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Abstract

The MIST methodology (Multi-level Image
Sampling and Transformation)providesan en-

vironment for applying diverse machine
learning methodsto problemsof computer vi-

sion. The methodology is illustrated by a

problem of learning how to conceptuallyinter-

pret natural scenes. In the experiments
described, three learning programs were used

AQ15c—for learning decisionrules from ex-

amples,NN—neural net learning, and AQ-

NN—multistrategy learning combining sym-

bolic and neural net methods. Presemt=iilts
illustrate the performanceof the learning pro-

gramsfor the chosenproblem of natural scene
interpretationin terms of predictive accuracy,
training time, recognitiontime, and complexity
of the induced descriptions. THIST method-
ology has proven to be very useful for the

presentedapplication. Overall, the experiments
performed indicate that the multistrategy
learning program AQ-NN appearsto be the

most promising approach.

' This researchwassupportedby the Advanced

1. Introduction

The underlying motivation of our researchis

that vision systemsneed learning capabilities
for handling problemsfor which algorithmic
solutions are unknowar very difficult to for-

mulate. Learning capabilitieswill also make
vision systems moreasily adaptableo differ-

ent vision problems,and more flexible and
robustin handlingthe variability of perceptual
conditions[Michalski et al., 1994] .

To this end, we have developeda general
methodology for applying machine learning
methodsto vision problems,called Multilevel
Image Sampling and Transformation. (MIST).
The purpose of thimethodologyis to provide
a researcheith an environmentin which a
variety of machinelearningmethodsand ap-
proachescan be flexibly applied to a wide
range of vision problems. The methodology
makes it easy to applyvariety of tools devel-
opedin computervision and machinelearning
researchThe centraidea of the methodology
is to combine advanceductive learning tech-
niqgues and the use of background knowledge
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called Multilevel Logical Templatesoriginally
proposed byMichalski (1973), further devel-
oped and implemented by Channic (19&8)d
subsequently by Bala (199&hd Michalski et.
al. (1993). Although developaddependently,
MIST’s concept of an Annotated Symbolio-
ageis similar to the conceptof a classmap in
the ALISA system(e.g., Howard and Bock,
1994).



This paper briefly describesthe methodology
and illustratesit by an application to natural
scene interpretation. Agointed out in [Fischler
and Strat 1988; Strat and Fischler 1991], the
semantic interpretion of natural scencesand
recognition of natural objects is one thie most
challenging open vision problems. The MIST
methodology seem# offer a new approachto
these problems.

2. MIST Methodology

The MIST methodologyworks in two basic
modes: Learning mode and Interpretation
mode. In Learning modethe systembuilds or
updates the Image Knowledge B&H€B) that
contains conceptdescriptions,and the back-
ground knowledge relevant to image
interpretation.A descritpion(or model) of a
visual concept islevelopedoy inductive infer-
ence from concept examplesspecified by a
trainer. Concept descriptions agangednto
procedures definingequencesf imagetrans-
formation operators.

In Interpretationmode, a learned (or prede-
fined) image transformation procedure is
applied to a given image in orderpgooducean
Annotated Symbolic Image (ASI). In an ASI,
areasthat correspondo the locationof recog-
nized concepts in the original image are marked
by symbols(e.g., colors)denotingthesecon-
cepts,and linked to concept annotations (text
containing additional information about that
concept, such aslegreeof certaintyof recog-
nition, propertiesof the concept,relation to
other concepts, etc.). The following para-
graphsdescribethesetwo modesin a greater
detail.

A. LearningMode

This mode (Figure 1) is executedin four
phases:LP1—Description Space Generation
and Background Knowledge Formulation,
LP2—Event Generation, LP3—Learning or
Refinement, and LP4—Imagelnterpretation
and Evaluation.
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Figure 1. The MIST Training Mode



These four phases may kepeatedteratively
creatingimagesat different levels (Figure 1
shows just two levels).

LP1: Description Space Generation and
Background Knowledge Formulation

A trainer assignsconceptnamesto areasin
the image(s)that contain objects (concepts)
to be learned.Theseareasare divided into
training and testing areas. Objectsto be
learnedare presentedn different posesand
with different appearancegy changingper-
ceptual conditions) so that the system can
learn a description that is invariant to concept-
preservingtransformationsThe trainer also
definesthe initial descriptionspace,i.e., ini-
tial attributes and/otermsto be measuredn
imagesamples specifiestheir valuesetsand
their types (measuremenscale). This phase
also involves an optimization of the image
volume, that is, a reduction of the image
resolutionand intensity levels (the hue and
saturation in colommages)accordinglyto the
needs of the given problem.

The trainer may also define constraiatsthe
descriptionspace,initial conceptrecognition
rules, and possibly forms forexpressingthe
descriptions(e.g., conjunctiverules, DNF,
the structureof the neuralnet, etc.). Proce-
dures for thameasuremenf attributes/terms
are selected from a predefined collection.

LP2: Event generation.

Using chosenproceduresthe systemgener-
ates initial training examples (“training
events”) from each concept area. Concept

areas are sampled exhaustively or selectively.

LP3: Learning or Refinement

The systemappliesa selectednachinelearn-

ing programto training exampledo generate

a concept description. Currentlye havethe
following programsavailable: AQ15c—for
learning generalsymbolic rules from exam-
ples, NN—a neural net learning with
backpropagation, and AQ-NN—a system that
integratesAQ rule-learningwith neural net
learning[Zurada 1992].

LP4: Image Interpretation and Evaluation.
The developed descriptiomse appliedto the
testingareasto generatean Annotated Sym-
bolic Image (ASI). In ASI, the areas
correspondingo given conceptsare marked
by symbols representing these concepts
(numbers.colors, etc.). Theseareasare also
linked to texts that include additional infor-
mation about concept descriptions. The
quality of generateddescriptionsis deter-
mined by comparing the ASI with testing
areas in the original imagBependingon the
results, the system mayop, or may execute
a new learningprocesqiteration),in which
the ASI is the input (hence the term
“multilevel” in the name of the methodology).
If the generatedlescriptionsneedno further
improvement, the process terminated.This
occurswhenthe obtainedsymbolic image is
“sufficiently close”to the targetimage label-
ing (indicating the “correct” labeling of the
image).Completeobjectdescriptionsare se-
guences of image transformations (defined by
descriptionsobtainedin each iteration) that
producethe final ASI. Learning errors are
computedby comparingthe target labeling
(madeby the trainer) with learnedlabeling
(produced by the system).

B. ThelnterpretatiorMode

In this mode (Figure 2), the systemapplies
descriptions from the Image Knowledge Base
to semanticallyinterpreta newimage.To do

so, the systermexecutesa sequencef opera-
tors (defined by the description) that
transform the given image into an ASI.

A given “pixel” in ASI is assigneda classon

the basis ofapplying operatorsto a single
event, or to a sample of events and applying a
majority voting schema(typically within a
3x3 window). In ASI, different conceptsare
denotedby different colors and/or textures.
The simplesform of annotationis to associ-

ate the degreeof confidencewith the ASI
pixels denoting a given concept.
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Figure 2: The MIST Image Interpretation Mode

(iv) Classsimilarity-basedearningfor build-
Among the advantagesd the MIST methodol- ing descriptions of large numbers of
ogy are the ease of applying and testing diverse  classes (PRAX).
learning methodand approache a uniform
manner,the potential for implementingvery  The methodologyhasbeenappliedto suchvi-
advancedand complexlearningprocessesthe  sion tasks as:

possibility for parallel image learning, very  A) Detectionof specific objectsin a cluttered
natural interpretatiorof the images,and the  enyironment. Initial experimentshave been

ease of testing the accuracy and performance Gierformedon detectingblastingcapsin X-ray
the methods. imagesl

The currentMIST methodologyhasbeenim-  B) Fastidentificationof texturesfrom a large
plemented with the following learning systems: class of candidates,

() Symbolic rule learning program AQ15c  C) Detectionof problemareasin medicalim-
[Michalski et al., 1986; Wnek, 1994]. ages,

D) Learningto segmentnatural scenesinto

(i) Multistrategy learning system, AQ-NN concept areas,

combining decision rule learning with
neural net learning [Michalski et. al.,  E) Learning to identify objects in indoor
1993]. scenes.

(i) Multistrategylearningthatcombinesdeci- ~ An earlier version of MIST has beappliedto

sion rule learning with a genetic algorithm learning descriptionsof classesof surfaces
[Michalski et. al., 1993]. The corepartof the



descriptions was in thierm of decisionrules,
which were discoveredoy the inductive learn-

10 x 10, 20 x 20, and 40 x 40 pixels. The
validationmethodologyusedherewas a hold-

ing program AQ15 [Michalski et al., 1986] and out methodin which a random selection of
60% of the samples from the training area were
used fortraining, while the remaining 40%
wereused fortesting[Weissand Kulikowski,
19

92].

representedn the VL1 logic-style language
(Variable-ValuedLogic Systeml) [Michalski,
1973]. Suchdecisionrules can be appliedto
an image in parallel or sequentially.

3. Experimental Results

A simpleversionof MIST methodology was
appliedto problemsof semanticallyinterpret-
ing outdoor scenes using several learning
methods. In the experimentswe useda col-
lection of images representing selected

mountain scenes around Aspen, CO (Fig. 3).

The input to the learning process was a training

image in which selected examplafsthe visual

conceptgo be learnedhave beerabeledby a
trainer, for exampletrees,sky, ground,road,
and grass. We experimented with differsats
of attributes defining the description space,
with imagesobtainedunder different percep-
tual conditionswith different sizesof training

areas,and different sources oftraining and
testingimagesampleqfrom different parts of

the sameimage area,from different areasof

the same image, from different images).

In the experiments describéere,the descrip-
tion spacewas definedby suchattributesas:
hue, saturationntensity, horizontaland verti-
cal lines, high frequencyspot, horizontal and
vertical V-shape, and Laplacian operators.
These attributeswere computedfor the 5x5
windowing operator (sample size) tismianned
the training area.Vectorsof attribute values
constituted training events. Three learning
methodswere used: AQ15c, AQ-NN, and
NN. Threedifferenttraining areaswere used:

Figure 3: A typical imageof a natural scene
used in the experiments.

Table 1 gives resultsfrom an experimentin-

volving only one level ofmagetransformation
usingdifferentlearning programs.In this ex-

periment, the training areafor each concept
was only 10x10 pixels. Whethe training area
was enlargedio 20x20, the training time was
significantly longer, but the correctnes®f the

interpretationof the areasof the whole image
was approximately the same.

Learning Method
AQ15c AQ-NN NN
Training time 0.43s 10.93 s 4.38 s
Recognition time 10s 0.016 s 0.033 s
Accuracy 94.0% 99.98% 99.97%

(Statistics computed for 161 training events, 150 testing events selected from
the 10 x 10 training area.)

Table 1: A summary of results from learning to interpret the image in Figure 4.
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(a) An image with training are: (b) ASI based orthe single- (c) ASI obtainedusing a major-
for sky, tree, and ground. event evaluation ity voting scheme.
scheme.

Concept denotation:-tree area |:| sky area - ground are

Figure4. An example of the image interpretation process based on the rules learned
from the indicated training areas.

the imagewas about 50% shorter than with
Figure 4 presentan exampleof a training im- NN method.
age and ASIs (annoted symbolic images)
obtainedfrom applying the learnedone-level We also tested the application of the data-
descriptions to the wholenageusing twodif- driven constructiveinduction method, AQ17-
ferent evaluation schemes. DCI, in this experimentand got somenew at-
tributes and comparableresults [Bloedorn et
As one can see iRigure4c, mostof theareas al., 1993].
in the image were correctly interpreted, al-
though the system learned concdescritpions  Table 2 presentsa summaryof the perform-
from relatively small training areas (Figure 4a). anceaccuracyof the descriptionsobtainedby
In this experiment, AQ-NNbroduceda slighly  AQ15c and AQ-NN. Th&AQ15c programwas
smaller neural net and the interpretatiome of run ona Sparc2 workstationand AQ-NN on
Sparc2 and MATLAB neural network toolbox.

Learning System Recognition accuracy | Recognition accuracy
Single event scheme| Majority voting scheme
Symbolic learning: AQ15c 89% 96%
Multistrategy learning: AQ-NN 91% 99%

Table 2. A comparisonof recognitionratesfrom symbolic learning (AQ15c) and multis-
trategy learning (AQ-NN).



