
Discovery Planning: Multistrategy Learning in Data Mining

Kenneth A. Kaufman and Ryszard S. Michalski *

Machine Learning and Inference Laboratory
George Mason University

Fairfax, Virginia, 22030, USA
{kaufman, michalsk}@aic.gmu.edu

* Also Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

Abstract
The process of applying machine learning to data mining
may require many trials, backtracking, and multiple
executions of different learning and inference procedures.
Such a process can be time-consuming, laborious, and prone
to errors. To overcome these problems, this paper proposes
an integration of diverse learning and inference procedures
into a system that can automatically pursue different data
mining tasks according to a high-level plan developed by a
user. The solution involves a meta-language, called KGL
(Knowledge Generation Language), for specifying a data
exploration process in terms of high-level operators and
conditional statements that depend on the results of previous
operators. Operators invoke corresponding machine
learning and inference programs, and specify their
parameters according to the current tasks and previous
results. To assist in illustrating the outcomes of exploration
they are organized into association graphs (AGs), which can
indicate logical, statistical and equational relationships in
the data. The methodology is exemplified by preliminary
results in the areas of demographics and medicine.

Introduction

A major challenge of machine learning research is the
integration of a wide range of learning and inference
strategies into a multistrategy system that is able to pursue
different learning goals automatically. Depending on the
goal and the available input information (which may come
from a teacher, a database, or the environment), different
sequences of learning and inference operators may be
required to achieve that goal. This idea is particularly
important for the task-oriented exploration and mining of
large databases and data warehouses. In such applications,
generation of the desired knowledge may require many
trials, backtracking, and multiple executions of different
learning and inference steps and strategies. This process
can be time-consuming, laborious, and error prone.

The central problem in developing such a multistrategy
learning/data mining system is how to integrate the
different strategies in the pursuit of a given learning goal.
There needs to be a control system able to decide which
operators should be applied at any given step, and all
operators must be implemented in such a way that the
output from one can be an input to another.

Among the operators that may be called upon in data
mining applications are operators to discover patterns that
optimize a given pattern quality criterion, determine
exceptions to patterns, generate a characteristic description
or a discriminant description of a class of entities,
determine the most relevant attributes for a given task,
select the most representative examples from a very large
example set, conceptually cluster cases into classes,
generate a problem-oriented decision structure, assign
class membership to a new instance, and automatically
determine a learning curve.

In the case of data exploration and knowledge discovery,
the issue is what kind of operators to apply to the data
under which conditions, in which order, and using which
parameters. One major challenge is to determine how to
apply individual strategies and operators in a flexible and
mutually dependent way, so that a desired solution can be
obtained. Another challenge lies in determining which
newly generated results should be regarded as useful.

The most attractive and long term solution would be to
have a control system that given a data-mining goal
specified abstractly by a user in natural language, could
automatically synthesize and execute the most effective
sequence of learning and inference operators for achieving
that goal. In this research we have chosen a simpler
approach in which the user defines the plan of data
exploration in terms of high-level operator invocations.
This plan is specified in a knowledge generation language,
called KGL. The next section describes a system that
provides a basis for implementing such a meta-language
level integration of multiple learning and discovery
operators.

INLEN

In the last few years, we have been developing the INLEN
system for multistrategy data mining, knowledge
discovery, and inference, based primarily on symbolic
machine learning methods and techniques. INLEN
integrates a range of knowledge generation operators,
many of which represent different programs originally
developed for use in stand-alone machine learning
applications (Michalski et al. 1992; Michalski and
Kaufman 1998). The use of these operators allows one to

discover general patterns, trends or exceptions in data that
may not be apparent when only one type of strategy is
applied. The results of applying diverse operators may also
suggest a subsequent set of experiments that otherwise
would not have been proposed.

While INLEN makes it easy for the user to apply diverse
operators (corresponding to different machine learning and
inference programs), the decision which operator to apply
at any given step is made by a user. A disadvantage of
such a user-level integration is that the data analyst needs
to inspect the results of each step of the process in order to
determine which operator to apply next. This process can
be laborious and time-consuming, and prone to errors.

It is hypothesized that there exist general rules of
control, which are applicable to a range of knowledge
discovery problems. Such rules could be usefully be
embedded within a learning and discovery system. One
could also provide mechanisms for specifying domain- or
task-dependent control rules. Further, individual users may
have their own collections of repeating tasks to perform on
the data. For these reasons, it is important to provide a
means through which a user can articulate general plans for
experiments to be conducted by a multistrategy data
exploration system, beyond serial invocations of basic
operators. This way the system could automatically
perform complex sequences of actions in search of
desirable knowledge.

Following this idea, we have developed KGL-1, a
prototype meta-language for multistrategy data exploration.
The language allows the user to create plans for guiding the
system through various contingencies and executing
different types of operators. The central motivation behind
this language is to allow the user to write simple programs
to accomplish very complex tasks. These programs can be
executed once, periodically, on an infusion of new
information into a database, or on the detection of some
patterns in the data and/or knowledge.

The INLEN system integrates a relational database, a
knowledge base, machine learning and statistical
knowledge generation operators. To be able to perform
easily operators that require both data and knowledge, the
concept of a knowledge segment was developed (Kaufman,
Michalski, and Kerschberg 1991). Knowledge segments
are used for passing results from one operator to another
and to the user. One research issue addressed in INLEN’s
development has been how to implement and utilize such
knowledge segments. INLEN provides a user with the
ability to search for and extract important and/or actionable
knowledge from a database, to organize new knowledge
from different viewpoints, to test it on a set of facts, and to
facilitate its integration within the knowledge base. The
tools for realizing these goals in INLEN are its knowledge
generation operators (KGOs), which are designed to
perform many types of learning and inference. They
support the search for patterns, trends or exceptions in data.

While INLEN was the first such system, several recent
data exploration systems have also adopted an integrated,
multi-operator architecture, for example, KEPLER

(Wrobel et al. 1996) and DBMiner (Han et al. 1996). The
major differences between INLEN and them are INLEN’s
focus on a seamlessly integrated flow of knowledge
segments, a wider range, and more powerful knowledge
generation operators. Here is a summary of INLEN’s
operators:

• Ruleset generating operators—they take data and/or
knowledge as an input, and return a ruleset
characterizing the data. These operators differ from one
another in the type and kind of ruleset generated
(characteristic vs. discriminant; intersecting vs. disjoint
vs. sequential).

• Decision tree generating operator—it takes a ruleset
(edited within the system or generated by a ruleset
generating operator), and returns a decision tree (or
decision structure) optimized according to a criterion
reflecting the decision-making situation (Michalski and
Imam 1997).

• Classification generating operator—given a set of data, it
creates a hierarchy of classes into which the data can be
classified, and a set of rules characterizing the classes (it
repeatedly applies a conceptual clustering method).

• Equation generating operator—it applies a method for
qualitative and quantitative numerical discovery.

• Inferential operators—they perform selected inferential
knowledge transformations, e.g., abstraction/concretion
of numeric attributes, reasoning with structured
attributes (Kaufman and Michalski 1996), ruleset
optimization and matching rulesets with data.

• Representation space modifying operators—they change
the given representation space by generating new
attributes, abstracting attributes, and/or removal of less
relevant attributes (constructive induction).

• Data modification operators—they change the given data
set, e.g., by selecting a random sample of examples, or
determining the most useful examples for a task.

• Ruleset performance evaluation operators—they
determine the performance of a ruleset by applying the
rules to testing data set and recording the results.

• Statistics generating operators—they determine selected
statistical properties of data, e.g., a table of correlations
among attributes.

• Knowledge visualization operators—they take data or
rulesets and create a visual representation of them in a
generalized logic diagram (a plane representation of a
multi-dimensional discrete space).

Knowledge Generation Language (KGL)

Prior versions of INLEN made it easy to apply the
available knowledge generation operators, but their
application required explicit user decisions at every step.
Most of these operators evoke machine learning programs
that may require the specification of parameters to reflect
accurately the nature and constraints of the problem at

hand. For complex and large databases, their execution
may take considerable time and effort, and generate a large
amount of output for analysis. Such a process also carries
risks of errors and inefficiency.

To address these problems, we developed a meta-level
language, KGL, for planning experiments in INLEN. In
KGL, instructions can take the form, “If a certain condition
is satisfied by a dataset or the current associated
hypotheses, apply the following operators with the
following parameters.” For example, if the database is
continuously being updated, one may specify the following
KGL instructions: “If more than 3% of the records in the
database have been modified or added since the last
application of this rule, test the knowledge base on the new
data. If its degree of match falls below a 90% threshold,
apply incremental learning to improve the knowledge base,
and analyze the records that do not match the original rules
to see if they share any common bonds.”

KGL has been designed according to the following
requirements:

• Every learning or knowledge processing program
integrated into the system can be invoked by a single
KGL operator.

• Properties of the database can be referred to in KGL
statements (for example, “If there are 10% new
examples of class A in the database, invoke a rule
learning operator”; “Determine the percentage of
missing values in the database.”)

• Properties of the attributes, of the generated rules, the
rulesets, and the decision trees can be referred to in KGL
statements (for example, “Select nominal attributes with
five or fewer legal values, and generate for them
decision rules in terms of all numerical variables,” or, “If
the first rule in the generated ruleset covers over 95% of
the training examples, remove all remaining rules from
the ruleset.”)

• Looping and branching are allowed as in conventional
programming languages.

INLEN’s knowledge base may contain the following types
of knowledge: definitions of the variables and their types;
domain constraints; generated rulesets and decision
structures, data classifications, equations characterizing
quantitative relationships; references to sets of examples in
the database with an indication of their roles, e.g., training,
testing, representative or exceptional; data and knowledge
visualizations, and characterizations of the relationships
among given concepts (an association graph—see below).
INLEN’s knowledge base has evolved a syntactic structure
based on the VL1 variable-valued logic representation
(Michalski 1973) and the ideas of Annotated Predicate
Calculus (Michalski 1983). This structure can often
represent complex relationships in a simple, easily
interpreted way. Rulesets, rules and conditions are
hierarchically arranged, and annotated by parameters and
pointers to the data supporting or contradicting them
(Kaufman and Michalski 1997).

Most previous efforts to create a high-level language for
multistrategy learning and knowledge discovery have taken

a Prolog-style logic programming approach. One notable
exception is M-SQL (Imielinski, Virmani, and Abdulghani
1996), which extends the SQL data query language by
adding the ability to query for certain types of rules and
invoke a rule-generating operator. The KGL knowledge
generation language differs from M-SQL in that it is able
to call upon many different types of knowledge generation
operators, and also in that it is designed to be less tightly
coupled with SQL, and more closely resembles a
programming language than a query language.

A language in which a different approach to the
acquisition of knowledge is KQML (Finin et al. 1994).
KQML is viewed as a tool by which intelligent agents may
communicate among themselves and exchange the
information needed to complete their individual tasks. It is
thus designed to permit queries for individual pieces of
knowledge. KGL differs from KQML in that it focuses
more on queries for knowledge that fits a given abstract
template (e.g., rules of a certain degree of strength), and
that within the language one can call out to diverse learning
and discovery operators to generate the knowledge base to
be used.

A system similar to INLEN/KGL is CLEMENTINE, a
data mining toolkit commercially developed by Integral
Systems, Ltd. In CLEMENTINE, the user may specify a
plan for a sequence of actions by a simple interface. KGL
differs in that the language allows the specification of
branching and looping conditions that may be based on the
knowledge base or on locally assigned variables, and in
employing different, more diverse, and in some cases
significantly more powerful knowledge generation
operators.

CLEMENTINE also supports knowledge visualization
similar to the association graphs (AGs) described below. A
major difference is that AGs allow the representation of
multiple argument relationships, based on VL1
attributional language rules, using multiple links joined
together when representing dependencies other than 1-to-1.

Also, the CLEMENTINE presentations are at a lower
level of abstraction; nodes in the graphs represent
individual attribute values. In the association graph
methodology, nodes represent concepts or attributes as a
whole, and the links are annotated to represent any
monotonic tendencies between them.

Example of INLEN’s Knowledge Structure
This example illustrates an application of INLEN to the
analysis of the CIA World Factbook. The countries of the
world were divided into classes based on their fertility rate,
with the lowest class describing the 42 countries with
fertility rates less than 2 per 1000 population, and other
classes representing ranges of size 1, up to the highest
class—countries with fertility rates above 7. One of the
generated rules characterized 16 countries in the lowest
fertility rate class, and differentiated them from the
countries with higher fertility. This rule is shown in Figure
1.

Parameters Pos and Neg indicate the number of positive

and negative examples of the class satisfying a given
condition. For example, “Birth Rate is between 10 and
20,” characterizes all 42 low-fertility countries and 20
others. This representation schema leads to a natural
division of a rule base into subunits, each described by a
set of pertinent statistics (Ribeiro, Kaufman and
Kerschberg 1995). An example of this structure is shown
in Figure 2. The application of an operator (recorded as an
individual learning Session) is associated with an input data
set, the time at which it was run, and a set of output
Rulesets. Each of these Rulesets is associated with the
class of objects it describes, statistics on the training sets
associated with it, and the individual Rules that make up
the Ruleset. The Rules are associated with the training
examples that satisfied them through Rule Weights and
Example Keys, and also with the individual Weighted
Conditions within the Rules. The knowledge segments
corresponding to these Weighted Conditions can be
associated with the Condition statement and the various
pertinent Condition Weights, such as the number of
positive and negative training examples that satisfy it. In
this format, INLEN’s knowledge base stores a set of
decision rules.

Countries with Fertility ≤ 2 per 1000 population are
characterized by: (42 examples)

Pos Neg
 1.[Birth Rate is 10..20] 42 20
 2.[Religion is R. Catholic or

Orthodox or Anglican or Shinto] 24 31
 3.[Infant Mortality Rate ≤ 40] 41 54
 4.[Population Growth Rate ≤ 1 or 3..4] 32 56
 5.[Literacy ≥ 70] 35 71
 6.[Life Expectancy = 60..80] 41 92
 7 [Death Rate = 5..15] 42 102
 8.[Net Migration Rate ≥ -10] 42 140
 Total: 16 0

 Examples Covered:Andorra, Antigua, Austria,
Belgium, …

Figure 1. A rule in INLEN’s knowledge base, as presented
to the user.

Session Class Ruleset Rule Condition

Timestamp Class Name
Rules

Examples

Conditions
Examples

Example Keys

Condition
StatementDecision

Concept
Classes

Positive
Negative

Figure 2. Knowledge organization for a decision ruleset.

Figure 3 shows an instantiation of this architecture - a
knowledge segment from which the rule shown in Figure 1
was derived.

Session Rule Condition

970115 11:32
Fertility Rate

Classes

Countries with
Fertility < 2 per
1000 population

Conditions
16 Examples

BR = 10 .. 20
42 Positive
20 NegativeAndorra,

Antigua, …

Class Ruleset

Rules
42 Examples

Figure 3. Exemplary instantiation of the schema presented
in Figure 2.

The KGL interpreter is able to extract details from the
knowledge base as requested, so that it may respond to
queries for elements in the knowledge base such as:

• The conditions in rules for the class Fertility < 2 whose
positive example coverage outnumber their negative
example coverage by at least a 2 to 1 ratio.

• Rules for any concept (not only Fertility) that are
satisfied both by Andorra and Antigua.

• Rules that include the condition Birth Rate = 10 .. 20.

An Example of KGL-based Multistrategy
Data Mining

Preliminary versions of KGL have been applied to such
datasets as collections of demographic characteristics of
different countries and the results of surveys of parents and
their children on various issues of growing up. In the
demographic dataset, rules were first learned to
characterize such concepts as low fertility rates (as seen
above). Further KGL operators and commands performed
such tasks as querying for and displaying strong rules
(according to user-defined criteria); determining if a
knowledge base meets certain quality standards, and
improving it if it does not; and analyzing the makeup of a
ruleset. A sample of KGL code for performing such tasks
is shown in Figure 4, with output in Figure 5.

open PEOPLE
{Select PEOPLE database}

do CHAR(decision=all, pfile=people1.lrn)
{Characterize all concepts
 using parameters specified in
 file people1.lrn}

strongPGrules1 = #rules(PGR, %covd >= 60)
strongPGrules2 = #rules(PGR, num_covd >= 25)
strongPGrules3 = #rules(PGR,
 num_conds(supp >= 50 and pos > 10) > 2)

{Count the strong PGR rules
based on three metrics}

print “Number of strong PGR rules:
Type 1 = ”, strongPGrules1, “,

Type 2 = “, strongPGrules2, “,

Type 3 = “, strongPGrules3

if #conditions(Fert) > 150
{Is Fert ruleset too complex?}

 begin

 do SELECT(attributes, decision=Fert,
thresh=4, out=PEOPLE2, criterion=max)

{find 4 best independent
 attributes}

 do CHAR(pfile=people1.lrn, decision=Fert)
{then recharacterize}

 end

for i = 1 to 6
 begin
 print “Number of LE conditions with P/N

 ratio of at least”, i, “:1 =”,
 #conditions(LE, supp = 100 or

 pos / neg >= i)
{For each value of i from 1
 to 6, count and display number
 of conditions with a pos/neg
 coverage ratio of at least
 i:1. The supp=100 condition
 avoids divide-by-0 trouble}

 end

Figure 4. Example KGL code for exploring a demographic
database.

In the output in Figure 5, the number of strong rules, as
determined by three criteria is displayed; the Fertility rule
set is determined to be unsatisfactory, and is relearned
using only the most relevant four independent attributes;
and an analysis of the strengths of rules for Life
Expectancy is presented.

Number of Strong PGR rules: Type 1 = 1,
Type 2 = 1, Type 3 = 7

Selecting best attributes from PEOPLE
for concept Fert -- Attributes chosen:

Birth Rate
Predominant Religion
Life Expectancy
Death Rate

Number of LE Conditions with P/N ratio
of at least 1:1 = 25
Number of LE Conditions with P/N ratio
of at least 2:1 = 10
Number of LE Conditions with P/N ratio
of at least 3:1 = 5
Number of LE Conditions with P/N ratio
of at least 4:1 = 1
Number of LE Conditions with P/N ratio
of at least 5:1 = 1
Number of LE Conditions with P/N ratio
of at least 6:1 = 1

Figure 5. Output from the Figure 4 KGL fragment.

From the survey dataset, we took 415 discrete-valued

(either nominal or linearly ordered) attributes, and applied
a KGL script that for each attribute in turn learned rules
using them as decision attributes, after having reduced the
dataset by invoking an operator to select the 25 attributes
most likely relevant to the decision attribute, and then
projecting the data accordingly. The program in Figure 6
handled this set of tasks.

begin
for i = 0 to 414
 begin
 open SURVEY
 do SELVAR(decision=i, out=SURVEY2,

thresh=25, criterion=avg)
 do DISCSET(decision=0, scope=1, compile=no)
 end
end

Figure 6. A KGL program for survey data exploration.

Association Graphs

As mentioned above, exploring even a small database may
result in large number of rules and associated information.
For example, in the experiment with the survey data, rules
totaling over 31 megabytes were generated from under 9
megabytes of data (in fixed-length field format). In order
to easily grasp relationships among concepts, including
both statistical and logical relationships, the idea of an
association graph (AG) was proposed.

Nodes in such a graph may represent different concepts
(e.g., individual attributes, inferred groups, or categories of
attributes). Links in the graph represent different types of
univariate or multivariate relationships at different levels of
abstraction, depending on the type of association graph.
An association graph may be categorized as statistical,
logical or equational depending on the types of
relationships represented by its links, or it may be a
general association graph, combining different association
types.

Links in an association graph may be directed to indicate
the direction of stronger association. In the statistical AG
shown in Figure 7, the links indicate the direction of higher
conditional probability. In the logical AG shown in Figure
8, they indicate the direction from condition to action in a
rule. The thicker the link, the stronger the relationship.

In an experiment whose goal is to find relationships
among diseases and between diseases and lifestyles, the
data source was a set of survey results collected by the
American Cancer Society, with data on the occurrences of
25 diseases, as well as several background and lifestyle
attributes. Initial experiments focused on the subset of the
data consisting of surveys turned in by white male non-
smokers, ages 50-65 (nearly 7500 records).

One study identified statistical relationships by
generating weighted entropies between pairs of diseases,
where the weighted entropy (WEEN) is defined as:

diabetes gall
stones

heart
disease

stroke high blood
pressure

hay
fever

emphysema
chronic

bronchititis

arthritis prostate

bladder
disease

stomach
ulcer

chronic
indigestion

duodenal
ulcer

rectal
polyps

colon
polyps

diverticulosis

Summary of Association Between Diseases
 for White Male, non-Smoker,

age 50-69 (CPS-II data)

hepatitus

Notes:
1) Warning: All relationships have been inferred from
whether or not disease was reported. No temporal (e.g.,
cause to effect) data was available in the database.
2) Weight of line is rough indication of strength of inductive
rule as indicated by arrow direction. (SA note 5)
3) Numbers on line are percentages that respectively
indicate the likelihood ratio (probability of indicated disease
when reference disease was reported vs probability when
reference disease was not reported) and unconditional
probability of the indicated disease.
4) Relationships to be displayed were selected as follows:
An information theoretic measure of the strength of the
implication relationship was first computed for all pairs and
then weighted by the probability of the reference disease.
Computations were sorted on this weighed strength of
relationship and the top 10 percent were selected for display.
For diseases that did not have at least two direct
relationships on the display, additional relationships were
selected until that condition was satisfied.
5) Location of diseases on display was to minimize line
crossing. Epidemiological relationships were not
considered.

cirrhosis of
liver

kidney
stones

tuberculosis

thyroid
condition

kidney
disease

asthma
208/59 396/53

26/3

123/35

1432/24

75
9/

33 20
4/

27

96
7/3

3

605/30

168/15

17
5/4

9
162/44

38
8/

44

346/17

283/20

15
7/1

6

391/7

44
3/1

0440/6

19
7/2

6

17
5/

49
156/24

880/13

484/21180/24

186/24

140/21

164/25

41
8/

15

312/18

168/21

230/13

290/11

153/23

175/26

153/20

369/19

20
6/

27

(c) J. J. Logan,
Infodynamics, Inc.

1998 March 31

5

13

10

2

9

5

5

1
29

1

1
1

2

5 6

4 5

2

3

15 13

3

.2

1
12

0/
36

13
6/

38

200/30

16
0/2

1

648/27

Graph developed by of J.J. Logan, Infodynamics, Inc., March, 1998. Reprinted with permission.

Figure 7. An example of a statistical association graph.

Figure 8. An example of a logical association graph.

WEEN(x,y) = p(x) * (p(y|x)*log(p(y|x)/p(y)) +
p(y’|x)*log(p(y’|x)/p(y’)))

An example of a univariate AG representing statistical
relationships in a medical domain is presented in Figure 7.
The links’ thicknesses represent the magnitude of the
weighted entropies, and the directions of the links indicate
the higher conditional probability.

A second study used the AQ18 program (Michalski
1998) to generate decision rules in this domain. The
strongest rules for seven of the diseases are represented in
the association graph shown in Figure 8. In this logical
AG, the thickness of the links represents the
informativeness level of a condition in the rule (based on
the ratio of positive training examples covered to total
training examples covered). In addition, each link is
annotated by a symbol that indicates the relationship
between the condition and the action. A + or – suggests
that an increase (decrease) in the attribute’s value make the
disease more likely, while a ^ or a v indicate that extreme
values of the attribute make the disease more likely. Since
most of the rules are multiconditional, arcs unite the
conditions that form a common rule. This reiterates that a
condition might not lead to a higher propensity for a
disease except when combined with the other represented
conditions.

In another experiment that used the results of parent-
children surveys the source of the data was the National
Youth Survey (United States), Wave I (Elliott 1977). This
dataset catalogued the answers of parents and their children
to various social and behavioral issues. It included
socioeconomic data, records of problems at home or in the
neighborhood, parental aspirations, attitudes toward
deviance, discipline, community involvement, and drug
use.

The goal of the INLEN experiment on this dataset was to
determine which attributes (in this case, individual survey
questions and their responses) were dependent on one
another. A script was written that can be paraphrased as
follows: For each decision attribute, log the attributes that
appear in strong conditions of strong rules. Strong rules
were defined as rules that covered more than 10 examples
of the decision class, or over 40% of all of the training
examples of that class. Strong conditions were defined as
conditions in the rule whose support levels were over 40%,
and were among the top three support levels of conditions
in that rule. Support level is a measure of how well the
condition alone is expected to imply the rule’s conclusion,
and is defined as the ratio of positive training examples of
the decision class that satisfy the condition to the total
number of training examples satisfying the condition.

In this case, a full association graph would have been too

High Blood
Pressure

Hay Fever
Rule 5

Years in
Neighborhood

Diverticulosis
Rule 4

SleepRotundity

Asthma
Rule 2

Arthritis
Rule 1

Colon Polyps
Rule 3

Stomach Ulcer
Rule 7

Prostate

Rectal Polyps
Rule 6

Exercise Mouthwash

Stroke

Education

+

+

+

+
+

+

+

+

+

+

+
+

–

–

–

–

v

v

^

^

v

^

+

+

+

v

complex with 415 attributes and a complex ruleset, so
another step was taken to encapsulate the most densely
populated portions of such a graph. This involved
recording all maximal sets of attributes of size 3 or more,
such that every attribute in the set was strongly dependent
on every other attribute in the set by the criterion described
above.

There were 284 such sets, of size 3 to 10. Six sets were
of size 10, and each of them included the following
attributes, indicating a knot of answers closely associated
with each other:

YFBkRules(Does the youth think his family thinks he
breaks rules?)

YFTrouble (Does the youth think his family thinks he
gets into trouble)

YTBadKid (Does the youth think his teachers think
he’s a “bad kid”?)

YTBkRules(Does the youth think his teachers think
he breaks rules?)

YTTrouble (Does the youth think his teachers think
he gets into trouble)

YTBkLaw (Does the youth think his teachers think
he breaks the law?)

There were other similar attributes (for example
YFBadKid) that were less often grouped with these, or not
at all.

The step of generating these groups of attributes exposed
perhaps the most interesting piece of metaknowledge in
this domain. Of the 415 attributes, about 60% were based
on answers given by the child, about 30% on the answers
given by the parent, and the rest on either observations by
the interviewer or on geographic facts. We found that all
of the 284 generated groups of 3 or more attributes were
completely segregated with regard to source. In other
words, if one attribute in the group was based on an answer
provided by the parents, all attributes in the group would
be based on the parents’ responses. In the cases of tightly
coupled attributes from different sources (e.g., parent’s and
child’s ethnicity), no third attribute could be found that was
strongly mutually associated with both of them.

Conclusion

The presented work describes a methodology for a
language-level integration of a wide range of knowledge
generation operators that employ machine learning and
statistical programs. The proposed Knowledge Generation
Language (KGL) supports the planning of complex
learning and data mining experiments. Their results are
visualized and summarized through association graphs
(AGs).

KGL allows the user to write simple programs that can
execute complex learning and knowledge processing tasks.
It is modeled in part after common programming
languages, and in part after database query languages such
as SQL. A KGL user can access tools for such tasks as
inductive learning from examples, feature selection,

knowledge testing, and prediction of missing data based on
provided or discovered knowledge. The language enables
both the presentation of results to the user and the use of
these results as a springboard to further discovery tasks. It
allows the user easy interaction and communication with
the program of the needs relating to the current application.
It is not difficult to enhance the language by adding new
operators or functions, and that is being done as new needs
are recognized.

In its current form, KGL has several limitations. The
presented version is a very new, and still unpolished
solution, designed less for elegance than for proving its
feasibility. It is planned that the KGL implementation will
be refined and advanced in the future. The greatest
strength of KGL is its ability to integrate and invoke
diverse learning and knowledge processing operators and
create a powerful environment for seeking out solutions to
practical learning and discovery tasks. It is designed to
serve as a novel and useful solution for implementing
multistrategy learning capabilities. The experiments done
so far are very promising, and indicate that the proposed
methodology can be of very high practical utility.

Acknowledgments

The authors thank Jim Logan for the illustration presenting
a statistical association graph. This research was
conducted in the Machine Learning and Inference
Laboratory at George Mason University, and supported in
part by the National Science Foundation under Grant No.
DMI-9496192.

References

Elliott, D. 1977. National Youth Survey (United States),
Wave I, 1976 [Computer file]. ICPSR version, University
of Colorado Behavioral Research Institute, Boulder, CO,
1977, distributed by Inter-University Consortium for
Political and Social Research, Ann Arbor, MI, 1994.

Finin, T., Fritzson, R., McKay, D. and McEntire, R. 1994.
KQML as an Agent Communication Language. In
Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94).
ACM Press.

Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski,
K., Li, D., Lu, Y., Rajan, A., Stefanovic, N., Xia, B. and
Zaiane, O.R. 1996. DBMiner: A System for Mining
Knowledge in Large Relational Databases. In Proceedings
of the 2nd International Conference on Knowledge
Discovery and Data Mining, 250-255.

Imielinski, T., Virmani, A. and Abdulghani, A. 1996.
DataMine: Application Programming Interface and Query
Language for Database Mining. In Proceedings of the
Second International Conference on Knowledge Discovery
and Data Mining, 256-261.

Kaufman, K. and Michalski, R.S. 1997. KGL: A Language

for Learning. Reports of the Machine Learning and
Inference Laboratory, MLI 97-3, George Mason Univ.

Kaufman, K., Michalski, R.S. and Kerschberg, L. 1991.
Mining for Knowledge in Data: Goals and General
Description of the INLEN System. In Piatetsky-Shapiro,
G. and Frawley, W.J. eds. Knowledge Discovery in
Databases, 449-462. Menlo Park, CA: AAAI Press.

Michalski, R.S. 1973. Discovering Classification Rules
Using Variable-Valued Logic System VL1. In Proceedings
of the Third International Joint Conference on Artificial
Intelligence, 162-172 Menlo Park, CA: International Joint
Conferences on Artificial Intelligence, Inc.

Michalski, R.S. 1983. A Theory and Methodology of
Inductive Learning. In Michalski, R.S. Carbonell, J.G. and
Mitchell, T.M. eds. Machine Learning: An Artificial
Intelligence Approach, 83-129. Palo Alto, CA: Tioga
Publishing.

Michalski, R.S. 1998. The AQ18 Symbolic Learning and
Data Mining Environment: Theory and Methodology.
Reports of the Machine Learning and Inference
Laboratory, George Mason Univ. (to appear).

Michalski, R.S. and Imam, I.F. 1997. On Learning
Decision Structures. Fundamenta Matematicae, 31(1): 49-
64.

Michalski, R.S. and Kaufman, K.A.. 1998. Data Mining
and Knowledge Discovery: A review of Issues and a
Multistrategy Approach. In Michalski, R.S., Bratko, I. and
Kubat, M. eds. Machine Learning and Data Mining:
Methods and Applications, 71-112. London: John Wiley &
Sons.

Michalski, R.S., Kerschberg, L., Kaufman, K. and Ribeiro,
J. 1992. Mining for Knowledge in Databases: The INLEN
Architecture, Initial Implementation and First Results.
Journal of Intelligent Information Systems: Integrating AI
and Database Technologies, 1(1): 85-113.

Ribeiro, J., Kaufman, K. and Kerschberg, L. 1995.
Knowledge Discovery from Multiple Databases. In
Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, 240-245.

Wrobel, S., Wettschereck, D., Sommer, E. and Emde, W.
1996. Extensibility in Data Mining Systems. In
Proceedings of the 2nd International Conference on
Knowledge Discovery and Data Mining, 214-219.

