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Abstract

The MIST methodology (Multi-level Image
Sampling and Transformation) provides an en-
vironment for applying diverse machine
learning methods to problems of computer vi-
sion. The methodology is illustrated by a
problem of learning how to conceptually inter-
pret natural scenes. In the experiments
described,  three learning programs were used:
AQ15c—for learning decision rules from ex-
amples, NN—neural net learning, and AQ-
NN—multistrategy learning combining sym-
bolic and neural net methods. Presented results
illustrate the performance of the learning pro-
grams for the chosen problem of natural scene
interpretation in terms of predictive accuracy,
training time, recognition time, and complexity
of the induced descriptions. The MIST method-
ology has proven to be very useful for the
presented application. Overall, the experiments
performed indicate that the multistrategy
learning program AQ-NN appears to be the
most promising approach.
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1. Introduction

The underlying motivation of our research is
that vision systems need learning capabilities
for handling problems for which algorithmic
solutions are unknown or very difficult to for-
mulate. Learning capabilities will also make
vision systems more easily adaptable to differ-
ent vision problems, and more flexible and
robust in handling the variability of perceptual
conditions[Michalski et al., 1994] .

To this end, we have developed a general
methodology for applying machine learning
methods to vision problems, called Multilevel
Image Sampling and Transformation. (MIST).
The purpose of this methodology is to provide
a researcher with an environment in which a
variety of machine learning methods and ap-
proaches can be flexibly applied to a wide
range of vision problems. The methodology
makes it easy to apply a variety of tools devel-
oped in computer vision and machine learning
research. The central idea of the  methodology
is to combine advanced inductive learning tech-
niques and the use of background knowledge in
parallel multi-level image interpretation.

The  MIST methodology is an extension and a
generalization of an earlier methodology,
called Multilevel Logical Templates, originally
proposed by Michalski (1973), further devel-
oped and implemented by Channic (1988), and
subsequently by Bala (1991) and Michalski et.
al. (1993). Although developed independently,
MIST’s concept of an Annotated Symbolic Im-
age is similar to the concept of a class map in
the ALISA system (e.g., Howard and Bock,
1994).



This paper briefly describes the methodology
and illustrates it by an application to natural
scene interpretation. As pointed out in [Fischler
and Strat 1988; Strat and Fischler 1991], the
semantic interpretion of natural scences and
recognition of natural objects is one of the most
challenging open vision problems. The MIST
methodology seems to offer a new approach to
these problems.

2. MIST Methodology

The MIST methodology works in two basic
modes: Learning mode and Interpretation
mode. In Learning mode, the system builds or
updates the Image Knowledge Base (IKB) that
contains concept descriptions, and the back-
ground knowledge relevant to image
interpretation. A descritpion (or model) of a
visual concept is developed by inductive infer-
ence from concept examples specified by a
trainer.  Concept descriptions are arranged into
procedures defining sequences of image trans-
formation operators.

In Interpretation mode, a learned (or prede-
fined) image transformation procedure is
applied to a given image in order to produce an
Annotated Symbolic Image (ASI). In an ASI,
areas that correspond to the location of recog-
nized concepts in the original image are marked
by symbols (e.g., colors) denoting these con-
cepts, and linked to concept annotations (text
containing additional information about that
concept, such as, degree of certainty of recog-
nition,  properties of the concept, relation to
other concepts, etc.). The following para-
graphs describe these two modes in a greater
detail.

    A.        Learning         Mode   

This mode (Figure 1) is executed in four
phases: LP1—Description Space Generation
and Background Knowledge Formulation,
LP2—Event Generation, LP3—Learning or
Refinement, and LP4—Image Interpretation
and Evaluation.
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Figure 1. The MIST Training Mode



These four phases may be repeated iteratively
creating images at different levels (Figure 1
shows just two levels).

LP1: Description Space Generation and
Background Knowledge Formulation

A trainer assigns concept names to areas in
the image(s) that contain objects  (concepts)
to be learned. These areas are divided into
training and testing areas.  Objects to be
learned are presented in different poses and
with different appearances (by changing per-
ceptual conditions) so that the system can
learn a description that is invariant to concept-
preserving transformations. The trainer also
defines the initial description space, i.e., ini-
tial attributes and/or terms to be measured on
image samples, specifies their value sets and
their types (measurement scale). This phase
also involves an optimization of the image
volume, that is, a reduction of the image
resolution and intensity levels (the hue and
saturation in color images) accordingly to the
needs of the given problem.

The trainer may also define constraints on the
description space, initial concept recognition
rules, and possibly forms for expressing the
descriptions (e.g., conjunctive rules, DNF,
the structure of the neural net, etc.). Proce-
dures for the measurement of attributes/terms
are selected from a predefined collection.

LP2: Event generation.
Using chosen procedures, the system gener-
ates initial training examples (“training
events”) from each concept area. Concept
areas are sampled exhaustively or selectively.

LP3: Learning or Refinement
The system applies a selected machine learn-
ing program to training examples to generate
a concept description. Currently, we have the
following programs available: AQ15c—for
learning general symbolic rules from exam-
ples, NN—a neural net learning with
backpropagation, and AQ-NN—a system that
integrates AQ rule-learning with neural net
learning[Zurada 1992].

LP4: Image Interpretation and Evaluation.
The developed descriptions are applied to the
testing areas to generate an Annotated Sym-
bolic Image (ASI). In ASI, the areas
corresponding to given concepts are marked
by symbols representing these concepts
(numbers, colors, etc.). These areas are also
linked to texts that include additional infor-
mation about concept descriptions.  The
quality of generated descriptions is deter-
mined by comparing the ASI with testing
areas in the original image. Depending on the
results, the system may stop, or may execute
a  new learning process (iteration), in which
the ASI is the input (hence the term
“multilevel” in the name of the methodology).
If the generated descriptions need no further
improvement, the process is terminated. This
occurs when the obtained symbolic image is
“sufficiently close” to the target image label-
ing (indicating the “correct” labeling of the
image). Complete object descriptions are se-
quences of image transformations (defined by
descriptions obtained in each iteration) that
produce the final ASI. Learning errors are
computed by comparing the target labeling
(made by the trainer) with learned labeling
(produced by the system).

    B.        The       Interpretation         Mode   

In this mode (Figure 2), the system applies
descriptions from the Image Knowledge Base
to semantically interpret a new image. To do
so, the system executes a sequence of opera-
tors (defined by the description) that
transform the given image into an ASI.

A given “pixel” in ASI is assigned a class on
the basis of applying operators to a single
event, or to a sample of events and applying a
majority voting schema (typically within a
3x3 window). In ASI, different concepts are
denoted by different colors and/or textures.
The simplest form of annotation is to associ-
ate the degree of confidence with the ASI
pixels denoting a given concept.
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Figure 2: The MIST Image Interpretation Mode

Among the advantages of the MIST methodol-
ogy are the ease of applying and testing diverse
learning methods and approaches in a uniform
manner, the potential for implementing very
advanced and complex learning processes, the
possibility for parallel image learning, very
natural interpretation of the images, and the
ease of testing the accuracy and performance of
the methods.

The current MIST methodology has been im-
plemented with the following learning systems: 

(i) Symbolic rule learning program AQ15c
[Michalski et al., 1986; Wnek, 1994].

(ii) Multistrategy learning system, AQ-NN
combining decision rule learning with
neural net learning [Michalski et. al.,
1993].

(iii) Multistrategy learning that combines deci-
sion rule learning with a genetic algorithm

(iv) Class similarity-based learning for build-
ing descriptions of large numbers of
classes (PRAX).

The methodology has been applied to such vi-
sion tasks as: 
A) Detection of specific objects in a cluttered
environment. Initial experiments have been
performed on detecting blasting caps in X-ray
images,

B) Fast identification of textures from a large
class of candidates,

C) Detection of problem areas in medical im-
ages,

D) Learning to segment natural scenes into
concept areas,

E) Learning to identify objects in indoor
scenes.

An earlier version of MIST has been applied to
learning descriptions of classes of surfaces
[Michalski et. al., 1993]. The core part of the



descriptions was in the form of decision rules,
which were discovered by the inductive learn-
ing program AQ15 [Michalski et al., 1986] and
represented in the VL1 logic-style language
(Variable-Valued Logic System 1) [Michalski,
1973]. Such decision rules  can be applied to
an image in parallel or sequentially.

3. Experimental Results

A simple version of MIST methodology  was
applied to problems of semantically interpret-
ing outdoor scenes using several learning
methods.  In the experiments, we used a col-
lection of images representing selected
mountain scenes around Aspen, CO (Fig. 3).

The input to the learning process was a training
image in which selected examples of the visual
concepts to be learned have been labeled by a
trainer, for example, trees, sky, ground, road,
and grass. We experimented with different sets
of attributes defining the description space,
with images obtained under different percep-
tual conditions, with different sizes of training
areas, and different sources of training and
testing image samples (from different parts of
the same image area, from different areas of
the same image, from different images).

In the experiments described here, the descrip-
tion space was defined by such attributes as:
hue, saturation, intensity, horizontal and verti-
cal lines, high frequency spot, horizontal and
vertical V-shape, and Laplacian operators.
These attributes were computed for the 5x5
windowing operator (sample size) that scanned
the training area. Vectors of  attribute values
constituted training events. Three learning
methods were used: AQ15c, AQ-NN, and
NN.  Three different training areas were used:

10 x 10, 20 x 20, and 40 x 40 pixels. The
validation methodology used here was a hold-
out method in which a random selection of
60% of the samples from the training area were
used for training, while the remaining 40%
were used for testing[Weiss and Kulikowski,
1992].

Figure 3: A typical image of a natural scene
used in the experiments.

Table 1 gives results from an experiment in-
volving only one level of image transformation
using different learning programs. In this ex-
periment, the training area for each concept
was only 10x10 pixels. When the training area
was enlarged to 20x20, the training time was
significantly longer, but the correctness of the
interpretation of the areas of the whole image
was approximately the same.

Learning Method
AQ15c AQ-NN NN

   Training time   0.43 s 10.93 s  4.38 s
   Recognition time   1.0 s   0.016 s   0.033 s
   Accuracy 94.0% 99.98% 99.97%

(Statistics computed for 161 training events, 150 testing events selected from
the 10 x 10 training area.)

Table 1: A summary of results from learning to interpret the image in Figure 4.



(a) An image with training areas 
for sky, tree, and ground.

(b) ASI based on the single-
event evaluation
scheme.

(c)  ASI obtained using a major-
ity voting scheme.

Concept denotation: sky area ground areatree area

Figure 4.  An example of the image interpretation process based on the rules learned
from the indicated training areas.

Figure 4 presents an example of a training im-
age and ASIs (annoted symbolic images)
obtained from applying the learned one-level
descriptions to the whole image using two dif-
ferent evaluation schemes.

As one can see in Figure 4c, most of the areas
in the image were correctly interpreted, al-
though the system learned concept descritpions
from relatively small training areas (Figure 4a).
In this experiment, AQ-NN produced a slighly
smaller neural net and the interpretation time of

the image was about 50% shorter than with
NN method.

We also tested the application of the data-
driven constructive induction method, AQ17-
DCI, in this experiment and got some new at-
tributes and comparable results [Bloedorn et
al., 1993].

Table 2 presents a summary of the perform-
ance accuracy of the descriptions obtained by
AQ15c and AQ-NN. The AQ15c program was
run on a Sparc 2 workstation and AQ-NN on
Sparc2 and MATLAB neural network toolbox.

   
    Learning System

  
  Recognition accuracy
        Single event scheme

 Recognition accuracy
   Majority voting scheme

Symbolic learning: AQ15c                      89%                   96%

Multistrategy learning: AQ-NN                      91%                   99%

Table 2. A comparison of recognition rates from symbolic learning (AQ15c) and multis-
trategy learning  (AQ-NN).


