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ABSTRACT

This paper considers the issue of what is the best form in which decision-
oriented knowledge should be represented and how it can be most
effectively used for decision making. The proposed answer is that such
knowledge should be learned and represented in a declarative form and—
whenever needed for decision making— efficiently transferred to a
procedural form tailored to the specific decision making sitnation. Such an
approach combines advantages of the declarative representation, which
facilitates learning and incremental knowledge modification, and the
procedural representation, which facilitates decision making. This approach
also allows one to determine decision structures without attributes that
unavailable or difficult to measure in the given situation. Experimental
investigations of the system, FRD-1, have demonstrated that decision
structures obtained via the declarative route often have higher predictive
accuracy and are also simpler than those leamed directly from facts.

Key words: machine learning, decision tree learning, decision making,
inductive rule leaming, decision structares.

1 INTRODUCTION

The main step in the development of intelligent systems or agents is the creation of
knowledge structures that govern the system’s decision making process. An
attractive route for creating such structures (at least partially) is to acquire them
through learmning from original facts. A powerful and effective tool for describing
decision processes is a decision structure, which is an acyclic graph that specifies an
order of tests to be applied to an object (or a situation) to arrive at a decision about
that object. The nodes of the structure are assigned individual tests (which may
correspond to a single attribute, a function of attributes, or a relation), the branches
are assigned possible test outcomes (or ranges of outcomes), and the leaves are
assigned one specific decision or a set of candidate decisions (with corresponding
probabilities), or an undetermined decision (Imam & Michalski, 1993; Kohavi,
1994). A decision structure reduces to a familiar decision tree, when each node is
assigned a single attribute and has at most one parent, the branches from each node
are assigned single values of that attribute, and leaves are assigned single, definite
decisions. Thus, the problem of generating a decision structure is a generalization of
the problem of generating a decision tree.



A decision tree/decision structure can be an effective 100l for describing a decision
process, as long as all the required tests can be measured, and the decision making
situations it was designed for do not change much (e.g., there is no significant
change in the frequency distribution of different decisions), Problems arise when
these assumptions do not hold. For example, in some situations measuring ceriain
atiributes may be difficult or costly. In such situations it is desirable to seformulate
the decision structure so that the “inexpensive” attributes are evaluated first (are
assigned to the nodes close to the root), and the "expensive” aitributes are evaluated
only if necessary (are assigned to the nodes far away from the root). If an attribute
cannot be measured at all, it is useful to either modify the structure so that it does not
contain that attribute, or—when this is impossible—to specify a set of alternative
candidate decisions in this situation and their probabilities. A restructuring is also
desirable if there is a significant change in the frequency of occurrence of different
A restructuring of a decision structure (or a tree) in order to suit new requirements (is
usually quite difficult. This is because a decision structure is a procedural knowledge
representation, which imposes an evaluation order on the tests. In contrast, no
evaluation order is imposed by a declarative representation, such as a set of decision
rules. Tests (conditions) of rules can be evaluated in any order. Thus, for a given set
of rules, one can usually build a large number of logically equivalent decision
structures (trees), which differ in the test ordering, Due to the lack of “order
constraints,” a declarative representation (rules) is much easier to modify to adapt to
different situations than a procedural one (such as a decision structure or a tree). On
the other hand, to apply decision rules to make a decision, one needs to decide in
which order tests are evaluated, and thus, needs a decision structure. The above
indicates that the form in which knowledge can be most easily learned and updated is
different than the form in which it is most readily used for decision making.
The paper presents an attractive solution of the above opposite requirements. In the
methodology knowledge is acquired, modified and stored in a declarative
form {of decision rules). Whenever it is needed for decision making, it is efficiently
transformed into a task-oriented decision structure. The methodology, called FRD-1
(from Facts to Rules to Decisions), creates decision structures that are tailored for a
given decision making situation. The input for this process are either decision rules
obtained from a learning program or original facts (examples of situation-decisions
pairs).
Such “virtual” decision structures are easy to tailor to any given decision making
situation. The above idea rests upon the assumptions that learning decision rules can
be done efficiently and that there can be a fast and effective algorithm for
transferring rules to decision structures. The initial idea that led to the development
of this methodology is described by Imam and Michalski (1993).

2 RELATED RESEARCH

The method used here for learning decision structures from decision rules is similar
to learning decision trees from examples. The problem of learning decision tees
from examples is the problem of generating decision trees that classify sets of given
examples according to'the decision classes they belong to. The essential aspect of
any inductive decision tree method is the attribute selection criterion. The attribute
selection criterion measures how good the attributes are for discriminating among the



given set of decision classes. The best attribute according to the selection criterion is
chosen to be assigned to the root of the tree.

The attribute selection criteria can be divided into three categories, These categories
are logic-based, information-based, and statistics-based. The logic-based criteria for
selecting atiributes use logical relationships between the attributes and the decision
classes to determine the best attribute to be a node in the decision tree, such as the
MAL criterion, minimizing added leaves, (Michalski, 1978). The MAL criterion uses
conjunction and disjunction operators. The information-based criteria are based on
information theory, These criteria measure the information conveyed by dividing the
training examples into subsets. Examples of such criteria include the information
measure IM, the entropy reduction measure, and the gain criteria (Quinlan, 1979,
83), the gini index of diversity (Breiman, et al., 1984}, Gain-ratio measure (Quinlan,
1986), and others (Cestnik & Karalic, 1991). The statistics-based criteria measure the
correlation between the decision classes and the other attributes. Such criteria use
statistical distributions in determining whether or not there is a correlation. Examples
of statistical criteria include the Chi-square and the G statistics (Mingers, 1989).

3 THE FRD-1 METHODOLOGY

The proposed methodology separates the.function of knowledge acquisition or
discovery from the function of applying knowledge to decision making. The first
function is performed by an inductive learning program that searches for knowledge
relevant to a given class of decisions, and stores the learned knowledge in the
declarative form of decision rules. The second function is performed when the need
for decision making arises in some particular situation. Such a function involves
assigning a value to a decision variable based on values of attributes characterizing
the decision making situation. Figure 1 shows an architecture of the proposed
methodology.
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Figure 1 An architecture of the proposed approach.

The proposed methodology is called FRD (from Facts to Rules to Decisions). The
decision rules are learned by either the AQ15 (Michalski, et al, 1986) or AQ17
(Bloedorn, et al, 1993) learning systems. They also can be directly edited into the
system. The reasons of selecting decision rules as the form of knowledge
representation are that they are modular and easy to understand. Rules do not
impose any order on the evaluation of the attributes, therefore, they can be evaluated



in many different ways. This makes it possible to flexibly adapt them to different
decision making situations.
A decision making problem arises when there is a case or a set of cases to which the
system has to assign a decision. Each case is defined by a set of attribute values.
Some atiribute valués may be missing or unknown. A decision structure is derived
from the rules that suits the given decision making problem. The leamed decision
structure associates the given set of cases with the corresponding decisions.
The AQDT-2 algorithm works by determining the “best” test (here, an attribute) at
each step of the process. The “best” test is determined by analyzing the decision
rules. The system aims at producing decision structures with the minimum number of
nodes or the minimum cost (where the *cost” is defined as the total cost of
classifying examples, given the cost of measuring individual attributes and the
expected probability distribution of examples of different decision classes).
The best test (attribute) is selected on the basis of its utility , which is a combination
of one or more of the following elementary criteria: 1) cost (the cost of measuring
the attribute or the test; if the cost of tests is unknown or irrelevant, all tests assume
the same default cost 2) disjointness, which captures the effectiveness of the test in
discriminating among decision rules for different decision classes, 3) importance,
which determines the importance of a test in the rules, 4} value distribution, which
characterizes the distribution of the test importance over its of values, and 5)
dominance, which measures the test presence in the rules.
Figure 2 shows the AQDT-2 algorithm for learning decision structure from decision
rules. The complexity of the AQDT-2 algorithm is estimate as:

Coopix(AQDT) =O(r*m* log I)
where r is the total number of rules, m is the number of attributes, and 1 is maximum
the number of rules and the number of attributes.

4 EMPIRICAL ANALYSIS OF THE FRD-1 SYSTEM

This section. presents empirical results from extensive testing of the FRD-1 system
on several problems, using different amounts of training examples and applying
different settings of the sysiem’s parameters. For comparison, it also presents results
from applying a well-known decision tree learning system (C4.5) to the same
problems. The system was applied to the following problems: EAST-WEST (or
TRAINS), MONK-1, MONK-2, MONK-3, Engineering Design, Mushrooms, and
Breast Cancer.

The experiments were performed 100 times with different relative sizes of the
training data: 10%, 20%, ..., 90%. Specifically, from the set of all available
examples for each problem, 100 randomly selected subsets of 10% of data were
chosen for rules learning, then 20%, etc. The remaining examples in each case were
used for testing the obtained descriptions and determining their prediction accuracy.

4.1 Learning Task-oriented Decision Structures

This subsection briefly illustrates the capabilities of the system for learning task-
oriented decision structures. Experiments involved the East-West Challenge problem
(Michie, et al, 1994). The East-Westhound problem is concerned with discriminating
between two groups of train-like structures. Each “train™ consists of several cars
(two to four), each containing various loads of different shapes.

The program AQDT-2 (Imam & Michalski, 1993) accepts rules in the form of an
array of attribute-value assignments. To describe the East-West Challenge problem in



the suitable format, a set of eight (8) atiributes was generated that can completely
describe any car in the train, Each train is described by one tule, which can be of
different length. To specify the number (position) of a given car in the train, each of
the eight attributes. is associated with a two-digit code (3, j); the first identifies the
location of the car and the second identifies the attribute itself, For example, the
number 3 in the attribute *x32" refers to the third car, and the number 2 refers to the
second attribute (e.g., “car shape™). Thus, attribute x32 describes the shape of the
third car. Table 2 shows a summary of these data,

The AQDT-2 Algorithm

Given: A set of rules and a decision making situation,
Determined: A decision structure optimized for the given decision making situation.

Step l: Evaluate each attribute occurring in the ruleset context using the LEF
attribute ranking measure. Select the highest ranked attribute, say attribute A.

Step2: Create a node of the tree (initially, the root; afterwards, a node attached toa
branch), and assign to it the attribute A. In standard mode, create as many branches
from the node as the number of legal values of the attribute A, and assign these
values o the branches. In compact mode (decision structures), create as many
branches as there are disjoint value sets of this attribute in the decision rules, and
assign these sets to the branches.

Sten 3: For each branch, associate with it a group. of rules from the ruleset context
that contain a condition satisfied by the value(s) assigned to this branch. Remove
from the rules these conditions. If there are rules in the ruleset context that do not
contain attribute A, add these rules to all branches stemming from the node assigned
attribute A. _ |
Step 4: If all the rules in a ruleset context for some branch belong to the same class,
create a leaf node and assign to it that class. If all branches of the trees have leaf
nodes, . Otherwise, repeat steps 1 to 4 for each branch that has no leaf,

Figure 2: The AQDT-2 algorithm

Tahle 2: The set of attributes used in the experiments

Name { Attribute Y alues

| 0 11 2 3 4 5

| Car_top open closed

X2 Car_shape rectangle | hexagon | bucket | u_shaped |ellipse

x3 Car_length short long

x4 Car_frame not_double |double

x5 Top_shape none peaked flat ac jagged

x6 No_of wheels [two three

x,7 Load_shape lrectangle |hexagon |circle | triangle |[utriangle !diamond I
x8 | No of loads Jno loads |ome two | three |

i= 1, 2, 3, 4 and stands for the car number.

To demonstrate the capability of the system to leamn decision structures under
different constrains regarding what attributes can be easily measured, the
experiments involved different “admissible” sets of attributes. For example, Figure



3a, shows a decision structure learned using only attributes describing the first car.
This decision structure classifies correctly 19 trains (out of 20). Figure 3b shows a
decision structure learned using only attributes describing the second car. It classifies
correctly 18 trains. Both decision structures have leaves with multiple decisions,
which means that there is identical first or second car in the two decision classes
(sets of trains). Figure 3¢ shows a decision structure leamned using attributes
describing the third car only. It classifies correctly all 20 trains with three cars or
more(14). In Figure 3d, attributes x37 and x34 were given lower cost than attribute
x31. The last decision structure classifies correctly any train with three or more cars

a) using only attributes from Car #1 b) using only attributes from Car #2.

x37

Nodes: 2
Leaves: 4

¢) using only attributes from Car #3 d) with lower costs for x34 and x37.
Figure 3: Task-oriented decision structures learned by AQDT-2 with different costs.

4.2 Comparative Study

This subsection presents a comparison between the decision trees obtained by FRD-1
and C4.5, a well-known program for learning decision trees (Quinlan, 1990). The
experiments were performed on 6 different data sets. Both systems were set to their
default parameters. The experiments were divided into two parts. The first part is
concerned with designed problems, the MONKs (Thrun, Mitchell & Cheng, 1991),
and the second part was concerned with real-world problems: Wind bracing for tall
buildings (Arciszewski, et al, 1992), Mushrooms classification, Breast cancer
diagnosis.

All the results reported here are the average of 100 runs. For each data sct, we
reported the predictive accuracy, the complexity of the leamed decision trees, and the
time taken for learning, Figure 4 shows the results from comparative study on the
three MONKSs problems. Figure 5 shows the results obtained when using the wind
bracing, mushroom, and the breast cancer problems.
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Figure 4: Results from AQDT-2, AQ15¢ and C4.5 on designed problems (MONKS).

4.3 Analysis of the Results

This section includes an analysis of the results presented in section 4-2. The analysis
covers the relationship between different characteristics of the input data and the
learning parameters for both subfunctions of the approach, Table 3 shows the best
parameter settings for learning decision rules with different databases. The
information in this table is based on the predictive accuracy of decision trees learned
by AQDT-2 from decision rules leamed by AQ15¢ with different parameter settings.
Some heuristics were used in driving these information. One heuristic was: if the
difference in predictive accuracy between two widths of the beam search is less than
2%, then the smaller is better. Another one was: if the predictive accuracy of
different types of covers is changing (i.e. for one type of covers, it is higher with
some widths of beam search or with certain rule’s type and lower with other types of
covers), the best cover is determined according to the best width of the beam search
and the best rule type.

It was clear that AQDT-2 works better with characteristics rules rather than
discriminant. In most problems, when changing the width of the beam search of the
AQ15¢ system, the changes in the predictive accuracy of decision trees learned by
AQDT-2 were within +2%. Disjoint rules were better than intersected rules for
learning decision trees. Generally, decision trees leamned from intersected rules were
slightly bigger than those learned from disjoint rules.




LB L
—— AT I_.‘

“ we= i o
o rrmgen [ ]
i

L)

ul

bl

42 7

o

&

9 1020 304090 &0 70 00 90 100
Ralative sise of raining axamplies (%)

0 10 20 20 40 5060 70 80 90100
Relative sizs of training examples (%)

T
Wl PR B D@ R mI b on o mg 0 b 030 3045 40 6 T o ot
Figure 5: Results from AQDT-2, AQ15¢c and C4.5 using real world problems.

Table 3: Recommended parameter settings for AQ15¢.

Characteristics of the Data Cover Type Beam Size | Rules Type |
Average Size, Complex, Noise-Free | Intersecting 1 Characteristics

{ Small Size, Simple, Noise-Free Disjoint 1 Cheracteristics
Small Size, Complex, Noise-Free Disjomt 1 Characteristics
Small Size, Simple, Noisy Disj. or Inter. 1 Characieristics
Large Size, Complex, Noise-Free Disjoint N/A Characteristics
Large Size, Comnplex, Noisy Intersecting N/A Characteristics _ |

To analyze the comparative study between AQDT-2 and C4.5 for learning decision
trees, a set of heuristics were used to summarize these results, These heuristics are:
1) if the difference between the average predictive accuracy of the two systems is
within + 2%, the predictive accuracy is considered to be the same. Otherwise, the
predictive accuracy is considered high or low; 2) if the average learning time is
within 4 (.1 seconds, the learning time is considered the same.

Table 4 shows a summary of the comparison between AQDT-2 and C4.5. The
summary includes comparing the predictive accuracy, the size of learned decision
trees, and the leaming time. The value in each cell refers to the system which
perform better. When the training data represents a small portion of the
representation space, AQDT-2 produces bigger but accurate dedsion trees, However,



C4.5 produces smaller but less accurate decision trees. When the training data
represents a very large portion of the representation space, AQDT-2 usually produces
smaller decision trees with better accuracy except with noisy data. The size of
decision trees leammed by C4.5 relatively grow hlghcr when the training data
increases. Also, C4.5 works better than AQDT-2 with noisy data. The reasons of this
are because AQDT-2 over generalizes the decision rules.

Table 4; The best performing system for different data characteristics.
= ; means that the difference between the two systems is insignificant.

acteristics of the Problems Best Performing System
ind Bracing, MONK-1, Accuracy Cornplen}y ICPU
ONK-2, MONK-3 Training size Training size [Time

mall Size, Simple, Noise-Free AQDT-2 |AQDT-2 [c4.5 AQDT-2 IAQDT-2 |
$mall Size, Complex, Noise-Free _ |JAQDT-2 |AQDT-2 |C4.5 C4.5 s
Bmall Size, Simple, Noisy -~ - - ~ - i
Large Size, Complex, Noise-Free  |AQDT-2 | = IC4.5 AQDT-2 [C4.5

Ege Size, Complex, Noisy IC4.5 = JAQDT-2 JAQODT-2 | =

5. CONCLUSION

The paper presented a methodology for determining task-oriented decision stractures
from decision rules or examples. The preliminary experiments with an implemented
system, FRD-1, have demonstrated many advantages of the presented approach such
as the ability to tailor the decision structure to the decision problem at hand, and
leaming decision structures directly from rules or from examples. Generally, the
structures obtained by the AQDT-2 system are simpler, accurate and easy to modify
(due to incremental learning ability) than decision trees obtained from examples.
Future rescarch needs to investigate the best areas of applicability of this
methodology, confirm these findings on other decision making tasks and to develop
the ability of building more complex decision structures that those explored here.

The proposed methodology advocates storing the decision knowledge in the
declarative form of decision rules, which are determined by induction from examples
or by an expert. A decision structure is generated when is needed, and in the form
most suitable for the given decision-making situation (i.e., a class of cases of
interest). A criticism may be leveled against this methodology that in order to
determine a decision structure from examples, it is necessary to go through two
levels of processing, while there exist methods that produce decision trees efficiently
and directly from examples. Putting aside the issue that decision structures are more
general than decision trees, it is argued here that this methodology has many
advantages that fully justify it. The main advantages include: 1) decision structures
produced by the methods in the experiments conducted had higher predictive
accuracy and were simpler (sometimes significantly so) than decision trees produced
from the same data; 2) decision structares produced from rules can be easily tailored
to a given decision-making situation, i.e., they can avoid measuring expensive
attributes, or can put them in the lowest parts of the structure; 3) by storing decision
knowledge in the declarative form of modular decision rules, the methodology
makes it easy to modify decision knowledge to account for new facts or changing




conditions; 4) the process of deriving a decision structure from a set of rules is very
fast and efficient, because the number of rules per class is usually much smaller than
the number of examples per class; and 5) the presented method produces decision
structures, whose nodes can be original attributes, or constructed atiributes that
extend the original knowledge representation (this is due to the application of
constructive induction programs AQ17-DCI and AQ17-HCI). The price for these
advantages is that the system has to generate decision rules first, and then create
from them decision structures. In the AQDT-2 method, this first phase is done by an
AQ algorithm-based rule learning method.
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