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Abstract

This research concerns the development of a methodology
for representing, planning and executing multitype
inferences in a multistrategy iask-adaptive learning
system. These inferences, defined in the Inferential Theory
of Learning zs knowledge transmutations, are generic
types of knowledge operators, and are assumed to underlie
all learning processes. The paper shows how several basic
knowledge transmutations can be seamlessly integrated
using 2 knowledge representation based on dynamic
interlaced hierarchies (DIH), The implemented system,
INTERLACE, includes an interactive graphical user
interface for visnalizing knowledge transmutations that are
being performed by the system. INTERLACE is illustrated

by several examples.

Introduction

The development of a multistrategy learning system
capable of integrating different learning strategies according
to the needs of a given learning task requires a knowledge
representation that facilitates multitype inferences. The
Inferential Theory of Learning (Michalski 1993), which
provides a theoretical framework for multistrategy learning,
views every learming process as a goal-orented search
through a knowledge space. In this search, the operators
are instantiztions of generic forms inference, called
knowledge transmutations, the search goal is a
specification/characterization of knowledge to be acquired,
and the starting point is knowledge the system already
possesses. A knowledge transmutation takes some input
knowledge (e.g., 2 training example(s), a general statement,
an observation, etc.), a relevant part of the learner’s prior
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knowledge, and produces a new piece of knowledge (e.g., a
generalization of examples, a consequence of the given
statement, an explanation of the observation, etc.).
Knowledge transmutations can be classified on the basis of
the type of inference they employ and the type of
knowledge they produce.

This paper describes a2 methodology and an initial
implementation of the system INTERLACE, for
supporting different knowledge transmutations and
applying them according to the learning task. A learping
task is determined on the basis of the input kmowledge
provided to the leamer, the learner’s prior knowledge, and a
learning goal. The methodology employs a kmowledge
representation,, called Dynamically Interlaced Hierarchies
(DIH), which builds upon research on human plausibie
reasoning (Collins & Michalski 1989), frame
representation (Minsky 1975) and semantic networks
{Quillian 1968). The DIH representation supports a
scamless execution of a wide range of knowledge
transmutations, and provides a backbone for implementing
a Multistrategy Task-Adaptive Learning (MTL) system
(Michalski 1993).

The DIH representation provides an expressive,
modifiable and flexible knowledge representation system.
The initial efforts in this direction were described in (Hieb
& Michalski 1993). The DIH representation employs part,
type and precedence hierarchies for representing hierarchical
conceptual structures, and zraces for representing statements
involving concepts from different hierarchies.

INTERLACE combines the DIH representation with a
control mechanism for executing knowledge transmutations

in a seamless integrated manmer, according to a given
knowledge goal. A learning process is then a goal-directed



transformation of knowledge that is camied out through
inferential processes embodied in knowledge transmutation
Operators.

The INTERLACE systemn consists of three interacting
modules, a knowledge base for DIH hierarchies, traces and
transmutations, a goal-driven planner for generating
plausible sequences of transmutations in order to achieve a
given goal, and a graphical user interface for visualizing
knowledge transmutations. The implemented system
includes capabilities for such transmutations as inductive
generalization, deductive specialization, abstraction and
similization, and ther counterparts, deductive
generalization, inductive specialization, concretion and
dissimilization. It also allows for the graphical creation,
modification and deletion of DIH hierarchies and traces.

Related Research

One of the important aspects of the Inferential Theory of
Leamning (ITL) is that provides an approach to analyzing
and describing the comperence of learning strategies, that
is, their logical capabilities. Theory views every learning
process as a search through a knowledge space defined by
the employed knowledge representation, and guided by a
learning goal. The search operators, instantiations of
transmutations, represent different types of inference or
knowledge  transformation. Basic
transmutations  include  generalization,  abstraction,
explanation, selection,  association, similization,
agglomeration, characterization, and their counterparts,
specialization, concretion, prediction, generation,,
disassociation, dissimilization, decomposition and
discrimination (Michalski 1994).

According to ITL, to instill learning capabilities in a
multipurpose intelligent agent, one needs to implement in
it the ability to conduct multiple types of inference (in
geperal, any type of knowledge derivation or
transformation) and the ability to store and retrieve
knowledge. This observation forms the basic premise of
the theory, which can be succinctly stated in the following
“equation”:

Learning = Inference + Memory

This theory is conceptually close to Newell's ideas of
about knowledge-level systems (Newell 1994). TIL
abstracts from the medium that transforms knowledge, and
concentrates on the type of knowledge transformations that
occur in learning processes. Therefore, it can be used, in
principle, for analyzing any type of learning. In this paper,
ITL is used as a conceptual basis for implementing a
multistrategy task adaptive learning.

Research on multistrategy task-adaptive learning (MTL)
systems aims at synergistically integrating a wide range of
learning strategies in order to perform different learning

knowledge -
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tasks. A learning task is defined by the available input to
the learning system. learner’s prior knowledge, nd a
learning goal. The proposed system is called task-adaptive,
because it is supposed to dynamically combine different
learning strategies so that it can perform a given learning
task (Michalski 1993, 1994; Michalski & Ram 1995).
The system is inherently goal-dependent, because it does
not assume that the learning process is just a search for a
generalization of examples, as often done in machine
learning, but can, in principle, search for any kind
knowledge that is deswrable by the learner (Michalski
1954).

Research on task-adaptive learning is conceptually related
to research on integrated learning, (e.g., Bergadano,
Giordana & Saitta 1991), and goal-driven learning {(e.g.,
Hunter 1990; Leake & Ram 1995; Ram & Leake 1995).
In general, multistrategy learning systems range from
loosely coupled systems that consist of several learning
modules coordinating to achieve the learning task to rightly
coupled systems that deeply and synergistically integrate
inferential learning strategies in order to achieve the desired
leaming performance. Examples of tightly (“deeply”)
integrated learning systems include the discussed learning
system (MTL-DIH) and a related system based on plausible
Justification trees (Tecuci 1993).

Figure 1 presents a general schema of a multistrategy
task-adaptive learning system based on DIH knowledge
representation (a MTL-DIH system). The learning task is
defined by the input DIH traces, relevant background
knowledge in the form of DIH hierarchies and existing
traces throngh the hierarchies, and a learning goal (in
general, it can be a set of goals). A multitype inference
engine utilizes DIH transmutations as knowledge
generation operators under the supervision of a control and
planning subsystem.

Dynamically Interlaced Hierarchies

The idea of the knowledge representation based on
Dynamically Interlaced Hierarchies stems from the
observation that some knowledge is more or less stable and
other knowledge is acquired incrementally using the stable
knowledge as hooks. In (Collins & Michalski 1989), this
“stable” knowiedge is represented by type and part
hierarchies. Initial ideas and 2 method for the
implementation of Dynamically Interlaced Hierarchies
(DIH) was presented in (Hieb & Michalski 1993). The DIH
representation is conceptually related to semantic networks
(Quillian 1968), but is has some important distinctive
features, designed to facilitate a concepmal simplicy of
representation and performing diverse forms of inference in
a uniform way,
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Figure 1. A general schema for a multistrategy task-adaptive learning system based on the DIH knowledge representation.

In DIH knowledge is partitioned into a static and
dynamic part. The static part represents relatively stable
knowledge organized into concepr hierarchies such as part,
type and precedence hierarchies, each hierarchy organizes its
concept nodes from a certain context or viewpoint, with the
possibility of concept nodes participating in more than one
hierarchy. The dynamic part represents knowiedge that
changes relatively frequently. This knowledge is represented

by rraces that are paths linking nodes of different hierarchies -

in order to represent singie statements.

DIH provides a suitable knowledge representation for
facilitating multitype inference in multstrategy learning
systems that require an expressive, modifiable and flexible
representation language.  Initial work on the DIH
representation was presented in (Hieb & Michalski 1993).

INTERLACE

INTERLACE is the core of the MTL-DIH multistrategy
learning system. It consists of three interacting modules
-— @ knowledge base, a goal driven planner and a graphical
user interface. To implement INTERLACE, we needed a
language that would facilitate the construction of concept
hierarchies and making links among them. For this purpose
we chose LIFE programming language, originally
conceived at MCC.

LIFE is a synthesis of three different programming
paradigms: logic programming, functional programming,
and object-oriented programming. It is a declarative logic-
based language that can be seen as a constraint language. It
derives its syntax and resolution method from Prolog. It
uses A~terms as its basic data structures, and unification
and matching as its basic operations.
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LIFE semantically extends PROLOG in two ways:

1) Herbrand terms are replaced by A-terms.

2) It inclodes call by matching (Prolog only supports

call by unification).

As a programming language LIFE provides clean and
elegant selutions to a number of Prolog’s deficiencies. It
includes functions (correct arithmetic), object-orientation,
C-like records, expandable data-structures {(arrays and bash-
tables), types and nmultiple inheritance, correct
manipulation of cyclic structures, coroutines and
constraints, global variables, clean destructive assignment,
persistent data structures.

Representation of DIH Hierarchies and Traces

As mentioned earlier, DIH hierarchies represent relatively
stable background knowledge. Such knowledge consists of
concepts organized into hierarchies of different kinds, such
as type, part and precedence hierarchies. A DIH node is
represented in LIFE as a sort, an identifier standing for a set
of objects. A sort corresponds intuitively to a type in a
traditional programming language, or a class in an object-
oriented programming language.

Sorts are organized into a hierarchy through a set of sort
declarations (using the <l operation). For example, the
navy_aircraft type hierarchy in Figure 2 is declared in the
following manner:

combat_aircraft <i navy_aircraft
fuel_aircraft < navy_aircraft
service_aircraft <| navy_aircraft
f16 <l combat_aircraft

tomcat <! combat_aircraft



DIH traces represent “dynamic” knowledge that changes
relatively frequently. A trace roughly stands of 2 statement,
and is a path connecting nodes of different hierarchies. DIH
traces are represented using A-terms, the LIFE’s basic dama
structure. Each A-term has the following syntax:

root_sort (label_1 => sort, label_2 => sort, ....)

Each sort including the root sort is a parz of a hierarchy.
Each sort can be further refined using the hierarchy that is
also a part of type. This forms a basis for the functionality
of DIH transmutations described below. For example, the
DIH trace expressing the statement “Some aircraft camiers
in Norfolk have fuel aircraft” is represented as:

aircraft_carmier(quantifier => some, location =>

norfolk, navy_aircraft => fuel),
where aircraft_carrier is the trace argument (root sort),
quantifier, location, and navy_gircraft are viewed as
descriptors applied to the trace argument.  Adding
knowledge to the DIH representation is done by creating
hierarchies and specifying traces that express statements
involving nodes of different hierarchies.

Representation of DIH Transmutations

We will show now that several basic knowledge generation
transmutations, as described in the Inferential Theory of
Leamning (Michalski 1991, 1992, 1993), can be easily
performed in DIH, specifically, just by moving some links.

The transmutations include generalization, abstraction, -

explanation and similization, and their counterparts,
specialization, concretion, prediction and dissimilization,
respectively. The DIH system currently implements six
transmutations: |

QGEN: Quantification-based Generalization

QSPEC: Quantification-based Specialization

AGEN: Argument-based Generalization

ASPEC: Argument-based Inductive Specialization

ABST: Abstraction

CONC: Concretion

By repeating these ftransmutations in different
combinations, the system can perform a wide range of
inferences. Every transmutation has the following syntax:

TransType(I_TRACE, CONTEXT, O_TRACE),
where I_trace is an input trace, and O_trace is an output
trace (a trace generated by a transmutation).

An inference step performed by a transmutation can be
depicted graphically as a movement of traces along some
nodes of the hierarchies. To illustrate specific
transmutations (operators) performed by INTERLACE,
suppose that given is an input statement: “Some Norfolk
aircraft carriers are fuel carriers.”

This statement is represented by a trace:

I TRACE: aircrafi_carrier (quantifier

location => norfolk, navy_aircraft => fuel).

=> SsOme,
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The order of arguments for the trace interpretation is
defined by a schema hierarchy, SH, shown in Figure 2.

For the given input, the QGEN operator
(Quantification-based Generalization) produces a trace:

O_TRACE: [aircraft_camier (quantifier => most,

location => norfolk, navy_aircraft => fuel)] (Figure 2)

Given the same input, the QSPEC operator
(Quantification-based Specialization), produces:

O_TRACE = [aircraft camier (quantifier => one,

location => norfolk, navy_aircraft => fuel}].

Again, given the same input, the AGEN transmutation
{(Argument-based Generalization) produces:

O_TRACE=[navy_battleship(quantifier=>some,

location => united_states, navy_aircraft => fuel)]

(Figure 2).

ASPEC (Argument-based specialization can produce
one of several alternatives, depending on merit parameters
(Collins & Michalski 1989). One of them (Figure 3):

O_TRACE = [iowa_class{quantifier => some, location

=> united_states, navy_aircraft => fuel)].

ABST (Abstraction) produces:

O_TRACE = [aircraft_camier(quantifier => some,
location => united_states, navy_aircraft => fuel)]
(Figure 4).

CONC (Concretion), another form of inductive
inference, produces (among other plausible alternatives):

O_TRACE = [aircraft cammier(quantifier => some,

location => united_states, navy_aircraft => b677)

(Figure 5). -

In principle, all the above transmutaions can represent
deductive or inductive inference, depending on the
combination of nodes in a trace and on what nodes are
moved (Michaiski 1994).

Goal-Driven Learning based on DIH

The idea behind the DiH-based goal-driven learning is to
apply a sequence of transmutations that transfer a given
input (one or more fraces) into one Or MOre output traces
that satisfy a learning goal. A learning goal is
specification of knowledge that the leammer wants to aquire.
A learning goal is generated by a performance system, for
example, as a request for some knowledge, as a result of an
impass in problem solving (Newell 1994), etc. A goal
specification is expressed as a trace. A goal trace may
include high level nodes whose children are to be learned, or
nodes indicating the type of knowledge to be acquired.
Learning goals can be classified into two categories:
domain specific and domain independent (Michalski & Ram
1995). Leaming in INTERLACE system is designed to
handle both domain specific and domain independent goals.



INDUCTIVE GENERALIZATION

Input: Sorme Norfolk qircraft-camers have fuel gircroft
Output: Movibe most Norfolk aircraft-camiers have fuel aircraft

{ Combat Service Fuel United States

Flé

R

Figure 2. An example of a quantification-based inductive generalization.
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INDUCTIVE SPECIALIZATION

Inpul: Sorme United States aircraff-camiershave fuel aircraft
BK: lowa class is a popular type of Navy Battleship

Fie -t SR e e dipeap R B Sl B SR N OE D DY e N

| Output: Maybe some United States aircrafi-carriers of lowa classhave fuel aircraft

=

"\.‘;‘

Figure 3. An example of an argument-based inductive specialization.
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ABSTRACTION

input: Some Norfolk aircraft-carmiers have fuel gircraft
BX: Norfolk is part of the United

Quiput: Some United States aircraft-carriers have fuei aircraft

Figure 4. An example of abstraction transmutation.

CONCRETION
Input: Some United $ates aircroff-carriers have fuel aircraft
BK:_ A B-678 aircraft is a popular type of a fuel

Quip uiJ:L Maybe some United States aircroft-camiers have B-478 aircraft

] i, . A
Tove G - —
. “~ Alaska Chss Dakota Class
~, .

' -
i .,
| combat | Sowe ] [ Pl Ty
F16 Tomeat | B-677 B-678

{ SH- Object thscripim_i]

Quantificato | NavyBattleship) Aircrsft Location

Figure 5. An example of concretion transmutation.
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Domain Specific Goals. Domain specific goals
define knowledge that is relevant in the given domain. The
task of the planner is to generate a sequence of
trangmutations that produce knowledge that satisifies the
given goal.

Such a process is invoked in INTERLACE by:

Plan(I_TRACES, G_TRACES, CONTEXT, PLAN),
where

I_TRACES — a list of relevant input traces

G_TRACES — a goal trace (or a list of traces).

CONTEXT — a context for the process, specified by a
list of hierarchies within which the transmutations are to be
performed)

PLAN — a list of plausible transmutations that proof
the G_TRACES.

The planner determines which transmtation is
appropriate for a given goal in the given contex Deductive
transmutations are favored over inductive transmutations
during the planning process.

To illustrate the process, let us considerr I_TRACES =
[lowa_class (quantifier => one, location => United_States,
aircraft_rype => tomeat) 1, and G_TRACES
[aircraft_carrier (quantifier => most general, location =>
norfolk, aircraft_type => combat) ]. The planning process
produces . the following sequence of plausible
transmutations to achieve the goal:  argument-based
deductive deneralization from Jowa_class to aircraft_carrier,
abstraction from tomcat to combat, two inductive
quantification-based generalizations — from one to some,

and then to most, and an inductive concretion from-

United_states to Norfolk.

Domain Independent Goals. Domain independent
goals require the system to determine some general type of
knowledge, e.g., a generalization of examples, a
hierarchical classification of given facts, an explanation for
an observation, etc.). Such goals are bandled by designated
procedures. In the absence of a more specific goal, the
system executes the universal learning goal — derive all
plausible knowledge that can be learned from a given input.
The universal goal is executed by analyzing the relationship
between an input trace and background knowledge, and
performing steps dependent on the result of this analysis, as
illustrated in Figure 6 (Michalski 1994).

INTERLACE Graphical Interface

An interactive graphical interface using OSF MOTIF
(Johknson 1993; Young 1994) was utilized for the creation,
modification and deletion of DIH hierarchies and traces, all
actions performed by the user in the graphical interface are
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reflected in the underlying knowledge base. The interactive
graphical interface has the following features:

Hierarchy Creation. Create a node anywhere on the
screen. Two types of arcs are defined: Undirected and
Directed. Each of the above arcs can be in solid line style or
on-off dash style. Hierarchies are created by using undirected
solid line style arcs. By a repeated application of “create an
arc” between two nodes, one can create a hierarchy. The
system allows a user to create multiple hierarchies within a
screen.

Trace Creation. Traces are created by using directed on-
off dash arcs connecting nodes from separate hierarchies.
The tip of the directed on-off dash arc designates the trace
argument. The tail of the directed on-off dash arc designates
the referent.

Hierarchy Movement and Orientation

¢ Hierarchies can be viewed vertically and horizontally.
Hierarchies can be centered on the screen

Hierarchies can be sclected and moved around on the
screen

A single node within a hierarchy can be moved around.
Arcs can be moved to reflect new relationships between
two nodes.

e  Subhierarchies can be selected and moved around.

Hierarchy and Trace Deletion

s Delete a single selected node, this in turn deletes any
arcs associated with the deleted nodes

Delete a set of selected nodes, this in turn deletes any
arcs associated with the deleted nodes

e Delete an arc

¢ Delete selected arcs

s Delete the whole hierarchy

Conclusion

This paper described an ongoing research on the design and
implementation of a task-adaptive multistrategy learming
system based on the DIH knowledge representation. The
DIH representation was shown to be very useful for
performing a wide range of knowledge genperation
transmutations that are required in multistrategy task-
adaptive learning.

Among the most important objectives for future research
is how to represent different kinds of goals, and how to
determine most appropriate transmutations in pursuing the
given learning goal.



Input Trace

Deduce usefnl
CONSE(Iences

Generalize Trace

Figure 6. A simplified schema for multistrategy learning pursuing the universal learning goal.
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