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,NDUCTIVE-LEARNING ALGORITHMS
are powerful tools for identifying meaning-
ful patterns in large volumes of data, and
their use 1s increasing in fields such as data
mining and computer vision. However,
conventional inductive-learning algorithms
are sélective—they rely on existing, user—
provided data to build their descriptions.
Thus, data analysts must assume the impor-
tant and sizeable task of determining rele-
vant attributes, If they provide inadeguate
attributes for describing the training exam-
ples, the descriptions the program creates
are likely to be excessively complex and
inaccurate,

Attributes can be inadequate for the learn-
ing task when they are weakly or indirectly
relevant, conditionally relevant, or inappro-
priately measured. Constructive induction is
a general approach for coping with inade-
quate attributes found in original data. It uses

two mtertwined searches—one for the best

representation space, the other for the best

hypothesis within that space!—to formulate

a generalized description of examples.
Originally, constructive induction focused

on improving the representation space by.

generating additional task-relevant attri-
butes.? It was subsequently observed that this
was only one way of modifying the space.
Attribute construction is a form of represen-

Driven Constructive

AN INDUCTIVE LEARNING PROGRAM’S ABILITY TO FIND AN
ACCURATE HYPOTHESIS CAN DEPEND ON THE QUALITY OF THE
REPRESENTATION SPACE. THE AUTHORS DEVELOPED A DAT4-
DRIVEN CONSTRUCTIVE-INDUCTION METHOD THAT USES
MULTIPLE QPERATORS TO IMPROVE THE REPRESENTATION
SPACE. THEY APPLIED IT TO TWO REAL-WORLD PROBLEMS.

tation space expansion; attribute selection
and attribute value abstraction are forms of
representation space destruction. Further-
more, it became clear that this improvement
of the representation space by expansion and
destruction could have a profound impact on
the simplicity and predictive accuracy of con-
cepts induced from that space. The better the
representation space, the easier it is for the
program to learn. It is thus important not only
to add relevant attributes, but also to remove
irrelevant ones and find a useful level of pre-
cision for the attribute values.
Constructive-induction methods are clas-
sified according to the information used to
search for the best representation space:

* data-driven constructive induction (DCI)

uses input examples,
» hypothesis-driven constructive induc
(HCY) uses intermediate hypotheses,
» knowledge-driven constructive induci
(KCI) uses domain knowledge provi
by an expert.!

In multistrategy consiructive induction (M
two or more of these methods are used.”
This expanded definition of construct
induction guided our development of seve
constructive induction programs: AQ17-D
AQT7-HCl, and AQ17-MCI. These all use
AQ-type rule-leaming algorithm for condu
ing hypothesis search, hence the “AQ” pre;
Here we describe our latest methodology

the data-driven constructive induction, img
mented in AQI7-DCIL Our methodology co
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bines the AQ-15¢ learning algorithm with a
range of operators for improving the repre-
sentation space. These operators are classified
into constructors and destructors, Construc-
tors extend the representation space using
attribute-generation methods and destruciors
reduce the space using attribution-selection

methods and attribute abstraction. We inte-
grated these operators—which are nsually
considered separately—into AQ17-DCl in a
synergistic fashion. We tested the method on
two real-world problems: text categorization
and natural scene interpretation.

The power of a constructive-induction

approach is 1ilustrated by an example from the
“second Monk’s problem.” which was used in

~an international competition of machine-

leamning programs.® The sidebar, “Construc-
five induction meets the ‘Monk,” describes
how AQ17-DCI dertved an improved repre-
sentation space for this problem.

MARCH /APRIL 1998

31




Input data ﬁ o
Decision- . - |Representation-| -

rule space
generation maodification
S .
.| Bule
| evauation
QUTPUT

Figure 1. A general schema for constructive induction.

What makes a learning
problem difficul?

Learning problems can be difficult for
many reasons, including inadequate repre-
sentation space or description language, or
erTors in training examples. Our construc-
tive-induction methodology addresses some
of the problems posed by an inadequate rep-
resentation space. Specifically, it solves prob-
lems caused by attributes that are indirectly
or weakly relevant, or overly precise.

A question of relevance. Attributes are indi-
rectly relevant if their connection to a given
classification task depends on their interac-
tion with one or more other attributes. The
difficulty of describing such interactions
depends on the learning algorithm’s descrip-
tron language. For most symbolic inductive-
learning algorithms, interactions involving
logical conjunction or disjunction are easy
to describe. However, interactions such as
the equality or the arithmetic product of
attributes can be very difficult for such meth-
ods. Even more difficult to capture are inter-
actions represented by complex equations
involving multiple attributes. An example of
a multiattribute interaction is the even/odd
parity classification problem (classifying
binary strings on the basis of the parity of the
number they represent). When there is com-
plex multiattribute interaction, you can use
atiribute-construction methods that combine
attributes in a problem-relevant manner.>®
You can detect or remove trrelevant attri-
butes using either a filter or wrapper ap-
proach.” In the filter approach, the program
selects attributes prior to induction, Because
filters are used separately, they work fast and
can be used with any induction algorithm.
They also work on large data sets. The wrap-
per approach uses the induciion algorithm
itself to estumate attribute relevance; we view

it as a special case of hypothesis-driven con-
structive induction.

Overprecision, Attribute overprecision leads
to an unnecessarily large representation space,
making it difficult for the program to find the
correct hypothests. In this sitvation, every
training example is distant from even its clos-
est neighbors. Because of this sparseness, the
learning algorithm can draw too many con-
cept boundaries for dividing examples into
regions. Attribute overprecision frequently
occurs when attributes are continuous. To
avoid a potential problem, the atiribute
domain can be split into ranges of values.®
Formally, such a discretization essentially per-
forms an abstraction operation on the example
the attribute describes, (We use the concept of
abstraction as defined in the Inferential The-
ory of Learning * ITL identifies abstraction as
any knowledge transmutation that reduces the
amount of detail in the reference set descrip-
tion). However, abstraction is often done with-

out considering other operators that can

change the representation space, Our method-
ology combines the effect of abstraction with
other representation-space modification oper-
ators. As we'll show with an example from
natural-scene interpretation, operator combi-
nations can significantly improve representa-
tion space for learning.

Constructive Induction: a
generol schema

Figuore 1 shows a general scheme for con-
structive induction and illustrates the inter-
twined searches for best representation space
and the best hypothesis therein. For initial
input, we provide a set of training examples
and a characterization of the representation
space. This characterization includes a
description of attributes, their types, and their
domains. The program then splits the train-
ing data into a primary and a secondary data
set; the primary set is passed to the Decision
Rule Generation module, which generates
initial concept descriptions (in our case, in
the form of decision rules).

Next, the program evaluates these rules in
terms of complexity and accuracy in example
classification. If the descriptions satisfy a des-
cription-quality threshold, the program stops
the learning process; if not, it moves to the
Representation Space Modification (RSM)
module. This module creates a new represen-
tation space for the input data. The process

then repeats in cycles until the learned rules
are satisfactory or the program has tried all
planned representation-space modifications.
The program evaluates the final mles on the
testing examples to determine a more precise
estimate of their performance accuracy.
AQ17-DCI searches for hypotheses using
the AQ algorithm as implemented in AQ15¢.1
AQ15¢ performs a separate-and-conquer strat-
egy to determine a decision rule set that cov-
ers all the positive examples and none of the
negative examples (in the default case). It
begins the search by randomly selecting a
“seed” example of a class {concept) and apply-
ing the extension-against generalization oper-
ator to determine a general rule sef (a star) that
covers the seed but not the negative examples.
It then selects the best rule from the star
(according to a multicriterion evaluation func-
tion) and marks examples covered by this rule.
Next, the program selects a new seed from
among unmarked examples and repeats the
process until all examples in the given class
are marked. It repeats a similar process for
other classes until it has rule sets for each
class. The hypotheses the program produces in
this way can be further improved by rule trun-

~ cation;!! the end result is a deciston rule set

for each class in the data. Here is an example
of arule produced by AQ:

Classel <= [color = blue]
&[height > 57”] & [shape =
sguare or triangle]

or [height > 107] & [shape
= sguarel]

‘This rule states that an object is in class]
if 1t is blue, its height is greater than five
inches, and its shape is square or triangle; or
if 1ts height 15 greater than 10 inches and its
shape is square.

This example illustrates two important
features of the program. First, selectors {con-
ditions) of a rule can include nternat dis-
junction of attribute values (the shape can be
square or triangle). Second, rules for a given
class can logically intersect. These and other
features make the AQ learning method more
expressive than other learming methods.

Evaluation. Each time AQ generates a new
rule set, it estimates its predictive accuracy
using the secondary training set (if there are
few training examples, it can also use a cross-
validation method). The program calculates
prediciive accuracy as the percentage of sec-
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ondary fraining examples correctly classified.
It evaluates rule set complexity by counting
the total number of rules and selectors.

Rule-set quality is evaluated lexicograph-
ically: the program first compares the rule set
to the user-defined accuracy criterion. If the
rule set meets the accuracy goals, it is eval-
vated according to the complexity criterion.
If the rule set does not meet accuracy stan-
dards, the program rejects it and stops pro-
cessig. Thas lexicographic evaluation is very
efficient, lets users define the minimum
allowable accuracy, and is used in other AQ
program operations.

Representation-space modification. In the
RSM module, the program determines which
modification aperator to apply at a given
stage and changes the training and testing
examples. In AQ17-DCI, the user can select
which of the RSM operators should be tred
(attribute construction, selection, or abstrac-
tion) or can accept a default setting that
applies all operators. In the all-operators
mode, operators are applied in a predefined
order: attribute selection, attribute abstrac-
tion, and then attribute construction. (The
AQ17-MCP method extends this by includ-
ing additional RSM operators and by using
metarules that relate problem characteristics
to the appropriate operators.)

Our data-driven attribute-construction pro-
cess uses an exhaustive generate-and-test
approach. As Table 1 shows, our standard set
provides many different operators for con-
structing new attributes. These operators
inctude both binary and nultargument oper-
ators (functions). In the binary group, we've
implemented the relational operator (deter-
mining whether the first input is less than,
greater than, or equal to the second input) and
“ several mathematical operators, including
addition, subtraction, absolute difference,
multiplication, and integer division. New
operators can easily be added to these; our
aim was to provide simple, generally applic-
able operators that would be easy to generate
and interpret.

In constructing attributes, the program
generates and evaluates each possible attri-
bute—operator combination. New attributes
must exceed a user-defined minimum dis-
criminatory power (as calculated by the
information gain ratio) and not exceed a user-
defined cost threshold. A new attribute’s cost
is the sum of the weights given to the origi-
nal atiributes used to define i¢, plus the pro-
gram-defined weight associated with each

Table 1. Data-driven representation-space expansion operators used in AQ17-D.

OPERATOR AAGUMENTS Notation INTERPRETATION
Equivalence Aitributes x X=V If x = y then 1, otherwise O
Greater than Aftributes x,y x>y If x = ythen 1, otherwise 0
Gireater than Aftributes x K=l If x> ythan 1, otherwise 0
or equal to

Addition Attributes x.y X+V Sumof xand v
Subtraction Aftributes x,y X-V Difference between xand y
Difference Attributes x,y Lx =y Absolute difference between xand y
Multiplication Aftributes x,y X"y Product of xand y

- Division Attributes x,y X'y Cuotient of x divided by v
Maximum Attribute s8t S Max{S} Maximum valee in set §
Minimum Attribie set 5 Min{S) Minimum value in set S
Average Attribute set S Ave(S} Average of values inset S
Counting Attribute set S,C #Atte(S,C) No. of attributes in § satisfying C

operator. Binary operators select attributes
in pairs, and multiargument operators use
unit information to determine set member-
ship. Both attributes must satisfy type (such
as ordered aitribute values for addition) as
well as operator-specific unit constraints

(such as matching attribute units for sub- .

traction). These constraints are useful in
reducing the combinations generated and
insuring that new attributes are meaningful.
Users can also limit the total number of
newly constructed attributes that will be
added to the representation space.

You can select attributes by applying one
of the many existing attribute-selection cri-
teria. In AQ17-DCI, we use the information
gain ratio. It selects for future processing the
attributes with a gain ratio greater than or
equal to a threshold we predefine.

For aitribute abstraction, we chose the
ChiMerge algorithm to create ranges of
attribute values.'? The ChiMerge is a bottom-
up algorithm that stores values in separate
intervals and then merges them into ranges
unti! a termination selector is met. The inter-
val-merging process consists of two contin-
uously repeating steps:

1. compute %? values {correlation between
the class-attribute value and an individ-
ual attribute value) and

2. merge the pair of adjacent intervals with
the lowest %2 value.

Intervals are merged until all pairs of inter-
vals have %2 values exceeding the user-
defined ¥-threshold. The chi-threshold can
be determined from a table; it is a function
of the desired significance level and number
of degrees of freedom (one less than the num-
ber of classes). The ¥? value measures the
probability that the attribute interval and class
value are independent. If the interval has a
¥ value greater than threshold, class and
interval are correlated and should be retained.

High %? threshold settings cause more inter-
val mergers, resulting in fewer total intervals,
or attribute values. We have found a y?
threshold of 0.4 (values range from 0.1 to
1.0) to be a good default.

Real-world experiments

Our methodology recognizes that atiribute
construction, selection, and abstraction all
serve the same purpose: to improve the rep-
resentation space. How effective is it to inte-
grate these factors? To answer this question,
we applied our methodology to two real-
world problems: text categorization and nat-
ural-scene interpretation. .

Text categorization. In this problem, the
task 1s to classify seginents of text (usually
documents) into the best single class selected
from a class set. In our case, the task was to
classify incoming newswire text as either of
interest or not of interest to a given user. Our
user had an interest m “Medicine in the
United States”” He provided feedback on 38
news articles drawn from 442 articles run in
the Colorado Springs Gazette Telegraph over
a one-month period. Of 38 articles, the user

found 18 relavant and 20 irrelevant.

The goal of constructive induction is fo
learn a description of the user’s interest-
{profile) based user feedback, This feedback
consists of labels for a (usaally small) set of
documents describing the user’s (binary)
interest.

One of the most difficult aspects of text
categorization s finding a good text repre-
seniation. Our constructive-induction
method builds on previous work,!? which
identified a hybrid text representation—
consisting of extracted “subjects,” POL
{person, organization, and location) attrib-
utes, and keywords—coupled with a gener-
alization hierarchy as superior for this task.
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Table 2. Attributes used for describing text.

ATIRIBUTES DEsCRIPTION

Top five subject categories as computed by the SFC text classifier.
POL people tags as computed by the IDD POL tagger. For each person identi-

fied, the vectar contains the following string attributes: {name, gender, hqn—
orific, title, accupation, age]. Nine people (each with these subfields) are iden-

POL organization tags as computed by the IDD POL tagger. For each organiza-

tion identified, the vector contains the following string attributes: [name, type,
acronym, country, business). Ning organizations (each with these subfields}

x1...x5
X6...x59

tified for each article.
x60.. x104

are identified for each article.
x105...x140

POL location tags as computed by the 1DD POL tagger. For each location iden-

tified, the vector contains the following string afiributes: [name, type, country,
state]. Nine locations (each with these subfields) are identified for each article.

x141..x141+n The top n ranked keyword terms as selected based on a tf.idf measure.

Toble 3. Comparison of predictive accuracy on Complete aliribute set

ATIRIBUTE SET Meraon AVERAGE PREDICTIVE ACEURACY
W
Complete AQ-only 54.2 + 6.9%

AQ+DCH-Generate 67.4 1+ 7.6%

AQ+DCE-Select 70.1 + 5.8%

Table 4. Comparison of predictive acturacy on Subject attribute set.

M
ATTRIBUTE SET Mewsop AVERAGE PREDICTIVE ACCURAGY

Subjects Al

AL + DCI-Select
AQ + DCI-Generate

78.0 + 6.6%
78.0 + 6.6%—No change
84.7 + 6.9%

Table 5. Results after fearning in the original representation spoce.

AVERAGE AVERAGE
ACCURALY (%o} # of RuLes
AQ alone 72.5 27.7

AVERAGE LEARNING
TIME {SECONDS)

AVERAGE
# OF SELECTDRS

94.8 231.7

In the previous study, combinations and
subsets of attributes were generated and
evaluated by hand. The goal of our experi-
ment was to find a good representation auto-
matically using our constructive-induction
approach. Table 2 shows the attributes used
in these experiments to describe news
articles.

In the earlier study, representations ¢on-
sisting of keywords, POLs, and subjects were
tested separately, along with a complete test
of all attributes. The Complete and Subject
attribute sets performed best. We thought
constructive induction could further improve
on this performance, using attribute selection
on the Complete set and attribute construc-
tion on the Subject set.

The complete atiribute set consists of 145

attributes, which we tested uwsing three
methods:

» DCI-Generate, which combines AQ with
data-driven constructive induction to
build new attributes;

» D(C1-Select, which combines AQ with
data-driven consiructive induction to
select relevant attributes; and

* AQ-only, which used only an AQ-type
rile-learning algonthm.

We ran the DCI-Generate and the DCI-
Select methods, then compared the results
with those for the AQ-only set. We expected
that attribute selection would have the great-
est impact on predictive accuracy. We used a
tenfold cross-validation methodology with a

70/30 split of the data set. Table 3 shows the
averaged results with the 90% confidence
interval,

Results. As the results show, predictive accu-
racy was higher after attribute selection and
attribute construction had been done. DCI-
Select made the greatest improvement. We
expected this because the Complete set has a
large number of potentially redundant attri-
butes (providing keywords, proper names, and
assigned subjects for each article). Clearly, for
this smalt sample, not all these attributes are
needed; 83 attributes were removed, includ-
ing gender_personl, gender_person5, and
type_org, which aren’t strongly correlated
with the USMED interest.

Some improvement was also made by
DCI-Generate in constructing new attributes
using the counting attribute constrictor
#Attr(S,C). The counting atiribute con-
structor is a powerful attribute-generation
operator because it can allow complex
attribute interactions {such as parity) to be
simply described. In this domain, S is the set
of subject attributes for each example and C
is a condition on their values such as “sub-
ject-value = ‘finance’” This transformation
overcomes an awkwardness of the original
representation, in which an article 1s des-
cribed by an ordered vector of subjects, such
as [subject]l = medicine]} or [subject2 =
sports] or [subject3 = finance]. The problem
with this representation is that it does not
capture the nonordered nature of a person’s
interest. For example, if I am interested in
sports, [ don’treally care if “sports” appears
in subject] or subject2; I want to know if any
one of the subjects is sports.

In our experiment’s data set, there were
100 different possible subjects. Extending
the attribute set with all possible binary
attributes would make the total vector very
long and reduce the program’s capability to
produce useful generalizations. These con-
cepts are difficult to represent without the
DCl-generated attributes. For each of the
100 possible subject values, the counting
operator generates a new attribute. Each new
atiribute represents the pumber of times
{value-cardinality) that value is present in
ithe vector. Each new atinbute is filtered for
quality, so as not to overwhelm the learning
algorithm.

In our experiment, the counting operator
constructed new attributes in six of 10 mns.
With the counting operator, an article’s sub-
ject can be more suceinetly stated. For exam-
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ple, to say “the article is about finance™ is rep-
resented as FAU{SA, 3,€SA & a=
finance)=1, and #Attr{SA, a,= SA & a,=com-
puter)=0 is used to state “the article 1s not
about computers.” Following is a rule describ-
ing articles relevant to the user, that used the
counting generated attributes. The rule’s total
coverage is shown by the t-weight. The u-
weight counts the uniguely covered examples.
{The selector {Gender=m v {] is present in the
rules because gender is assumed here to have
three possible values: m, f, and unknown.)

[Class_good<::
iSubjl=sci_&_tech]&
{Subj2=institutionsls
[Subj3=economy or medicine]
[#attr(8A, a,c SA &
ar=finance)=0] &[#Attr(SA,
arE SA & a=computer)=0]
{t:3, u:3)

where SA = {Subj;, Subj,, Subj,, Subj,,
Subjs}. An article is of interest if subjectl is
about science and technology, subject2 is
about institutions, and subject3 is about the
economy ot medicine, and if none of the sub-
jects take the value “finance” or “computers.”

Table 4 shows the results of the DCI-Gen-
erate transformation to the Subjects atiribute
set, as well as the DCI-Select results com-
pared against the AQ-only baseline.

Data-driven constructive induction was able
to improve the ability of both the Complete
and Subjects attribute sets to predict user inter-
est in newswire text. The transformations were
quite comprehensible. In addition to bringing
close to 29% improvement in predictive accu-
racy (in the Complete set), the construction of
useful forms of #Attr(Subjects, x) by the
counting operator of AQ17-DCI let the learn-
ing algorichm better overcome an awkward-
ness in the original representation of newswire
articles which, if generated by hand, would
have otherwise greatly expanded the repre-
sentation space.

Natural-scene interpretation. Classifying
regions in natural-scene images is a difficult
problem in computer vision. The goal is to
develop a method that can accurately distin-
guish objects in outdoor scenes under vary-
ing perceptual selectors. In our approach, we
wainted the program te learn characteriza-
tions of natural object classes (sky, trees,
road) from labeled images. The program can
then apply these characterizations—which
are based on attributes extracted for pixel
windows—to new scenes and predict the

Tahle 6. Results after applying a single RSM operator ta the representation space.

AvERaGE AvenaGE AVERAGE Averace LEarnie  Avenace Ol
accumacy (%)  #oFRues  # oF seectons  TimE (secowps)  Time (seconps)
DGI-Sel 753 4.7 74,61 215.1 3.1
OCI-Quant 85.9 34.6 114.7 10.81 0.7
DGI-Gen 87.11 18.57 63.51 17111 8.1

1Significance o. = 0.01

Toble 7. Resulis after applying maltipe RSM operators. Significance over the baseline is shown with the first
superscript value. Significance to the first transformatien alone is shown with the superscript in pareatheses.

AVERAGE AvERAGE Averace AVERAGE AVERAGE
ACCURACY # oF # or LEARKING TIME Gl Time
{%e) RULES SELECTORS  (SECONDS) (skconDs)
DCI-Quant ->DCI-Gen 85.41 256 147.8 283.0 5.7+14=7.1
DCI-Gen -»>DCI-Quant 93.413 20.91 63.71 10451 8.1+19.3=27.4
0Gl-Gen->DC1-Sel 90.3" 2h.7 53.613 142212 81+1.0=91

1Significance o = 0.01 significance o = 0.05 3significance o = 0.1

presence of natural objects.

In our experiment, the input was a train-
ing image that includes selected examples of
the visual concepts to be learned: sky, trees,
and road. A 5 x 5 windowing operator,
scanned over the training area, was used (o
extract a number of attributes, including
color (intensity of red, green, and blue) and
texture {we used Law masks for detecting
horizontal and vertical lines, high frequency
spots, horizontal and vertical v-shapes, and
Laplacian operators). The generated rule
quality was evaluated using a tenfold cross-
validation method. The data set has 450
examples equally distributed between the
three classes.

Results, The standard approach to solving this
problem is to apply a selective-induction
learning algorithm directly to the raw data.
Table 5 shows the results of this approach,
which we used as the baseline performance.
Table 6 shows our results using attribute selec-
ton (DCI-Sel), attribute abstraction {DCI-
Quant), and attribute construction (DCI-Gen).

'The abstraction operator reduced average
attribute domain size from 256 to 14. The
rules learned after this reduction in represen-
tation-space size had a significantly higher
prediction accuracy and took less time for the
program to leam. However, rule complexity
increased from an average of 27.7 rules to
34.6 rules, and there was a significant increase
in the number of selectors used in the rules.
Although this increase in complexity is sur-
prising, it could be reduced by applying the
Trunc method for rule-set reduction and flex-
ible matching, and (as our study shows), by

other modifications of the representation
space. !

The rules learned from the space expanded
by DCI-Generate were also significantly
more accurate than the rules learned in the
original space. DCI-Generate added on aver-
age 10 new attributes, the strongest of which
described absolute and relative differences in

the intensity of reds, greens, and blues. Given

that the training images presented green trees,
a dark road, and a blue sky, this result 15 not
surprising. The tree class included new attrib-
utes that stated [green > red] and {green >
blue]. Introducing these attributes to the rep-
resentation space significantly improved all
aspects of the resulting rules. In the new DCI-
Gen expanded representation space, the pro-
gram quickly learned fewer rules that were
more accurate and less complex than those in
the original representation space. These
improvements were achieved after only 8.7
seconds spent searching for new aftributes.
The total time spent constructing new attrib-
utes and learning in the new space was 22%
less than learning alone in the original repre-
sentation space.

DCI-Sel consistently removed attributes
x4, ..., x8—attributes such as horizontal and
vertical line and high-frequency spot that
describe the patterns within the 5 X 5 extrac-
tion window. This slightly increased predic-
tive accuracy and significantly reduced learn-
ing time and the number of selectors in the
rules. However, it also increased the number
of rules generated.

Results: combined operators. Qur success
with single-strategy results led us to investi-
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gate combinations of RSM operators, espe-
cially attribute generation through DCI-Gen
combined with space abstraction through
DCI-Quant. Table 7 shows our resnlts.

Performing attribute abstraction followed
by attribute generation (DCI-Quant -> DCI-
Gen) reduced the number and size of the
learned rules, but slightly decreased accuracy
from abstraction alone. This reduction in the
representation space may remove important
information. If we reverse the operators and
apply DCI-Quant to the space already ex-
panded by DCI-Gen, the space is signifi-
cantly improved in almost all respects: learn-
ing time and predictive accuracy are
significantly better than in both the original
space and the DCI-Gen-onty space. Although
rule complexity and number slightly
increased from the DCI-Gen-only space, it
is still significantly smaller than in the orig-
inal representation.

Using DCI-Sel after DCI-Gen also brought
improvements: there was a small increase in
predictive accuracy over DCI-Gen alone and
a significant decrease in leaming time and
selectors used—but an increase in the number
of rules. In this space (as in the original rep-
resentation), DCI-Sel removed attributes x4,
..., X8, We also tried DCI-Gen followed by
DCI-Quant and DCI-Sel, but this combina-
tion showed no improvement in the predic-
tive accuracy of the learned rules.

Cur best results came from attribute gen-
eration followed by attribute quantization:
rules were significantly more accurate,
learned much faster, and were much less
complex than rules learned in the ortginal
representation. This suggests that the original
representation has both attribute interaction
and excess detail. By performing DCI-Gen
first, we seem to have partially captured this
interaction; the abstraction operator of DCI-
Quant was thus able to safely perform its
operation without looking at the context of
other atiributes. Becanse DCI-Quant (using
the ChiMerge algorithm) views each attribute
independentty, it may reiove important clas-
sification information. By running DCI-Gen
first, the danger 1s reduced.

1t is premature to draw any general con-
clusions about the best ordering of RSM
operators from a single experiment. We con-
clude simply that some patterns are best
described in the original problem formula-
tion, and some only become apparent after
abstraction. If abstraction is sensitive to
attribute interactions, it may be possible to
eliminate such ordering effects, but such a

method would have to search an enormous
space of both combinations and abstraction
Jevels. An approach that more tightly couples
the search for combinations and the abstrac-
tion level is an interesting and important area
for future research.

The attributes constructed by DCI-Gen
were not only useful for classification, but
also easily understood as differences in color
intensities. The differences in color intensity
between red and green, and between green
and blue, were consistently in the top three
most informative attributes as measured by
information gain. The difference between red
and blue was also generated, but its discrim-
inatory power was not high. Our success with
color intensity may inspire the use of other
representations, such as hue and saturation
to represent color infermation in the image.
Such an interaction is not currently possible
with the DCI method, as it only combines
pairs of numeric atiributes. Searching for
more complex functions of original atiributes
is an open area of future research.

CONSTRUCTIVE INDUCTION INTE-
grates ideas and methods previously consid-
ered separate: attribute selection, construc-
tion, and abstraction. By integrating these
methods into AQ17-DCI, we were able to
increase predictive accuracy by up to 29% in
our test cases.

Our experiments also raised interesting
questions for future work. |

* How tightly should RSM operators be
integrated? Our experience with the nat-
ural-scene interpretation problem showed
that an ordering effect exists between
attribute construction and abstraction.
Integrating these operators to the correct
level of granularity for all available attri-
butes is difficult becaunse of the massive
size of the search space.

«  Can aprogram learn meiarules to guide
the application of the RSM operators for
any given problem? We don’t entirely
understand the conditions under which
these RSM operators improve the repre-
sentation space. By recording the result
of these operators under a variety of con-
ditions, we hope to gain insight into this
question. Initial work in this direction
has already begun.’ Qur experiments
offer great promise for improving the
power of inductive learning in real-
world applications.
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