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Abstract. The field of evolutionary computation has drawn inspiration from 
Darwinian evolution in which species adapt to the environment through random 
variations and selection of the fittest. This type of evolutionary computation has 
found wide applications, but suffers from low efficiency. A recently proposed non-
Darwinian form, called Learnable Evolution Model or LEM, applies a learning 
process to guide evolutionary processes. Instead of random mutations and re-
combinations, LEM performs hypothesis formation and instantiation. Experiments 
have shown that LEM may speed-up an evolution process by two or more orders of 
magnitude over Darwinian-type algorithms in terms of the number of births (or 
fitness evaluations). The price is a higher complexity of hypothesis formation and 
instantiation over mutation and recombination operators. LEM appears to be 
particularly advantageous in problem domains in which fitness evaluation is costly 
or time-consuming, such as evolutionary design, complex optimization problems, 
fluid dynamics, evolvable hardware, drug design, and others.   

1 Introduction 

In his prodigious treatise “On the Origin of Species by Means of Natural Selection,”  
Darwin conceived the idea that the evolution of species is governed by “one general 
law, leading to the advancement of all organic beings, namely, multiply, vary, let the 
strongest live and the weakest die”  (Darwin, 1859).  In such biological or natural 
evolution, new organisms are created via asexual reproduction with variation 
(mutation) or via sexual reproduction (recombination). The underlying assumption is 
that the evolution process is not guided by some “external mind,”  but proceeds 
through semi-random modifications of genotypes through mutation and 
recombination, and progresses to more advanced forms due to the principle of the 
“survival of the fittest.”  



In Darwinian evolution, individuals thus serve as holders and transmitters of their 
genetic material. Their life experiences play no role in shaping their offspring’s 
properties. Jean-Baptiste Lamarck’s1 idea that traits learned during the lifetime of an 
individual could be directly transmitted to progeny has been rejected as biologically 
viable because it is difficult to construe a mechanism through which this could occur.2  
Many scientists believe, however, that there is another mechanism through which 
learned traits might influence evolution, namely, the so-called Baldwin effect 
(Baldwin, 1896).  This effect stems from the fact that, due to learning, certain 
individuals can survive even though their genetic material may be suboptimal.  In this 
way, some traits that otherwise would not survive are passed on to the next 
generations. Some researchers argue that under certain conditions such learning may 
actually slow genetic change and thus slow the progress of evolution (Anderson, 
1997).  

More than a century after Darwin introduced his theory of evolution, computer 
scientists adopted it as a model for implementing evolutionary computation (e.g., 
Holland, 1975; Goldberg, 1989; Michalewicz, 1996; Koza et al. 1999). Their efforts 
have led to the development of several major approaches, such as genetic algorithms, 
evolutionary strategy, genetic programming, and evolutionary programs. These and 
related approaches, viewed jointly, constitute the rapidly growing field of evolutionary 
computation (see, e.g., Baeck, Fogel, M. Mitchell; 1996, Banzhaf et al., 1999; Zalzala, 
2000).  

Methods of evolutionary computation based on principles of Darwinian evolution 
use various forms of mutation and/or recombination as variation operators. These 
operators are easy to implement and can be applied without any knowledge of the 
problem area. Therefore, Darwinian-type evolutionary computation has found a very 
wide range of applications, including many kinds of optimization and search 
problems, automatic programming, engineering design, game playing, machine 
learning, evolvable hardware, and many others.   

The Darwinian-type evolutionary computation is, however, semi-blind: the 
mutation is a random, typically small, modification of a current solution; the crossover 
is a semi-random recombination of two or more solutions; and selection is a sort of 
parallel hill climbing. In this type of evolution, the generation of new individuals is not 
guided by principles learned from past generations, but is a form of the trial and error 
process executed in parallel. Consequently, computational processes based on 
Darwinian evolution tend to be not very efficient. Low efficiency has been the major 
obstacle in applying Darwinian-type evolutionary computation to highly complex 
problems. The objective of many research efforts in this area has been thus to increase 
the efficiency of the evolutionary process. 

                                                           
1   Jean-Baptiste Lamarck, a French naturalist (1744-1829), who proposed a theory that the 

experience of an individual can be encoded in some way and passed to the genome of 
the offspring.  

2  Recent studies show that Lamarckian evolution appears to apply in the case of antibody 
genes (Steel and Blanden, 2000). 



In modeling computational processes after principles of biological evolution, the 
field of evolutionary computation has followed a long-practiced tradition of looking to 
nature when seeking technological solutions. The imitation of bird flying by 
mythological Icarus and Daedalus is an early example of such efforts. In seeking 
technological solutions, the “ imitate-the-nature”  approach, however, frequently does 
not lead to the best engineering results. Modern examples of successful solutions that 
are not imitations of nature include balloons, automobiles, airplanes, television, 
electronic calculators, computers, etc. 

This paper discusses a recently proposed, non-Darwinian form of evolutionary 
computation, called Learnable Evolution Model or LEM. In LEM, new individuals are 
created by hypothesis formation and instantiation, rather through mutation or 
recombination. This form of evolutionary computation attempts to model “ intellectual 
evolution”---the evolution of ideas, technical solutions, human organizations, artifacts, 
etc.---rather than biological evolution. In contrast to Darwinian evolution, an 
intellectual evolution is guided by an “ intelligent mind,”  that is, by humans who 
analyze advantages and disadvantages of previous generation of solutions and use the 
developed understanding in creating next generation of solutions.  It is due to the 
intellectual evolution that the process of evolving the automobile, airplane or computer 
from primitive prototypes to modern forms was astonishingly rapid, taking just few 
human generations. 

 The idea and the first version of the LEM methodology were introduced in 
(Michalski, 1998). A more advanced and comprehensive version is in (Michalski, 
2000). Its early implementation, LEM1, produced very encouraging results on selected 
function optimization problems (Michalski and Zhang, 1999). Subsequent experiments 
with a more advanced implementation, LEM2, confirmed earlier results and added 
new highly encouraging ones (e.g., Cervone et al., 2000, Cervone, Kaufman and 
Michalski, 2000). 

The following sections briefly describe LEM and its relationship to Darwinian-type 
evolutionary computation, and then summarize results of testing experiments.  

 

2 LEM vs. Darwinian Evolutionary Computation   

Darwinian-type evolutionary algorithms can be generally viewed as stochastic 
techniques for performing parallel searches in a space of possible solutions.  They 
simulate natural evolution by creating and evolving a population of individuals until a 
termination condition is met. Each individual in the population represents a potential 
solution to a problem. Such a solution can be represented as a vector of parameters, an 
instantiation of function arguments, an engineering design, a concept description, a 
control strategy, a pattern, a computer program, etc. A precondition for applying an 
evolutionary algorithm is the availability of a method for evaluating the quality 
(fitness) of individuals from the viewpoint of the given goal.   

 



A general schema of an evolutionary computation consists of the following steps: 
 
1. Initialization   
       t :=  0 
       Create an initial population P(t) and evaluate fitness of its individuals.  
2. Selection 

t :=  t+1 
Select a new population from the current one based on their fitness: P(t) :=  
Select(P(t-1)) 

3. Modification 
Apply change operators to generate new individuals: P(t) := Modify(P(t)) 

4. Evaluation  
Evaluate fitness of individuals in P(t) 

5. Termination 
       If P(t) satisfies the termination condition, then END, otherwise go to step 2.               
 
Different evolutionary algorithms differ in the way individuals are represented, 

created, evaluated, selected and modified. They may also use different orders of steps 
in the above schema, employ single or multiple criteria in fitness evaluation, assume 
different termination conditions, and simultaneously evolve more that one population. 
Some algorithms (specifically, genetic algorithms) make a distinction between the 
search space and the solution space. The search space is a space of encoded solutions 
(“genotypes” ), and the solution space is the space of actual solutions (“phenotypes” ). 
Encoded solutions have to be mapped onto the actual solutions before the solution 
quality or fitness is evaluated.  

 
As mentioned earlier, in Darwinian-type (henceforth, also called conventional) 

evolutionary algorithms, change operators are typically some forms of mutation and/or 
recombination.  Mutation is a unary transformation operator that creates new 
individuals by modifying previous individuals. Recombination is an n-ary operator 
(where n is typically 2) that creates new individuals by combining parts of n 
individuals. Both operators are typically semi-random, in the sense that they make 
random modifications within certain constraints.  

 
The selection operator selects individuals for the next population. Typical selection 

methods include proportional selection (the probability of selecting an individual is 
proportional to its fitness), tournament selection (two or more individuals compete for 
being selected on the basis of their fitness), and ranking selection (individuals are 
sorted according to their fitness and selected according to probabilities associated with 
different ranks on the sorted list). The termination condition evaluates the progress of 
the evolutionary process and decides whether to continue it or not. 
    

Learnable Evolution Model, briefly, LEM, also follows this general schema. Its 
fundamental difference from Darwinian-type algorithms lies in step 4, as it generates 
new individuals in very different way. In contrast to semi-random change operators 
employed in Darwinian-type algorithms, LEM conducts a reasoning process in 



generating new individuals. Specifically, it applies operators of hypothesis formation 
and hypothesis instantiation. 

 
The operator of hypothesis formation selects from a population a group of high-

performing individuals, called the H-group, and a group of low-performing 
individuals, called the L-group, according to their fitness.  The H-group and L-group 
may be selected from the current population or from a sequence of past populations.  
These groups can be selected using a population-based method, a fitness-based 
method, or a combination of the two. The population-based method applies High and 
Low Population Thresholds (HPT and LPT) in selecting individuals, and fitness-based 
method applies High and Low Fitness Thresholds (HFT and LFT).  The thresholds 
can be fixed or may change in the process of evolution. For details, see (Michalski, 
2000). 

 
The H-group and L-group are then supplied to a machine learning program that 

generates a general hypothesis distinguishing between high performing from low 
performing individuals.  Such a hypothesis can be viewed as a theory explaining the 
differences between the two groups. Alternatively, it can be viewed as a 
characterization of the sub-areas of the search space that are likely to contain the top 
performing individuals (the best solutions).  Once such a hypothesis has been 
generated, the algorithm generates new individuals that satisfy the hypothesis. 

  
 In principle, any inductive learning method can be used for hypothesis formation. 

LEM1 and LEM2 implementations of the LEM methodology has used the AQ-type 
learning method (specifically, AQ15 and AQ18, respectively; see Wnek et al., 1995; 
Kaufman and Michalski, 2000b).  This method appears to be particularly 
advantageous for LEM, because it employs attributional calculus as the 
representation language (Michalski, 2000b). Attributional calculus adds to the 
conventional logic operators new operators, such as internal disjunction, internal 
conjunction, attribution relation, and the range operator, which are particularly useful 
for characterizing groups of similar individuals. Attributional calculus stands between 
propositional calculus and predicate calculus in terms of its representational power.  
 

New individuals are generated by a hypothesis instantiation operator that 
instantiates the given hypothesis in various ways.  To very simply illustrate, suppose 
that a hypothesis was generated by an AQ-type learning program and expressed in the 
form of two attributional rules (these rules are in a simplified form to facilitate 
explanation):   

 
Rule 1:    [x = a v c] &  [y =  2.3 .. 4]  & [z > 5]  (sup=80)  
Rule 2:    [x = b v d v e]  & [z =  3.5 .. 6.4]  (sup=15)                               (1) 

 
where the domains of attributes x, y, and z are: D(x) = { a,b,c,d,e,f} ,  and D(y) and  
D(z) range over real numbers between  0 and 10.   
 



Rules in (1) characterize two subareas of the search space that contain high 
performing individuals.  The first rule states that high performing individuals appear 
in the area in which the variable x has value a or c, the variable y takes value between 
2.3 and 4, and the variable z takes value greater than 5. The parameter sup (support) 
indicates that this rules covers 80 individuals in the H-group. The second rule 
describes an alternative set of conditions, namely, that high performing individuals 
appear also in the area in which differ x takes value b or d or e, and z takes values 
from the real interval between 3.5 and 6.4.  The second rule covers sup=15 individuals 
in the H-group. Note that Rule 2 does not include variable y. This means that this 
variable was found irrelevant for differentiating between high and low performing 
individuals. 
 

The hypothesis (1) is a generalization of the set of individuals in the H-group. 
Thus, it may potentially cover many other, unobserved individuals. The instantiation 
operator instantiates the hypothesis in different ways, that is, generates different 
individuals that satisfy conditions of the rules. For example, using hypothesis (1), the 
operator may generate such individuals as: 

 
                   <a, 2, 6>,  <c, 3.5, 9.1>,  <a, 2.1, 6.4>    (based on  Rule 1)                        

                       <d, 2, 6>,  <e, 5.5, 4.3>,  <b, 2.2,   4.5>  (based on Rule 2)            (2) 
 
Since variable y is not present in Rule 2, any values of y could be selected from 

D(y) to instantiate this rule. In our experiments, variables not present in the rule were 
instantiated to values selected randomly from among those that appeared in 
individuals of the training set (H-group and L-group).  

 
The newly generated individuals are combined with the previous ones, and a new 

population is selected using some selection method. Again, an H-group and L-group 
are generated and operations of hypothesis generation and instantiation are repeated. 
The process continues until a LEM termination condition is met, e.g., the 
(presumably) global or a satisfactory solution has been found. 

 
The above-described process of creating new individuals by operators of 

hypothesis formation (through inductive generalization) and hypothesis instantiation 
(by generating individuals satisfying the hypothesis) constitutes the Machine Learning 
Mode of LEM.  A general form of LEM includes two versions:  uniLEM, which 
repetitively applies the Machine Learning mode until a termination condition is 
satisfied, and duoLEM, which toggles between Machine Learning and Darwinian 
Evolution mode, switching from one mode to another when the termination condition 
for the given mode is satisfied (when there is little progress in executing the mode).  
The Darwinian Evolution Mode executes one of the existing conventional 
evolutionary algorithms.   

 
A comprehensive explanation of various details of the LEM methodology and its 
variants is in (Michalski, 1999). 
 



3  A Simple Illustration of LEM  

 To illustrate LEM, let us consider a very simple search problem in a discrete space. 
The search space is spanned over four discrete variables: x, y, w, and z, with domains 
{ 0,1} , { 0,1} , { 0,1} , and {0,1,2} , respectively. Figure 1A, presents this space using the 
General Logic Diagram or GLD (Michalski, 1978; Zhang, 1997). Each cell of the 
diagram represents one individual. For example, the uppermost cell marked by 7 
represents the vector: <0, 0, 0, 2>.  The initial population is visualized by cells marked 
by dark dots (Figure 1A). The numbers next to the dots indicate the fitness value of the 
individual. The search goal is to determine individuals with the highest fitness, 
represented by the cell marked by an x (with the fitness value of 9).   

 
Figure 1.  The search space and four states of the LEM search process. 

 
We assume that descriptions discriminating between an H-group and an L-group are in 
the form of attributional rules learned AQ-type learning programs. Figure 1B presents 
the H-group individuals (the gray-shaded cells) and L-group individuals (crossed cells) 
determined from the initial population. The shaded areas in Figure 1C represent two 
attributional rules discriminating between the H-group and the L-group:  [w = 0] & [z 
= 1 v 2] and [y = 1] & [w = 1] & [z = 0 v 1]. 



 
Figure 1D shows individuals in the H-group (shaded cells) and the L-group (crossed 
cells) generated by instantiating rules in Figure 1C. The shaded area in Figure 1D 
represents a rule that discriminates between these groups: [x=0] & [y=1] & [w=0] & 
[z=1v2]. This rule was obtained through incremental specialization of the parent rule, 
and covers two individuals. The global solution will be located in the next iteration. 
 

4 Summary of Testing Experiments 

To test the LEM methodology, it has been implemented in a general-purpose form in 
programs LEM1 (Michalski and Zhang, 1999) and LEM2 (Cervone, 1999). It was also 
employed in program ISHED1, specifically tailored to problems of optimizing heat 
exchangers (Kaufman and Michalski, 2000a).   Both LEM1 and LEM2 were applied to 
a range of function optimization problems. LEM1 was also successsulfy applied to a 
problem in filter design (Colleti et. al, 1999).  LEM2 was tested in a wide range of 
experiments dealing with optimizing different types of functions with different 
numbers of arguments, ranging from 4 to180 continuous variables.  
 
In all experiments LEM2 strongly outperformed conventional evolutionary 
computation algorithms employed in the study, frequently achieving two or more order 
of magnitude speedups in terms of the number of births (or function evaluations). 
Results from LEM2 were also significantly better than the best results from 
conventional evolutionary algorithms published on a website. These and other recent 
results have been described in (Cervone et. al, 2000a; Cervone et al., 2000b).  Results 
from experiments with ISHED1 were presented in (Kaufman and Michalski, 2000a). 
According to the collaborating expert, ISHED1’s heat exchanger designs were 
comparable to the best human designs in the case of uniform flow of refrigerant, and 
were superior to the best human designs in the case of non-uniform flow. 
 

5 Conclusion 

Experimental studies conducted so far have strongly demonstrated that the proposed 
Learnable Evolution Model can significantly speed up evolutionary computation 
processes in terms of the number of births (or fitness evaluations). These speed-ups 
have been achieved at the cost of higher complexity of operators generating new 
individuals (hypothesis formation and instantiation).  An open problem is thus to study 
trade-offs associated with the LEM application to different problem domains.  It is safe 
to say, however, that LEM is likely to be highly advantageous in problem areas in 
which computation of the evaluation function is costly or time-consuming. Such areas 
include engineering design, complex optimization problems, fluid dynamics, evolvable 
hardware, drug design and automatic programming. 

Another limiting aspect of LEM is that in order to apply it, the machine learning 
system must be able to work with the given representation of individuals. For example, 
if individuals are represented as attribute-value vectors, rule and decision tree learning 



systems can be applied. If they are represented as relational structures, a structural 
learning system must be employed. 

Concluding, among the open problems for further research on LEM are to understand 
the benefits, trade-offs, advantages and disadvantages of LEM versus Darwinian-type 
evolutionary algorithms in different problem domains. 
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