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Chapter 21

Learning as Goal-Driven Inference

Ryszard S. Michalski and Ashwin Ram

1 Inferential Theory of Learning

A remarkableaspectof humanlearnersis that they are able to apply a greatvariety of learning
strategies in a flexibland goal-orientednannerandto dynamicallyaccommodat¢he demandof

changinglearningsituations. In contrast,mostresearchin machinelearninghas beenconcerned
with singlelearningstrategymethodsthat employ one primary type of inferencewithin a specific
representational or computational paradigm.

In addition to the fact that such systedwsnot modelhumancognition adequatelysingle strategy
methodsalso suffer from practical problemssuch as lack of flexibility and narrow range of
applicability. Thelearninggoalin such“monostrategy’learningsystemss definedimplicitly by
whatthey canactuallydo. For example,a decisiontreelearningprogramcan, given appropriate
examples)earna decisiontree. It cannot,however,takea setof rules and createmore abstract
rules, or take a decision tree and learn statistical dependencies among diffelrrnies. It cannot
evenformulatethe needto do so; it doesnot really know what it is trying to learn or why it is
trying to learn it.

Developingan adequateand generalcomputationaimodel of adaptive, multistrategy,and goal-
oriented learning is, therefore, a fundamental long-term objectivedohinelearningresearctfor
both theoretical and pragmatic reasons. In this chapéeoutline a proposalfor developingsuch
a model basedon two key ideas. First, we view learningas an active processinvolving the
formulation of learning goals during the performanceof a reasoningtask, the prioritization of
learning goalsandthe pursuitof learninggoalsusing multiple learningstrategie{Hunter, 1990;
Ram,1989,1991;Ram& Cox, 1994; Ram& Hunter,1992). However,while previousefforts
have focused on the process of generating learning (f@as& Ram,1994;Ram,1991;Ram&
Cox, 1994) and on the planful pursuit of learning goals (Cox & Ram, 1994; Hu88€r,Ram &
Hunter, 1992; Redmond,1992), little attentionhasbeenpaid to the fundamentalearning actions
that actually carry out the inferencesecessaryo learn. In orderto developa generaltheory of



learning, it is importanto understandhe “primitives” of learning,thatis, to developa principled
theory of the learning actions involved in acquiring and transforming knowledge.

The secondkey idea, then, is to model learning as a kind of inferencein which the system
augmentsand reformulatesits knowledge using various types of primitive inferential actions
(Michalski, 1993b). Theseprimitive inferencesknown as knowledge transmutations, include
generalizationabstractionexplanation,and similization, and their counterparts specialization,
concretion prediction,anddissimilization. For example the familiar kind of learningknown as
“conceptformation” is basedon the inductive generalizatiortransmutationa kind of inferencein
which the system extends a descriptiomgiven setof instanceso asto include otherinstances
in that description. Knowledge transmutations caodgbinedin a flexible and dynamicmanner
to yield the desiredlearningbehavioras specifiedby the system’slearninggoals. This view of
learning isknown asthe inferential theory of learning, sinceit views learningfundamentallyas a
process of inference (Michalski, 1993b).

In contrastto broad-grainedtharacterizationsf learningin termsof traditional machinelearning
and information gathering algorithms (such as explanation-basedgeneralization, inductive
generalizationpr databasdookup, typically representeés “modules” in a multistrategylearning
“toolbox”), the inferentialtheory of learningproposesa taxonomyof the typesof inferencesthat
underlyingvariousforms of learning. It is interestingto note that many of the single strategy
learning algorithmspreviously proposedin the machinelearning literature can be modeledas
combinationsof theseknowledgetransmutations.Thus, in additionto serving as the basisof a
computationalmodel of multistrategy learning, knowledge transmutationscan be used as a
theoretical framework to characterize and analyze machine learning algorithms in general.

In this chapter,we will focus on the inferential theory of learning and its role in goal-driven
learning. Inparticular,we will view learningasa guidedor planful searchthrougha knowledge
space—the spaceof knowledge representationghat the learner can representor potentially
generate. This search is actively guided byeheing goals of the system. The operatorsof the
searchareinstantiationsof generictypesof knowledge transmutations, eachcapableof changing
knowledgein somefundamentaimanner. Learning,then, is the goal-directedtransformationof
knowledge;this transformationis carried out through the basic inferential processesthat are
embodiedin knowledgetransmutatioroperators. The early ideasunderlyingthe developmentof
the inferentialtheory of learninggo backto Michalski (1983). A classificationandillustration of
different learning strategies based on the criteria developed ihetbg/ canbe found in Michalski
(1993a).



This view of learning seeksto characterizehe capabilitiesof learning systemsin termsof the
inferential processeghat underlielearningin thesesystems,and in terms of the influence of
learning goals on theseinferential processes. As such, it raisesissuessuch as the types of
knowledgetransmutationghat occur in different learning processesthe validity of knowledge
obtainedthrough different types of learning,the role of prior knowledgein learning, and the
influence of learning goals on the learning process. Unlike traditional maidelachinelearning,
but like the other modelsdiscussedn this book, our view of learning emphasizeghe use of
multiple types of inferences and the importance of learning goals in learning.

2 Learning as Goal-Guided Inference

Learning is triggered by the needs of the performance tasks being pursued by the Agdtesae
tasksare pursued the systemdecideswhat it needsto learn, that is, it identifies learning goals
which, if satisfied, would improve its ability to pursue its tasks. @bigsionis madethroughan
introspectiveanalysisof the system’sknowledgeand reasoningorocessegssthey are broughtto
bearon thetask(Ram& Cox, 1994). If, asis usuallythe case,the systemhasseverallearning
goals active at the same time, the system mustedsmnaboutthe dependencieand priorities of
thesegoals(Cox & Ram,1994). To facilitate this, goals are representedn a goal dependency
network (Stepp & Michalski, 1986; Michalski, 1993H}.will alsooften be the casethatlearning
goals will not be immediately satisfiabléus learninggoalsmustalso be indexedin the system’s
memoryin a mannerthat allows them to be opportunisticallyretrieved at the appropriatetime
(Ram, 1989, 1991; Ram & Hunter, 1992).

Having decidedwhat to learn, the systemthen pursuesthe desiredlearning by performingthe
necessaryinferencesand then storing the result. Basedon the system’slearning goals, its
backgroundknowledge, and available input, it selects and combines available knowledge
transmutationsn a dynamic mannerto yield learning “plans” appropriateto the given learning
situation. The resultof this processs somenew or newly reformulatedknowledgethat is then
stored in the system’s memory. This stafiéearning,then, canbe characterizedyy the equation
“Learning= Inferencingt Memorizing,” where*inferencing” refersto the processof goal-guided
searchthrough the knowledgespacedefined by knowledgetransmutationgMichalski, 1993b).
More formally, the searchcanbe definedin termsof the following transformation,starting from
the system’s learning goals and ending with the desired knowledge that satisfies these goals:

Given:




* Learning goals (G)

* Input knowledgel]

» Background knowledgeBK)
» Knowledge transmutation3)

Determine:

» OutputknowledgeO, that satisfiesgoalsG, by applyingtransmutationgrom the setT to
inputl and/or the background knowledBK.

Figure 1 illustratesthe generalprocessof learningin which externalinput is transformed,in the

contextof goalsandbackgroundknowledgeandusing a variety of inferential mechanismsinto

new knowledgeto be learned. In orderto developcomputationamodelsof machinelearningin

this framework,one mustdevelopa taxonomyof inferentialmechanisma&aswell as methodsfor

formulating goals, for representingalsaswell asthe interactionand interdependenciesetween
goals, and for using goals to guide the inferential learning prodestsis discussthesequestions
in more detail, starting with the general issue of the nature of learning goals.

Insert Figure 1. A framework for a general learning process.

3 Learning Goals

In its basic sense,a learning goal is a specificationof the knowledgeor skill (performance
procedure)that the learnerwants to acquire. Learning goals may be externally provided or

internally generatedgeneralor specific, domain-independerdr domain-dependengne-timeor

recurrent. A system’s learning goals are used to detemowets backgrouncknowledgeshould
be modified in order to perform the desired learning.

Learninggoalsare a necessargomponentof any learning process. Given an input, and some
nontrivial backgroundknowledge,a learnercould potentially generatean unboundednumber of
inferencefRam & Hunter, 1992; Rieger,1975). Many of theseinferenceswhile “correct” in a
purely logical sense, mayot be usefulin performingthe overall tasksof the system. In fact, as
has been demonstrated by several researchers, learning may sometimes even patfisertarce
of the systemto deterioratg(e.g., Etzioni, 1990; Minton, 1990; Tambe,Newell, & Rosenbloom,
1990). To limit theproliferationof choices,andto ensurethat the learningthat occursis actually
useful, the learning process must be constrained and/or guided by thefgbalsystem(Hunter,



1990; Ram, 1989; Ram & Hunter, 1992). While these argumentshave been made on
computationagrounds,the conclusionsare supportedoy psychologicalevidencefor goal-driven
learning in humans(e.g., Barsalou,1991; Ng & Bereiter, 1991; Steinbart, 1992). Similar
arguments apply tthe useof goalsto focusinferencegeneratiorfor understandingexplanation,
and diagnosis (e.g., Birnbaum & Collins, 1984; Hunter, 1990; Leake, 1991; Ram, 1990, 1991).

Given a learninggoal, the learnerdeterminesvhat partsof prior knowledgearerelevantto it, in

what form the desiredknowledgeis to be representedand how the learnedknowledgeis to be
evaluated. There can be many different typdearhinggoals,which canbe expressedmplicitly

or explicitly. In humans,for example,many goals are “hardwired” into the systemreflecting
biological and other needs; these tigare rise to specificlearninggoalsin particularsituationsas
the system seeks to fulfill its needs. More generally, leampiadscanalso arisefrom intellectual
needssuchas, for example the needto find certaininformationin order to explain an observed
anomaly (e.g., Leake, 1992; Ram, 199%hile suchgoalsare often implicitly programmednto

machine learning systems by the system’s designers, or provided as inpusystéme’'susers, it

is also possible for a machine learning system to determine its own learning goaBirfggym,
Collins, Freed& Krulwich, 1990; desJardins1992; Hunter, 1989; Ram, 1989, 1991; Ram &

Cox, 1994; Redmond,1992). For example,if a systemengagedn somereal-world problem
solving task encounterdlifficulties during the performanceof the task, it can reasonaboutthe
knowledgeit broughtto bear, and the reasoningprocesseshat it was using, in an attemptto

explainwhy it failed to anticipateor avoid thesedifficulties. This explanationcan be used to

identify learning goals which, if satisfied, will resultimprovedperformancen similar situations
in the future (Ram & Cox, 1994).

Learning goals can be broadly classifiedas domain-independerar domain-specific(Michalski,
1993b). Domain-independent goals call for a certaintype of learningactivity, independenbf the
specific topic of discourseor problem-solving. For example,to acquire a general rule for
classifying given facts, to confirm a given piece of knowledge,to derive it from some other
knowledge,to conciselydescribegiven observations{o discovera regularity in a collection of
data, to find a causal explanationof a found regularity, to acquire control knowledge, to
reformulate given knowledge into a more effective or operationalized form, toasspteblemof a
given type, to plan what to learn, and so on.

Domain-specific goals call for acquiring a specific piece or type of domainknowledge,and are
usually instantiations of domain-independent goals in the context of a specific problem-&sking
in a specific domain. Thus, domain-independent learning goals may be viesmetdisationsof



abstract types of learning activities. Theseinstantiatedvith domain-specifianformationin the
context of the performance task to yield domain-spelgficninggoalswhich, in turn, are usedto
drive learning.

4 Goal Dependency Networks

In generalan intelligent systemwill have multiple learning goalsthat are interrelatedin a very
complexmanner. In order to reasonaboutthe interactionsbetweenlearning goals, the system
must have some representationof the relationships between these goals, such as their
interdependenciesind relative priorities. Such a representationabtructure is called a goal
dependency network (Stepp & Michalski, 1986; Michalski, 1993b). An example of a goal
dependency network is shown in figure 2.

Insert Figure 2: An examplegoal dependencyetworkfor the goalsto survive, to be healthy, and to live a
vegetarian life-style.

A goal dependency network represents both generaexific goals,andthe goal subordination
relationships between these goals. Goalsepeesentedsnodes,andthe dependenciebetween
nodes as labeled links denoting the typed strengthsof the dependenciesAlso represente@re
relevant attributes and predicates, #melattributerelevancyrelationsbetweentheseattributesand
the corresponding goals.

In a goal dependency network, the most general and domain-independent gsirisaoy given
input and any plausibleinformationthat can be derivedfrom it. More specific, but still domain-
independengoals, specify the needto learncertaintypesof knowledge. Eachof thesegoalsis
linked to more specific subgoals, some of which are domain-specific and agtéominingsome
specific piece of knowledge. Since the desiredpiece of knowledge may not be immediately
available or inferable, these goals must be indexed in the system’s meraonaimerthat allows
the systento retrievethemdynamicallywhenthe appropriatdearningopportunityis encountered
(Hunter,1990;Ram, 1989, 1991;Ram& Hunter,1992). In this sense,goal-drivenlearningis
analogous to opportunistic planning (Birnbaum & Collib886; Hammond,Converse Marks, &
Seifert,1993), but is carriedout in the domainof knowledgeas characterizedy the knowledge
space.

5 Knowledge Transmutations: Inferential Primitives for Learning




Having formulatedlearninggoalsandrepresentethemin its memory structures,a systemmust
perform the learning actions necessary to satisteainggoals. Machinelearningsystemshat
cancombineand usemultiple learning methodsin learning are known as multistrategy learning
systems (Michalski & Tecuci, 1993). A centralissuein the designof such systemsis the
repertoire oflearningstrategiesavailable,and the control methodsusedto selectand combinethe
appropriate strategies at the appropriate time.

Typical models oimultistrategylearningassumehat the system’srepertoireof learningstrategies
includes severalof the single strategylearning algorithms developedin the machinelearning
literature, for example, empirical induction @planation-basedeneralizationand/orinformation

gatheringmethods,such as on-line databasdookup. Theseare representedgs modulesin the

system’s‘toolbox”. In contrast,we proposeto characterizdearningactionsat a finer level of

detail. In particular,we proposea setof knowledge transmutations that can be thoughtof asthe

basic inferential primitives for learning (Michalski, 1993b). Knowledge transmutationsare

operators that make knowledge changes in the knowkguolyee. The knowledgespaceis a space
of knowledge representations that can represent all possihles, all of the learner'sbackground
knowledge, and all knowledghat the learnercan potentially generate. Learningis modeledas a

process of inferential search through this space. This search is Qyitteigoals,the input, and

the background knowledge of the system.

The central property of any knowledge transmutation is the type of underlying infefemcéype

of inference can produce some useful knowledge worth rememberifugu use;consequently,
a completetheory of learningmustinclude a completetheory of inference. To characterizehese
inferences in a general, language-independent manner, consider the following entailment:

POBKOC

where P standsfor a set of statementgalled the premise,BK standsfor a set of statements
representing the reasoner’s background knowledgeCatandsfor a setof statementgalledthe
consequentP is assumed to be consistent witK.

The inference type characterizeghe transmutationalong the truth-falsity dimension,and thus
determineghe validity of the knowledge derived by it. Deductive inference, or deduction,is
deriving the consequen€C, given P andBK. Inductive inference, or induction,is hypothesizing
the premiseP, given C andBK. Thusdeductioncanbe viewedas tracing the above entailment
“forward”, and induction as tracing it “backward”. Becatisis entailmentsuccinctlyexplainsthe



relationship between two fundamental formsndérence,it is calledthe fundamental equation for
inference. Deduction isuth-preserving in thatC must be true iP andBK aretrue, andinduction

is falsity-preserving in that if C is false, ther® mustbe falseaswell if BK is true. This property
applies to every type of induction, including inductive generalization,abduction, inductive
specialization, concretion, and so on. For example, if inductive inference produces a sthment
characterizesa larger set of entities than the input statementC, it is called an inductive
generalization; if it reducesghe amountof detail in the descriptionof a given set of entities, it is
called annductive abstraction; andif it hypothesizes premisethat explainsthe input, it is called
aninductive abduction.

In a general view of deduction and inductibat also capturesheir approximateor commonsense
forms, the “strong” entailment®™ may be replacedby a “weak” entailmentthatincludescasesn
which C is only a plausible,probabilistic,or partial consequencef P and BK. The difference
betweenstrong (valid) and weak (plausible)entailmentleadsto anothermajor classification of
types of inference Specifically,inferencescan be conclusive (true in every possiblesituation)or
contingent (true in somesituationsand not in others). Thesedistinctionsapply to all types of
inference;for example the strongforms conclusive induction and conclusive abduction and their
weak counterpartgontingent induction and contingent abduction. Figure 3 illustratesall major
types of inference in a schematic manner.

Insert Figure 3: A classification of major types of inference.

Finally, each type of inference has a converSer example,abduction hypothesizegxplanations
of a set of entities, and its convergeediction, derives consequences of the properties of thefset
entities. Thesederivations,as before, might be deductive or inductive, and conclusive or
contingent.

This frameworkallows us to describethe completesetof knowledgetransmutationshat underlie
all typesof learning. Formally, a knowledgetransmutationcan be modeledas a transformation
that takesas argumentsa setof sentencegS), a setof entities (E), and backgroundknowledge
(BK), and generatesa new set of sentencegS’), and/ora new set of entities (E’) and/ornew
background knowledgdBK”) (Michalski, 1993b):

T:SE BK - S E" BK’



Figure 4 provides a summary of tteferenttypesof transmutationsogetherwith the underlying
typesof inference. Transmutationgan be classifiedinto two categoriesknowledge-generation
transmutations, and knowledge manipulation transmutations.  Knowledge-generation
transmutations operateon the informationalcontentof the input knowledge. For example,they
may derive consequences from given knowledgggesinew hypotheticalkknowledge,determine
relationshipsbetweenknowledgecomponentsgonfirm or disconfirm given knowledge,perform
mathematicabperationson quantitativeknowledge,organizeknowledgeinto certain structures,
andso on. Knowledge-generatiotransmutationsre performedon statementghat have a truth
status.Knowledge-manipulation transmutations, in contrast,view input knowledge as data or
objects to be manipulated, and carpeeformedon statement®r on sets. Theyincludeinserting
(deleting) knowledgecomponentsnto (from) knowledge structures,physically transmitting or
copying knowledge to/from other knowledge bases, or ordénogledgecomponentsccording
to some organizational criteria.

Insert Figure 4: Knowledge transmutations and the underlying types of inference.

6 Towards a Computational Model of Goal-Driven Machine Learning

The ideaspresentedn the previoussectionsprovide a conceptualframework for adaptive,goal-
driven, multistrategylearning, which aims at integratinga diverserange of inferential learning
strategies into an active, goal-driven learning system. We propose a general keanmavgorkin

which the systemperformsa given task or tasks, monitorsits own performanceon the task,
introspectivelyanalyzeshis performanceo determinewhatit needsto learn, formulatesexplicit

learninggoalsto perform this learning, organizesthesegoalsinto a goal dependencyhetwork,
detectsappropriateopportunitiesfor learning, and then performs the desired learning using
multiple typesof knowledgetransmutationsn an active, goal-guidedsearchthrough knowledge
space.

This framework combines several perspectiveson various aspectsof goal-driven learning,
technical details of which can lbeund elsewhergintrospectiveanalysisof reasoningraces:Ram
& Cox, 1994; goal dependencynetworks: Stepp & Michalski, 1986; Michalski, 1993b;
opportunisticpursuitof learning goals: Cox & Ram, 1994; Ram, 1989, 1991; Ram & Hunter,
1992; knowledgetransmutationsMichalski, 1993b). In this chapter,we have attemptedto step
backfrom the technicaldetailsof this processo presenta broaderframeworkfor the designof
flexible machine learningystemsfocusingin particularon the role of knowledgetransmutations
as a basis for goal-guided inference.



The proposed framework views learning as an active process of decidingpwdeah and how to
learn it. This view raises several issues for further research: the origgasrohggoals, methods
for decidingwhat to learn, methodsfor representingyoal structures, methodsfor using learning
goals to guide the selectionand use of knowledge transmutationsmethodsfor representing
knowledge transmutations,and identification and analysis of other types of knowledge
transmutations. While we and others haegunto discusstheseissues,considerablegesearchs
needed to develop computational mod#l$earningandto implementintegratedmachinelearning
systems that truly capture the complexities outlimethis chapter. We hopethat this chapterwill
both stimulate researcherdo tackle the researchissuesdiscussedhere as well as provide a
framework in which to perform the research.
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