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Abstract. Knowledge scouts are software agents that autonomously synthesize 
knowledge of interest to a given user (target knowledge) by applying inductive 
database operators to a local or distributed dataset. This paper describes briefly a 
method and a scripting language for developing knowledge scouts, and then 
reports on experiments with a knowledge scout, SCAMP, for discovering patterns 
characterizing relationships among lifestyles, symptoms and diseases in a large 
medical database. Discovered patterns are presented in two forms: (1) attributional 
rules, which are expressions in attributional calculus, and (2) association graphs, 
which graphically and abstractly represent relations expressed by the rules. 
Preliminary results indicate a high potential utility of the presented methodology 
for deriving useful and understandable knowledge. 

1 Introduction 

When applying data mining tools to a large database, a user may have to perform 
many repetitions and trials of various operations before desired knowledge is 
discovered. This process can be difficult and time-consuming.  Such a situation 
occurs, for example, in the PC-based multistrategy data mining and knowledge 
discovery system, INLEN [8][16][18]  Researchers have been addressing this 
problem by adding new operators to existing query languages (e.g., [7][12][22]), 
or by building a meta-language that integrates a query language with various 
knowledge discovery operators (e.g., [9][19]). 

Another challenge in data mining is how to specify target knowledge, that is, 
knowledge that is likely to be of interest to a given user. Obviously, such 
knowledge cannot be defined precisely, as the whole purpose of the search is to 
find something new and unexpected. Furthermore, the target knowledge may be 
changing over time, as it depends on the current goals and knowledge of the user.  
This indicates a need for a mechanism to acquire and monitor a profile of the 
user’ s interests, and apply this profile in the search for target knowledge. 

To address the problems outlined above, the idea of a knowledge scout has been 
proposed. A knowledge scout is a software agent that employs resources of an 
inductive database, in order to search for and synthesize target knowledge. The 
concept of an inductive database does not have one commonly agreed meaning 
(e.g., [3][11][14][19]).  Here, by an inductive database we mean a system that 



integrates a database with inductive inference capabilities [14], allowing answers 
to queries asking for plausible knowledge, (knowledge not directly or deductively 
obtainable from the database, but hypothesizable through inductive inference 
[19]).  This knowledge can be in the form of hypotheses about future datapoints, 
expected consequences, generalized data summaries, emerging global patterns, 
exceptions from hypothesized patterns, suspected errors and implied 
inconsistencies, hypothetical plans synthesized from the data, etc. [6][7][15][17].  

A general diagram of an inductive database is presented in Figure 1.  
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Fig. 1.  A general diagram of an inductive database. 

An inductive database implements database operators based on inference 
methods developed in the fields of machine learning, statistics, and uncertain 
reasoning. These operators are integrated with conventional database operators 
through a knowledge generation language (KGL).  In addition, an inductive 
database includes a knowledge base that contains meta-knowledge, domain 
constraints, models of users’  interests, etc. Using KGL, one can implement 
multiple knowledge scouts, dedicated to pursuing different target knowledge. A 
KGL script that defines a knowledge scout includes a plan of operations to be 
performed on the database and an abstract definition of the target knowledge.  

The target knowledge for a knowledge scout is defined abstractly by specifying 
properties of pieces of knowledge that are likely to be of interest to the given user 
(or a group of users). For example, a target knowledge may be defined as “patterns 
that relate variables from the set T to those in the set S” , or “patterns that achieve 
the highest score on a given pattern quality measure”  (e.g., [10]), or “a data 
classification scheme that maximizes a criterion of clustering quality”  (e.g., [20]).  

In order to synthesize target knowledge, a knowledge scout may execute long 
sequences of operations involving data, intermediate results, and background 
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knowledge.  At every step, an operator’s application may depend on previous 
results.  The user’s interests and relevant knowledge are partially defined a priori, 
and partially updated during the scout’s lifetime.  As inductively derived 
knowledge generally has lower certainty than directly or deductively obtained 
knowledge, results of inductive queries are annotated by certainty measures. 

In this paper, we focus on a medical application of knowledge scout 
technology.  The following sections present briefly a methodology for building 
knowledge scouts, and then concentrate on the application of the methodology to 
the development of a knowledge scout, called SCAMP (Scout for Acquiring 
Medical Patterns). SCAMP searches for multidimensional patterns characterizing 
medical conditions, manifestations, lifestyles, and therapies.  Such patterns may 
capture multi-argument relations, in which a confluence of several medical factors 
indicates a given disease, while the presence of any single one may not.  

For testing these ideas, we used a database representing facts about diseases 
and lifestyles, developed by the American Cancer Society’s Second Cancer 
Prevention Study (CPS-II). In the experiments described here, we used a set of 
73,553 records that pertain to male non-smokers, age 50-65.  Patients are 
characterized by attributes such as “rotundity”  (a function of height and weight), 
the amount of exercise, the number of hours of sleep, the education level, the use 
of mouthwash, etc. Together with these characteristics, there is information 
indicating whether or not the patient had any of 25 types of disease.  

The following sections describe two knowledge representation systems used for 
representing patterns and multidimensional relationships by a knowledge scout.  
The first, attributional calculus, is a rule-based representation language for a rich, 
but simple, expression of knowledge.  The second, association graphs, allows for 
the easy visualization of relationships among concepts, including multi-argument 
ones.  We then present KGL-1, a prototype language for defining knowledge 
scouts, and describe SCAMP, along with the preliminary results it has achieved. 

2 Attributional Rules 

The language in which patterns of interest are to be expressed is essential to the 
ability to discover them.  If the language is too restricted, patterns will have 
complex expressions, making their discovery difficult.  If the language is too rich, 
the pattern search space may become computationally prohibitive.  In addition, for 
many applications it is important that patterns are easy to understand and interpret 
(the comprehensibility postulate [15]). Guided by such considerations, we employ 
attributional calculus rules for expressing patterns or knowledge of interest [17].  

The attributional calculus is an extension of propositional calculus in which 
literals are replaced by attributional conditions. Such conditions represent 
relational statements that bind attributes to a set of their values or other attributes 
(see below).  Each attribute has a domain and a type; the former defining its set of 
legal values, and the latter characterizing an ordering relationship among the 
values.  Attributional calculus is based on variable-valued logic system VL1 [13].  

An attributional condition is expressed in the form: [L rel R], where L is an 
attribute, or one or more attributes with the same domain joined by  “&”  or “ v” ; R 
is a value or a list of values joined by internal disjunction, a pair of values joined 



by range, or an attribute with the same domain as the attribute(s) in L; and rel is a 
relational symbol.  For il lustration, the following are examples and explanations of 
attributional conditions.  Note that these conditions are simple to interpret and 
translate into equivalent natural language expressions. 
[blood-pressure = normal]                     (the blood pressure is normal) 
[income  =  20K..30K]                 (the income is between 20K and 30K) 
[color = red v blue]              (the color is red or blue) 
[width & length >  depth]    (the width and length are both greater than the depth) 

Attributional rules used in this study are in the form <decision> if 
<conditions>, where <decision> is an attributional condition, and <conditions> 
is a conjunction of one or more attributional conditions.  These rules are a special 
case of the parameterized association rules (PARs) [17]. The association rules 
presented in [1] could be viewed as a specialized form of PARs.  Attributional 
rules that characterize a pattern in a database can be determined using an inductive 
operator based on the AQ-18 rule learning program [9].  Such an operator 
generates rules with annotations specifying the support, disparity, completeness 
and consistency for each condition in the rule, and for each rule as a whole. 

The support of a condition (or, a rule), denoted by p, is defined as the number 
of tuples representing a given relationship (“positive examples” ) that satisfy the 
condition (rule).  The disparity, denoted by n, is defined as the number of 
“negative examples”  that satisfy the condition (rule).  Given that the training 
dataset has P positive and N negative examples, we make these definitions: 

The completeness of a condition or rule, denoted compl, is equal to p / P.   
The consistency of a condition or rule, denoted cons, is equal to p / (p + n). 
The consistency of randomly guessing, denoted cguess, is P / (P + N). 
The program also generates other annotations, such as exceptions, ambiguity, 

and description quality (e.g., [10]), which are beyond the scope of this paper. 
To illustrate, Figure 2 presents an attributional rule generated by SCAMP from 

a dataset consisting of 7351 examples, of which P=2063 represented individuals 
who suffered from high blood pressure, and N=5288 represented those who didn’ t. 
The rule states that patients with high blood pressure are characterized by having 
high or very high rotundity, an educational level that includes high school and 
possibly some college, and exercise at a medium level or less. 

High_Blood_Pressure is present if:    p   n    compl      cons 
[Rotundity 

�
 high]     689  1058    33%         39% 

[Education_Level is hs_grad..some_college] 1055  2213    51%         32% 
[Exercise �  medium]      1838  4473    89%         29% 
 Rule Total (all conditions):    303  332    15%         48% 

Fig. 2.  Example of an attributional rule with annotations 

Note that in this rule, each condition separately has a relatively low consistency 
(between 29% and 39%).  When all three conditions are combined, the 
consistency jumps to 48%, which is significantly higher than randomly guessing 
the positive class (cguess = 28%). 



3 Association Graphs 

Attributional rules characterize relationships among attributes (or concepts) 
through a logic-style expression, which can be easily translated to natural 
language.  To provide a user with a simpler, more abstract way of representing 
such relationships, we have developed a visualization method called association 
graphs, whose nodes represent attributes or concepts, and inter-node links 
characterize relationships among nodes. The links are directed, weighted and 
annotated. The direction indicates the direction of the relationship. The weight 
(represented by the thickness of the link) indicates the strength of the relationship 
(based on the consistency of the attributional condition).  Links are annotated by 
symbols indicating the type of relationship between connected nodes. A 
monotonically growing (decreasing) functional relationship between variables is 
indicated by the symbol “+”  (“–“ ) attached to the link between corresponding 
nodes.  A functional relationship that has its maximum (minimum) in the middle 
of the range of the independent attribute is indicated by the symbol “ ^”  (“v” ).  

A rule relating several attributional conditions to another condition is 
represented by an arc linking the involved conditions.  For example, Figure 3 
shows an association graph representing the rule from Figure 2. 

 

Fig. 3. An association graph representing the attributional rule from Figure 2. 

Association graphs can represent complex multivariate relationships in a simple 
fashion. They provide an advanced tool for knowledge visualization that differs 
from some used in data mining systems (e.g., in CLEMENTINE, a data mining 
toolkit commercially developed by Integral Systems, Ltd.). One major difference 
is that the presented association graphs can represent multi-argument relations, not 
only binary relations.  Another difference is that they are representations at a 
higher abstraction level.  Specifically, their nodes represent attributes, rather than 
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individual attribute values, and links represent composite conditions employed in 
attributional calculus, rather than only attribute-value conditions.  

4 A Metalanguage for Defining Knowledge Scouts: 
KGL-1 

Knowledge scouts are defined by creating scripts in the knowledge generation 
language.  Below is a brief description of our first version of such a language, 
KGL-1 [9]. KGL-1 has been designed according to the following requirements: 
1. The language integrates database operators, knowledge base operators, and 

knowledge generation operators in a single representational system. 
2. Inductive inference programs, as well as other knowledge processing programs 

integrated in the inductive database can be invoked by single KGL-1 operators. 
3. Results from any KGL-1 operator can be used as inputs to any operator for 

which they are semantically applicable.  
4. Parameters to be used in running any knowledge-generating program can be 

specified as arguments to the corresponding KGL-1 operator.  
5. KGL-1 statements can refer to various properties of the data in the database. 
6. KGL-1 statements can refer to various properties of generated knowledge or the 

background knowledge, in particular, to attribute values, to the type and the 
domain of any attribute, the attributional rules and their components, to the 
groups of rules (rulesets), to any component of the annotations of the rules, etc. 

7. Looping and branching are implemented, as in many programming languages. 
8. The language can invoke data management, knowledge management and 

knowledge generation operators that may be involved in the extraction, 
manipulation, generation and display of any data or knowledge in the system  
The KGL-1 metalanguage presented above provides a unique combination of 

features not present in other languages for automated knowledge discovery.  Many 
current languages use a Prolog-based approach, and have quite limited types of 
knowledge generation operators available.  Most exceptions to the Prolog-based 
approach are SQL-oriented, extending the data query language by adding an 
ability to query for certain types of rules and invoke association rule generation 
(e.g., [7][12]).  KGL-1 differs from these in that one may define complex data 
mining plans that involve many types of knowledge generation operators; it more 
closely resembles a programming language than a query language. 

A language somewhat related to KGL-1 is KQML, which provides means by 
which agents may communicate among themselves and exchange task-relevant 
information [4]. Another related language is used in CLEMENTINE, which 
allows a user to specify a plan for a sequence of actions by a simple interface.  

A prototype version of KGL-1 has been implemented in the INLEN-3 system 
[9]. Each operator manipulates the database and/or knowledge base, and contains 
arguments that identify its input, output, and the parameters that deviate from the 
defaults.  These parameters make it possible to specialize an operator to multiple 
forms; each operator thus corresponds to a set of data/knowledge transformations.  

The following operators have been integrated into KGL-1, or are in the process 
of integration through the adaptation of already implemented programs: 



− CHAR(Datatable, Class, Params):  Characterize the entities in the Datatable 
that belong to the Class, by inducing their characteristic description [15]. 

− DIFF(Datatable, Class1, Class2, Params):  Differentiate entities in Class1 from 
Class2 in the Datatable, by inducing a discriminant description [15].   

− SELECT(Target, Datatable, Params):  Select components from the Datatable, 
whose type is defined by Target according to the method specified in Params.  
The Target determines whether attributes or examples are to be selected. 

− TEST(Datatable, Ruleset, Params):  Test the Ruleset’s knowledge against a set 
of testing examples in the Datatable.  Each testing example is classified based 
on the rule it best matches, using a strict or a flexible matching method [2][21].  
The operator generates a report on the ruleset’ s predictive accuracy. 

− CLASSIFY(Examples, Ruleset, Params):  Assign the Examples to classes 
using the Ruleset. This operator invokes an inference procedure that applies 
rules in the Ruleset to Examples. The output of this operator includes a list of 
Examples, their classification and a measure of certainty that that classification. 

− CLUSTER(Datatable, Params): Split records in the Datatable into a set of 
conceptual clusters. The operator is based on the conceptual clustering program 
CLUSTER2 [5][20], It defines clusters by attaching a column to the Datatable 
whose indices indicate clusters, and describes each one by an attributional rule. 

− GENSTAT(Datatable, Params):  Determine and report statistical 
characteristics of the Datatable, such as means, modes and variances for 
attributes in subsets of data associated with different target variables. It can also 
generate covariances and correlation coefficients between numerical attributes.  

− VISUALIZE(Input, Params): Visualize the items specified in the Input, using 
an association graph or diagrammatic visualization method [23]. 
To illustrate how KGL-1 is used for building knowledge scouts, Figure 4 

presents a script for a simple knowledge scout that creates and examines a 
knowledge base of relationships among attributes in a medical database. Each 
such relationship is expressed by a set of attributional rules, generated by the 
CHAR operator. One of these rules was illustrated in Figure 2.  

The log file output from the above script is shown in Figure 5. The first part of 
the output shows the number of strong attributional rules, as determined by three 
different criteria imposed on the rule strength. No rules satisfied the first (50% 
completeness) or third (two conditions with both 50% consistency and 300 
example support) criteria. The second criterion (rules with support greater than 25) 
was met by two of the six generated rules.  Because the High Blood Pressure 
ruleset was not found to be too complex (having fewer than 50 conditions), the 
specified simplification-through-relearning process was not applied.  The last part 
of the output presents numbers of conditions in the ruleset for Asthma that exceed 
different thresholds regarding the p / n ratio (that is, support divided by disparity).  
The last output indicates that there was only one condition with p/n ratio greater or 
equal to 1:3 in the Asthma ruleset, and one other with a ratio of at least 1:5. 

Summarizing, KGL-1 supports a powerful knowledge representation, employs 
a wide range of learning and inference operators, operates on components of the 
knowledge base and the database, and provides mechanisms for implementing 
advanced knowledge scouts.  The attributional rules allow the system to 
compactly and understandably represent complex multidimensional relationships. 



open ACSDATA          {Select ASCDATA database} 
do CHAR(decision=all, pfile=ACS1.lrn)      {Characterize concepts 

       representing values 
of all attributes using 
parameters specified in 
file ACS1.lrn} 

strongArtRules1 = #rules(Arth, compl >= 50){Count rules for}  
strongArtRules2 = #rules(Arth, supp >= 25) {Arthritis that satisfy} 
strongArtRules3 = #rules(Arth,       {3 different conditions} 
 num_conds(cons >= 50% and supp > 300) > 1){for threshold of 

strength}  
print "Number of strong Arthritis rules: 
 Type 1 = ", strongArthRules1, ", 
 Type 2 = ", strongArthRules2, ", 
 Type 3 = ", strongArthRules3 
if #conditions(HBP) > 50        {Is High Blood Pressure} 
  begin           {ruleset too complex?} 
  do SELECT(attributes, decision=HBP, 
     thresh=15, out=ACS2, criterion=max)   {If so, find "thresh"}  

do CHAR(pfile=ACSimplify.lrn,            {best independent}  
     decision=HBP)         {attributes, then}  
  end            {recharacterize} 
else 
  print "HBP Ruleset sufficiently simple" 
for i = 1 to 6 
begin           {For each value of i from} 
print "Number of Asthma conditions with    {1 to 6, count and show} 
     p/n ratio of at least 1: ", i, " =",  {number of Asthma} 
     #conditions(Asth, cons >= 1/(i+1))    {conditions with} 
end         {consistency ≥ 1/(i+1).}  

Fig. 4.  A KGL-1 script for defining a knowledge scout exploring the medical database. 

Number of Strong Asthma rules: Type 1 = 0, Type 2 = 2, Type 3 = 0 
HBP Ruleset sufficiently simple  
Number of Asthma Conditions with p/n ratio of at least 1:1 = 0 
Number of Asthma Conditions with p/n ratio of at least 1:2 = 0 
Number of Asthma Conditions with p/n ratio of at least 1:3 = 1 
Number of Asthma Conditions with p/n ratio of at least 1:4 = 1 
Number of Asthma Conditions with p/n ratio of at least 1:5 = 2 
Number of Asthma Conditions with p/n ratio of at least 1:6 = 2 

Fig. 5.  Output from the KGL fragment from Figure 4. 

5 SCAMP--A Knowledge Scout for Discovering 
Medical Patterns 

This section describes briefly SCAMP, a medical knowledge scout for exploring 
the ACS dataset.  Our experiments were done with SCAMP specified by the 
following script: 

For each disease attribute in the dataset: 
Select randomly, about 10% of the data for training. 

           Determine a ruleset consisting of strong patterns discriminating 
cases in which the disease is present from other cases 



From the generated rulesets, maintain only rules whose support 
levels are within 40% of the strongest one in the ruleset. 

In total, during the course of these experiments, over 10,000 patterns were 
generated, some strong, and many spurious. To illustrate the interaction among 
these patterns, seven of the stronger rules were combined into an association graph 
(Figure 6).  Shaded nodes represent diseases, and unshaded ones represent other 
factors provided in the data.  Differences in line thicknesses, indicating the relative 
informational significance of individual conditions, are evident. 
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Fig. 6.  An association graph linking a group of diseases with patient characteristics, as 
determined by SCAMP from a subset of the ACS Second Cancer Prevention Study 

database. 

This association graph is an illustrative presentation of the relationships among 
attributes characterizing patients’  lifestyles and diseases. One can easily see the 
lifestyle characteristics associated with different diseases, and the type of 
influence of each characteristic on various diseases.  This is, however, only a 
preliminary result that does not intend to serve as a contribution to medical 
science.  Nevertheless, it indicates a strong potential of the presented methodology 
for discovering and modeling useful and novel medical patterns.    



6 Summary and Future Research 

This paper described briefly a methodology for integrating machine learning and 
inference methods with database operators for the purpose of automatically 
conducting complex data mining and knowledge discovery operations.  The 
central idea in this methodology is a knowledge scout, defined as a software agent 
that utilizes resources of an inductive database to search for and synthesize target 
knowledge. A knowledge scout is defined by a script in a knowledge generation 
language. An initial version of such a language, KGL-1, implemented in the 
INLEN-3 inductive database system, has been briefly described.  

A knowledge scout, SCAMP, has been developed for conducting large-scale 
experiments in a medical database.  Two knowledge representations, attributional 
rules and association graphs, were described and illustrated by selected discovered 
patterns from this dataset.  Association graphs can provide insights into 
relationships between diseases and lifestyles, and assist doctors in the disease 
diagnosis and treatment. They can also serve as guides to patients for disease 
prevention. The preliminary results achieved by SCAMP indicate a high potential 
utility of this methodology.   
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