
DIAV 2.0
User Manual

Specification and Guide through
 the Diagrammatic Visualization System

Janusz Wnek

Machine Learning and Inference Laboratory

George Mason Univesity

4400 University Dr., Fairfax, VA 22030

jwnek@aic.gmu.edu

Tue, Nov 21, 1995

2

Table of Contents

1. INTRODUCTION . 3

2. GETTING STARTED. 4

2.1 SYSTEM REQUIREMENTS..5

2.2 DIAV DISTRIBUTION ...5

2.3 RUNNING DIAV ...5

2.4 TEXT EDITING ...6

2.5 TAKING A SNAPSHOT OF THE DIAV SCREEN..6

2.6 EXITING DIAV ..6

3. VISUALIZATION OF THE KNOWLEDGE REPRESENTATION SPACE . 7

4. DIAGRAMMATIC REPRESENTATION OF CONCEPTS . 9

4.1 VISUALIZATION OF TRAINING EXAMPLES..9

4.2 VISUALIZATION OF TARGET AND LEARNED CONCEPTS..10

4.3 CONCEPT CONSTRUCTION..13

5. CHANGING THE REPRESENTATION SPACE. 2 0

5.1 CONTRACTION..20

5.2 EXPANSION ..23

6. DEMO: STAR GENERATION. 2 6

7. SIMPLE SESSION WITH DIAV 2.0 . 3 3

8. DIAV SYSTEM MENUS . 3 5

9. DIAV SYNTAX . 3 8

10. DIAV DATA STRUCTURES. 4 1

REFERENCES. 4 2

3

Abstract
The goal of the diagrammatic visualization system DIAV is to provide a tool for a visual
interpretation of various aspects of concept learning. These include: visualization of knowledge
representation spaces and relationships between training examples and target and learned concepts,
and visual comparison of knowledge transmutations performed by various learning systems, e.g.
visualization of changes in the representation space done by constructive induction. The system
employs a planar model of a multidimensional space spanned over a set of discrete attributes. The
model is in the form of a diagram, in which each cell represents a unique combination of attribute
values. The diagram can represent examples, rules, and rulesets (DNF) in the form of concept
images. The system is very useful for analyzing behavior of existing learning algorithms and in
every stage of development of a new learning system.

1. Introduction

The diagrammatic visualization system DIAV employs a planar model of a multidimensional space

spanned over a set of discrete attributes. The model is called General Logic Diagram (GLD) and

was introduced by Michalski in 1978. The model is in the form of a diagram, in which each cell

represents a unique combination of attribute values. Each attribute partitions the diagram into areas

corresponding to individual values of the attribute. Conjunctive rules correspond to certain regular

arrangements of cells that can be easily recognized visually. The diagram can represent examples,

rules, and rulesets (DNF) in the form of concept images.

The main goal of the diagrammatic visualization system DIAV is to provide a tool for a visual

interpretation of various aspects of concept learning. These include: visualization of knowledge

representation spaces and relationships between training examples and target and learned concepts

(Wnek et. al. 1990); visual comparison of generalization performed by various learning systems

(Wnek et al. 1990, Wnek and Michalski, 1994a); visualization of changes in the representation

space done by constructive induction (Wnek, 1993; Wnek & Michalski, 1994b).

An important feature of the diagrammatic visualization is that it permits one to display steps in

learning processes as well as the errors in concept learning. The set of cells representing the target

concept (the concept to be learned) is called target concept image (T). The set of cells representing

the learned concept is called learned concept image (L). The areas of the target concept not covered

by the learned concept represent errors of omission (T \ L), while the areas of the learned concept

not covered by the target concept represent errors of commission (L \ T). The union of both types

of errors represents the error image.

The system can also display results of any operation on the concept, such as generalization,

specification, or any change of the description space, such as adding or deleting attributes, or their

values. Another interesting feature is that it can also visualize concepts acquired by non-symbolic

systems, such as neural nets or genetic algorithms. Using the diagram one can express the learned

concepts in the form of decision rules. Thus, the diagram allows one to evaluate both the quality

and the rule-complexity of the results of symbolic and non-symbolic learning. The implemented

4

system, DIAV, can display description spaces up to 4M events, i.e., spaces spanned over up to 22

binary variables (or correspondingly smaller number of multiple-valued variables).

The system is very useful for analyzing behavior of existing learning algorithms and in every stage

of development of a new learning system.

Following are the features implemented in the current version of the system DIAV 2.0:

1. The maximum event space (ES) size for a direct display is 4 M events (22 binary attributes),

and for a virtual display is 32 M events (25 binary attributes) on a workstation with 8 MB

memory.

2. System is window and menu driven.

An input to the system comes from a graphical terminal and from data files generated within the

system or generated by a learning system (e.g. AQ15).

Output is directed to a graphical terminal with regards to visual effects, and to data files for

communication with a learning system or for a further use by DIAV.

The graphical terminal is able to display and control multiple windows. Windows are furnished

with standard control boxes for zooming in and out the window. Scroll bars on sides of the

panes enable to display larger then screen size images and to have an convenient character

input/output.

DIAV inherits all standard Smalltalk/V features. A user can take advantage of, for instance,

built-in text editor, cut/copy/paste feature, or font chooser (see Appendix A - DIAV system

menus).

3. The DIAV 2.0 system enables:

• Visualization of target and learned concepts

• Visualization of arbitrary rules either by specifying their description or by direct drawing

• Visualization of errors of commission, omission and the complete error image

• Construction of complex concepts by using AND, OR, DIFF, NOT, and XOR operators

• Projection of a given representation space into another one by removing and/or adding attributes

4. Future features of the DIAV system will include the following AQ-specific operators:

• operator refunion

• extension against (EA)

• square-root (the set of all maximal complexes inside the set

• star-of-event (SR (EA(e, NegEvents)))

2. Getting Started

5

2.1 System Requirements

In order to use the DIAV visualization program (hereafter referred to as DIAV), the following

system requirements must be satisfied:

• Macintosh System 7 or later.

• Installed Smalltalk/V Mac from Digitalk Inc.

• At least 2M of free RAM.

2.2 DIAV Distribution

The complete DIAV distribution is provided on a single diskette entitled DIAV 2.0, which contains

the following:

• DIAV - the DIAV application.

• ReadMe - the ReadMe text file. Be sure to read this file as it may contain important information

and instructions not provided in this manual.

• Example - the Example folder with an example knowledge representation space (Robots.rs),

target and learned concepts (Robots.tc1, Robots.lc1)

2.3 Running DIAV

To start DIAV, double-click on its icon to open the program. You can use DIAV without any

additional setting. If you wish, however, you can change default font style from the Window

menu.

DIAV is run under the control of Smalltalk/V Mac. This way, DIAV inherits whole functionality of

Smalltalk/V, allowing for file and string manipulation, as well as window control. It is easy to

distinguish between Smalltalk/V and DIAV environments by checking which set of menus is

currently available. Smalltalk/V uses the following menus: File Edit Smalltalk Window.

DIAV uses: File DIAV.1 DIAV.2 Window.

After the start, two windows are displayed (Figure 1). One window, Diagrammatic

Visualization System Ñ DIAV 2.0, is used for visualization of knowledge representation

spaces. This window comes with the DIAV menus. Another window is System Transcript.

This is Smalltalk's window, and when selected, Smalltalk's menus will become available. This

window is used by DIAV to display textual information about various transformations performed

on diagrams, such as, the number of commission errors, which file the representation space

description was read from, etc. Through this window, you can also specify rules to be displayed

by DIAV. At the beginning of the System Transcript there is a command: (DIAV new open:" on

nil) to open more DIAV-type windows. In order to create an additional window select (highlight)

the text of the command, including brackets, and select Do it from Smalltalk menu. This way

you can visualize many DIAV windows at the same time.

6

2.4 Text Editing

Text editing in DIAV is one of the features inherited from Smalltalk/V. It conforms to text editing

conventions of the Macintosh such as, moving the insertion point, deleting/inserting characters,

selecting words/lines/text, deselecting text, deleting selected text, cutting/coping/pasting selected

text.

The File menu contains all commands needed for text exditing and printing. They include, New,

Open ..., Save, Save As ..., Revert to Saved, Page Setup, and Print

2.5 Taking a Snapshot of the DIAV Screen

In order to make a snapshot of the current screen press the following keys Shift--3. A "Picture"

file will be created in the main folder. You can "cut and paste" a desired segment into your

publication.

2.6 Exiting DIAV

To exit DIAV and return to the Macintosh OS, select Quit from the File menu. You will be

prompted with a dialog box which asks whether or not to save your current environment — a kind

of snapshot of all existing objects on your DIAV desktop, including window placement and

7

contents. This way, when you restart DIAV program, you will begin right where you left off.

3. Visualization of the Knowledge Representation Space

DIAV employs a planar model of a multidimensional space spanned over a set of discrete

attributes. The model is in the form of a diagram, in which each cell represents a unique

combination of attribute values. Each attribute partitions the diagram into areas corresponding to

individual values of the attribute.

A representation space description is assumed to be in a form of a text file. This file has to begin

with a domain name followed by a specification of a size of the domain (for every attribute, the

number of values has to be specified). If there is no attribute and value definition following,

system will assume default names for attributes and their values (attributes can be then referred as

x0, x1, x2, ..., xn; values will be default numerical numbers: 0,1,2, ...). Values of an attribute

can be expressed as a list of nominal values (e.g., red, green, blue, yellow) or an interval (e.g., 10

.. 17).

The following is an EBNF syntax specification for domain description (see Appendix A. DIAV

Syntax, for detailed specification).

domainDescription = domainName "(" number { "," number } ")"

{ attributeName "=" interval |

 attributeName "=" attributeValue { "," attributeValue }

Example 1: The following description of the representation space is in the Robots.rs file.

Robots (3, 3, 2, 3, 4, 2)
hs = round, square, octagonal
bs = round, square, octagonal
sm = yes, no
ho = sword, balloon, flag
jc = red, green, blue, yellow
ti = yes, no

The Robots domain consists of six attributes. The header line defines the domain space: 3 x 3 x 2 x

3 x 4 x 2. The lines following the headline define names of attributes and their values. Figure 2a

shows the graphical representation of this domain after reading the description from the file. The

name of the representation space is placed as the window title. The diagram is partitioned into cells

by horizontal and vertical lines. Horizontal lines correspond to attributes described on the side of

the diagram (hs, bs, sm). Vertical lines correspond to attributes described below the diagram (ho,

jc, ti). The most outside attributes (hs and bs) generate the largest grid in the diagram (marked by

thickest lines). The most inside attributes (sm and ti) generate the smallest grid and are marked by

8

thinnest lines.

The attributes can be rearranged in the diagram by changing their sequence in the file describing the

representation space. Each example in the representation space has its unique representation in the

diagram.

Example 2:

Robots (3, 3, 2, 3, 4, 2)

Given this domain description, the system will generate the diagram shown in Figure 2b. Please

note default attribute names and values.

A. Attribute names and values defined by a user. B. Default attribute names and values.

Figure 2. Diagrammatic representations of the ROBOTS domain.

9

4. Diagrammatic Representation of Concepts

DIAV provides a visual interpretation of various aspects of concept learning. These include:

visualization of knowledge representation spaces, relationship between training examples, target

and learned concepts, visualization of changes in the representation space done by constructive

induction.

4.1 Visualization of Training Examples

There can be a number of ways to visualize preclassified examples of many classes. In the context

of concept learning, we use the following two modes for visualizing training examples.

1) Multi-class - mode. Training examples of different classes are visualized using consecutive

numbers. This mode allows seeing distribution of examples in the representation space.

2) Binary-class - mode. Training examples are visualized using "+" and "-" to distinguish between

positive and negative examples. Examples of some classes can be marked as positive examples,

and the remaining classes as negative examples. A special case of this type includes situation when

one class is selected as positive and other classes as negative. This is a typical strategy in multiple

concept learning (Example 3b).

A set of training examples for visualization is read from a text file. The file can be created using the

Smalltalk's editor (see Section 2.4 Editing Text). Training examples are grouped into classes and

represented as relational tables. Each class has to be identified by its name, and followed by the

line with attribute names defining their order in the table. Training examples are listed in the

following lines.

In order to display examples in the multi-class mode select Multiclass examples from

DIAV.2 menu, and than select the file with training examples as in Example 3a. In order to

dispaly the same training examples in the binary-class mode, change class labels to Positive and

Negative as in Example 3b, select Training Examples from DIAV.1 menu, and identify the

data file. If you want to display Positive or Negative examples only, select Positive

Examples, or Negative Examples, respectively.

Ambiguous examples, i.e. examples that have the same attribute values but different class labels,

are marked with # in the multi-class mode, and with in the binary-class mode. In Figure 3, the

example [hs=square] & [bs=round] & [sm=no] & [ho=flag] & [jc=yellow] & [ti=yes] belongs to both Class1 and

Class2, and therefore is ambiguous.

10

Example 3a. Multi-class examples

! Class1 !
h s b s sm ho j c t i
round round no sword red yes
round square no sword red yes
round square no sword red no
square round yes sword red yes
square round yes sword red no
square round no flag yellow yes

! Class2 !
h s b s sm ho j c t i
square square yes sword yellow no
square octagonal yes sword yellow no
square square no sword yellow no
square octagonal no sword yellow no
square round yes flag yellow yes
square round no flag yellow yes

! Class3 !
h s b s sm ho j c t i
round octagonal yes sword yellow yes
octagonal octagonal yes sword yellow no
round octagonal no sword yellow yes

! Class4 !
h s b s sm ho j c t i
round octagonal yes flag yellow yes
round octagonal yes flag yellow no
square octagonal yes flag yellow yes
square octagonal yes flag yellow no
octagonal octagonal yes flag green yes
octagonal octagonal yes flag green no
octagonal octagonal no flag green yes
octagonal octagonal no flag green no

Example 3b. Positive and negative examples

! Negative !
h s b s sm ho j c t i
round round no sword red yes
round square no sword red yes
round square no sword red no
square round yes sword red yes
square round yes sword red no
square round no flag yellow yes

! Positive !
h s b s sm ho j c t i
square square yes sword yellow no
square octagonal yes sword yellow no
square square no sword yellow no
square octagonal no sword yellow no
square round yes flag yellow yes
square round no flag yellow yes

! Negative !
h s b s sm ho j c t i
round octagonal yes sword yellow yes
octagonal octagonal yes sword yellow no
round octagonal no sword yellow yes

! Negative !
h s b s sm ho j c t i
round octagonal yes flag yellow yes
round octagonal yes flag yellow no
square octagonal yes flag yellow yes
square octagonal yes flag yellow no
octagonal octagonal yes flag green yes
octagonal octagonal yes flag green no
octagonal octagonal no flag green yes
octagonal octagonal no flag green no

- ambiguous example - ambiguous example

Figure 3. Visualization of multi-class and binary-class training examples

4.2 Visualization of Target and Learned Concepts

In DIAV, concepts are expressed using a modified version of variable-valued logic (VL1)

11

language. A concept can be described using either rules or examples (Figures 4 & 5). The rules

consist of conjunctive conditions enclosed in brackets. The rules are separated by semicolons. The

conditions relate attribute with their possible values.

If the concept is specified using examples, a list of attribute names should appear before the

examples to define order of attribute values in the table.

The concept representation in the form of rules is useful for symbolic learning systems that

produce output of this kind, e.g. AQ15 (Michalski et al, 1986), C4.5 (Quinlan, 1993). For

nonsymbolic learning systems, such as, neural networks, genetic algorithms, the concept

representation in the form of examples facilitates visualization of results from those systems (Wnek

et al., 1989).

concept = rule { ";" rule } |

listOfAttributeNames example { example }

rule = condition { condition }

condition = "[" expression "]"

expression = attributeName REL attributeValue { "," attributeValue} |

attributeName "=" interval

REL = "<" | "<=" | "=" | "=>" | ">"

interval = attributeValue ".." attributeValue

listOfAttributeNames = attributeName { attributeName }

example = attributeValue { attributeValue }

Figure 4. Concept representation using rules or examples

An important feature of DIAV is that it permits displaying steps in concept learning. The set of cells

representing the target concept (the concept to be learned) is called target concept image (T). The

set of cells representing the learned concept is called learned concept image (L). Concept images

are represented in the diagrams by shaded areas. Target concept image is represented by light gray

shade, learned concept image is represented by dark gray shade.

If the target and learned concepts are both visualized in the same diagram, then their overlap

becomes black. One of the three cases may occur. If the learned concept totally matches the target

concept then the whole image is black. If there are some areas of the target concept not covered by

the learned concept description then these areas reflect errors of omission (light gray area). If the

learned area is larger than the target (overgeneralization of the concept), then the dark gray area

represents errors of commission (Figure 6).

12

Example 5a. The concept represented as a set
of examples

h s b s sm ho j c t i
round square no sword red yes
round square no sword green yes
round square no sword blue yes
round square no sword yellow yes
round square no sword red no
round square no sword green no
round square no sword blue no
round square no sword yellow no
round square no flag red yes
round square no flag green yes
round square no flag blue yes
round square no flag yellow yes
round square no flag red no
round square no flag green no

round square no flag blue no
round square no flag yellow no
octagonal square no balloon red yes
octagonal square no balloon green yes
octagonal square yes balloon red yes
octagonal square yes balloon green yes
octagonal square no balloon red no
octagonal square no balloon green no
octagonal square yes balloon red no
octagonal square yes balloon green no

Example 5b. The concept represented as a set
of rules

[hs=round] [bs=square] [sm=no] [ho=sword, flag] ;
[hs=octagonal] [bs=square] [ho=balloon] [jc=red, green]

Figure 5. Concept visualization from descriptions in the form of examples or rules.

13

A. Target concept image B. Learned concept image

C. Target and learned concept image D. Error area image

Figure 6. Target and learned concept images and their relationship.

4.3 Concept Construction

DIAV enables construction of arbitrary concept images. A concept image is constructed either by

direct selection of examples on the screen or by combining current concept image with other

concept descriptions using predefined operators such as, AND, OR, DIFF, NOT, and XOR. The

direct selection of examples is done by clicking on selected cells in the diagram. Clicking on an

empty cell adds the cell into the concept image. Clicking on an cell belonging to the concept image

removes the cell from the concept image. The concept image can be combined with another concept

by selecting one of the predefined operators and the concept description stored in a file. The

concept description can be in the form of rules or examples.

14

The constructed concept image can at any time be transformed into the concept description in the

form of positive and negative examples and stored in a file. It can later be used as an input for a

learning system.

In order to construct a concept image, display a new Representation Space or select

Clear Diagram to clear the current one. Next, select Construct a Concept to initialize

the concept image by either direct input or visualization of the concept description stored in a file.

Next, combine the image with other concept descriptions using the AND, OR, DIFF, NOT, and

XOR operators from the DIAV menu. At any time, the concept image can be changed by directly

switching on/off concept examples.

Figure 7 illustrates application of various operators used in constructing concept images in the

Robots representation space. The descriptions of the initial concept A and other concepts (B, D, F,

and H) used as operands were stored in separate files. Below are the concept descriptions in the

form of rules.

A [ho=sword,flag];

[ho=balloon] [hs=square]

B [hs=square];

[ho=balloon] [hs=octagonal] [bs=square]

D [bs=square]

F [ho=balloon] [hs=square];

[ho=flag] [hs=round,octagonal] [bs=round]

H [jc=red,blue]

The following sequence of commands constructs the images shown in Figure 7. It starts with

displaying the initial concept A. This concept image is combined using operator AND with the

concept B. The resulting image (concept C) is combined with concept D using operator OR, etc.

Construct a Concept Input: A Output: A

AND Input: A, B Output: C

OR Input: C, D Output: E

DIFF Input: E, F Output: G

15

XOR Input: G, H Output: I

NOT Input: I Output: J

The following transcript is created in the System Transcript window:

Domain description read from file:

...:Constructing concepts:Robots.rs

A concept read from file:

...:Constructing concepts:ConstructConcept.a

AND concept from file:

...:Constructing concepts:ConstructConcept.b AND

OR concept from file:

...:Constructing concepts:ConstructConcept.c OR

DIFF concept from file:

...:Constructing concepts:ConstructConcept.d DIFF

XOR concept from file:

...:Constructing concepts:ConstructConcept.e XOR

NOT

16

A B

C := A AND B D

E := C OR D F

Figure 7. Constructing concept images.

17

G := E \ F H

I := G XOR H J := NOT I

Figure 7 (cont.). Constructing concept images.

The following example (Figure 8) shows construction of symmetrical concepts using the XOR

operator (Wnek and Michalski, 1994). In the 4-dimensional representation space represented by 4

binary attributes, x0, x1, x2, x3, the initial concept is [x0=0]. Consecutive concepts are created by

executing the XOR operation with [x1=0], [x2=0], [x3=0] rules, respectively. The resulting

concept D is symmetrical with respect to all four attributes. (It represents the parity concept "odd

number of attributes have value 1").

18

A := [x0=0] B := A xor [x1=0] C := B xor [x2=0] D := C xor [x3=0]

Figure 8. Constructing concept images: symmetrical concepts.

A concept can be saved in the form of training examples in two formats: one is AQ-type format and
second is C4.5 (ID3)-type format. The following commands allow saving the constructed concept:
Save Concept AQ and Save Concept C4.5. The examples below show descriptions
created for the concept D.

Example 5. Examples defining the constructed concept as saved in AQ and C4.5 formats

5a. AQ format

p-events
x0 x1 x2 x3
 0 0 0 1
 0 0 1 0
 0 1 0 0
 0 1 1 1
 1 0 0 0
 1 0 1 1
 1 1 0 1
 1 1 1 0
n-events
x0 x1 x2 x3
 0 0 0 0
 0 0 1 1
 0 1 0 1
 0 1 1 0
 1 0 0 1
 1 0 1 0
 1 1 0 0
 1 1 1 1

5b. C4.5 format

x0 x1 x2 x3
0,0,0,1,p
0,0,1,0,p
0,1,0,0,p
0,1,1,1,p
1,0,0,0,p
1,0,1,1,p
1,1,0,1,p
1,1,1,0,p
0,0,0,0,n
0,0,1,1,n
0,1,0,1,n
0,1,1,0,n
1,0,0,1,n
1,0,1,0,n
1,1,0,0,n
1,1,1,1,n

The next example (Figure 9) shows symmetry of the Monk2 concept. Diagram A shows a

symmetrical concept constructed by performing XOR operation on all first attribute values.

Therefore, the diagram shows concept odd(FirstValue(Attribute)). Diagram B shows the Monk2

concept. Diagram C shows the odd(FirstValue(Attribute)) concept in light gray shading and the

Monk2 concept in gray shading. There is no intersection between the two. Diagram D shows the

negated concept odd(FirstValue(Attribute)) and the Monk2 concept. The black area (intersection of

19

the two concepts) is exactly the Monk2 concept. The negation of odd(FirstValue(Attribute)) is

even(FirstValue(Attribute)). Monk2 is a subconcept of even(FirstValue(Attribute)).

A. odd(FirstValue(Attribute)) B. Monk2

C. odd(FirstValue(Attribute)) or Monk2 D. even(FirstValue(Attribute)) or Monk2

Figure 9. Constructing concept images: the symmetry of the Monk2 concept.

20

5. Changing the Representation Space

The representation space transformations may involve contraction, expansion, or exchange

operations. In the context of the attribute-value concept representation, contraction is done by

removing attributes, or combining attribute values into larger units. Expansion is done by adding

new attributes or by adding new attribute values to the value sets of existing attributes. Exchange is

done by replacing original attributes with new ones.

All transformations of the representation space are performed using the Project to ...

command. DIAV prompts for a new description file, and creates an internal mapping between the

representations. A new window with a diagram is created for the new representation space. The

diagram is labeled with its predecessor's name followed by semicolon and new domain name read

from the description file (e.g. Original_RS:New_RS). Next, by selecting commands, such as

Training Examples, Target Concept, etc., DIAV will project examples or concepts

from the previous representation space to the new one (instead of reading them form a file).

The new representation space description file has similar syntax to the description file of the

original representation space. Additional components consist of definitions of new attribute values.

Those definitions use original attributes and are in the DNF form (see the DIAV Syntax section).

5.1 Contraction

In some situations, there is an interest in displaying an image of a reduced (abstracted)

representation space. For example, some constructive induction learning systems reduce

knowledge representation spaces to remove redundancy or insignificant attributes (Wnek, 1993;

Wnek & Michalski, 1994). The representation space can be reduced either by removing some

attributes, or by replacing some attribute values by more general values. Representation space

contraction can lead to interesting observations, like finding strong relationships between

attributes, or on the other hand, finding irrelevant attributes.

The example below, illustrates the two ways of contracting the representation space. We begin

with the Robots representation space and four positive and one negative example (Figure 10a).

21

! Positive !
 hs bs sm ho jc ti
octagonal round no balloon red yes
octagonal round no balloon green yes

square round no sword red yes
round square yes flag red no

! Negative !
 hs bs sm ho jc ti

square square yes flag yellow no

Figure 10a. Original representation space with 5 training examples.

Figure 10b illustrates the representation space contraction by removing the attribute "jc". The new

domain description file was created by simply changing the domain name and by removing "jc"

attribute description. In the abstracted representation space, some examples from one class may

end up having the same description and therefore be placed in the same diagram cell. This

operation combined two different examples of the positive class into two equivalent examples.

! Positive !
 hs bs sm ho jc ti
octagonal round no balloon red yes
octagonal round no balloon green yes

Robots_jc_removed (3,3,2,3,2)

hs = round, square, octagonal
bs = round, square, octagonal
sm = yes,no
ho = sword,balloon,flag
ti = yes,no

Figure 10b. Contracted representation space by removing an attribute.

22

Figures 10c, 10d illustrate the contraction operation by both removing the attribute "jc" and the

attribute value "hs=square". In order to remove attribute values they have to be combined into

larger units with other attribute values. Figure 10c shows how the representation space changes

when the "hs=square" is combined with "hs=round" into a larger unit "Hs=x". Figure 10d shows

"hs=square" combined with "hs=octagonal" into "Hs=x". Note, that the attribute with combined

values has different name and attribute values. The modified attribute is defined by specifying its

attribute values in relation to the original values. For example, "Hs=x" in Figure 10c is defined as

"hs=round" or "hs=square". "Hs=octagonal" is just a copy of "hs=octagonal".

Contraction operation may cause ambiguity of some of the training examples. Figure 10c shows

how two different examples of two different classes were combined into two ambiguous examples.

! Positive !
 Hs bs sm ho jc ti

x square yes flag red no

! Negative !
 Hs bs sm ho jc ti

x square yes flag yellow no

Robots_jc_hs_s_removed1 (2,3,2,3,2) Robots_jc_hs_s_removed2 (2,3,2,3,2)

Hs = x, octagonal Hs = round, x
bs = round, square, octagonal bs = round, square, octagonal
sm = yes,no sm = yes,no
ho = sword,balloon,flag ho = sword,balloon,flag
ti = yes,no ti = yes,no

!Hs=x! !Hs=round!
[hs=round]; [hs=round]
[hs=square]

!Hs=octagonal! !Hs=x!
[hs=octagonal] [hs=square];

[hs=octagonal]

Figure 10c. Ambiguity caused by contraction Figure 10d. Alternative combination of attribute values

23

5.2 Expansion

The representation space expansion operation is done by adding new attribute definitions or by

adding new attribute vales to the value sets of existing attributes. The changes have to be specified

in the file defining the new representation space. The new attribute values are defined using

original attributes in DNF expressions.

Expansion may remove ambiguity of examples in the representation space. There may be,

however, different side effect of this operation. In the process, some impossible areas may be

created (Wnek, 1993). The impossible areas consist of impossible instances, i.e. instances that do

not have equivalent descriptions in the original representation space.

Figure 11a shows a five-dimensional binary representation space. In order to show how examples

of a given concept are projected, the complete set of examples is used. Figure 11b shows the

expanded representation space. One binary attribute was added that separates most of the positive

examples from negative examples. This operation caused, however, creation of impossible

instances. (For an analysis of impossible areas and ways of informing learning systems about their

existence, see Wnek, 1993).

Concept <:: [x1=1] [x2=1]; !c1=1!
[x3=1] [x4=0] [x5=1] [x1=1] [x2=1]

11a. The Concept in 5D representation space. 11b. The Concept in the expanded representation space.
Blank cells indicate impossible instances (no instances
from the original representation space were projected onto).

Figure 11. Expansion of the representation space.

24

5.3 Exchange

The representation space exchange operation occurs when some attributes are replaced by new

attributes. In order to maintain projection capability between the two representation spaces, there

have to be a relationship between the original and the new attributes. Similarly to the expansion

operation the new attribute values are expressed using original attributes in DNF expressions.

Attributes that are being replaced have to be removed from the domain description.

Figure 12 presents two consecutive exchanges of the representation space. The first exchange

occurs between the bin4—four dimensional binary representation space and the xor—two

dimensional three-valued representation space. The second exchange occurs between the xor

representation space and the ca—one dimensional representation space.

12a. bin4: the original
representation space

bin4 (2, 2, 2, 2)
x0 = 0,1
x1 = 0,1
x2 = 0,1
x3 = 0,1

12b. bin4 representation space
projected onto xor

xor(3,3)
s0 = 0,1,2
s1 = 0,1,2

!s0=0!
[x0=0] [x1=0]

!s0=1!
[x0=0] [x1=1];
[x0=1] [x1=0]

!s1=0!
[x2=0] [x3=0]

!s1=1!
[x2=0] [x3=1];
[x2=1] [x3=0]

12c.xor representation space
projected onto ca

ca(5)
ca = 0..4

!ca=0!
[s0=0] [s1=0]

!ca=1!
[s0=0] [s1=1];
[s0=1] [s1=0]

!ca=2!
[s0=0] [s1=2];
[s0=1] [s1=1];
[s0=2] [s1=0]

!ca=3!
[s0=1] [s1=2];
[s0=2] [s1=1]

Figure 12. Two exchanges of the representation spaces.

27

In the first mapping from bin4 to xor, attributes x0 and x1 are replaced by the s0 attribute.

Symmetrically, x2 and x3 are replaced by the s1 attribute. Value s0=0 representing the top row in

the bin4:xor diagram replaces the conjunction [x0=0] & [x1=0], i.e. the top row in the bin4

diagram. Value s0=1 representing the middle row in the bin4:xor diagram replaces the disjunction

[x0=1] & [x1=0] or [x0=0] & [x1=1], i.e. two middle rows in the bin4 diagram. The two rows

can be merged without causing ambiguity because they are symmetrical. Value s0=2 representing

the bottom row in the bin4:xor diagram replaces the conjunction [x0=1] & [x1=1], i.e. the bottom

row in the bin4 diagram. Since this value complements other values it is not necessary to specify it

in the attribute definition.

In the second mapping from xor to ca, attributes s0 and s1 are replaced by the ca attribute. As a

result of the two transformations, a 16-element representation space was compressed into 5-

element representation space.

The presented operations do not cause ambiguity or impossible areas in the new representation

spaces. This is due to the symmetry in the original representation space and proper operators used

in changing the representation space. The changes in the representation space presented here are

related to the problem of detecting symmetries in the representation spaces and constructing

counting attributes (Wnek and Michalski, 1994).

28

6. Demo: STAR generation

Seed positive example STARSelected negative example

Positive example Negative example

Seed positive example STARSelected negative example

Positive example Negative example Uncovered

A. Generating the 1st STAR.

STAR []

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
1 - [x1=1] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]

AQ starts with the most general cover, i.e. the whole
representation space is covered (light gray area). The first
positive example (seed) (1+) is selected for STAR
generation. Since the current STAR also covers negative
examples, AQ selects its first negative example (1-) for
uncovering. The selected negative example is as close as
possible, in terms of different attribute values, to the seed
positive example. In this case, the two examples differ only
in the x1 attribute (boldfaced descriptions).

B. Generating the 1st STAR: after the 1st specialization.

STAR [x1=0,2]

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
2 - [x1=0] [x2=2] [x3=1] [x4=1] [x5=3] [x6=1]

As a result of the first "extend against" operation the
negative example (1-) is no longer covered because [x1=1]
was removed from the coverage. The current cover is
equivalent to a simple rule [x1=0, 2].

AQ continues building the STAR around the same seed
positive example (1+). The next negative example (2-) is
selected. The examples have different x2 attribute values.

C. Generating the 1st STAR: after the 2nd specialization.

STAR [x1=0,2] [x2=0,1]

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
3 - [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=0]

The STAR was further specialized by adding condition
[x2=0,1]. There are still uncovered negative examples, e.g.
3-.

29

D. Generating the 1st STAR: after the 3rd specialization.

STAR [x1=0,2] [x2=0,1] [x6=1]

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
4 - [x1=2] [x2=0] [x3=1] [x4=2] [x5=3] [x6=1]

The STAR was further specialized by adding condition
[x6=1]. The next uncovered negative example (4-) differs
with the seed on two attributes, x1 and x4.

E. Generating the 1st STAR: after the 4th specialization.
STAR [x 1 = 0] [x2=0,1] [x6=1] (t:8)

[x 1 = 0 , 2] [x2=0,1] [x 4 = 0 , 1] [x6=1] (t:12)

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
5 - [x1=0] [x2=1] [x3=1] [x4=2] [x5=3] [x6=1]

The cover under consideration consists now of two rules.
This is a result of two-way specialization based on the two
different values of attributes x1 and x4. In the next steps, AQ
will maintain at most 2 rules in the partial star because the
maximum number of rules in the partial cover parameter
MAXSTAR is set to 2. The rules maintained in the partial
cover compete with each other according to the preference
(selection) criteria. For the current run, the rule with the
higher coverage of positive examples is assumed to be
better. The first rule covers 8 positive examples (t:8), the
second rule covers 12 positive examples (t:12).
The two rules overlap over the area that covers the seed. The
area of overlap is described by: [x1=0] [x2=0,1] [x4=0,1] [x6=1]

F. Generating the 1st STAR: after the 5th specialization.

STAR [x1=0,2] [x2=0,1] [x4=0,1] [x6=1]
[x1=0] [x2=0] [x6=1]

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
6 - [x1=0] [x2=0] [x3=1] [x4=2] [x5=0] [x6=1]

As a result of the specialization of the STAR from step E,
three rules are generated:
 1 [x1=0,2] [x2=0,1] [x4=0,1] [x6=1] (t:12)
 2 [x1=0] [x2=0] [x6=1] (t:2)
 3 [x1=0] [x2=0,1] [x4=0,1] [x6=1] (t:3)

Since rule #3 is subsumed by rule #1, rule #3 is removed from
the cover. This way, there are only two rules in the partial
cover, and therefore, there is no need to trim the cover as
required by the MAXSTAR parameter.

30

Rule #1 Rule #2 Rules #1 and #2

Partial STAR Training examples Current cover

G. Generating the 1st STAR: before the last specialization.

STAR #1 [x1=0,2] [x2=0] [x4=0,1] [x5=1,2,3] [x6=1]
#2 [x1=0,2] [x2=0,1] [x4=0,1] [x5=3] [x6=1]

Selected examples for the next specialization step:
1 + [x1=0] [x2=0] [x3=1] [x4=1] [x5=3] [x6=1]
n - [x1=0] [x2=0] [x3=0] [x4=0] [x5=1] [x6=1]

Some steps uncovering consecutive negative examples were
skipped. When we resume this demonstration, there is one
negative example left to uncover. This negative example
differs from the seed positive example on three attributes,
x3, x4, and x5.

H. Selecting the best rule from the first STAR.

STAR #1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1](t:5)
#2 [x1=0,2] [x2=0] [x4=1] [x5=1,2,3] [x6=1](t:4)

The rules in the star do not cover any negative examples.
The best rule (#1) is selected (light gray area and the
overlapping with rule #2 area; also as black area in the next
Figure). The rule covers 5 positive examples versus 4
examples covered by the second rule. The best rule is saved
in the current cover.

I. Before generating the 2nd STAR.

C o v e r
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)

STAR []

Selected examples for the next specialization step:
2 + [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]
1 - [x1=1] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]

The best rule (black area) covers 5 positive examples. The
rule is saved in the current cover.

There are still positive examples not covered by the Cover.
AQ selects a seed example for the second STAR, and the first
negative example for STAR specialization based on its
proximity to the new seed.

31

Current coverRule #1 Rule #2 Rules #1 & #2

J. Generating the 2nd STAR: after the 1st specialization.

C o v e r
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)

STAR [x1=0,2]

Selected examples for the next specialization step:
2 + [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]
2 - [x1=2] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1]

K. Generating the 2nd STAR: after the last specialization.

C o v e r
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)

STAR 1 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
2 [x1=0] [x2=0,2] [x4=2] [x5=1,3] [x6=1] (t:3)

The rule with the higher (t:5) coverage of positive examples
is selected for the Cover (see Figure L).

L. Before generating the 3rd STAR.

C o v e r
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)

STAR []

Selected examples for the next specialization step:
3 + [x1=0] [x2=1] [x3=0] [x4=1] [x5=2] [x6=1]
1 - [x1=0] [x2=1] [x3=0] [x4=1] [x5=2] [x6=0]

The Cover was expanded by the second rule. The total
number of positive examples covered is now 10.

32

M. Before generating the 4th STAR.

C o v e r
1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
3 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:4)

Selected examples for the next specialization step:
4 + [x1=0] [x2=1] [x3=0] [x4=2] [x5=2] [x6=1]
1 - [x1=0] [x2=1] [x3=1] [x4=2] [x5=2] [x6=1]

N. Before generating the last STAR.
C o v e r
 1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
 2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
 3 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:4)
 4 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9)
 5 [x1=0,2] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4)
 6 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3)
 7 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4)
 8 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4)
 9 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8)
10 [x2=0] [x3=1] [x5=1] [x6=0] (t:3)
11 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3)
12 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t:9)
13 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4)
14 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7)
15 [x1=1,2] [x2=2] [x4=0] [x5=1,2] [x6=1] (t:2)

Selected examples for the next specialization step:
n + [x1=2] [x2=1] [x3=0] [x4=1] [x5=0] [x6=1];
1 - [x1=2] [x2=0] [x3=0] [x4=1] [x5=0] [x6=1]

O. After generating the last STAR.
C o v e r
 1 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5)
 2 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5)
 3 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:4)
 4 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9)
 5 [x1=0,2] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4)
 6 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3)
 7 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4)
 8 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4)
 9 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8)
10 [x2=0] [x3=1] [x5=1] [x6=0] (t:3)
11 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3)
12 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t:9)
13 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4)
14 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7)
15 [x1=1,2] [x2=2] [x4=0] [x5=1,2] [x6=1] (t:2)
16 [x1=2] [x2=1,2] [x4=1] [x5=0,3] (t:3)

33

Description (cover) optimization

After all positive examples are covered, AQ optimizes the cover according to the "trim" parameter.
For general (discriminant) descriptions (with the trim parameter set to "gen") the cover remains
unchanged. The following figures illustrate the differences between the general description and two
additional description types: specific (characteristic) and minimal complexity. All description types
are consistent and complete with regard to the training set of examples, i.e. none of the negative
examples is covered and all of the positive examples are covered.

Since each condition applies a further constraint on the examples that satisfy the rule, the removal
of conditions will generalize the rule. Since each value in a condition loosens the constraint given
by that condition the removal of values in a condition will specialize the rule. Hence the covers can
be described as follows:

General (discriminant) description (GD) consists of rules as general as possible, i.e. involving
the minimum number of conditions, each condition with a maximum number of values.

Minimal description (MD) consists of rules as simple as possible, i.e. involving the minimum
number of conditions, each condition with a minimum number of values.

Specific (characteristic) description (SD) consists of rules as specific as possible, i.e.
involving the maximum number of conditions, each condition with a minimum of values.

General cover
 1 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t:9, u:8)
 2 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9, u:4)
 3 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8, u:6)
 4 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7, u:5)
 5 [x2=1] [x3=0] [x4=0,1] [x5=1,2,3] [x6=1] (t:5, u:3)
 6 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5, u:2)
 7 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5, u:1)
 8 [x1=0,2] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4, u:4)
 9 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4, u:4)
10 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4, u:3)
11 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4, u:2)
12 [x2=0] [x3=1] [x5=1] [x6=0] (t:3, u:3)
13 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)
14 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)
15 [x1=2] [x2=1,2] [x4=1] [x5=0,3] (t:3, u:1)
16 [x1=1,2] [x2=2] [x4=0] [x5=1,2] [x6=1] (t:2, u:2)

GD 7 [x1=0] [x4=1,2] [x5=1] [x6=1] (t:5, u:1)
MD 14 [x1=0] [x4=2] [x5=1] [x6=1] (t:3, u:1)
SD 16 [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1] (t:1, u:1)

The above comparison of the three descriptions details
differences between the cover types in terms of numbers of
conditions and condition values. The GD7 rule has more x4
attribute values than the corresponding rules, SD16 and
MD14, from the other covers. SD16 meanwhile, has more
conditions than GD7 and MD14, namely conditions that
specify the values of x2 and x3.

Minimal cover
 1 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t:9, u:8)
 2 [x1=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9, u:7)
 3 [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8, u:6)
 4 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] (t:7, u:6)
 5 [x1=0,2] [x2=0] [x4=0,1] [x5=2,3] [x6=1] (t:5, u:2)
 6 [x1=0] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4, u:4)
 7 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4, u:4)
 8 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1] (t:4, u:3)
 9 [x1=0,1] [x2=2] [x4=2] [x5=0,1] (t:4, u:2)
10 [x2=0] [x3=1] [x5=1] [x6=0] (t:3, u:3)
11 [x2=1] [x3=0] [x4=0] [x5=1,2,3] [x6=1] (t:3, u:3)
12 [x2=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)
13 [x1=1,2] [x3=1] [x5=0] [x6=1] (t:3, u:2)
14 [x1=0] [x4=2] [x5=1] [x6=1] (t:3, u:1)
15 [x1=1,2] [x2=2] [x4=0] [x5=2] [x6=1] (t:2, u:2)
16 [x1=2] [x2=1] [x4=1] [x5=0] (t:2, u:1)

Specific cover
 1 [x1=0] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:9, u:8)
 2 [x1=1,2] [x2=1,2] [x3=0] [x4=1,2] [x5=1,2,3] [x6=0] (t:9, u:8)
 3 [x1=1,2] [x2=0] [x3=0] [x4=1,2] [x5=1,2,3] [x6=1] (t:8, u:8)
 4 [x1=1,2] [x2=1,2] [x3=1] [x4=1,2] [x5=0] [x6=0] (t:7, u:7)
 5 [x1=0] [x2=1] [x3=1] [x4=1,2] [x5=2,3] [x6=0] (t:4, u:4)
 6 [x1=1,2] [x2=1,2] [x3=1] [x4=0] [x5=1,2,3] [x6=0] (t:4, u:4)
 7 [x2=0,2] [x3=1] [x4=0] [x5=1,2] [x6=1](t:4, u:3)
 8 [x1=0,1] [x2=2] [x4=2] [x5=0,1](t:4, u:2)
 9 [x1=1,2] [x2=0,2] [x3=1] [x4=0,2] [x5=0] [x6=1] (t:3, u:3)
10 [x1=1,2] [x2=0] [x3=1] [x4=1,2] [x5=1] [x6=0] (t:3, u:3)
11 [x1=1,2] [x2=1] [x3=0] [x4=0] [x5=1,2,3] [x6=1] (t:3, u:3)
12 [x1=0,2] [x2=0] [x3=1] [x4=0,1] [x5=2,3] [x6=1] (t:3, u:2)
13 [x1=1,2] [x2=2] [x3=0] [x4=0] [x5=2] [x6=1] (t:2, u:2)
14 [x1=0] [x2=1,2] [x3=1] [x4=1,2] [x5=0] [x6=1] (t:2, u:2)
15 [x1=2] [x2=1] [x3=0] [x4=1] [x5=0] [x6=1] (t:1, u:1)
16 [x1=0] [x2=0] [x3=1] [x4=2] [x5=1] [x6=1] (t:1, u:1)

The rules are presented in the AQ15c format. Each rule is accompanied with two numbers: "t" is
the total number of positive examples covered by the rule, "u" is the number of positive examples
uniquely covered by the rule. Unique coverage means that none of the other rules in the
description, covers those examples. The rules in each of the descriptions are ordered according to
the t and u weights.

Since the trimming process may change a rule's coverage, the rule may be placed in different
positions of the cover lists. For example, rule #7 in the general cover becomes #14 in the minimal
cover, and #16 in the specific cover. Note also changes in the total and unique coverage values of
this rule.

34

A. General vs. minimal description.

The general cover is equivalent to the cover obtained after
the last STAR generation (Figure O).

The minimal cover (black area) covers a smaller area of the
representation space than the general cover (gray and black).
The two covers differ in 21 locations.

B. General vs. specific (characteristic) description.

The specific cover (black area) covers a smaller area of the
representation space than the general cover. In this case, the
specific cover differs from the general cover in 53 locations.

C. Minimal vs. specific description.

The specific cover (black area) covers a smaller area of the
representation space than the minimal cover. In this case,
the specific cover differs from the minimal cover in 32
locations.

Note.
The term minimal description refers to the number of
conditions and condition values used in the description.
Minimal description has usually larger coverage (in terms of
the number of instances covered) than the specific
description.

35

7. Simple session with DIAV 2.

1. Start the DIAV system by clicking twice on the icon.

2. Create a new file with the domain description.
2.1 Select New command from File menu.
2.2 Type in the domain description, e.g.

Robots (3, 3, 2, 3, 4, 2)

hs = round, square, octagonal
bs = round, square, octagonal
sm = yes, no
ho = sword, balloon, flag
jc = red, green, blue, yellow
ti = yes, no

2.3 Save the domain description by chosing Save as ... from the File menu. Type in the file
name, e.g., robotsDomain, and click on Save button.

3. Create a file with a target concept description.
3.1 Select New command from File menu.
3.2 Type in the target concept description, e.g.

[hs = round] [jc = red] ;
[hs = square] [ho = balloon]

3.3 Save the target concept description by chosing Save as ... from the File menu. Type in the
file name, e.g., targetConcept, and click on Save button.

4. Create a file with a learned concept description.
4.1 Select New command from File menu.
4.2 Type in the learned concept description, e.g.

[hs = round,square] [ho = sword,balloon] [jc = red,green]

4.3 Save the learned concept description by chosing Save as ... from the File menu. Type in
the file name, e.g., learnedConcept, and click on Save button.

5. Create a file with training examples.
5.1 Select New command from File menu.
5.2 Type in the positive and negative examples descriptions, e.g.

! Positive !
hs bs sm ho jc ti
round round yes sword red no
round square yes sword red yes
round octagonal yes balloon red yes
square square yes balloon red yes
square square no balloon green yes

36

! Negative !
hs bs sm ho jc ti
round octagonal yes sword yellow no
square octagonal yes sword yellow no
octagonal square no sword green no
octagonal round yes sword blue yes
octagonal octagonal no balloon green no
octagonal round no balloon blue no
octagonal square yes flag red no
octagonal round no flag green no
round octagonal no flag blue yes
round octagonal no flag green yes
square round yes flag yellow yes

5.3 Save the exmaples description by chosing Save as ... from the File menu. Type in the file
name, e.g., trainingExamples, and click on Save button.

6. Display a diagram representing the domain.
6.1 Select Representation Space from DIAV.1 menu.
6.2 Open robotsDomain file.

7. Display the target concept.
7.1 Select Target Concept from DIAV.1 menu.
7.2 Open the targetConcept file.

8. Display the learned concept.
8.1 Select Learned Concept from DIAV.1 menu.
8.2 Open learnedConcept file.

9. Display the positive examples.
9.1 Select Positive Examples from DIAV.1 menu.
9.2 Open trainingExamples file.

10. Display the negative examples.
10.1 Select Negative examples from DIAV.1 menu.
10.2 Open trainingExamples file.

11. Display errors of commission.
11.1 Select Errors of commission from DIAV.1 menu.

12. Display errors of omission.
12.1 Select Errors of omission from DIAV.1 menu.

13. Display total error area.
13.1 Select Total error area from DIAV.1 menu.

37

8. DIAV System Menus

 DIAV.1

Representation Space Read domain and display its representation

Training Examples Display positive and negative examples

Positive Examples Display positive examples

Negative Examples Display negative examples

Target Concept Display a target concept (in light gray shade)

Learned Concept Display a learned concept (in dark gray shade)

Project to ... Project current representation space on another domain

Display Rule from Transcript Convert highlighted text to a graphical rule

Errors of commission Show commission error image

Errors of omission Showomission error image

Total error area Show error image

Hide Grid Define examples representing a concept

Clear Diagram Clear screen

 DIAV.2

Multiclass Examples Disp. ex. using consecutive numbers for each concept

Multiclass Rules Display rules using different shades for each concept

Construct a Concept Construct a concept in a given representation space

AND AND, OR, DIFF, XOR operators

OR combine currently displayed concept with a concept

DIFF description read from a file

XOR

NOT Negate currently displayed concept

Save Concept in AQ Format Save examples defining currently displayed concept

Save Concept in C4.5 Format Use C4.5 format

STAR Method - step by step Step by step demo of the STAR learning method

STAR Method - animated Animated demo of the STAR learning method

38

 File

New Create new text file using text editor

Open ... Open file window for editing

File In ... Read and execute Smalltalk source code

Browse Classes Open multi-paned browser on available Smalltalk code

Close Close file window

Save Save the text contents of the currently active window

Save as ... Save the text contents in the specified file

Revert to Saved Replace with the last version saved on disk

Page Setup Setup for page printing

Print Print the contents of the active text window

Save Image Save the state of environment to disk

Quit Quit the system

 Edit

Undo Undo a last operation

Cut Cut a portion of text and copy it to clipboard

Copy Copy text to clipboard

Paste Paste from clipboard

Clear Delete highlighted text

Select All Select a contents of current pane/window

Find ... Find string in a text of current pane/window

Replace ... Find and replace text

Search Again Repeat searching/replacing text

 Smalltalk

Show it Evaluate Smalltalk expression

Do it Execute Smalltalk code

File it in File in (execute) Smalltalk code

Inspect It In Inspect a Smalltalk object

Stop �. Interrupt process

39

 Window

Send To Back Put this window below other opened ones

Collapse/Expand Collapse/expand current window

Zoom In/Out Zoom in/out current window

Change Text Font Change font in text pane

Change List Font Change font in list pane

Redraw Screen Redraw screen in case anything is wrong

Stack Windows Order opened windows so all headers are visible

40

9. DIAV Syntax

The following is an EBNF syntax specification for DIAV syntax.

domainDescription domainName "(" attributeSize { "," attributeSize } ")"

{ attributeName "=" attributeRange |

attributeName "=" attributeValue { "," attributeValue }

{ constructedAttribute }

constructedAttribute { "!" attributeName "=" attributeValue "!"

 concept }

concept ruleSet | exampleSet

conceptSet { "!" conceptName "!"

concept }

targetConcept concept

learnedConcept concept

example attributeValue { attributeValue }

exampleSet attributeOrder

example { example }

trainingExamples { conceptExamples } |

{ positiveExamples } { negativeExamples }

conceptExamples { "!" conceptName "!"

exampleSet }

positiveExamples { "! Positive !" | "! Pos !"

exampleSet }

negativeExamples { "! Negative !" | "! Neg !"

exampleSet }

ruleSet rule { ";" rule }

rule condition { condition }

domainName identifier

conceptName identifier

attributeName identifier

attributeSize number

41

attributeValue identifier | number

attributeRange interval

attributeOrder attrbiuteName { attributeName }

condition "[" expression "]"

expression attributeName REL attributeValue { "," attributeValue}

| attributeName "=" interval

R E L "<" "<=" "=" "=>" ">"

interval attributeValue ".." attributeValue

identifier letter { letter | digit }

number digit { digit }

letter capitalLetter |

"a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" |

"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

capitalLetter "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M"| "N" | "O" | "P" |

"Q" | "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

digit "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

Below is the syntax of files requested when executing respective commands from DIAV menus.

representationSpaceFile domainDescription

trainingExamplesFile trainingExamples

positiveExamplesFile { positiveExamples } { negativeExamples }

negativeExamplesFile { positiveExamples } { negativeExamples }

targetConceptFile targetConcept

learnedConceptFile learnedConcept

projectToFile domainDescription

ruleFromTranscript ruleSet (highlight the ruleSet in System Transcript window)

multiConceptExamplesFile { conceptExamples }

multiConceptRulesFile conceptSet

constructConceptFile concept

andFile, orFile, diffFile, xorFile concept

42

starMethodDemoFile domainDescription

positiveExamples

negativeExamples "!"

{ { partialStar "!"

seedPositiveExample ";"

selectedNegativeExample "!" }

star "! *" }

partialStar ruleSet

star rule

seedPositiveExample condition { condition } (conditions for all attributes)

selectedNegativeExample condition { condition }

43

10. DIAV Data Structures

This section describes the data structures used in DIAV system. It also gives an example of a
domain in DIAV’s internal representation.

aA array describing attributes of a domain. size(aA)=nr of attributes. Each attribute is
described by four numbers:

of values (levels),
serial number (defines the serial number of a column in the data table),
offset in the diagram (filled out by crArr),
name.

xA array describing attributes placed on x axes of a diagram.
yA array describing attributes placed on y axes of a diagram.
aV array describing possible values for each attribute. size(aA)=size(aV). Serial number of an

attribute indexes appropriate values.
x x number of columns of a diagram.
y y number of rows of a diagram.

thisDomainName - domain name of the current window.
parentWindow - reference to the parent window from 'projected' window.

Concepts, sets of examples, and other graphical images are represented as Forms. A Form is
characterized by its width, height, and content (Bitmap). The width of a Form is related to the
number of columns in a diagram, the height of a Form is related to the number of rows. Each bit of
the Form is related to the concept stored in the Form. Bit “1” in the Form indicates that related
event is present in the concept , bit “0” indicates that the event is not present in the concept
represented by the Form. In order to visualize a concept represented by a Form, the Form is
magnified and displayed on the screen. The Form is very useful data structure for storing concepts
as diagrams. It allows for direct mapping between a diagram as a Form. This way, many
operations performed with concepts, such as, union, product, etc., are easy to implement.

The example below refers to the ROBOTS domain description:
Robots (3, 3, 2, 3, 4, 2)
hs = round, square, octagonal
bs = round, square, octagonal
sm = yes,no
ho = sword,balloon,flag
jc = 1..4
ti = yes,no

DIAV represents this domain description in the form of following arrays and variables.
aA ((3 1 48 'hs')

 (3 2 144 'bs')
 (2 3 24 'sm')
 (3 4 2 'ho')
 (4 5 6 'jc')
 (2 6 1 'ti'))

xA ((4 5 6 'jc')
 (3 4 2 'ho')
 (2 6 1 'ti'))

yA ((3 2 144 'bs')
 (3 1 48 'hs')
 (2 3 24 'sm'))

44

aV (('round' 'square' 'octagonal')
 ('round' 'square' 'octagonal')
 ('yes' 'no')
 ('sword' 'balloon' 'flag')
 (1 2 3 4)
 ('yes' 'no'))

xx = 24
yy = 18
thisDomainName = ‘Robots’
parentWindow = nil.

Each cell in a planar diagram representing the domain has two coordinates: a column coordinate x,
and a row coordinate y, represented as a pair (x, y). The range of the coordinate x is from 0 to xx-
1. The range of y is from 0 to yy-1. The coordinates of a cell (x, y) of an event vector (Av1, Av2,
..., Avn) are calculated according to the formulas:

 n
ofs = ∑ [indexOf(Avi) - 1] * offset(Ai)

i=1

x = ofs \\ xx
y = ofs // xx

where,
n number of attributes.
Ai i-th attribute in the event vector.
Avi value of i-th attribute.
indexOf gives index (serial number) of an attribute value in array aV.
offset gives an attribute offset in the diagram
\\ gives the integer reminder after dividing ofs by xx.
// gives the integer quotient after dividing ofs by xx.

For example, the event
[hs = square] [bs = round] [sm = yes] [ho = flag] [jc = 1] [ti = n]
has the following coordinates:

ofs = 1*48 + 0*144 + 0*24 + 2*2 + 0*6 + 1*1 = 53
x = 53 \\ 24 = 5
y = 53 // 24 = 2

References

* Arciszewski, T., Bloedorn, E., Michalski, R.S., Mustafa, M. and Wnek, J., "Machine Learning
of Design Rules: Methodology and Case Study," ASCE Journal of Computing in Civil
Engineering, Vol. 8, No. 3, pp. 286-308, July 1994.

* Arciszewski, T., Michalski, R.S. and Wnek, J., "Constructive Induction: the Key to Design
Creativity," Proceedings of the Third International Round-Table Conference on Computational
Models of Creative Design, Heron Island, Queensland, Australia, December 3-7, 1995.

Digitalk Inc., "Smalltalk/V Object-Oriented Programming System (OOPS)," Tutorial and
Programming Handbook, Digitalk Inc., Los Angeles, CA, 1986.

* Guillen, L.E. Jr. and Wnek, J., "Investigation of Hypothesis-driven Constructive Induction in
AQ17," Reports of Machine Learning and Inference Laboratory, MLI 93-13, George Mason
University, Fairfax, VA, December 1993.

45

* Michalski, R.S. and Wnek, J., "Constructive Induction: An Automated Improvement of
Knowledge Representation Spaces for Machine Learning," Proceedings of the 2nd Conference on
Practical Aspects of Artificial Intelligence, pp. 188-236, Augustow, IPI PAN, Warszawa, Poland,
1993.

* Michalski, R.S. and Wnek, J., “Learning Hybrid Descriptions," Proceedings of the 4th
International Symposium on Intelligent Information Systems, Augustow, Poland, June 5-9, 1995.

* Szczepanik, W., Arciszewski, T. and Wnek, J., “Empirical Performance Comparison of Two
Symbolic Learning Systems Based On Selective And Constructive Induction,” Proceedings of the
IJCAI-95 Workshop on Machine Learning in Engineering, Montreal, Canada, August, 1995.

* Thrun, S.B., Bala, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K.A.,
Dzeroski, S., Fahlman, S.E., Hamann, R., Kaufman, K., Keller, S., Kononenko, I., Kreuziger,
J., Michalski, R.S., Mitchell, T., Pachowicz, P., Vafaie, H., Van de Velde, W., Wenzel, W.,
Wnek, J. and Zhang, J., "The MONK's problems: A Performance Comparison of Different
Learning Algorithms," Computer Science Reports, CMU-CS-91-197, Carnegie Mellon University
(Revised version), Pittsburgh, PA, December 1991.

* Wnek, J., Sarma, J., Wahab, A. and Michalski, R.S., "Comparing Learning Paradigms via
Diagrammatic Visualization: A Case Study in Concept Learning Using Symbolic, Neural Net and
Genetic Algorithm Methods," Proceedings of the 5th International Symposium on Methodologies
for Intelligent Systems - ISMIS’90, Knoxville, TN, pp. 428-437, October 1990.

* Wnek, J., "Hypothesis-driven Constructive Induction," Ph.D. dissertation, School of
Information Technology and Engineering, Reports of Machine Learning and Inference Laboratory,
MLI 93-2, George Mason University, (also published by University Microfilms Int., Ann Arbor,
MI), March 1993.

* Wnek, J. and Michalski, R.S., "Comparing Symbolic and Subsymbolic Learning: Three
Studies," in Machine Learning: A Multistrategy Approach, Vol. 4., R.S. Michalski and G. Tecuci
(Eds.), Morgan Kaufmann, San Mateo, CA, 1994.

* Wnek, J. and Michalski, R.S., "Hypothesis-driven Constructive Induction in AQ17-HCI: A
Method and Experiments," Machine Learning, Vol. 14, No. 2, pp. 139-168, 1994.

* Wnek, J. and Michalski, R.S., "Symbolic Learning of M-of-N Concepts," Reports of Machine
Learning and Inference Laboratory, MLI 94-1, George Mason University, Fairfax, VA, April
1994.

* Wnek, J. and Michalski, R.S., "Discovering Representation Space Transformations for Learning
Concept Descriptions Combining DNF and M-of-N Rules," Working Notes of the ML-COLT'94
Workshop on Constructive Induction and Change of Representation, New Brunswick, NJ, July
1994.

* Wnek, J. and Michalski, R.S., "Conceptual Transition from Logic to Arithmetic," Reports of
Machine Learning and Inference Laboratory, MLI 94-7, George Mason University, Fairfax, VA,
December 1994.

* Wnek, J., Kaufman, K., Bloedorn, E. and Michalski, R.S., "Selective Induction Learning
System AQ15c: The Method and User’s Guide," Reports of Machine Learning and Inference
Laboratory, MLI 95-4, George Mason University, Fairfax, VA, March 1995.

References marked with "*" include examples of General Logic Diagrams.

