Knowledge Visualizer: a Software
System for Visualizing Data, Patterns
and Their Relationships

Q. Zhang

P 97-19
MLI 97-14

KNOWLEDGE VISUALIZER: A SOFTWARE
SYSTEM FOR VISUALIZING DATA, PATTERNS
AND THEIR RELATIONSHIPS

Qi Zhang

Machine Learning and Inference Laboratory
School of Information Technology and Engineering
George Mason University
Fairfax, Virginia 22030-4444
gzhang@aic.gmu.edu

Publication No.
P 97-19

Reports of the Machine Learning and Inference Laboratory
MLI 97-14

September 1997

KNOWLEDGE VISUALIZER: A SOFTWARE

SYSTEM FOR VISUALIZING DATA, PATTERNS
AND THEIR RELATIONSHIPS

ABSTRACT

This report describes a novel knowledge visualization tool: Knowledge Visualizer or KV. KV is
specifically designed to visualize various aspects of concept learning. These visualized aspects
include: representation space (or instance space), qualitative and quantitative distribution of
training or testing examples, relationships between examples and rules characterizing concepts,
qualitative and quantitative visual display of concept rules, changes in the representation space
done by constructive induction. This software system employs a planar model of a multidimen-
sional space spanned over a set of discrete attributes. The model isin the form of a diagram, in
which each cell represents a unique combination of attribute values. The diagram can represent
examples, rules, and rulesets (DNF). KV is very useful in many aspects such as analyzing behav-
ior of existing learning algorithms or a new learning system being developed in its every stage,
teaching or training people in machine learning, data mining and knowledge discovery in data-
bases.

KEYWORD: Knowledge visualization, machine learning.

ACKNOWLEDGMENTS

This research was conducted in the Machine Learning and Inference Laboratory at George Mason
University. The Laboratory's activities are supported in part by the Defense Advanced Research
Projects Agency under grant F49620-95-1-0462, administered by the Air Force Office of Scien-
tific Research, in part by the National Science Foundation under grants DMI1-9496192 and IRI-
9020266, and in part by the Office of Naval Research under grant NO0014-91-J-1351

8/12/03

Also

Users Guidefor

Knowledge Visualizer 1.0

Table of Contents

LINTRODUGCTION ...ttt sttt ettt s s ssee s s ss e e s baeesbeessbeeesaseeesaseeesnseessnneen 5
2 PREPARATION ..ttt sttt sttt st a st e e bt e e bt e e s nba e e snbe e e nnbeeennnee s 7
2. L TERMINOLOGY etitiitiiiitie e ittt estte e stteastte e stteestee e ssteaaseeessteaaseeessseaaaeeessseaseeeasteaseeessseaseeesaseaasseessteensseessteennneesnseennneens 7
2.2 THE FORMAT OF INPUT ..otiiiitiiieistit sttt sitessiee s siteessee s satessaeessssessseeesaseasseeessbesssseessbessssessateesssessssessssnssssessssnens 8
Bl Y o A o A I) A I USRS 8
2.3 1 MONKL S PrOBIEM ... e bbbt et b e bt bt h et e e se e b s et eb e s e e e e e e e anas 8
2.3.2 DeSigNS Of WING BIraCINGcueuiitiiieiiitirieieete ettt sttt b e st se et b e et b e se et eb e e st ebe e eneebeseeneas 11
BUSING KV et e e e ettt e e e e e e e e e eat e e e e e e aseeeeeansaeeeeeasseeeesestaeeesannreeanan 12
TN Y 17 = O I NN Y ST 12
G T2 1N I D N SRS 12
G325 1 @ o 1= o TSP 13
Y T R SRSR 13
3.3 ARRANGE ATTRIBUTESIN A REPRESENTATION SPACEooiiiiiiteriie ettt siee et sree b s snbe s sseesnee s 13
G I A 174 N I 1] SRR 16
3.4.1 REPIreSENTAliON SPACE.......cceeiteeierierieseesee st e steerteaeeaseesseasseesteesteestesseesaeesseesseaseanseanseaseasseeseensennsennsessensnns 16
3.4.2Y AribULES AN X ALIIDULES ..o ettt se e e et e e eaeene e e eneennens 17
3. 4.3 EXAMPIES OF All CIASSES......eciieieeiece ettt ste ettt et e e e s saesaeesaeesseeaeenteeneeeneaeseenseenteentennsennensnnas 17
3.4.4 EXampleS Of SEECIEA CIASSESeiveueitiiieieite ettt st b e et b e et b e et b e e eb e e nbeseeneas 18
3.4.5 Positive and Negative EXAMPIES.........ccue et es e e e e s sre s aeeeeesaesseasse e seenseensesneessensanes 19
3.4.6 Example Distribution of @ SElECted ClaSS ..ot 19
3.4.7 Examples Corresponding t0 @ Celluo it nneas 20
3.4.8LeArNed RUIES OF All ClASSESc.uiitiieeieieieriee sttt ettt et et e teseesbe s st st ese e e e eeseestesaeeneeneeneenseseens 21
3.4.9 Learned RUIES Of SElECIEA CIASSES........ccouiiiieriiitirieeieee ettt e bttt e e e et sbesae e e ene e 22
3.4.10 Colored RUIES Of & SEIECEA ClaSS........cuiiieiieieeeecee ettt sttt e et eneene e e eneeseens 22
3.4.11 Learned Rules of One Class Dy TOtal COVENccccuirienieeeeee et seesre e eae e e e e ese e snaesnees 23
3.4.12 Learned Rules of One Class by UNIQUE COVETcooiiiiirieiienieeete ettt st s 23
3.4.13 Rules and Examples of @ SEleCtel ClasS........ccciiiiiiciesieee ettt snees 23
3.4.14 Examples and Colored Rules of @ SEleCted Class.........couirrirerieiieieeese et 24
3.4.15 Rules of a Selected Class against Examples of All CIASSEScccvvieieiieesieese e 25
3.4.16 Rules Corresponding t0 @ Callcoi ittt sb e e 25
3.4.17 Rules of All Classes of the Target CONCEPLcvccvieieiierieeee e e s e teeeesneesnaesnees 26
3.4.18 Rules of Selected Classes of the Target CONCEPL........c..ccviirieirerieere sttt 26
3.4.19 Colored Rules of a Selected Class of the Target CONCEPL.........cccvveeieeiie v 26
3.4.20 Errors of Commission, Errors of Omission, and Total ErTOrS........ccecivveeeeeiveeeeeeceeeeee e s eeee s esaeee s 26
3.4.21 Generate EXampleS from SCratCh...........coiioiieii et 27
3.4.22 Generate Examples Based 0N Previous EXAMPIES........cccoiieiiirieiie sttt 27
S5 OTHER OPERATIONS ...ttt ettt ettt ettt stte ettt stee bt e s sbe e s be e s be e e bt e e abeeeabe e e beeeabe e e beeeabe e e beeeabeeeabeeeabeeeabeeenbeeenbeennbee s 27
T AN o 1 1= BV 1S U T .= SRR 27
AOTHER TOPICS ...ttt e e e e e et e e e e et e e e e e eate e e e e eanbaeeeeannreeaeennnenas 28
4.1 CONSTRUCTIVE INDUCTION ..iiittiitiesieesiteesieesitessseesitesssessatessssessssessssessssessssessssessssessssessnsessssessnsessnsessssessanes 28
4.2 PROJECTION OF EXAMPLES.......oiiitieiiteeiitesie e st e st e stesate e s e e aaeesnteassseessteaanseesnteeanseesstesanseesnsesaseesnsessseesnses 28
4.3 INTERNAL VALUES OF A REPRESENTATION SPACE ..ottt sttt sttt sttt st s sne s st snee s 29
S5 CONCLUSION....coiiiieiieeriieesree e ERROR! BOOKMARK NOT DEFINED.
APPENDIX 1: MONK L DAT A ettt sttt sttt sbe e nsae e nnne e nnnee s 30
APPENDIX 2: WIND BRACING DATA ettt 33

REFERENCES. e e 37

1 INTRODUCTION

This report describes a novel knowledge visualization tool: Knowledge Visualizer or KV. KV is
specifically designed to visualize various aspects of concept learning. This system is very useful
in many aspects such as analyzing behavior of existing learning algorithms or a new learning sys-
tem being developed in its every stage, teaching or training people in machine learning, data min-
ing and knowledge discovery in databases, providing a quick, preliminary yet effective data
analysistool.

KV employs a planar model of a multidimensional space spanned over a set of discrete attributes.
The model is called General Logic Diagram (GLD) and was introduced by Michalski (1978). The
model isin the form of a diagram, in which each cell represents a unique combination of attribute
values. Each attribute partitions the diagram into areas corresponding to individual values of this
attribute. Conjunctive rules correspond to certain regular arrangements of cells that can be easily
recognized visually. The diagram can represent examples, rules, and rulesets (DNF)

The main goal of KV isto provide atool for avisua interpretation of various aspects of concept
learning. These include: representation space (or instance space), qualitative and quantitative dis-
tribution of training or testing examples; relationships between examples and rules characterizing
concepts, qualitative and quantitative visual display of rules, changes in the representation space
done by constructive induction.

Besides visualization of stepsin alearning process, KV is also able to display the errorsin con-
cept learning. The set of cells representing the target concept (the concept to be learned) is called
target concept image (T). The set of cells representing the learned concept is called learned con-
cept image (L). The areas of the target concept not covered by the learned concept represent
errors of omission (T \ L), while the areas of the learned concept not covered by the target con-
cept represent errors of commission (L \ T). The union of both types of errors represents the error
image. Display of these errors gives users a further insight into learned knowledge.

KV is based on the pioneering work DIAV (Wnek, 1995) which is the first software system for
rule induction. Actually many of the KV’s features are similar to those of DIAV. However, com-
pared with DIAV, KV has several new practical and attractive ones:

(1) DIAV iscoded in SmallTalk for Macintosh and its code for visual display of aspects of learn-
ing process cannot run in other machines. Hence, it is very machine-dependent and cannot be

accessible to most researchers or users who are actually using other types of machines. KV is
coded in Javaand its visual display is workable on any computer where a Javainterpreter was
installed, even through Web browsers such as Netscape™.

(2) DIAV has some system limitations introduced in its design. For instance, DIAV, can display
description spaces up to 4M events, i.e., spaces spanned over up to 22 binary variables (or
correspondingly smaller number of multiple-valued variables). In contrast, KV does not im-
pose any hardware or software limitations such as this. It alows problems as large as a par-
ticular machine' s hardware or software system can deal with. It simply lets users themselves
beat a system’s limitations. This is very important because machine learning techniques are
now being applied to larger and larger practical problems in data mining. KV also has con-
venient features for visualizing large problems.

(3) KV adopts combinations of symbols and colors to display examples and rules of different
classes. It differs from DIAV which uses different kinds of texture patterns to label examples
and rules. Using symbols and colors accommodates problems with many classes. However,
diagrams using texture patterns are not visually comfortable and distinguishable in case of a
large number of classes, and further, it is difficult to find or design new texture patterns for
problems which has many classes.

(4) KV provides not only qualitative but also quantitative visualization of spatial distribution of
examples and coverage of rules. It aso allows for quantitative examination of asinglerule, a
ruleset or rule strength. These quantitative features are missing in DIAV.

Summarized are main KV features:

(2) Allow problems as large as possible. No restrictions are placed on the number of classes, at-
tributes and attribute levels. No restrictions are placed on file size and memory requirement
as long as the machine is able to run a Java interpreter. KV aso provides auxiliary functions
for visualizing large representation spaces.

(2) Window and menu driven. An input to the system comes from data files generated by alearn-
ing system (e.g. AQ15c or AQ18) or created manually. Output is directed to a graphical ter-
minal with regard to visual effects. The graphical terminal is able to display and control mul-
tiple windows. Scroll bars on sides of the panes enable to display larger than screen size im-
ages.

(3) Fexible input manners. KV accommodates many cases in which users want to input their
data. Note that in KV 1.0 the input means AQ-style descriptions of attributes, examples and

! The current version of KV isnot an applet and so it cannot run in a Web browser. However, it is easy to produce an
equivalent applet version.

rules.

(4) Pleasant visual display. Colors and symbols are combined for displaying different classes.

(5) Visuaization of many aspects of examples and rules such as distribution of examples, spatial
coverage of rules, relationships between examples and rules. and relationships between repre-
sentation space cells and rules and examples. It provides not only qualitative but also quanti-
tative display of them and so it enables an accurate understanding of various aspects of data
and learning.

(6) Projection of a given representation space onto another one by removing and/or adding attrib-
utes. Easily visualizing such changes provides the user a very convenient and effective way
of understanding the effects of constructive induction.

2 PREPARATION

2.1 Terminology
Here are concepts used throughout this manual. Not that some are defined loosely.

Attribute: an aspect characterizing an object or entity. It is composed of a set of values which
can be continuous, discrete or nominal, etc. In the GLD model, only discrete, nominal or dis-
cretized continuous attributes are allowed.

Céll: an unique combination of attribute values which occupies asingle grid in aGLD diagram.

Example: an item or member of aclass. It is described with a set of attribute values. Thisterm is
exchangeable with event. It can be further classified as training/learning example used for
learning by a learning system and testing example used for testing the performance of the
learning system.

Concept: a set of examples. Usually, members of this set have some similarities. Learning is to
find these relationships or similarities. This term is exchangeable with class.

Representation space: a Cartesian product of all attributes. It is the set of all possible combina-
tions of attribute values. It is exchangeable with instance space.

Hypothesis: the similarities, relationships, or patterns identified by a learning system and repre-
sented by its representation language. In the case of rule learning, hypothesis is exchangeable
with rules.

Cover: thisword is used here in three situations: “A rule covers an example” or “an example is
covered by arule’. This means this rule logically follows this example or this example can be
characterized by this rule. The second usage means spatial coverage of rules and the third
means a ruleset. In AQ rule learning, the total cover of a rule means the number of examples

coverd by this rule; its unique cover means those examples covered only by this rule, not any
other rules. Thetotal cover and unique cover represents the strength or weight of arule.

Target Concept: the exact set of examples defining a concept. Usualy it is represented as a hy-
pothesis which exactly covers this set of examples. No more or less. It is what a learning sys-
tem attempts to output based on only some members.

Learned Concept: the set of rules output by a learning system. Usually it is not the same as the
target concept. Represented as a hypothesis.

Error of commission: an example or a cell covered by the learned concept but not by the target
concept.

Error of omission: an example or a cell covered by the target concept but not by the learned
concept.

Image: an actual graphical display of rules or examples. It consists of three types.

Concept image: a diagram with only rules displayed init. A rule covers a set of cellsin thisdia
gram.

Example image: a diagram with only examples displayed in it. Each example corresponds to a
cell in this diagram.

Error image: adiagram with either errors of commission or errors of omission displayed in it.

Working window: the window where users start KV.

2.2 The Format of I nput

Any valid input to AQ15c (Wnek et al., 1995) or AQ18 and any valid output from them. For the
feel-and-look of input and output, see particular datain section 2.3. It would be better for usersto
arrange data in a file according to this sequence: variable section, names section, events section,
and rule section. It would be better for each section to be separated by one blank line. Data of
four problems, Monk1, Monk2, V concept, Windbracing, are provided. When encountering run-
ning problems with KV, be sure to make the input data have a correct format.

2.3 Exemplary Data
Throughout this report, data of two problems are used. One is Monkl1 (Thrun et a., 1991). The
other is about optimal designs of wind bracing in stee skeleton structures of tall buildings

(Szczepanik et a., 1995).

2.3.1 Monk1’'sProblem

The Monk1’'s problem relys on an artificial robot domain, in which robots are described by six

different attributes:

x1: head shape [{round, square, octagon}
x2: body _shape [{round, square, octagon}
x3:is_smiling O {yes, no}

x4: holding O {sword, baloon, flag}
x5: jacket_color [{red, yellow, green, blue}
X6: has_tie 0 {yes, no}

The learning is a two-class classification task. This problem defines a class of robots as
“(head_shape = body_shape) or (jacket_color = red)” (we call this class classl) and all other ro-
bots which do not conform with this description form another class (we call it class2). There are
all 432 possible robots. The learning task is then to accept a randomly drawn subset of examples
and generalize over this subset and output a set of rules characterizing these two classes. The fol-
lowing is part of the training data file (for the full set of data, see the software package):

parameters

run mode ambig trim wts maxstar echo criteria verbose
1 ic neg mini

variables

type levels cost

nom
nom
nom
nom
nom
nom

O WNE

X1-names
value name
0 1
1 2
2 3

X2-names
value name
0 1
1 2
2 3

X3-names
value name
0 1

1 2

X4-names
value name

NPWNW®W

1.00
1.00
1.00
1.00
1.00
1.00

cpx 10 pv default 1

name
x1
X2
x3
x4
x5
X6

10

NP O
WN P

x5-names
value name
0 1

1 2
2 3
3 4

X6-names
value name
0 1

1 2

classl-events
X1 X2 x3 x4 x5 x6
331342
221122

class2-events
X1 X2 x3 x4 x5 x6
321142
212131

In the parameters section are defined some learning parameters for the AQ learning program.
Note that this section is useless and unnecessary to KV. Following is the variables (i.e., attrib-
utes) section which is important to KV because KV uses this section to build representation
gpace. As can be seen, each attribute's values are replaced with integers starting from 1 (thisis
not required). The name section specifies the correspondence of these integers to AQ’s internal
values starting from O.

The learned rules are the following:

classl-outhypo

cpx

1 [x5=1] (t:16, u:11)

2 [x1=3] [x2=3] (t:15, u:11)
3 [x1=2] [x2=2] (t:10, u:10)
4 [x1-1] [x2=1] (t:7, u:6)

class2-outhypo
cpx
1 [x1=1,3] [x2=2] [x5=2,3,4] (1:18, u:18)
2 [x1=2] [x2=1,3] [x5=2,3,4] (t:13, u:13)
3 [x1=1] [x2=3] (t:9, u:9)
4 [x1=3] [x2=1] [x5=2] (t:3, u:3)

11

One version of the target conceptsis the following:

classl-outhypo
cpX

[x5=1]

[x1=3] [x2=3]
[x1=2] [x2=2]
[x1=1] [x2=1]

DOWN P #

class2-outhypo

cpx

[x1=1] [x2=2..3] [x5=2..4]
[x1=2..3] [x2=1] [x5=2..4]
[x1=3] [x2=2] [x5=2..4]
[x1=2] [x2=3] [x5=2..4]

DOWN - H®

2.3.2 Design of Wind Bracing

The following is part of the input file to the AQ learning system (for the full data set, see the
software package).

parameters
run mode ambig trim wts maxstar echo verbose
1 ic empty spec cpx 10 pcdv 3

variables

#type size name
1nom5 x1.15
2nom2 x2.12
3nom2 x3.12
4nom3 x4.13
5nom3 x5.13
6nom4 x6.14
7nom4 x7.14

|12-names
value name
0 1
1 2

|3-names
value name
0 1

1 2

2 3

|14-names
value name
0 1

1 2
2 3
3 4

12

|15-names
value name

A WNEFLO
abhwWNPE

classl-events

X1 X2 X3 x4 x5 x6 x7
1223213
1223212

class2-events

X1 X2 X3 x4 x5 x6 x7
2111311
5221311

class3-events

X1 X2 X3 x4 x5 x6 x7
3212123
2212123

class4-events

X1 X2 X3 x4 x5 x6 x7
5223112
5213114

3 USING KV
3.1 Starting KV

A Java 1.0.2 interpreter must be installed first. In Sparc workstation or in Windows95, open a
wind and type java KV. The following window will be popped out:

[E: KV 1.0: Visualizer 1

File /0= Attibutes Misualization window

Fig. 1. The main window.

3.2 Input Data

13

The current KV version requires all data (attributes, examples, rules) to be stored in files first.
Click the File menu and you can see Fig. 2.

3.2.1 Open

EE3KV 1.0: Visualizer 1

W 754 Attributes Wizualization window

AL Attributes

i
L A0 Events
E it Al Rulez az Learned Concept
Al Rulez az Target Concept

AL Attributes and Events

Al Attributes and Leamed Rules

AL Attributes and T arget Concept

A0 Attributes and Leammed Rules and Events

Fig. 2 Various Open operations.

In this menu, Open means opening a file and getting the data. The current KV requires that all
data be input through a file. KV can input al the data (AQ-style) in the file or you can extract
part of it. Thisflexibility isaso shown in Fig. 2. Note that if you want to input examples or rules,
you must select an option which will input variables section or this variables section was aready
input., because KV parses rules and examples according to this section. For alargefile, KV takes
some time to do a analysis job because KV does not assume any restrictions upon data, for ex-
ample, predefined numbers of examples or classes.

Example: First input the Monk1 data from the file m1.aqin which contains attributes and
training examples. Then input learned rules stored in the file ml.aqout. Fi-
nally input the file ml.target which contains the rules as the target concepts.
There is no restriction on the input sequence of the last two files.

3.2.2View

View in the File menu is only for viewing the contents of afile. Note that KV does not provide
any editing function. To edit or create afile, use a native editor.

3.3 Arrange Attributesin a Representation Space

14

In a representation space, an attribute can be put either in Y dimension of a diagram or in X di-
mension and iscalled Y attribute or X attribute respectively. One can also ignore an attribute. KV
provides three ways of arranging attributes. See Fig. 3.

Equal Size
Ilzer's Selection

Fig. 3. Three ways of arranging attributes in a representation space.

Half/Half means KV automatically takes the first half of all the attributes, defined in the vari-
ables section and in the order there, as Y attributes and all others as X attributes. Half/Half is
very likely to generate a representation space which is a rectangular, very long in one dimension
and hence inconvenient to visual examination. Equal Size is provided to address this issue. KV
automatically examines the number of attributes and their levels and attempt to define a space
which is approximately a square. See Fig. 4 for the effects of using this feature on the data of
wind bracing design problem.

=

JolaleJolalefol Telals =]
2 | o | 1+ [=2 |
. i

of+[efols[efol+[efol+Telal Tefol4[eJaTsle]a 4]z
o I+ T e T o[v T =010 [+
| 1 | 2 |

1]

- = 4 — —— —=t ;

Fig. 4. Representation spaces of wind bracing design problem. The l€eft is generated by
Half/Half, and the right by Equal Size.

Users can aso select and put any attributes in either dimension or put an attribute in both dimen-
sions or even ignore some attributes. User’s Selection is designed for this purpose. Fig. 5 shows
the selection of attributes x1, x2, x3 in Y dimension, and x6, X7 in X dimension. Attributes x4,
x5 are ignored. Note that at |east one attribute must be selected for Y dimension and there can be
no attribute in X dimension. Fig. 6 is the representation space after this selection. Ignoring, i.e.,

15

deleting some attributes is actually performing constructive induction (Michalski, 1983; Bloe-
dorn, 1996).

Eg Select Attributes

|

X Dimension ¥ Dimension

1] 4 Close

Fig. 5. Selection of attributes of wind bracing design datafor Y and X dimensions.

E%‘: Reprezentation Space 1 Hi=l

=

=y

=

=

[=]

T

=

b
ol
H
k2
=
4

b
]

al1lz]alala2]alali]2]s]ali]2]s
o 1 2 3

2l I
Fig. 6. The representation space of the wind bracing design problem after selection of
attributes x1, x2, x3, x6 and x7.

H
o

=
r

16

Note that in any input operation containing input of attributes, Half/Half division of attributesis
automatically performed, i.e., Half/Half is the default division.

3.4 Visualization
For various visualization operations provided in KV 1.0, see Fig. 7. Note that these various visu-

alization functions are effective only after Y/X attributes have been defined and any visualization
operation is ineffective if attributes are not defined or input.

EEEKY 1.0: Visualizer 1

File v/ Atibutes [ETE e indow

Repregentation Space
i Attributes
¥ Altnbutes

Examples of All Clazzes

Examples of Selected Claszes

Positive and Meqgative Examples

E xample Dizstribution of a Selected Clasz
Examples Comezpoding to a Cell

--- Learnd Concept ---

Rules of All Clazses

Rules of Selected Clazzes

Colored Rules of & Selected Clasz

Rules of One Clazs by Total Cowver

Rules of One Clazs by Unigue Cover

Examples and Rules of a Selected Clazs

E xamples and Colored Rules of a Selected Clazs

Fiules of a Selected Clazz against Examples of &l Clazzes
Rules Caorrespoding to a Cell

--- Target Concept --

Rules of All Clazses

Rules of Selected Clazzes
Colored Rules of a Selected Clasz

Errors of Commizsion
Errors of Omizzion
Total Emor Area

Generate Examples from Scratch
Generate Examplez Baszed on Previous Examples

Fig. 7. Various operations in the Visualization menu.

3.4.1 Representation Space

It smply displays a representation space similar to Fig. 6 after Y/X attributes were determined.
No examples or rules are displayed.

17

3.4.2Y Attributesand X Attributes

These two functions are very useful when a displayed representation space is too large to be held
in one screen. In this case, users can lose accurate understanding of specific cellsin this diagram.
To address this, users can display Y an X dimensional attributes in two separate windows and
move their scroll bars for exact quantitative relationships. See Fig. 8.

i) Representation Space 1 | Attribu
fal A
| Lk

o
.
El]
El
l+ |
E
.
E |
El
l+ |
Ed—fa
o
T
A
EN
l+ |
E
.
EHE
El
e
o
.
EN
EN
[+ |
1
.
¥ E |1 ¥
[X Attributes
ol1Jol+Jolalala Jal 1 Jol1 RalsTolt Jolalala ol Jols fal+Tolt Jol]oTn
o | 1 K o | 1 o | 1 o | 1 o | 1 K o | 1
o 1 P o 1 P o 1
o 1 e
=l

Fig. 8. The Y Attributes and X Attributes are used for an auxiliary purpose.
3.4.3 Examples of All Classes

Take the Monk1 problem as an example, and see Fig. 9.Actually this diagram shows a qualitative
distribution of al the examples. Each classis labeled by using a different symbol (starting from 1
to 9, then followed by a..z, by A..Z) and color (in the order of red, green, pink, light blue, orange,
yellow, magenta, cyan and light gray. After these nine colors, KV generate a random color for
other classes). If the examples of two different classes occupy the same cell (i.e., the same event
appears as a member of more than one class), then an X will be displayed in that cell instead of
any other symbol and color.

E3RS 2: Examples of All Classes |_ (O] x|

<

H:: o], Symbok->Class
i
5 7 BTl 1->classi
o P 2-»class?
Bl B i
. .
7 S5E
B
y]
o
B h
i
il b
= 2
2] o]
i |
o
o
2 L
0
ﬂ ielE
x3 %2 x1
ol1]JoleJal1]al1] =
11213] =
Ee) _,‘
5

Fig. 9. Thetraining examples of al classes of the Monk1 problem.

3.4.4 Examples of Selected Classes

18

Through this function, one can select examples of any number of classes to view. Take the data
of the wind bracing design problem as an example, and select the examples of classl and class3
for display. When examples of more than one class occupy the same cell, this function can give

users an amore accurate visualization. See Fig. 10.

E%HS 4: Example of Selected Clazses Hi=] E3
Eﬁi Select Classes [Hi[=] il
class2
| class4
I
(11,9 | Close | I 3 .

A

L3

Fig. 10. Select the examples of classl and class3 of the wind bracing design

problem for display. 1 corresponds to classl and 2 class3.

19
3.4.5 Positive and Negative Examples
If one classis selected as positive, then all other classes are considered negative. The examples of

the positive class is displayed using red symbol “+” and the examples of al other classes using
blue symbol “-”. See Fig. 11 for an example.

&‘%HS 2: Positive and Negative Example
E&aﬁelect One Class !El |
[+[+ + bl Symbol-=Class
— - - o +->class
class2 =] |- =21 &l 10—1 ul --=class2
—
o
+ o
L
+ [+ + 3 I 5 I 3 T A
+ |+ [+ + |
+ E + o
| e T
+ + o
2 il
+ o
T+ i 1_1_2
' +] |+ + T T+]+ 4] P
Close + +]+]+ + 1 1+ &k
I x3 x2 x1
ol1JolaJalsJols JolaalaJalaala falaJalaJala]als] =&
ol T e2lafol e Tolafoalalals] «s
| i 1 2 x4 B
| _ W :

Fig. 11. The examples of classl of the Monk1 problem are selected as positive.

3.4.6 Example Distribution of a Selected Class

[E3RS 2: Examples of All Classes M= B3 |WEARS 4 Example Distribution
R EIEEIE EIEEE E LS Symbaol-»Class B ol Color-Strength I
1 1
R BEEIEIE TP | 1->classt e | Hid
){..2’-:2;.}(.:3;33 E1E a 2 -= class? l B3
AEEREEEEEREEEE o], i:i 2:2223 o |,
& o L X3191313131313 313 L ®-» ambiguous L
[20:[2[x]2[a[al3[a[a]3[3]3 A o],
21020 313)13131 33131313 [1
S EEEE EEEEE mp s
Al 3131 31313/3[3 313 L A
9[2[2[2]aalala]ala] |a]a o], 1
HEFEE EEEEEEEEE i i
2 =
1 s
7l F AR EEEEERE A o],
K| 212121313(3]3]3]3[3]3]3 [1
2 =
- et
SRR EEEE - BREE A o],
A 3[313[312]13[3]313 i . i
x3 x2 x1 %3 x2 x1
[ol1TzlsTalTalslolalolsTalTals] = [olilelafoliTelaloli Tolsolnlols]|
[o 1 5 3 | sl [o 1 5 3 x6 =
w [= I | ‘.'

Fig. 12. Theleft isall examples of the wind bracing design problem based only on
attributes x1, X2, x3, X6, X7. The right is example distribution of class3 only.

20

KV provides users an opportunity of viewing the quantitative distribution of examples of only
one class per diagram. It uses colors to indicate the number of examples, called strength in the
diagram, that occupy the same cell. Fig. 12 shows the distribution of examples of class3 of the
wind bracing design problem. KV uses only ten levels of strength. More precisely, it uniformly
divides the strength into ten levels, with darker color showing stronger strength. Comparing the
two imagesin Fig. 12, one can have better understanding.

3.4.7 Examples Corresponding to a Cell

When examining a cell in arepresentation space, one probably wants to know exactly how many
examples occupy this cell and what their classes are. “Examples Corresponding to a Cell” is
implemented for this purpose. Fig. 13 shows all examples of the Monk1 problem when only at-
tributes x1, x3, x4, x5 x6 are used.

gaﬂﬁ 2: Finding All Examples Corresponding To A Cell

Symbol->Class —

1-=class
2-= class?
¥ -= amhbiguous

-
—

| | 5

Fig. 13. The training examples of all classes of the Monk1 problem when only
attributes x1, x3, x4, x5 x6 are used.

[E3 Temp_KV_File

Class Name: classl
Attributes: x1 %2 %3 x4 x5 x6

intemal: 000020
external: 1 111 31

Clazs Name: class2
Attributes: x1 x2 x3 x4 x5 x6

internal: 010020 e

external: 1 211 31 -
i y

Cloze |
Fig. 14. The examples occupying the cell x1=0, x3=0, x4=0, x5=2, x6=0.

21

Clicking the cell x1=0, x3=0, x4=0, x5=2, x6=0, one can get a list of examples occupying this
cell. See Fig. 14. Note that “internal” means the internal attribute values used by KV and that
“external” means their nominal values seen in an input file. Clicking the cell x1=2, x3=1, x4=0,
x5=0, x6=0, one can get alist of examples occupying this cell. See Fig. 15.

3 Temp_KV_File

S [=] E3

Class Mame: classl
Attributes: x1 x2 x3 x4 x5 x6

internal: 211000
external: 322111

internal: 201000
external: 31 2111

internal: 221000

4

Close I

Fs

o

Fig. 15. The training examples occupying the cell x1=2, x3=1, x4=0, x5=0, x6=0.

Please check Fig. 10 and exact the correctness of Fig. 16 and Fig. 17.

3.4.8 Learned Rules of All Classes

Fig. 16 shows all the rules (spatial coverage precisely) learned by AQ15c from the training ex-
amples in the file m1l.aqin. A cell with the symbol “X” means rules of at least two different

classes cover this call.

T

EZiRS 2: Rules of All Classes

olt1Jal1 altJols Jala ol Jal1]als
[l IEE N N R

ol1Jol1]ol4]als
[+ 1213

I\JI—‘ID
)

i il] e

=
]
=
)
=

ke
kotho

[O] =]

Symbol=Class

1-#class|
2->class2
% -= ambiguous

FH [

Fig. 16. Thelearned rules of all classes of the Monk1 problem.

22

3.4.9 Learned Rulesof Selected Classes
Users can select any number of classes and then display their rules. Fig. 17 shows the rules of
classl of the Monk1 problem.

[»g;ns 4: Rules of Selected Classes [_[Ofx
ol Symbal->Class
1
T 1-=classt
i
o
e
B
i
o
|
o
e
o
il
o
i
0
e
®3 %2 %1
ol1JoleTolaols JolaTalaalaJola JalaTalaJal1 ol =
1 slolalo2lsfelslols]xs
4 2 b

de -

Fig. 17. The learned rules of classl of the Monk1 problem.

3.4.10 Colored Rules of a Selected Class

This feature is for displaying individual rules of a selected class. Using this feature, one can find
out the exact coverage of each rule. Each rule uses a different symbol and color for display. Fig.
18 shows the four rules of classl of the Monk1 problem. When two or more rules cover the same
cell, the symbol and color of the strongest rule is selected.

E‘EERS 6: Colored Rules of A Selected Class =] B3
ol Syrrbal -> Rule No. [
i
. 1->Rule 1
P 2-7Rule 2
T 3->Rule 3
2 4 - Rule 4
o
i
315138131 Pl
23133 Ll
o
2
o
i
o
iy
[2] % ol
| p
%3 %2 x1
ol1]olafolaJola JolsJoleJola]ola Jola]ols]olsJala] =
o [+ l2TlslolsTolslalaloals] =
1] x4 d
il [2

Fig. 18. Theindividual learned rules of classl of the Monk1 problem.

23

3.4.11 L earned Rules of One Class by Total Cover

The cover measures used in AQ rules reved the strength of each rule. KV allows users to view
rule covers of only one class per diagram. Fig. 19 is the diagram of rule total covers of classl of
the Monk1 problem. The darker color represents the stronger cover, i.e., stronger pattern. KV
uses only ten levelsto differentiate covers strength. Clearly, Fig. 19 gives users more understand-
ing of learned rules.

:EEEHS 8: Rules and Total Cover

ml—-lm
=

ml—-lcn

FEEFEFEEEEEEEEE

ml—-lm
(=]

*3 =2 x1

1 JolaJolsJola Jola JolsJola Tala aTs
[l KN N EN i R

1 2 x4 =]
3

o
&

4 |
Fig. 19. Therules' total cover of classl of the Monk1 problem.

3.4.12 L earned Rules of One Class by Unique Cover
KV also provides the visualization of rule unique covers.
3.4.13 Rules and Examples of a Selected Class

One can input any rules and examples (AQ style) and then visualize their covering relationships.
Fig. 20 shows how training examples of classl of the Monk1 problem are covered by the learned
rules of this class. Red color means intersecting, i.e., both examples and rules occupy the same
cells; green color represents an uncovered example; blue color represents unused rule cdlls, i.e.,
the generalization area. Since in this example, AQ output a set of rules consistent with these ex-
ample, no examples were uncovered. The example covered rate in Fig. 20 means the percentage
of examples covered by the rules of their own class.

24

[ﬂjns 6: Examples and Rules =] B3

2 Symbols
u <
T M ntersecting
P B Uncavered examples
. Generalized rule cells
T Example covered rate: 1
o
Al
[
s (A
il
o
2
1
f
Al
f
e (A
LR
o
—z
1
x3 %2 x1

E

5

x4 j

i | 3

Fig. 20. The covering relationship between examples and rules of classl
in the Monk1 problem.

3.4.14 Examples and Colored Rules of a Selected Class

This feature is similar to the above one, except for each rule being colored. From Fig. 20, it can
be seen that no example is uncovered. Just for illustration, let’s delete the first rule of classl in
the Monk1 problem and input this modified rule set and display examples and rules of classl in
Fig. 21.

;i RS 12: Examples and Colored Rules of A Selected Class Hi=l E3
3333323 3)3]3]|3[3][3]2]3[3)3]|3]3]3]3]3]3]3 ol Symbols ||
333333333335333333333333 ;__ + > Uncovered Example
1P 1-=Rule 1
oL 2-=Rule 2
2 3-»Rule 3
¥ o

i
o
i
o
e
o
il
o
il
o
e
x3 %2 xd

ol JoleJalaJola Jolalolafals ol JolaJalaola]al1] &

o lalzlafolsTolalolalzlal] =

0 1 2 x4 i
al | :

Fig. 21. The examples and colored rules (after deleting the first rule temporarily)
of classl in the Monk1 problem.

25

3.4.15 Rules of a Selected Class against Examples of All Classes

In this feature, the first five rules (i.e., the strongest five rules) of the selected class are displayed
in five different colors, darker color meaning stronger cover, and all other rules are displayed by
using the lightest green color. Using this feature, one can visualize the covering relationship be-
tween the selected rules and examples of all classes. See Fig. 22.

g’iﬁs 14: Rules of A Selected Class against Examples of All Classes
ol Symbaols
1
T W s Rule
P == Rule 2
— B > Rule 3
1 -= Rule 4
1 -»classi

?_U 2 = class?
——
|
o
]
o
d
o
il
o
s
*3 x2 xd

oltJoleJal+Jola JolaalaJalaJala JalaJolaola]als] =

ol s T elsfol s T eTsyolalaTls] s

a xd d
< I y

Fig. 22. Therules of classl in the Monk1 problem against examples of all classes.

3.4.16 Rules Corresponding to a Cell

3 Temp_KV_File |- (O] x]

Clasz Name: classl

1 [#8=1] (16, u:11)

Clasz Name: class2?

3 [x1=1] [x2=3] [t:9. u:9) -
4] L|_I
Close |

Fig. 23. Thelist of rules occupying the cell x1=0, x2=2, x3=0, x4=0, x5=0, x6=0.

It is often the case that rules of the same or different classes occupy some same cells. If one
wants to know what these rules are and their classes, then use this feature and click a representa-

26

tion space cell. See Fig. 16, and click the cell x1=0, x2=2, x3=0, x4=0, x5=0, x6=0, one can get a
list of rules covering this cell.(see Fig. 23). Note that the attribute values in Fig. 23 are their
nominal values, not KV’sinternal values.

3.4.17 Rules of All Classes of the Target Concept

This feature is similar to Learned Rules of All Classes. Input the target rules in the file
m1l.target and display al the rules of the target concepts of the Monk1 problem in Fig. 24.

FE3RS 16: Rules of All Classes l=] 3

Symbol-=Class

0
— 1-=>class1
[0 2 -=class2
2

NI—-IQ

il il

ol+Jols1Jol1Jala RoleTalaJalaJala JalaJala Jolaals] =5
ola ol olalalafolalals

1 2 x4 j
r

< [

Fig. 24. The target concept of the Monk1 problem.
3.4.18 Rules of Selected Classes of the Target Concept
Thisfunction istotally the same as Learned Rules of Selected Classes.
3.4.19 Colored Rules of a Selected Class of the Target Concept
Thisfunction istotally the same as Learned Rules of Selected Classes.
3.4.20 Errorsof Commission, Errorsof Omission, and Total Errors
Compare Fig. 24 to Fig. 16 and find the difference, i.e., the areas covered by the learned rules for

class? is not exactly the same as those of the target concept. This difference can be displayed in
three ways: errors of commission, errors of omission and total errors. Fig. 25 provides visuaiza-

27

tion of total errors.

Eﬂjﬁs 2: Rule Errors 1 [=] E3

Symbols

M Intersecting
Omission

I8 Commission

ml—\lcn
=]

ml—nlo

3 il S e

xml—\lo
» (=]

olaJoli Jalaola Jolt JolaJolt Jalt Jal
[l EN BN EN ' EN BN EN i
0 1

q -

Fig. 25. Errors of learned rules for class2 in the Monk1 problem.

3.4.21 Generate Examples from Scratch

It is not unusual for one to desire to designing some learning problems to challenge or test exist-
ing or being-developed learning algorithms. With KV’s attractive visua display, one can select
this feature and generate examples at his’her will. The first step is to select a class for which
he/she want to create examples. The second step is clicking the left mouse key for creating an
example or clicking the right mouse key to delete an example. Note that the definition of attrib-
utes and classes must be input from afile. One must create afile similar to m1.aqin (with one or
more valid examples under each class). Also note that one mouse click creates or deletes only
one example.

3.4.22 Gener ate Examples Based on Previous Examples

This feature is similar to the above one, except that one can directly work on previous examples
he/she has.

3.5 Other Operations
3.5.1 Another Visualizer

Knowledge visuaizer only remembers the data of and display diagrams for the problem whose

28

data was input last recently. If one wants to visualize different problems or different data of the
same problem, he/she can select this function.. This feature is useful for visualization of the ef-
fects of constructive induction or modifications to the current data (attributes, examples or rules).
Note that choosing this feature needs more memory.

EE3 KV 1.0: Visualizer 1

File '/ attibutes Wizualization [l

Anather Yizualizer
Abaut EM

Fig. 29. The window menu.
4 OTHER TOPICS
4.1 Constructive I nduction

A popular view of constructive induction is that learning via any changes in the representation
space in order to achieve better results is considered constructive induction. We consider two
situations: deleting or adding attributes.

For visualization of the effects of deleting attributes, one can first perform the operation of se-
lecting attributes in the menu of Y/X Attributes. Using User’s Selection to select some attributes
and ignore others lead to the effects of deleting attributes. Only after this can one perform various
operations listed in the menu of Visualization. Any operation generates shrunk representation
Spaces.

For visualization of the effects adding attributes, one has to put all new data in files and input
them. Then go through the menus of Y/X Attributes and Visualization.

If one wants to change values of an attribute, he/she must put changes in afile first and then in-
put changed data.

4.2 PROJECTION OF EXAMPLES

Users can project examples of only one class per diagram onto one attribute and visualize this
projection quantitatively. For projection, users have to go back to the menu of Y/X Attributes
and select that attribute for Y dimension and then visualize the projection using Example Distri-
bution of a Selected Class in the menu of Visualization. Fig. 30 shows the projection of the

29

examples of classl of the Monk1 problem onto attribute x5. Users can check the quantitative re-
lationship between this figure and other figures above. Generally speaking, users can project ex-
amples of any class onto any subset of the given attributes.

:a RS 4: Example Distribution _ [0

o] Color-Strength
|

B | B-7
B s8-8
= Mg
B i0-10
Hii-11
Bz
B33
Bl 14-14
His-15
B 1615
B
«| [&

Fig. 30. The projection of the examples of classl of the Monk1 problem onto attribute x5.
4.3 Internal Values of a Representation Space

In the two dimensions of any diagram, the attribute values displayed are actually the internal val-
ues of the AQ learning program, integers starting form 0. If an attribute is numerical, its discre-
tized attributes should be integers and start from O for AQ to work. If an attribute is nominal, the
name section of its input file should specify how its nominal values correspond to AQ’s internal
values. So in any case, users know the correspondence of the attribute values in a diagram to
their external actual values. Users can use his’her native editor or View function in the menu of
File to check the correspondence simultaneously.

5 CONCLUSION

This report describes a novel knowledge visualization software called KV. It has many advan-
tages over previous work. It is especially good for machine learning research and data mining.
The above simply describes individual operations, however, creative combination of various
visualization operations can make KV more powerful and effective. Some of planned features are
listed in the following.

(1) Upgrade KV to Java 1.1. Currently, users have to use additional software (e.g., in Sparc

30

workstation, a software called snapshot; in Mac, use three keys apple+shift+3 to capture a
window; in IBM PC, use two keys alt+print_screen) to cut or capture a graphic display of a
diagram in order to saveit or to insert it in afile. Using Java 1.1, representation spaces can be
easily saved in afile asimages for future use.

(2) Add interfaces to formats adopted by other important or popular learning systems. KV 1.0
now only accepts inputs from AQ learning systems. It will provide interfaces to C4.5 (Quin-
lan, 1993), INLEN (Michalski et al., 1992; Kaufman and Michalski, 1996), etc.

(3) Zooming function. For a large representation space, it is difficult for a user to manage to ex-
amine the representation space as a whole. He or she can only visualize it portion by portion.
Future KV will address this issue and make users able to get the whole look-and-feel for
some moderately large problems.

(4) Accepting rules or examples from a window. It would be more convenient for a user, only
through awindow, not through afile, to input and test just one or afew rules invented by him
or her to see the effects.

APPENDIX 1: Monk1 Data

The following isthe input file (called m1.aqgin in the KV 1.0 package) to the AQ learning pro-
gram. In thisfile, there are 86 training examples.

parameters
run mode ambig trim wts maxstar echo criteria verbose
1 ic neg mini cpx 10 pv default 1

variables

type levels cost name
1 nom 3 100 x1
2 nom 3 1.00 x2
3 nom 2 1.00 x3
4 nom 3 100 x4
5 nom 4 1.00 x5
6 nom 2 1.00 x6
Xx1-names

value name

0 1

1 2

2 3

X2-names

31

value name
0 1

1 2

2 3
Xx3-names
value name
0 1

1 2
X4-names
value name
0 1

1 2

2 3
value name
0 1

X5-names

S ANNANN AN A A AAANNANAN A A AN
ITTOMOOMOOANNNTANNNTNOONNTON
FAANMOANATANNOANNNOOAOANNAATNONM
AN A NNAANNANANNAAANAN A A
MOANANNNANOOOOANNATNAOONOMM -
A A AN AN AAdNAdAAA NN ANAAAdNM

N—TANNNANNN—TANNN—AANA A AN
TONSTTOANTITONOOOTOOOON S
TAA OO ANNONANONAATOONOOONO®M
AN NATAAAATNNNAAATNNANAdANN
NTNONATAONAATNAANNOOONNNM
MOANATAN—TATNTONNANONANONNAAM

X1 X2 x3 x4 x5 x6

class2-events

ANANNANN—TANNNATNNNAANAAAA
TOATTNTATIN AT ATANAONONAAAA
NDOMN A NMAdAcdAdMcAN—AANATAMN NN
NTATdNNANNNANAAAANAANA A
NI ONOANNANOOONANTOOANNANNM
MNeAMOANNOANNNOANOOOOOOOANNM AN

N M <

X6-names
value name

0 1
1 2

AN M

5 x6

XANNATANA"ANNNNNAAANNANN—AAN
TSN AODNTOOONATLTO A ANT AN

6312333311112133122111
NI TN AAATNTATNN AN TANN AT NNN

“323232312131131331212
XOANANNOMOANMNMANTANDAANMAOOOANM—AM

classl-events

Below isthe output file (called m1.aqout in the KV 1.0 package) from AQ.

32

parameters
run mode ambig trim wts maxstar echo criteria verbose
1 ic neg mini cpx 10 pv default 1

variables

type size cost name
1 nom 3 1.00 x1.x1
2 nom 3 1.00 X2.X2
3 nom 2 1.00 Xx3.X3
4 nom 3 1.00 x4.x4
5 nom 4 1.00 x5.x5
6 nom 2 1.00 X6.X6

classl-outhypo

cpx

1 [x5=1] (t:16, u:11)

2 [x1=3] [x2=3] (t:15, u:11)
3 [x1=2] [x2=2] (t:10, u:10)
4 [x1-1] [x2=1] (t:7, u:6)

class2-outhypo

cpX

[x1=1,3] [x2=2] [x5=2,3,4] (t:18, u:18)
[x1=2] [x2=1,3] [x5=2,3,4] (t:13, u:13)
[x1=1] [x2=3] (t:9, u:9)

[x1=3] [x2=1] [x5=2] (t:3, u:3)

DOWN - #®

Thislearning used:
Systemtime: 0.333 seconds
User time: 0.00 seconds

One version of the target concepts expressed in rules and stored in the file m1.target in the KV
1.0 packageis:

classl-outhypo

cpx

[x5=1]

[x1=3] [x2=3]
[x1=2] [x2=2]
[x1=1] [x2=1]

DOWN - #®

class2-outhypo

cpX

[x1=1] [x2=2..3] [x5=2..4]
[x1=2..3] [x2=1] [x5=2..4]
[x1=3] [x2=2] [x5=2..4]
[x1=2] [x2=3] [x5=2..4]

DOWN - #®

33

APPENDI X 2: Wind Bracing Data

Wind bracing design data are stored in two files: windbracing.agin and windbracing.agout.
The following isthe training data file, windbracing.aqin. In thisfile, there are 335 training ex-
amples.

parameters
run mode ambig trim wts maxstar echo verbose
1 ic empty spec cpx 10 pcdv 3

domaintypes
name type levels
12 nom 2

I3 nom 3

14 nom 4

I5 nom 5

|12-names
value name
0 1
1 2

|13-names
value name
0 1

~NoOoUODwWNREH
x
N
w

classl-events X1 X2 X3 X4 X5 X6 X7 1223213 1223212

N~
x
©
S OOONAA AT ANTOT AT N AA S XNt ATTAATANNANTASTTATANATTITINATN AN A M
Ad AT A d A Add A A A A AN AAAAAA S_.vavZZZ1322343233323322232432333324233
AN NAANNAANNATAA AT NN TN N AT NN ANNTNNNTATAAANANNATANNTAANNNNANNA
OO TITITONOTONNNNDATONT OO M STXONANNATAHOOAOOANOAND AN AANANNOOONTONAOM A
NMETTAANDAOANTNOON AATTANNATTINNDOONATTITIANDTANNAANNODNDANDTANTANNOOON AN ON T
T A A A A A A A A A A A A A A A A A A AAAAN A A A A A A AAAA A A A A A AAANAA NN A A A
A A TN AN NATANOOANNNOAN AT O AOANNANNNANNNDANOOOANNNATANDAANATAOONATAOANNDTATONMAANONMN
NDOMNM AN AN MO ONOOMMNOATAN N OO AN OO OMOONONANNDNDANNONONTANONMONAHNON AN NOANOOANNNMOO®M
Ne-T NN AAAN AN AAAA TN N NNNAAAN"ANNNNNAANANNNAAAAAAAN A AN A A A A A NN
NAAN—TNNTATANNAATNNAA AN A AT NNNNATN AN NNNNNAATATNNATANNNTNNNNNNNNATANN
S AN ANOTANNNDAAHOANNON AT NN ANOTANOANNANAOLOANSTOSTANANTONDANOTONNDATOAAO NN
NS AANDITTANNTAODOOANTNOOANNATITITNDATNOOOSTOONDANNTONTATANTNAATO AAAAT
A A A A A A A A A AN AA AAAAAAAAND AN A A AN A A A A A A A
NOANOONANNDANND AT OO NOONOANNDAOANNNNANONONOANNOOOOANNAAAN AT O A M A
NDOOMNANMOMNANOMNMANNDNONONONONAHNNONANNNONNONONANNHNNOHOHNHNANNONNOND AN AAAAM
NN ATdTANNAANNAATNTNATAANNNANNNNTNNNNAAAAN NN AANAANNNNAAATNNAAANNN
N AAd N AN NNATANNANNNATANNAAdNNNTNNNdNNNNNAdNNNAdGNNANNNNNNNNNAATNAdA NN A
N AA OO ANNNDNOTANANNDAHANTANANNSTOLDONANNAANTSTANOLDSTOLANNONNONLSTLODANTODANTONNONAN

N~
x
©
A NANAAANTANTOTONNATONNANNAONDTANNANTOATNNOOND AT AATOOONOOM _.vm1_14
T AT A A A A A A A A A A AA A A A A A A AA A A A A A A AA A A A A A A A A A A A A A A A AAAAA SXlll
ANANAN-ATANAAN A A A A AAAN A AN AANNNNAANAANNNNANANNNAANNNNAN A A - .2121
N AdAddddddNdA-d N A1 N AT A A A A A A AdddNAAdd OO AN A NANANITAMLO AN LD T XN M

35

NAATAMNMANTONOITAAMANN
MTANNNOOOONNTNNOONN
NN A A A NNNAAM A N - A
ANANANNNNNNNNNNNNNN
A A NN AAATNNNNAAAAA
ANN—TANNNATANNN—AANNN
LOLOANLTOLOTOOAANONO®M

TN A A O NN ANATAN AT T ™M
MO OANTONNAOMOSOOONN
ANANNATAONATANNOMNNN - -
ANANANNNNNAANNNNNNN
ANANNANNAANN—AANANN
ANANANNNAATATNNNN—AN—AN
NM<TOONATOOAATANTOOM

NOOOANTAATANM AT N
OANOOOANTNOONNNOMANN
N—TNNNAMANN—AA—ANAA
ANANANNNNNNNNNNNNNN
ANANANN—"TNNNN—ATANAANNN
TATA N NANNNANANANAN
OO ANOOOMOTOHOOONNS

A NT AN ATOTTONOMN A
TTOOANMOOANMOOOMOOANN T

X1 X2 X3 x4 x5 x6 x7
5223112

class4-events

St tTNAA O M
el B B
el B B

MMM AdAOOMmM

AN NN
NANANNNANN
0WLWwLwLwLwLw

N NANNT M A
MOANNTOOOOMOOAN
NI MANNNN -
NANANNNNNANN
A A A NdNdNN
NANNAAAN—AN
NS A NNMN

SN <FTANNAAT
O NNANNOMOSTOM
MANAdAAdddNMAN
NANANNNNNANN
AN ATdANNAANA
AN NN—AN—ANN
A ANMWO AN AN

AITANNNATOM A A A
ATONOANTNONNNM

MOOMOANNATANN—TNNNNNATOOONANAN ANN—AAN
ANANANNANANNANNANANANANANNNOANNNNNANNNNNANN

AN ANANNANAANAANAAANANN

N NN

A A A AN ATANATNNNNANTNNNNATATNNNNNNN
MOANOANAAAITNDAODTANONNTANOONOONNANN

criteria verbose
3

pcdv default

x1.15
x2.12
x3.12

name

12
13
14
15

name

empty spec cpx 10
0.00
0.00
2 1.00
3 100
4 1.00
5 1.00
5 100
2 1.00
2 1.00

ic
criterion tolerance

type size cost
type size cost

1 maxnew
2 minsel
1 nom

2 nom

3 nom

nom
nom
nom
nom

1

run mode ambig trim wts maxstar echo

default-criteria
domaintypes

parameters
variables

The output file, windbracing.aqout, from AQ15c is the following:

36

4 nom 3 1.00 x4.13
5 nom 3 100 x5.13
6 nom 4 1.00 x6.14
7 nom 4 1.00 xX7.14

classl-outhypo

cpx

[x1=1] [x4=1,3] [x5=1,2] [x6=1] [x7=1,2,3] (t:24, u:24)

[x1=3] [x2=1] [x4=1,3] [x5=1] [x6=1] [x7=1,2,3] (t:6, u:6)

[x1=1] [x2=2] [x4=1,3] [x5=3] [x6=1] [x7=1,2,3] (t:6, u:6)

[x1=1] [x2=2] [x4=3] [x5=1,2] [x6=1] [x7=4] (t:4, u:4)

[x1=5] [x2=2] [x4=3] [x5=2] [x6=1] [x7=2,3] (t:3, u:3)

[x1=2] [x2=1] [x4=3] [x5=2] [x6=1] [X7=4] (t:2, u:2)

[x1=2] [x2=2] [x4=3] [x5=1] [x6=1] [x7=2] (t:2, u:2)

[x1=1] [x2=1] [x4.x5=3] [x6=1] [x7=2] (t:2, u:2)

[x1=4] [x2=2] [x3=1] [x4.x5=3] [x6=1] [x7=4] (t:1, u:1)

10 [x1=4] [x2.x3=2] [x4=1] [x5=2] [x6.x7=1] (t:1, u:1l)

11 [x1=3] [x2=1] [x3=2] [x4=1] [x5=2] [x6.x7=1] (t:1, u:1l)

12 [x1=3] [x2.x3=1] [x4=3] [x5=1] [x6=1] [x7=4] (t:1, u:1)
(Ex:53, Amb:0, St:53, Su:53, Su/St*100:100)

— 3

O©CoO~NOOOTPA,WN

class2-outhypo
cpx
[x1=2,3,4] [x4=3] [x5=2,3] [x6=1] [x7=2,3] (1:40, u:8)
[x1=2,3,4,5] [x4=1,3] [x5=3] [x6=1] [x7=1,2,3] (t:36, u:12)
[x1=3,4] [x2=2] [x4=3] [x5=1,2] [x6=1] [x7=2,3,4] (1:23, u:6)
[x1=2,3] [x2=2] [x4=1,3] [x5=1,2] [x6=1] [x7=1,3,4] (1:23, u:6)
[x1=1,2,3] [x2=1] [x4=1,3] [x5=3] [x6=1] [x7=1,3,4] (1:18, u:8)
[x1=2,4] [x4=1,3] [x5=1] [x6=1] [x7=1,3,4] (1:18, u:6)
[x1=3,5] [x4=3] [x5=2,3] [x6=1] [x7=4] (t:12, u:7)
[x1=1] [x2=2] [x4=2] [x5=1] [x6=2] (18, u:8)
[x1=2] [x2=1] [x4=1,3] [x5=1,2] [x6=1] [x7=1,2] (t:8, u:3)
10 [x1=2,3,4,5] [x3=1] [x4=1,3] [x5=2] [x6.x7=1] (1:7, u:4)
11 [x1=3,4] [x3=2] [x4=3] [x5=1,3] [x6=1] [x7=4] (t:5, u:2)
12 [x1=1] [x2=1] [x4=3] [x5=1,2] [x6=1] [x7=4] (t:4, u:4)
13 [x1=5] [x2=2] [x4.x5=2] [x6=3] [x7=1] (t:2, u:2)
14 [x1=1] [x2=2] [x4.x5=3] [x6=1] [x7=4] (t:2, u:2)

(Ex:137, Amb:0, St:206, Su:78, Su/St*100:37)

©oo~NOOUITA~,WNPE

class3-outhypo

cpx

1 [x1=2,3,4,5] [x4.x5=1,2] [x6=2,3] [x7=2,3,4] (1:72, u:43)
2 [x1=1,2,3,4] [x4=2] [x5=2,3] [x6=2,3,4] (1:69, u:30)

3 [x1=2,3,4,5] [x4=2] [x5=1,3] [x6=2,4] [x7=1] (t:24, u:14)
4 [x1=1] [x2=1] [x4=2] [x5=1] [x6=2] (t:8, u:8)

5 [x1=2] [x2=2] [x4.x5=3] [x6=1] [x7=4] (t:2, u:2)

6 [x1=5] [x2.x3=2] [x4=1] [x5=2] [x6.x7=1] (t:1, u:1)

(Ex:137, Amb:0, St:176, Su:98, Su/St*100:55)

class4-outhypo
cpx
1 [x1=5] [x2=2] [x4=1,3] [x5=1] [x6=1] (t:8, u:8)
(Ex:8, Amb:0, St:8, Su:8, Su/St* 100:100)

Thislearning used:
Systemtime: 2.450 seconds
User time: 2.00 seconds

37

REFERENCES

Arciszewski, T., Bloedorn, E., Michalski, R.S., Mustafa, M. and Wnek, J., "Machine Learning of
Design Rules: Methodology and Case Study,” ASCE Journal of Computing in Civil Engineering,
Vol. 8, No. 3, pp. 286-308, July 1994.

Bloedorn, E.E., "Multistrategy Constructive Induction,” Ph.D. Dissertation, School of Informa-
tion Technology and Engineering, Reports of Machine Learning and Inference Laboratory, MLI
96-7, George Mason University, Fairfax, VA, 1996.

Kaufman, K. and Michalski, R.S., "A Method for Reasoning with Structured and Continuous At-
tributes in the INLEN-2 Knowledge Discovery System," Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, August, 1996,
pp. 232-237.

Michaski, R. S., "A Planar Geometrical Model for Representing Multi-Dimensional Discrete
Spaces and Multiple-Valued Logic Functions,” Report No. 897, Department of Computer Sci-
ence, University of Illinois, Urbana, January 1978.

Michalski, R. S., "A Theory and Methodology of Inductive Learning" (Modified version of 1983-
3), Artificia Intelligence, 20, pp. 111-161, 1983.

Michaski, R.S., Kerschberg, L., Kaufman, K.A. and Ribeiro, J.S., "Mining For Knowledge in
Databases. The INLEN Architecture, Initial Implementation and First Results," Intelligent Infor-
mation Systems: Integrating Artificia Intelligence and Database Technologies, Val. 1, No. 1, pp.
85-113, August 1992.

Quinlan, J.R., “C4.5: Programs for Machine Learning”, Morgan Kaufmann, Los Altos, Califor-
nia, 1993.

Szczepanik, W., Arciszewski, T. and Wnek, J., "Empirical Performance Comparison of Two
Symbolic Learning Systems Based On Selective And Constructive Induction," Proceedings of the
[JCAI-95 Workshop on Machine Learning in Engineering, Montreal, Canada, August, 1995.

Thrun, S.B., Baa, J., Bloedorn, E., Bratko, I., Cestnik, B., Cheng, J., De Jong, K.A., Dzeroski,
S., Fahlman, S.E., Hamann, R., Kaufman, K., Kéller, S., Kononenko, I., Kreuziger, J., Michal ski,
R.S., Mitchell, T., Pachowicz, P., Vafaie, H., Van de Velde, W., Wenzel, W., Wnek, J., Sarma,
J., Wahab, A. and Michalski, R.S., "Comparing Learning Paradigms via Diagrammatic Visuali-
zation: A Case Study in Concept Learning Using Symbolic, Neural Net and Genetic Algorithm
Methods," Proceedings of the 5th International Symposium on Methodologies for Intelligent Sys-
tems - ISMIIS 90, Knoxville, TN, pp. 428-437, October 1990.

Whnek, J. and Zhang, J., "The Monk's problems: A Performance Comparison of Different Learn-
ing Algorithms," Computer Science Reports, CMU-CS-91-197, Carnegie Mellon University (Re-
vised version), Pittsburgh, PA, December 1991.

Whnek, J., "DIAV 2.0 User Manual: Specification and Guide through the Diagrammatic Visuali-
zation System," Reports of the Machine Learning and Inference Laboratory, MLI 95-5, George
Mason University, Fairfax, VA, 1995.

38

Wnek, J., & Kaufman, K., & Bloedorn, E., & Michalski, R.S., “Inductive learning system
AQ15c: the method and user's guide”, Reports of the Machine Learning and Inference Labora-
tory, MLI 95-4, George Mason University, Fairfax, VA., 1995.

