
5 [x1=0] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4, u:4)
i inti i 6 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4, u:4)
The above comparison of the thrge descriptions details 7 [x2=0.2] [x3=1] [x4=0] [x6=1.2] [x6=1](t'4, U:3)
differencesbetweenthe cover typesin termsof numbersof | g [,7=01] [x2=2] [x4=2] [x5=0,1{t:4, u:2)
conditions and conditioivalues. The GD7 rule hasmorex4 | 9 [x1=1,2] [x2=0,2] [x3=1] [x4=0,2] [x5=0] [x6=1] (t:3, u:3)
attribute values than the correspondingrules, SD16 and ﬂ [X}:i,% X%=% F(g:é% {Xfl:(l)],Z[] gX5l=%]3[]X([5=60]1] 8% Uigg
MD14, from the other covers. SD16 meanwhile, has more X1=L,2] [X2=1] IXa=0] [Xa=0] [Xo=1,2,5] [X0= o U
conditions than GD7 and MD14, namely conditions that ig Ki;g% ;g;% F)g;é% F;i;gjl[]xgxfz_]z[’fé:[ﬁ_l] 82 ﬂg
specify the values of x2 and x3. 14 [x1=0] [x2=1,2] [x3=1] [x4=1,2] [x5=0] [x6=1] (t:2, u:2)
15 [x1=2] [x2=1] [x3=0] [x4=1] [x5=0] [x6=1] t:1, u:l)
16 [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1] (t:1, u:1)

The rulesare presentedn the AQ15c format. Eachrule is accompanieavith two numbers:'t" is

the total number of positive examples coveredhgrule, "u" is the numberof positive examples
uniquely coveredby the rule. Unique coveragemeansthat none of the other rules in the

description, covers those examples. The ridesachof the descriptionsare orderedaccordingto

the t and u weights.

Sincethe trimming processmay changea rule's coverage the rule may be placedin different
positions of the cover lists. For example, rule #hmgeneralcoverbecomes#14 in the minimal
cover, and #16 in the specific cover. Note aleangesn the total and uniquecoveragevaluesof
this rule.
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A. General vs. minimal description.

The generalcover is equivalentto the cover obtained after
the last STAR generation (Figure O).

The minimalcover (black area)coversa smaller areaof the
representation space than the general cover (gray and black).
The two covers differ in 21 locations.

B. General vs. specific (characteristic) description.

The specific cover (black area)coversa smaller areaof the
representation space than the general cover. In this tase,
specific cover differs from the general cover in 53 locations.

C. Minimal vs. specific description.

The specific cover (black area)coversa smaller areaof the
representatiorspacethan the minimal cover. In this case,
the specific cover differs from the minimal cover in 32
locations.

Note.

The term minimal description refers to the number of
conditions and condition values used in the description.
Minimal description has usuallargercoveragg(in terms of
the number of instances covered) than the specific
description.



7. Simple session with DIAV 2.

1. Start the DIAV system by clicking twice on the icon.

2. Create a new file with the domain description.

2.1 SelecNew command fronfile menu.
2.2 Type in the domain description, e.g.

Robots (3, 3,2,3,4,2)

hs = round, square, octagonal
bs = round, square, octagonal
sm = yes, no

ho = sword, balloon, flag

jc = red, green, blue, yellow

ti = yes, no
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2.3 Savethe domaindescriptionby chosingSave as ... from the File menu.Typein thefile

name, e.g.robotsDomain, and click onSave button.

3. Create a file with a target concept description.

3.1 SelecNew command fronfile menu.
3.2 Type in the target concept description, e.g.

[hs=round][jc=red];
[ hs = square] [ ho = balloon ]

3.3 Save the target concept description by chdSawg as
file name, e.g.targetConcept, and click onSave button.

4. Create a file with a learned concept description.

4.1 SelecNew command fronfile menu.
4.2 Type in the learned concept description, e.g.

[hs = round,square ] [ho = sword,balloon ] [jc = red,green]

... from the File menu.Typein the

4.3 Save the learnembnceptdescriptionby chosingSave as ... from the File menu.Typein
the file name, e.glearnedConcept, and click onSave button.

5. Create a file with training examples.
5.1 SeleciNew command fronfile menu.

5.2 Type in the positive and negative examples descriptions, e.g.

I Positive !

hs bs sm ho ic ti
round round yes sword red no
round square yes sword red yes
round octagonal yes balloon red yes
square square yes balloon red yes

square square no balloon green  yes



I Negative !

hs bs sm ho ic ti
round octagonal yes sword yellow no
square octagonal yes sword yellow no
octagonal square no sword green no
octagonal round yes sword blue yes
octagonal octagonal no balloon green no
octagonal round no balloon blue no
octagonal square yes flag red no
octagonal round no flag green no
round octagonal no flag blue yes
round octagonal no flag green  yes
square round yes flag yellow vyes

5.3 Save the exmaples description by choSage as ... from
name, e.g.trainingexamples, and click onSave button.

6. Display a diagram representing the domain.

6.1 SelecRepresentation Space from DIAV.1 menu.
6.2 OpenrobotsDomain file.

7. Display the target concept.

7.1 Selecffarget Concept from DIAV.1 menu.
7.2 Open theargetConcept file.

8. Display the learned concept.

8.1 Select.earned Concept fromDIAV.1 menu.
8.2 OpenlearnedConcept file.

9. Display the positive examples.

9.1 SelecPositive Examples from DIAV.1 menu.
9.2 OpentrainingExamples file.

10. Display the negative examples.

10.1 SelecNegative examples from DIAV.1 menu.
10.2 Openrainingexamples file.

11. Display errors of commission.
11.1 SelecErrors of commission from DIAV.1 menu.

12. Display errors of omission.
12.1 SelecErrors of omission from DIAV.1 menu.

13. Display total error area.
13.1 Selectotal error area from DIAV.1 menu.
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the File menu.Typein thefile



8. DIAV System Menus

@ File DIAV.1

DIAV.1

Representation Space
Training Examples

Positive Examples

Negative Examples

Target Concept

Learned Concept

Project to ...

Display Rule from Transcript

Errors of commission
Errors of omission
Total error area

Hide Grid
Clear Diagram

DIAV.2

Multiclass Examples
Multiclass Rules

Construct a Concept

AND

OR

DIFF

XOR

NOT

Save Concept in AQ Format
Save Concept in C4.5 Format

STAR Method - step by step
STAR Method - animated
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DIAD.2 Window

Read domain and display its representation

Display positive and negative examples

Display positive examples

Display negative examples

Display a target concept (in light gray shade)

Display a learned concept (in dark gray shade)

Project current representation space on another domain
Convert highlighted text to a graphical rule

Show commission error image
Showomission error image
Show error image

Define examples representing a concept
Clear screen

Disp. ex. using consecutive numbers for each concept
Display rules using different shades for each concept

Construct a concept in a given representation space
AND, OR, DIFF, XOR operators

combine currently displayed concept with a concept
description read from a file

Negate currently displayed concept
Save examples defining currently displayed concept
Use C4.5 format

Step by step demo of the STAR learning method
Animated demo of the STAR learning method



File

New

Open ...

File In ...
Browse Classes

Close

Save

Save as ...
Revert to Saved

Page Setup
Print

Save Image

Quit

Edit

Undo

Cut

Copy
Paste
Clear
Select All

Find ...
Replace ...
Search Again

Smalltalk

Show it

Do it

File it in
Inspect It In

Stop

Create new text file using text editor
Open file window for editing
Read and execute Smalltalk source code

Open multi-paned browser on available Smalltalk code

Close file window

Save the text contents of the currently active window

Save the text contents in the specified file
Replace with the last version saved on disk

Setup for page printing
Print the contents of the active text window

Save the state of environment to disk
Quit the system

Undo a last operation

Cut a portion of text and copy it to clipboard
Copy text to clipboard

Paste from clipboard

Delete highlighted text

Select a contents of current pane/window

Find string in a text of current pane/window
Find and replace text
Repeat searching/replacing text

Evaluate Smalltalk expression
Execute Smalltalk code

File in (execute) Smalltalk code
Inspect a Smalltalk object

Interrupt process



Window

Send To Back
Collapse/Expand
Zoom In/Out
Change Text Font
Change List Font

Redraw Screen
Stack Windows

Put this window below other opened ones
Collapse/expand current window

Zoom in/out current window

Change font in text pane

Change font in list pane

Redraw screen in case anything is wrong
Order opened windows so all headers are visible
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9. DIAV Syntax
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The following is an EBNF syntax specification for DIAV syntax.

domainDescription

constructedAttribute

concept

conceptSet

targetConcept

learnedConcept

example

exampleSet

trainingExamples

conceptExamples

positiveExamples

negativeExamples

ruleSet

rule

domainName

conceptName

attributeName

attributeSize

domainName "(" attributeSize {"," attributeSize } ")"
{ attributeName "=" attributeRange |

attributeName "=" attributeValue {"," attributeValue }

{ constructedAttribute }

{"I" attributeName "=" attributeValue ""

concept }

ruleSet | exampleSet
{"1" conceptName "!"
concept }

concept

concept

attributeValue { attributeValue }
attributeOrder

example { example }

{ conceptExamples } |

{ positiveExamples } { negativeExamples }
{"1" conceptName "!"

exampleSet }

{"! Positive " | "'Pos!"

exampleSet }

{"!"' Negative !"| "I Neg!"

exampleSet }

rule {";" rule }

condition { condition }

identifier
identifier
identifier

number



attributeValue

attributeRange

identifier | number

interval
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attributeOrder

condition

expression

attrbiuteName { attributeName }

"[" expression "T"

attributeName REL attributeValue {"," attributeValue}

| attributeName "=" interval

REL "< e

interval

n_n s N

attributeValue ".." attributeValue

letter { letter | digit }

identifier
number digit { digit }
letter capitalLetter |

R R A R RN AR A A B R AR N

nSn | "t" | nuu | uvu | uWu | nXu | uyu | uzu

capitalLetter

AT BTG DN B IF G| YK LY MY N O [P |

QRS T U VW XY |2
digit "0" |ttt 3| 4| "5 | et | T ] "8 | 9"

Below is the syntax of files requested when executing respective commands from DIAV menus.

representationSpaceFile
trainingExamplesFile
positiveExamplesFile
negativeExamplesFile
targetConceptFile
learnedConceptFile
projectToFile

ruleFromTranscript

multiConceptExamplesFile
multiConceptRulesFile
constructConceptFile

andFile, orFile, diffFile, xorFile

domainDescription

trainingExamples

{ positiveExamples } { negativeExamples }
{ positiveExamples } { negativeExamples }
targetConcept

learnedConcept

domainDescription

ruleSet (highlight the ruleSet in System Transcript window)
{ conceptExamples }

conceptSet

concept

concept



starMethodDemoFile

partialStar
star
seedPositiveExample

selectedNegativeExample

domainDescription

positiveExamples

negativeExamples "!"

{ { partialStar "!"
seedPositiveExample ";"
selectedNegativeExample "!" }

star "1 *"'}

ruleSet
rule
condition { condition } (conditions for all attributes)

condition { condition }

42
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10. DIAV Data Structures

This sectiondescribeshe data structuresusedin DIAV system.It also gives an exampleof a
domain in DIAV’s internal representation.

aA array describing attributes of a domain. size(aA)=nr of attributes. Each attribute is
described by four numbers:
# of values (levels),
serial number (defines the serial number of a column in the data table),
offset in the diagram (filled out by crArr),
name.

XA  array describing attributes placed on x axes of a diagram.

yA  array describing attributes placed on y axes of a diagram.

aV  array describing possible values &achattribute.size(aA)=size(aV)Serialnumberof an
attribute indexes appropriate values.

X X number of columns of a diagram.

yy number of rows of a diagram.

thisDomainName - domain name of the current window.
parentWindow - reference to the parent window from ‘projected’ window.

Concepts,setsof examples,and other graphicalimagesare representeds Forms A Form is
characterizedy its width, height,and content(Bitmap). The width of a Form is relatedto the
number of columns in a diagram, the height of a Form is related to the number of rows. Bach bit
the Form is relatedto the conceptstoredin the Form. Bit “1” in the Form indicatesthat related
eventis presentin the concept, bit “0” indicatesthat the eventis not presentin the concept
representedy the Form. In orderto visualize a conceptrepresentedy a Form, the Form is
magnified and displayed on the screen. The Form is very usefistdataurefor storing concepts

as diagrams.It allows for direct mapping betweena diagramas a Form. This way, many
operations performed with concepts, such as, union, product, etc., are easy to implement.

The example below refers to the ROBOTS domain description:
Robots (3, 3,2,3,4,2)
hs = round, square, octagonal
bs = round, square, octagonal
sm = yes,no
ho = sword,balloon,flag
jc=1.4
ti = yes,no

DIAV represents this domain description in the form of following arrays and variables.

aA (B 1 48 ‘hs’)
B3 2 144  'bs')
(2 3 24 'sm’)
3 4 2 ‘ho")
4 5 6 'jc')
2 6 1 'ti"))
xA (4 5 6 'jc')
3 4 2 ‘ho")
2 6 1 'ti"))
yA (8 2 144  'bs')
3 1 48 ‘hs’)
(2 3 24 'sm'))
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aV  ((‘round' 'square' ‘'octagonal’)
(‘round" 'square' ‘octagonal’)
(yes' 'no")
(‘sword' 'balloon’ ‘flag’)
1 2 3
(yes' 'no’))

XX =24

yy =18

thisDomainName = ‘Robots’
parentWindow = nil.

4)

Each cell in a planar diagram representing the domaitwtasoordinatesa columncoordinatex,
and a row coordinate y, represented as a pair (X, y). The range of the coordrfadex0 to xx-
1. The range of y is from O to yy-1. The coordinates of a cell (&f gn eventvector (Avl, Av2,
..., Avn) are calculated according to the formulas:

n
ofs= Y [indexOf( Avi) - 1] * offset( Ai )
i=1

X = ofs \\ xx

y = ofs /[ xx

where,

n number of attributes.

Al i-th attribute in the event vector.
Avi value of i-th attribute.

indexOf gives index (serial number) of an attribute value in array aV.
offset gives an attribute offset in the diagram

\\ gives the integer reminder after dividing ofs by xx.

I gives the integer quotient after dividing ofs by xx.

For example, the event
[hs=square][bs=round][sm=yes][ho=flag][jc=1][ti=n]
has the following coordinates:

ofs = 1*48 + 0*144 + 0*24 + 2*2 + 0*6 + 1*1 = 53

x=53\24=5
y=53//24=2
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