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Abstract. Constructive induction divides the problem of learning an inductive 
hypothesis into two intertwined searches: one—for the “best”   representation 
space, and two—for the “best”  hypothesis in that space.  In data-driven 
constructive induction (DCI), a learning system searches for a better 
representation space by analyzing the input examples (data). The presented data-
driven constructive induction method combines an AQ-type learning algorithm 
with two classes of representation space improvement operators: constructors, 
and destructors. The implemented system, AQ17-DCI, has been experimentally 
applied to a GNP prediction problem using a World Bank database. The results 
show that decision rules learned by AQ17-DCI outperformed the rules learned 
in the original representation space both in predictive accuracy and rule 
simplicity. 

 
 
1 Introduction 
 
The basic premise of research on constructive induction (CI) is that results of a learning 
process directly depend on the quality of the representation space in which is occurs. If the 
representation space is well designed, then learning results will tend to be satisfactory with 
almost any method (assuming an adequate representation language); otherwise, they may be 
poor regardless of the method. Constructive induction is oriented toward learning problems 
in which the representation space, as defined by attributes in the training examples, is of 
low quality or there is a mismatch between the representation language used and the target 
concept. A low quality representation space means that the space is spanned over attributes 
that are weakly relevant or irrelevant for the given learning task. To cope with such 
problems, constructive induction splits a learning process to two intertwined searches — 
one for the “best”  representation space, and the second for the “best”  hypothesis in the 
found space. Using another terminology that is also used in machine learning, constructive 
induction includes the problem of automatically determining the best  “ representation space 
bias”  as a part of the induction process. 
 
The idea of constructive induction is not new [23]. Initial research on this topic 
concentrated solely on constructing new attributes beyond those provided in the input data 
[21] [36] [16] [32].  Michalski [23] presented a set of constructive generalization rules  
that describe various ways in which new attributes can be generated. More recent work has 
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viewed constructive induction more generally, namely, as a double-search process, in which 
one search is for an improved representation space and the second for “best”  hypothesis in 
this space [2] [3] [38]. The improvement of a representation space is done in several 
ways—by generating new attributes, by removing less relevant or irrelevant attributes, 
and/or by abstracting values of given attributes (grouping values to larger units). 
 
The search for an improved representation space can be guided by information from three 
sources [38]: training data (as in data-driven constructive induction—DCI), initial 
hypotheses learned from the data (as in hypothesis-driven constructive induction—HCI), or 
expert knowledge provided by the user to the system (as in knowledge-driven constructive 
induction—KCI).  These sources can also be combined into a multistrategy constructive 
induction method.  This paper describes a data-driven method of constructive induction and 
its application to a problem of learning economic relationships. 
 
2. An Illustration of the Importance of the Representation Space 
 
The concept representation space is defined as a space in which inductive hypotheses are 
generated.  In conventional machine learning methods this space is identical to the space in 
which training examples are represented. As mentioned earlier, the choice of the 
representation space has a profound effect on the quality of the generated hypotheses.  This 
effect is well illustrated by the second Monk’s problem [34]. The original representation 
space with the training examples denoted by + and -  is shown in Figure 1(a) using DIAV 
[39]. The shaded area represents the target concept. 
 

 
(a)  (b)

 
Figure 1. Diagrammatic visualization of the Monk 2 representation spaces:  (a) the initial      
space; and (b) improved space due to the data-driven constructive induction. 
 
In this original representation space, the learning problem is difficult because the target concept 
is highly irregular. An improved representation space, as found by the AQ17-DCI system 
described in this paper, is shown in Fig. 1,b. In the improved representation space the target 
concept is highly regular and therefore easy to learn. In this case, the new representation was 



found by applying a space modification operator that generates the so-called counting 
attribute: #Attr(S, P), which counts the number of attributes in the set S with a property P.  The 
system found that the counting attribute in which S contains all original attributes { x1, x2, x3, 
..., x6} , and P is the first value of attribute in its domain is highly relevant for the task at hand. 
The learned concept was: : #Attr({ x1,...x6} , Firstvalue) = 2, that is, an example belongs to the 
concept, if exactly two of six attributes take their first value. This rule exactly represents the 
intended target concept, and thus has a predictive accuracy of 100%. 
 
3. Relation to Other Research 

Research on constructive induction has produced a number of working programs. The first 
program that was explicitly dedicated to exhibit constructive induction capabilities was 
INDUCE [22]. INDUCE generates new attributes or new predicates by applying various 
constructive generalization rules. BACON.3 [14] and ABACUS [9] search for mathematical 
relationships or laws that summarize numerical (or numerical and symbolic) data. Lenat’s AM 
and Eurisko programs [15] can be viewed as performing a form of knowledge-based 
constructive induction, as they generate new concepts according to certain heuristics. 
 
Schlimmer’s STAGGER [33] is a constructive induction program that uses three cooperating 
learning modules: weight adjustment, Boolean feature construction, and attribute value 
aggregation.  Muggleton's Duce [25] is an oracle-based approach (knowledge-driven).  Pagallo 
and Haussler's FRINGE, GREEDY3 and GROVE [26] base the construction of new attributes 
on patterns found in learned decision trees.  Another decision tree-based method is CITRE 
[16], which constructs new terms by repeatedly applying Boolean operators to nodes on the 
positively labeled branches. A hypothesis-driven approach based on decision rules is AQ17-
HCI [38]. In this system patterns prevalent in strong rules are used for constructing new 
attributes. An approach which uses disjunctive or arithmetic combinations of the original 
attributes to extend the initial attribute set was developed by Utgoff in STABB [35]. 
 
As mentioned earlier, constructive induction is a process in which the original representation 
space is improved during learning. This can be done by generating new attributes and/or 
removing less relevant or redundant ones. The latter process has been investigated in the rough 
set approach (e.g., [27], [41] [28], and [10]). The AQ17-DCI system presented in this paper 
executes a complementary process of selecting the most relevant attributes. This is done by  
applying some measure of attribute relevance, for example, PROMISE [1] or information gain 
ratio [30]. The rough set approach also applies an attribute-value abstraction operator, which 
removes values that are not needed for describing data. In contrast to this, AQ17-DCI 
combines less relevant values with adjacent values into larger units, that is, performs an 
abstraction of the attribute domain. 
 
In summary, AQ17-DCI has the following characteristics which together distinguish it from all 
other constructive induction methods:  1) the search for a better representation space is based 
on patterns found in the training data, and is thus not tied to a specific knowledge 
representation language (as is the case of hypothesis-driven induction); 2) it applies three 
classes of operators: attribute construction, attribute reduction, and attribute value abstraction 
3) it uses both domain-independent or domain-dependent constructive generalization rules; 4) it 
supports binary as well as multi-argument attribute construction operators. 



4. The AQ17-DCI System for Data-Driven Constructive Induction 
4.1 Overview  

The AQ17-DCI system consists of two components. One component performs a data-driven 
search for an improved representation space (hence DCI—data-driven constructive induction). 
The second component employs the AQ15c program for searching for the “best”  hypothesis 
within the current representation space (the name AQ17-DCI means that this is the 17th 
program in the family of AQ algorithm based induction programs). The AQ algorithm 
generates an optimal or near-optimal set of rules characterizing training examples, according to 
a given criterion of optimality (originally described in [18], and [19]).  The criterion of 
optimality may take into consideration such factors as the number of rules, the number of 
conditions, the cost of attributes in the rules, and others. These factors can be combined into a 
multicriterion measure of optimality that best reflects the needs of the learning problem at 
hand. 
 
4.2 Search for an Improved Representation Space 
 
The search for an improved representation space employs three types of representation space 
modification operators: 1) space expansion through attribute construction (GENERATE), 2) 
space contraction through selecting only the most relevant attributes from the original space  
(SELECT), and 3) space contraction through attribute-value abstraction (QUANT). 
Experiments have shown that representation space expansion is very useful when the attribute 
construction operators are well-matched with the problem at hand.  Representation space 
contraction, however, must be performed with great care, as it may lead to a removal of 
information that is crucial for learning a correct hypothesis [5].  For this reason, default 
thresholds on the space contraction operators are set conservatively.  The following sections 
describe these operators in more detail. 
 
4.2.1 Space Expansion: Attribute Construction By GENERATE 
 
The GENERATE method for constructing new attributes employs both mathematical and 
logical operators to construct new attributes. In selecting attributes for applying mathematical 
operators, the system takes into consideration the attribute types. The operation to be 
performed on the selected attributes is done according to predefined rules (defined by the user).  
With the attributes and operation selected, the values for the new attribute are calculated. The 
usefulness of new attributes is evaluated using an attribute quality measure. If the quality 
measure is above a user-defined threshold, the attribute is added to the available attribute set. If 
it is below the threshold or the attribute is too complex, the new attribute is discarded. The 
algorithm applies a variety of relational or arithmetic operators to numeric attributes. A 
summary of representation space expansion operators is presented in Table 1. 
 

  Operator   Arguments  Notation          Interpretation 

Equivalence Attributes x,y   x = y If x = y then 1, otherwise 0 
Greater Than Attributes x,y        x > y If x = y then 1, otherwise 0 
Greater Than 
or Equal 

Attributes x,y        x>=y If x �y then 1, otherwise 0 

Addition Attributes x,y   x + y Sum of x and y 
Subtraction Attributes x,y   x - y Difference between x and y 
Difference Attributes x,y   |x - y| Absolute difference between x and y 



Multiplication Attributes x,y   x * y Product of x and y 
Division Attributes x,y     x/y Quotient of x divided by y 
Maximum Attribute set S Max{ S}  Maximum value in S 
Minimum  Attribute set S Min{ S}  Minimum value in S 
Average Attribute set S Ave{ S}  Average of values in S 
Counting Attribute set S,P #Attr(S,P) No of attributes in S with property P 

 
Table 1. A summary of representation space expansion operators in AQ17-DCI. 
 
4.2.2 Representation Space Contraction 
 
AQ17-DCI contracts the  representation space by abstracting attribute-values using QUANT, 
or by selecting most relevant attributes using SELECT. Table 2 summarizes the representation 
space contraction operators used in AQ17-DCI. The next two subsections provide details. 
 

 Operator   Arguments    Notation           Interpretation 

Quantization An attribute x, and 
a method M 

QUANT(x, M) Quantization of x using method M 
Methods available: Chi-merge, 
Equal-interval and Equal frequency 

Selection Set of attributes S SELECT(S) Select subset S’  of S by method M  
Methods: Promise, Information gain 

 
Table 2.  A summary of representation space contraction operators in AQ17-DCI. 
 
4.2.2.1 Attribute-value Abstraction Using QUANT 
 
Research on attribute-value abstraction is usually performed under the name attribute-value 
discretization [7], [8].  We view this process as a form of abstraction because the result of  it is 
a decrease of information about an object [24]. By replacing original attribute values by more 
abstract ones the representation space is reduced, thus this process represents a representation 
space contraction transformation. QUANT abstracts attribute values using the ChiMerge 
method described by Kerber [13].  This abstraction, a.k.a. scaling, is performed for continuous 
attributes and for discrete attributes with large domains. Because it reduces the size of the 
representation space, abstraction can significantly speed up the search for hypothesis. It can 
also improve the quality of hypothesis due to a simplification of the generated descriptions. 
 
The ChiMerge algorithm is a bottom-up process in which initially all values are stored in 
separate intervals which are then merged until a termination condition is met. The interval 
merging process consists of continuously repeating two steps: 1) compute χ2 values 
(correlations between the value of the class attribute and the value of an attribute), and 2) 
merge the pair of adjacent intervals with the lowest χ2 value.  Intervals are merged until all 
pairs of intervals have χ2 values exceeding the user defined chi-threshold. The chi-threshold is 
a function of the desired significance level and the number of degrees of freedom (1 fewer than 
the number of classes), and can be determined from a table. The χ2 value measures the 
probability that the attribute interval and class value are dependent.  If the interval has a χ2 
value greater than threshold then class and interval are correlated and are retained.  High χ2 

threshold settings cause more intervals to be merged which results in fewer intervals, or 
abstracted attribute values. 
 



4.2.2.2 Attribute Selection Using SELECT 
 
This operation is conventionally described in the literature as feature selection.  Here, we view 
this process more generally as a form of reduction of the representation space. SELECT uses a 
measure of attribute relevance, such as well-known information gain ratio [30], or PROMISE 
[1] for the purpose of determining which attributes should be used for defining the 
representation space in which search for the inductive hypothesis will occur. The attributes that 
score on the attribute relevance measure above a certain threshold are selected as dimensions of 
the transformed representation space. 
 
5. An Experimental Application to World Economics 
 
This section describes an application of the AQ17-DCI system to a problem of determining the 
economic and demographic patterns in the countries of the world. The data were obtained from 
a World Bank database [6]. This database contains economic and demographic records for the 
countries of the world from 1965 to 1990 [12].  The goal of the experiment presented here was 
to determine a set of rules characterizing the dependence of GNP (Gross National Product) in 
various countries during the period from 1986 to 1990 on the available economic and 
demographic characteristics. 
 
In the experiment we considered 41 countries. Changes of GNP were quantified into four 
equal-intervals: low (0 to 0.5625), medium (0.5626 to 1.125), high (1.126 to 1.6875) and very 
high (over 1.6875).  The countries were described by 11 attributes, each sampled over a period 
of 5 years. Thus,  each country was described by 55 attributes.  AQ17-DCI was applied to 
determine rules that characterize GNP changes in terms of the given attributes (or their relevant 
subset).The quality of the generated rules was evaluated by the 10-fold cross-validation method 
[37]. The learning process involved the following steps: 
 
1. Remove less relevant attributes. AQ17-DCI removed 24 attributes using the SELECT 
method described in Section 4.2.2.2 with a information threshold set to 0.6. 
 
2. Abstract away unnecessary detail. The domain size of the attributes were reduced from an 
average of 15.4 values per attribute to 4.3, using the QUANT described in section 4.2.2.1. 
 
3. Construct new problem-relevant attributes. On the average, AQ17-DCI constructed ten new 
attributes in each run, using the DCI GENERATE method. Examples of these new attributes 
are shown in Table 3.  
 

Name Operator used Description 

ChgeEnergyCons86-88 Minus Change in energy consumption of a 
country between 1986 and 1988 

Birth89ByEnergyCons90 Division Ratio of Crude Birth Rate in 1989 to 
Energy Consumption in 1990 

AveEnergyCons86-90 Average Average Energy Consumption of a 
country between 1986 and 1990 

 
Table 3: Examples of new relevant attributes constructed by AQ17-DCI 
 



The transformations generated by AQ17-DCI resulted in an approximately 80% increase in 
predictive accuracy. Rules learned in the original representation were only 41.7% accurate, 
while rules learned in the improved representation space were 76.3% accurate on the testing 
data. While this improvement is significant, it is not entirely satisfactory. The problem may 
have been caused by the presence of misclassification errors (incorrectly classified training 
examples or to the lack in the original data of important relevant attributes (e.g., the type of 
government, presence of natural disasters, or war). Further research is being done to try to 
understand how predictive accuracy can be improved.  
 
Constructive induction helped not only to increase the predictive accuracy, but also generated a 
number of meaningful new attributes. A significant advantage of this method is that rules 
generated can be easily interpreted by a data analyst, as they are in the form that is directly 
interpretable in natural language. Here is an example of such a rule: 
  

Countries with very high increase in GNP are characterized by: 
 
[DeathRate is low] & 
[AVG(%PopulationAgeBracketB) is very high] & 
[AVG(PopulationGrowthRate) is low] 
(Total: 13, Unique 9) 
 OR 
[AVG(UrbanPopulationGrowth) is very low ] & 
[AVG(UrbanVsRuralGrowthDifference) is very low] 
(Total: 7, Unique 3) 
 

where  

--“very high increase”  is defined as GNP per capita (in US$) 1990 / GNP 1986 >  1.7, 

--low death rate (per thousand) is defined as 5% to 6%, 

--AVG(%PopulationAgeBracketB) stands for the average % of population in the age bracket B 
(ages 15..64); very high means 57%-69% 

--AVG(PopulationGrowthRate) stands for the average of  population growth rate; low means 
less than 3% 

--very low average urban population growth rate means lower than 1% 

--very low average difference between the urban and rural growth means less than 2% 

--Total denotes the total number of countries in the study that are covered by the rule 

--Unique  denotes the number of countries in the study that were covered by this rule and not 
by   any other rule.  

 
Comments: 
All averages were computed for the period 1986 to 1990. 
Attributes in italics were constructed by the program from the initial attributes. 
 
Rule Interpretation 
Countries with a very high increase in GNP are characterized by low death rate, the average 
percentage of the population age 15 to 64 year olds is very high, and the overall population 
growth rate is low OR 



the average urban population growth is very low, and the average difference between urban and 
rural population growth rate is very low. 
 
 
Another useful aspect of the AQ17-DCI system is that it can generate rules that optimize 
criteria set by the user to best reflect the needs of the task at hand.  The user is able to select the 
type of operators to be used, as well as the information threshold above which new attributes 
must score in order to be retained. This gives a data analyst a way to generate data descriptions 
that are most suitable for a given task, and may also help to get insights into the problem that 
were not possible in the original representation space. The program has default values so that 
the user does not have to set all of these parameters before making use of these capabilities. 
 
 
6. Summary  
 
This paper described a method and for data-driven constructive induction, which combines 
AQ-type rule learning with operators for representation space improvement. These operators 
can expand the space through attribute construction, and/or contract the space through attribute 
removal and attribute-value abstraction. The system implementing the method, AQ17-DCI, was 
tested by applying it to a problem in the area of world economics. In the experiments, AQ17-
DCI produced decision rules that had higher predictive accuracy than rules learned in the 
original representation space, and generated new attributes that provided additional insights 
into the data.  In the GNP prediction problem the space obtained by applying all three types of 
operators (attribute generation, attribute removal and value abstraction) produced the rules with 
the highest predictive accuracy. Future research will focus on implementing other operators for 
attribute construction and the development of a control strategy for guiding the selection of 
individual operators. 
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