
An Application of Lamarckian Evolution

Model to Function Optimization

R. S. Michalski Q. Zhang

P 98-4

MLI98-3

98-1

1

An Application of Lamarckian Evolution Model

to Function Optimization

Ryszard S. Michalski* Qi Zhang

Machine Learning and Inference Laboratory

School of Infonnation Technology and Engineering

George Mason University

Fairfax, Virginia 22030-4444

*Also with GMU Department of Systems Engineering, and

the Institute of Computer Sciences, Polish Academy of Science

Publication No
P 98·4

Reports ofthe Machine Learning and Inference Laboratory
MLI 98-3

Jaonary 1998

2

ABSTRACT

This paper describes an application of Lamarckian Evolution Model (LEM) to function

optimization. This model, proposed by Michalski, is inspired by a simple observation that

acquisition of patterns or descriptions of the elites in populations and hence guiding the generation

of new populations according to learned patterns may lead to a much more effective evolution, in

terms of the evolution speed and the ability of reaching a goal, than a natural evolution. As a

validation of LEM, a series of experiments were conducted to compare LEM and GAs in their

performance to function optimization. Results have strongly indicated the effectiveness of LEM.

Keyword: Lamarckian Evolution, Genetic Algorithms, Function Optimization.

ACKNOWLEDGMENTS

This research was conducted in the Machine Learning and Inference Laboratory at George Mason
University. The Laboratory's activities are supported in part by the Defense Advanced Research
Projects Agency under grant F49620-95-1-0462, administered by the Air Force Office of Scientific
Research, in part by the National Science Foundation under grants DMI-9496192 and IRI
9020266, and in part by the Office of Naval Research under grant NOOO 14-91-J-1351

3

1 INTRODUCTION

Natural evolution is a fascinating phenomenon studied over centuries by scientists. Some of them

were trying to describe it in an algorithmic view. The conception of computers provided a powerful

tool for implementing and testing this view. In 1 960s, computer scientists in several institutions

began their independent studies, in different perspectives, of this phenomenon by using computers

for modeling. This marked the conception of a new computational model, now widely called

evolutionary computation. Genetic algorithms (GAs), one of the approaches, are viewed by many

a key element in designing and implementing robust adaptive systems, GAs have been applied to

many practical problems and promising results have been obtained.

Starting with an initial population of individuals, a genetic algorithm generates new populations

algorithms by applying operators such as selection, crossover, and mutation to the current

population. Traditional genetic algorithms are basically Darwinian-type. There are two potential

problems with it. Firstly, the search process is semi-blind: the crossover is a semi-random

combination of two candidate solutions; the mutation is a random change of the newly-generated

solution; the survival of the fittest is a form of parallel hill-climbing. In this form of evolution,

individuals cannot pass to the next generation the lessons learned from their experience.

Consequently, computational processes based on Darwinian evolution are not efficient. A low

efficiency is the major obstacle in the applications of genetic algorithms to very large, or ultra

complex problems. Secondly, because of its semi-blindness, an evolution process is easy to get

stuck around a locally optimal solution and quite likely unable to escape such a area in a search

space. This situation in turn worsens the low efficiency problem.

To attack such problems, Michalski proposed a novel evolutionary computation model, called

Lamarckian evolution model (henceforth, LEM). A LEM employs along the standard genetic

operators also machine learning operators. The basic idea is that a machine learning system is used

to determine "reasons" why certain individuals in a population are better than others in performing

a specific task. These reasons, expressed as rules, are then used for creating a new generation of

individuals probabilistically.

This report describes the LEM algorithm and its application to function optimization. A series of

experiments were conducted on the set of five benchmark functions (De Jong 1975; Goldberg

1989). The results obtained are very promising. In our experiments, LEM has shown a

dramatically improved performance over the conventional genetic algorithms, frequently a two or

4

three orders of magnitude speed up of an evolution process. In some cases, LEM achieved the

optimal solution while genetic algorithms employed in the study could not come even close to it.

The following is organized as follows: section 2 describes the general algorithm of LEM; section 3

details LEM in case of function optimization and other genetic algorithms used in the experiments;

section 4 reports results plus a discussion of them; section 5 gives an overview of Lamarckian

related genetic evolution; section 6 concludes this report and briefs future work.

2 LEM Algorithm

To attack the semi-blindness problem of traditional genetic algorithms, LEM introduces symbolic

learning into an evolution process. In particular, individuals of new generations are created in some

generations according to hypotheses produced by symbolic learning. When LEM is in the symbolic

learning mode (actually traditional genetic algorithms are also adopted in LEM), the "reasons" why

some individuals are better than others in performing a given task are created by a symbolic

learning method. These reasons are expressed as a set of rules. The ruleset is then used to create a

new generation of individuals that are likely to have a higher "fitness", i.e., represent a better

problem solution. A general description of LEM is given in Table 1.

In the algorithm, an individual is a problem solution (e.g., a vector of real numbers for a function).

A termination condition can be, for example, that the best individual generated so far meets a

specified criterion, or that the allocated computational resources are exhausted. In the genetic

algorithm mode, any genetic algorithm (standard or improved, simple or complex) can be adopted;

the better performance it has, the better performance LEM should have. In the symbolic learning

mode, any symbolic learning algorithm such as AQ (Michalski 1969, Michalski et al. 1986), CN2

(Clark and Niblett, 1989) and C4.S (Quinlan, 1993) is applicable here. For AQ-type symbolic

learning methods discretization of continuous attributes is needed before learning. When generating

individuals according to learned rules, a selection mechanism is needed because usually a large

number of candidates are available. New individuals can be selected from among those satisfying

the ruleset either randomly or according to heuristics.. When designing (also confirmed in our

experiments), we realize that adoption of a symbolic learning method without incorporation of a

genetic algorithm would quite possibly make evolution get stuck around a locally optimal solution.

With the introduction of a genetic algorithm, LEM is equipped with a more powerful search

capability because of the semi-blind search of a genetic algorithm. This is very important

especially when only a few candidates satisfy the ruleset and all of them fall within a locally

optimal area.

5

(1) Randomly or according to prior knowledge, generate an initial

population of individuals.

(2) While (a termination condition is not met)

(2.1) While (the best individual in a sequence of gen-Iength
generations is better by the gen-threshold than the best
one found in previous generations)

Execute the genetic algorithm mode by :

(2.1.1) Conducting evolution in the same way as a genetic
algorithm by using selection, crossover and
mutation and other operators.

(2.2) 	While (the best individual in a sequence of learn-length
generations is better by the learn-threshold than the best
one found in previous generations)

Execute the symbolic learning mode by :

(2.2.1) Collecting HIGH and LOW individuals 	 in the
population. The HIGH individuals are HT% (HT
< 50) best individuals in the population, and the
LOW individuals are LT% (LT < 50) worst
individuals. The best and worst individuals are
determined according to their fitness values for a
given task or problem.

(2.2.2) 	 Applying a symbolic learning method for
determining rules distinguishing HIGH and LOW
individuals.

(2.2.3) Generating 	a new population of individuals by
replacing LOW individuals by those satisfying the
learned rules for HIGH individuals.

(2.2.4) Evaluating the individuals in the new generation.

Table 1. A general version ofLEM algorithm.

Also in the algorithm, there are several parameters such as gen-Iength, gen-threshold, learn-length,

learn-threshold, HT, LT. They should be determined experimentally for a given class of

problems, or by a prior analysis.

3 ALGORITHMS IN EXPERIMENTS

6

3.1 LEM

In our function optimization experiments, an individual is a vector of real numbers which leads to a

function value which is in turn used in the definition of a fitness function. The termination

condition is defined as an evolution up to 10,000 generations. The population size is 20.

The genetic algorithm used in LEM in the experiments is a simple one which employs a real-valued

representation, a selection operator based on a roulette wheel, a uniform crossover operator in

which a gene with 0.5 probability inherits a gene (Le., a variable value) from either parents, a

mutation operator in which each gene is mutated with the probability of IlL, where L is the number

of genes. When mutated, a gene is either incremented or decreased by a small amount 0.1. All the

settings in this genetic algorithm is pretty common for such a algorithm. In fact, we imported this

algorithm and the other one (see the next subsection) from De Jong (De Jong 1998) without any

change.

Regarding the symbolic learning method, we used the AQ rule learning method (Michalski 1969,

Michalski et al. 1986) due to its powerful representation capabilities, and high learning capabilities.

Since discretization is needed for continuous attributes in this method, we discretized each variable

(Le., attribute) uniformly into 200 intervals. We also adopted a heuristics called Maximum

Distance to Negatives (MDN). This heuristic suggests that before selecting a variable value

according to a learned ruleset, the distribution pattern of HIGH and LOW individuals on this

variable be identified and selection of a value far away from LOW individuals on this variable be

given more probability. We identified 5 patterns in our experiments. Suppose "+" represents a

value from a HIGH individual on a variable and "-" a value from a LOW individual on the same

variable. The patterns are given in Table 2.

(1): - - - - - - + + + + +
(2): + + + + + - - - - -
(3): - - - + + + + + - -
(4):+++------++
(5): - - + - + - + + + -

Table 2. Distribution patterns of HIGH and LOW individuals on a variable.

For pattern (5) in Table 2, we adopted a uniform probability of selecting a variable value from the 5

available "+" values. In other cases, a polynomial curve-liked probability distribution (e.g., xA 2 or

7

x1l.3) is given to available values. For pattern (l), for example, the "+" value on the rightmost has

the highest probability of being selected.

In the experiments, both gen-length and learn-length are set to 3 and both learn-threshold and gen

threshold are set to 0.01. HT and LT are set to 30 (i.e., 6 best individual and 6 worst individuals

are used for learning).

3.2 GAl

This is the same genetic algorithm as used in LEM described in the above subsection.

3.3 GA2

We tried to obtain good results from genetic algorithms so that we could have a fair comparison.

Hence, we tested another genetic algorithm on all the problems. This genetic algorithm, GA2, uses

a binary representation, and employs the same selection scheme as in GAl, a crossover operator in

which a new gene inherits from the first-selected parent with the probability of 0.95 and from the

other 0.05, and the same mutation scheme as in GAL When mutation, the value of a gene is

changed from I to 0 or vice verse. The resolution of each variable is set to .0001. Same as GAl,

GA2 was also imported from De Jong and we kept all the original parameter settings.

4 RESULTS AND DISCUSSION

4.1 Problems

In the experiments we used five problems presented in (De Jong, 1975; Goldberg, 1989) that have

been developed to test the performance of genetic algorithms. These problems test the ability of an

algorithm to find a solution for different classes of optimization tasks (simple and complex,

continuos and discrete, with few and many variables, with noise and without noise).

All three algorithms mentioned above were applied to seeking the function maximum, as well as

the function minimum. In the case of the function maximum, a fitness of an individual (i.e., a

vector of variable values) is defined as its corresponding function value. In the case of the function

minimum, the fitness of an individual is also defmed as its corresponding function value.

However, for functions which can take on negative values, we added a fixed positive number to an

8

individual's function value to make sure the positiveness of its fitness value. This is because we

used a roulette-wheel based selection scheme.

In this report, we present the results only from seeking the function maximum (the results from

seeking the function minimum are very similar). Each algorithm was run lO times on each problem

and the average is reported in the following tables and figures.

4.2 Results

To evaluate performance, we defined the concept of S-close number, that is, the number of

generations in the evolution process at which the best individual obtained so far is S distant to the

goal (function maximum or function maximum). Here we used as S the percentage of this distance

over the whole range of function values. Another comparison is speed-up ratio which is defined as

the ratio of two generation numbers when two algorithms are equally distant to the goal.

Problem 1: Testing the ability to find a solution for a simple function of three continuos arguments.

3 2
f1(Xj) =I, X; , - 5.12::; Xi::; 5.12

1

Maximum: 78.643; Minimum: 0

Figure 1. Inverted two-dimensional graph of function fi

(Reprinted with the permission of Kenneth De Jong)

Figure 2 presents results from applying GAl, GA2 and LEM to function fi (the case of seeking

function maximum). The results show that LEM's solution approached the maximum much faster

than GAl and GA2, specifically, within about 20 generations; while solutions from GAl and GA2

were not close to the maximum even at 500th generation.

9

80

75

70

ill
~ 65
f

60

55

50

..... ("'J ~ «> (D (J) 	 .,... t\I "It (I) ,.... (J) 0 (\I "It 10 r-.. It> <::) N ('I'J to (oQ (D C> .,... M .q- {.O (D (J)
..-,... C\I C\I N C\I C\l (\I (I') C"l C") ("'J (!) C"l .,.. "'II" ...,. ..,. "It ''It "It

..
i.

I

..-,... (") 0> 1O t-... ('f) 0:11.(').,... MenlO <0-,...,(1') a;~ co> en 1O ,....C"l en lO r...

Number of Generations

Figure 2. The evolution process within 500 generations for function fl.

Table 3 presents o-close numbers for different values of 0 and algorithms. For example, to achieve

0=0.038, lEM needed 327 generations, while GAl and GA2 were not o-close at 1O,00Oth

generation.

0 0.038% 0.1% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%
GAl UNS UNS UNS 420 212 120 96 74
GA2 UNS UNS 1386 186 95 55 53 33
LEM 327 125 16 15 14 10 8 8

"UNS" means unsuccessful within 10,000 generations (200,000 births)

Table 3. The number of generations for the fitness value become o-close to the goal.

Table 4 presents LEM speed-ups over GAl and GA2 for different values of o. One can see, for

example, that for 0 equal 0.1 %, the speed-up ofLEM over GAl and GA2 was more than 80 (i.e.,

GAl and GA2 did not produce a 0 -close solution after 80 times more generations than LEM). For

o equal I %, GAl solution was not 0 -close even after 625 times more generations than LEM.

LEM's speed-up for different 0
0 0.038% 0.1% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%

LEMIGAI »30.6* » 80* » 625* 28 15.14 12 12 9.25

LEMJGA2 »30.6 » 80 86 12.4 6.79 5.5 6.6 4

* GAl and GA2 solutions have not become o-close to the maximum within 10 000 generations;
"» N" means that if the solution was o-close at 10 OOOth generation, the speedup would be N.

Table 4. LEM's speed-up over GAl and GA2 for different values of o.

Problem 2: Testing the ability to find a solution of a complex function.

10

.1

,.,
t

Maximum: 3905.926. Minimum: 0

Figure 3. Inverted two-dimensional graph of 12
(Reprinted with permission of Kenneth De Jong)

4100

3900
 au •••• • ••• , ••••••• , •,........••••• ,.,._ •••
9 .. _ _,. .. _~ .. ' ... ~"--"-.
3700 ,,,...___ ... ___________________________ __________ _

3500

~ 3300
.su:: 3100 __RGA1

2900
------ GA2

2700 	 -- 1~
2500

~ 	 ~ ~ N ~ ~ ~ 0 ~ v _ ~ ~ ~ ~ W M 0 ~ ~ ~ m ~ N ~ ~ M 0 ~ ~
~ M ~ ~ ~ 0 N M ~ ~ ~ 0 N ~ ~ ~ ~ 0 N v ~ ~ ~ 0 N ~ W ~ ~ _ 	 - _ _ _ _ N N N N N N m v v v~ ~ ~ ~ ~ ~ ~ ~

Number of Generations

Figure 4. The evolution process within 500 generations for function 12 ,

0 0.096 0.1 % 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%
GAl UNS UNS UNS UNS UNS UNS UNS UNS

GA2 UNS UNS 120 56 56 34 33 28

LEM 452 152 17 14 10 8 8 8

HUNS" means unsuccessful within 10,000 generations (200,000 births)

Table 5. The number of generations for the fitness value become o-close to the goaL

LEM Speed-up for different 0
8 0.096% 0.1% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0%

LEMlGA1 »22.1 »66 »588 »714 »1000 »1250 »1250 »1250

LEMlGA2 »22.1 »66 7 4 5.6 4.25 4.125 3.5

* GAl and GA2 solutions have not become 8-close to the maximum within 10 000 generations;
"» N" means that if the solution was 8-c1ose at 10 OOOth generation, the speedup would be N.

Table 6. LEM's speed-up over GAl and GA2 for different values of 0

Problem 3: Testing the ability to find a solution for a non-differentiable function h

11

5
I](X j) = Iinteger(xJ, - 5.12 S; xi S; 5.12

1

Maximum: 25; Minimum: -30

Figure 5. Inverted two-dimensional graph of 13

(Reprinted with pennission of Kenneth De Jong)

25

23
___GA1

21
_.---- GA2
--LEM1

~ 19 ~
~ 17 J •• •__ J-" -- ••••••M. "._•.-_ ..•._.M."•._.....••. -_...~........"•.•._•.••.•

15

13 ,.."...._..1- ---- ... - - --- -,.--- -- _ ... __ ... - ---------- -- - ----

.... (") 0> II') ("l OJ 1,1') ..- ,... Ii:") Q) If) ..,.. ,.... In C1'1 U'J (") Ql 1.0 M OJ Ul ,...,
..- (")'<It U) «10> (\.1"0' lD Ch ON"" lOt-- (D ON CO) U')COCD O M <It (OQ) OJ

.... -,...--NIN(\lNIN(\/M;nt"')("}MC?..,."IIf'..,...,."If~V

Number of Generations

Figure 6. The evolution process within 500 generations for function h.

As Figure 6 shows, for Problem 3 (a non-differentiable function), LEM has very significantly

outperformed GAl and GA2. Its solution reached maximum after about 50 generations, while

GAl's and GA2's solutions were far from the maximum even after 500 generations (Table 7).

0 .000% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

GAl UNS UNS UNS UNS UNS UNS UNS UNS UNS

GA2 UNS UNS UNS UNS UNS UNS UNS UNS UNS

LEM 58 58 45 45 45 44 44 44 42

HUNS" means unsuccessful within 10,000 generations (200,000 births)

Table 7. The number of generations for the fitness value become o-close to the goal.

12

LEM Speed-up for Different 3
3 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

GAlILEM »172 »172 »222 »222 »222 »227 »227 »227 »238

GA2ILEM »172 »172 »222 »222 »222 »227 »227 »227 »238

* GAl and GA2 solutions have not become 3-close to the maximum within 10 000 generations;
H» N" means that if the solution was 3-c1ose at 10 OOOth generation, the speedup would be N.

Table 8. LEM's speed-up over GAl and GA2 for different values of 3

Problem 4: Testing the ability to find a solution of a function of a large number of continuous

variables (30) and with added Gaussian noise.

30
14 (Xi) =Lui + Gauss(O,l), -1.28 ::; Xj ::; 1.28

1

Maximum: approximately 1248.225. Minimum: 0

Figure 7. Inverted, two-dimensional graph of 14

(Reprinted with permission of Kenneth De Jong)

1260

1160

1060

960

III 860
S 760u:

660

560

460

360

~ ~ ~ 0 ~ ~ 0 ~ ~ ~ = ~ ~ M 0 ~ _ ~ N a ~ M 0 ~m v w ~
_ ~ ~ ~ ~ Q N ~ ~ ~ ~ 0 N ~ ~ ~ ~ 0 ~ ~ ~ ~ m 0 N ~ m ~ 0

~ _ _ _ _ _ ~ ~ ~ ~ N N M ~ M M M M ~ ~ • v v ~

Number 01 Generations

Figure 8. The evolution process within 500 generations for function 14'

As one can see in Figure 8, for a problem with many variables plus noise, LEM very significantly

outperformed GAl and GA2.

13

0 1.006 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0
GAl UNS UNS UNS UNS UNS UNS UNS UNS

GA2 UNS UNS UNS UNS UNS UNS UNS UNS
LEM 491 151 132 120 116 110 98 97

"UNS" means unsuccessful within 10,000 generations (200,000 births)

Table 9. The number of generations for the fitness value become o-close to the goal.

LEM Speed-up Ratio for Different 0
0 1.006% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0%

GA1ILEM »20.37 »66.23 »75.76 »83.33 »86.21 »90.91 »102.0 »103.1

GA2ILEM »20.37 »66.23 »75.76 »83.33 »86.21 »90.91 »102.0 »103.1

* GAl and GA2 solutions have not become o-close to the maximum within 10000 generations;
"» N" means that if the solution was O-close at 10 OOOth generation, the speedup would be N.

Table 10. LEM's speed-up over GAl and GA2 for different values of 0

Problem 5: Testing the ability to find a solution of a multi-mode function.

25 1
f.5(x.) =0.002 + I. 2 ,-65.536 S; Xi S; 65.536

l • 1 6
J j+ L(Xi -aij)

i=l

Maximum: approximately 1.0. Minimum: approximately 0.002

Figure 9. Inverted two-dimensional graph of 15

(Reprinted with permission of Kenneth De Jong)

14

1.1

0.9

0.8

0.7

~ 0.6
cif 0.5

0.4
....1 ... "'..._ .. GA2. r---GA1 I0.3

-lEMl
0.2

0.1 • r--~---
O~~~~~-p~~~~~~~~~~~~~~~~~~

_ ~ M 0 ~ ~ ~ M ~ ~ ...- ~ ~ ~ ~ ...- ~ ~ ~ ~ ~ ~ M W m _ ~ ~ m m ...- ~

..... (1')..,.(0«:10> T-N"",q:; mON"'J'1l') COON MU')(()COO<o-«')«:r(Q com
_...-- ~ N N N N NC\! CO) (0') M C"'.I r') (")""'""If' "If'''''''''''''.

Number of Generations

Figure 10. The evolution process within 500 generations for function /5'

As shown in Figure 10, for problem 5, GAl (which uses a multi-valued representation)

performed very poorly. At an early stage of evolution, LEM (which employs GAl for the genetic

algorithm phase) did worse than GA2 (which uses a binary representation and can make fmer

adjustments). After 500 generations, however, LEM reached the maximum, while GA2 was still

6.7% from maximum and remained so within 10,000 generations.

6 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0%
GAl UNS UNS UNS UNS UNS UNS UNS UNS

GA2 UNS UNS UNS UNS UNS UNS UNS 214

LEM 465 462 460 460 457 457 457 457

HUNS" means unsuccessful within 10,000 generations (200,000 births)

Table 11. The number of generations for the fitness value become 6-close to the goal.

LEM's speed-up ratio for different 6
6 0.0% 1.0% 2.0% 3.0% 4.0% 5.0% 6.0% 7.0%

GA1ILEM »21.5] »21.66 »21.7 »21.7 »22 »22 »22 »22

GA2ILEM »21.51 »21.66 »21.74 »21.74 »21.88 »21.88 »21.88 »0.47

* GAl and GA2 solutions have not become o-c1ose to the maximum within 10 000 generations;
"» N" means that ifthe solution was O-c1ose at 10 OOOth generation, the speedup would be N.

Table 12. LEM's speed-up over GAl and GA2 for different values of 0

4.3 Discussion

In all experiments, LEM clearly outperformed GAl and GA2. In some cases, in particular for

Problem 3 (a non-differentiable function) , and Problem 4 (many variables plus noise), LEM's

performance was by far better than GAl and GA2. These algorithms could not reach the solution

15

even after 10,000 generations, while LEM reached it in about 50 generations for D, and 200

generations, for f4. GA2, which uses a binary representation, as compared to GAl, which uses a

multi-valued representation, is capable of making fmer adjustments when doing crossover and

mutation, and often performs better. Therefore, it can more quickly reach the global optimum if the

function surface is relatively smooth. On the other hand, GAl is more likely to generate new

individuals which are very different from their parents. This seems, for example, to explain why,

in the case of function f5 (that require small departures from parents), GA2 did significantly better

than GAl, and, at the early stages of evolution, better than the current LEM (which employs only

GAl for the genetic algorithm mode). At the later evolution stages, LEM was, however, able to

reach the maximum, while GA2 could not. It is very likely that LEM built on GA2 would have

better performance than the current version (built on GAl) for the above testing problems.

Experiments seeking the function minimum were also conducted and the same patterns of results

were acquired.

We noticed that many parameters are adjustable in LEM. Clearly, a systematic experiments for

examining their effects on evolution is very expensive. Indeed, we did try changes to some

parameters such as gen-length, learn-length, mutation rate in GAl, discretization intervals and so

on and obtained similar results. We did not attempted to find the best combination of these

parameters. Actually such a combination is another optimization problem.

5 RELATED WORK

The relationship between learning and evolution is a long-studied problem and is still very

intriguing. The view of the well-known Lamarckian hypothesis on evolution is that traits acquired

during the lifetime of an organism can be transmitted genetically to the organism's offspring. These

traits are typically physical. What is learned during an organism's lifetime also can be thought of as

a type of acquired trait and so can, in a Lamarckian view, be passed genetically and directly to its

offspring. Unfortunately, this is not the case in reality. A better explanation of the effect of learning

on evolution is the Baldwin effect which views the effect of learning of evolution as being indirect,

during which individuals best able to learn to survive have the most offspring thus increasing the

frequency of the genes responsible for learning, and further leading to, via selection, a genetic

coding of a learned trait (Baldwin, 1896). No matter whether these two hypotheses are true in

nature, they provide some insights into this learning and evolution issue and we can test them on

computers.

16

Hinton and Nowlan (1987) thought their work confmned the Baldwin effect. In their experiments,

an individual (an neural network) with high learning ability is more likely to pass indirectly their

genetic information to the next generation. This passing is indirect, which is unlike LEM which

extracts "reasons" from a pool of HIGH and LOW individuals and directly pass extracted

information to offspring. Thus, LEM is more Lamarckian in flavor. However, it should be noted

that LEM pass extracted patterns in a probabilistic way and offspring do not copy their parents and

may be quite different. Unlike the Baldwin effect, LEM does not focus on the learning ability of an

individual, but on eliciting the reasons why a set of good individuals are good and hence it seems

like LEM uses a meta-level mechanism to guide evolution.

Similarly, using their Evolutionary Reinforcement Learning model to study the Baldwin effect,

Ackley and Littman (1992) incorporated reinforcement learning into an evolutionary framework

and obtained many interesting results. One of them is that learning of an agent seemed to be

important for keeping individuals (agents) alive.

SAMUEL (Grefenstette 1991) is a genetic learning system designed for sequential decision

problems in a multi-agent environment. A strategy (i.e., a set of if-then control rules) is applied to

a given world state and then some actions are pertormed. The modification to the rules in a strategy

is triggered either directly by the strategy's interaction with the environment or indirectly by the

strength of the rules within the strategy. The changes of a strategy are later passed to its offspring.

Hence, these rule modification operators are more Lamarckian in flavor than Hinton, Ackley and

others' work in terms of its direct passing changes to offspring. Compared to LEM, SAMUEL's

Lamarckian feature is a localized operation because the modification is based on a single strategy's

previous behavior while LEM extracts patterns from a set of individuals using an advanced

symbolic learning system, and then directly employs the learned patterns to generate some

individuals for the new generation. Thus, the Lamarckian operation in LEM is global. It is

speculated that LEM should have better pertormance than SAMUEL because acquired traits based

on many individuals are more reliable. Nevertheless, SAMUEL may have more explorative

power. To avoid possible low explorative power, LEM include a genetic algorithm.

6 CONCLUSION

In order to avoid the potential problems of low efficiency and locally optimal solution, an idea of a

Lamarckian evolution model is applied to genetic evolution. It incorporates a symbolic learning

method used for discovering reasons why some individuals in an evolution process are better than

others. The learned knowledge is used for guiding generation of individuals for new generations.

17

Expecting the possible limitations of the goodness of those individuals used for learning and hence

the low quality of learned knowledge, this model stills adopts the genetic algorithm for exploring

diversified individuals in case of little improvement due to Lamarckian evolution. Application of

this model to function optimization produced significantly better results than traditional genetic

algorithms in terms of evolution speed and reaching a goal.

There are many interesting issues that are worth further study. For instance, we notice that there

are many parameters such as learn-length, gen-length, HIGH, LOW, thresholds and even the

included learning method in the LEM algorithm need to be set before an evolution. Finding a good

combination of them is problem specific and difficult. One solution is automating this by letting

them be self-adaptable, i.e., putting an internal mechanism inside LEM which adjusts parameters

during an evolution process. Testing on these problems other more powerful genetic algorithms

and inclusion of them in LEM will give us a better insight into LEM's performance. It is highly

likely that LEM built on more powerful GAs such as GA2 would have better performance than the

current version (LEM plus GAl) for the above testing problems. Application of LEM, in addition

to function optimization, to different types problems will lead to a better understanding to what

problems LEM is effective and how. A possible work is to apply LEM to evolution of "artificial

brain" (de Garis 1996) in which evolution speed and the ability of reaching of a goal are also very

important (actually we already got initial promising results). One theoretical issue is to investigate

the LEM methodology further in order to understand its theoretical aspects, limits, and to develop

more advanced versions.

REFERENCES

Ackley, D. and Littman, M. "Interactions between learning and evolution," In C.G. Langton, C.
Taylor, J.D. Farmer, and S. Rasmussen (eds), Artificial Life II, Addison-Wesley, 1992.

Baldwin, J.M. "A new factor in evolution," American Naturalist, vol 30, pp.441-451, 536-553,
1896.

Clark, P. and Niblett, T. The CN2 induction algorithm. Machine Learning Journal, 3(4):261--283,
1989.

de Garis, Hugo, "CAM-BRAIN: The Evolutionary Engineering of a Billion Neuron Artificial
Brain by 200 1 Which GrowslEvolve at Electronic Speeds Inside a Cellular Automata Machine
(CAM)", Lecture Notes in Computer Science -Towards Evolvable Hardware, Vol. 1062, pp. 76
98, Springer-Verlag, 1996.

De Jong, K. "Genetic Algorithms: Theory and Practice," To be published, 1998.

18

Goldberg, D., "Genetic Algorithms in Search, Optimization & machine Learning", Addison
Wesley Publishing Company, 1989.

Grefenstette, J. "Lamarckian Learning in Multi-agent Environment," Proceedings of the Fourth
International Conference on Genetic Algorithms, R. Belew and L. Booker (Eds.), San Mateo,
GA: Morgan Kaufmann, pp. 303-310, 1991.

Hinton. G.E., and Nowlan, S.J. "How learning can fuide evolution," Complex Systems 1: 495
502, 1987.

Michalski, R S., "On the Quasi-Minimal Solution of the General Covering Problem," Proceedings
of the V International Symposium on Information Processing (FCIF 69), Vol. A3 (Switching
Circuits), pp. 125-128., Yugoslavia, Bled, October 8-11, 1969.

Michalski, RS., Mozetic, I., Hong, J., and Lavrac, N., "The Multipurpose Incremental Learning
System AQ15 and its Testing Application to Three Medical Domains," Proceedings of the Fifth
National Conference on Artificial Intelligence, August, Philadelphia, PA., pp. 1041-1045, 1986.

Quinlan, J.R, "C4.5: Programs for Machine Learning", Morgan Kaufmann, Los Altos,
California, 1993.

