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DISCOVERING MULTIDIMENSIONAL PATTERNS
IN LARGE DATASETSUSING KNOWLEDGE SCOUTS

Abstract

This paper presents the concept &hawledge scougin intelligent agent that operates within
an inductive databaséo automatically search for target knowledge. A knowledge scout is
defined by a script ikknowledge generation languadfésL-1, a high-level query language
that integrates various data mining and machine learning progrimstandard data and
knowledge management operations in the inductive database (a shstemtégrates a
database with inductive inference capabilities). In searchingafget knowledge (e.g.,
strong patterns in data, or specific knowledge required by a usknoveledge scout is
guided by a model of the user’s interests. Discovered pattermepaesented in two forms,
association rules in thattributional calculus(a description language with an expressive
power between propositional and predicate calculus), asgbciation graphs which
graphically represent relations expressed by the rules. Tbeiags graphs can depict
simply and understandably multi-argument relationships among diffeoecepts, with an
indication of the relative strength of each interdependency, as redabuyrconfidence
parameters in the rules. Presented ideas are illustratedidbgxperimental knowledge
scouts, one that seeks relations among lifestyles, environmentali@esndgymptoms and
diseases in a large medical database, and another that sdarchatterns of children’s
behavior in the National Youth Survey database. The preliminary resditsate a high
potential utility of the presented methodology for many data mining applications.

Keywords. Data Mining, Knowledge Discovery, Knowledge Scouts, Inductive
Databases, Knowledge Visualization, Knowledge Generation Language, Associati
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1 INTRODUCTION

When applying data mining tools to a large database, a user oftém ¢c@sduct many trials
and to backtrack various operations before a desired pattern is foungrdtess can be
quite time-consuming, and makes it difficult to analyze largebdats in which many
different patterns can be revealed. Another difficulty concernpriftdem of specifying the
target knowledgethat is, the type of patterns that are likely to be of intex@st user.

Obviously, one cannot define such patterns too precisely, as the whole pofrfloseearch
is to find something new and unexpected. In addition, the target knowlexjgehange over
time, as it depends on the user’'s prior knowledge and current goalsméhiss that a
mechanism is needed for acquiring and monitoring the profile of thés us&rests, and
applying it in the search for target knowledge.

To address the problems mentioned above, the ideaknbwledge scouis proposed. A
knowledge scout is an intelligent agent that automatically appke®mus data mining
operators in search of target knowledge in a large database, sahide local or distributed.
A knowledge scout operates within @amductive databasewhich is an integration of a
conventional database with inductive inference capabilities. Theréfeiae we present a
method for constructing knowledge scouts, let us briefly discuss theptoofcan inductive
database.

In contrast to a conventional database, an inductive database can gunstwes that require
the synthesis oplausibleknowledge that is, knowledge that is not directly or deductively
obtainable from the database, but can be hypothesized through inductivecafereother
forms of uncertain inference. Such knowledge may be in the form of hgesthbout future
datapoints, likely consequences from the data, generalized data sesyrearerging global
patterns, exceptions from hypothesized patterns, suspected errors gikd im
inconsistencies, hypothetical plans synthesized from the data, atha(8ki, 1999). A
general diagram of an inductive database is presented in Figure 1.
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Figure 1 A general diagram of an inductive database.

The target knowledge for a scout is defined abstractly by spegiproperties of pieces of
knowledge that are likely to be of interest to the given user (orcaispegroup of users). An
example of target knowledge can be data descriptions or patterhsveahe highest quality
according to some description quality measure (e.g., Kaufman and Michalski, 1999).

In order to synthesize target knowledge, a knowledge scout may exengtsequences of
different kinds of operations involving data, intermediate results, and backgrounkégew
The latter is contained in the Knowledge Base, and may include dawoastraints, the
user’'s interests, and other relevant past knowledge. At every stéipisoprocess, an
application of one operator may depend on the results of previous operatwsuser’s
interests and past relevant knowledge are partially defined & ol partially constructed
and updated during the scout’s lifetime. To implement such capahibie needs to define
one or more knowledge representation systems for expressing &gdhesmowledge, and a
knowledge generation language for defining knowledge scouts and targele#gewor
target patterns). The following three sections address thasesissSection 2 describes a
knowledge representation system based on attributional rules, SectimscBbes a
representation system based on association graphs, and Section 4 de§&lritie®it initial
knowledge generation language.

2 ATTRIBUTIONAL RULESETS

The language in which patterns or knowledge of interest are to be expressahigmgeto the
ability to discover them. If the language is too restricted,epadt will have complex
expressions, and this in turn will make their discovery difficult. If the langisag® rich, the
pattern search space may become computationally prohibitive. In additionmportant
practical criterion is that patterns should be easy to understandtarmtet. Guided by such
considerations, we emplattributional calculus rulegor expressing patterns or knowledge
of interest (Michalski, 1999).

The attributional calculus is an extension of propositional calculusvhich literals
(propositions and their negations) are replacedtbtrjbutional conditions Such conditions
represent relational statements that bind one or more attribites wet of their values or
other attributes. Each attribute has a domain and a type, the fdefireng its set of legal
values, and the latter characterizing an ordering relationship atmemglues. Attributional
calculus is based on variable-valued logic system VL1 (Michalski, 1975).

An attributional condition is in the fornfjl. rel R], whereL (left sidg is an attribute, or one
or more attributes with the same domain, joined by “&” or “v’ (thdimks are called
internal conjunctioranddisjunction respectively)R (right sidg is a value or a list of values
joined by the symbol “v” or the word “or” (callemhternal disjunction, a pair of values

“won

joined by “..” (calledrangé, or an attribute with the same domain as the attribute(s) amd



rel is a relational symbol from the set {#,>, >, <,<}. A condition [L rel R] istrue (or
satisfied, if expressiorL is in relationrel to R. For illustration, the following are examples
and explanations of attributional conditions. Note that attributional consliare easy to
interpret and translate directly to corresponding natural language expressions.

[blood-pressure = normal] (the blood pressure of the patient is normal)
[income = 50K..80K] (the income is between 50K and 80K)
[color = red v blue] (the color is red or blue)
[width & length > depth] (the width and length are both greater than the depth)

Attributional rules used in this study are in the fowaecision> if <conditions>, where
<decision> is a single attributional condition, ar@onditions> is a conjunction of one or
more attributional conditions. These rules are a special casepHrdmaeterized association
rules (PARS), described in (Michalski, 1989). The association rules presen{égrawal,
Imielinski and Swami, 1993) could be viewed as a specialized form of PARs.

Such attributional rules can be learned from a set of traininmm@ea using an operator
based on the AQ-18 rule learning program (Kaufman and Michalski, 1999). Thedeates
and their constituent conditions are output with annotations charactet@imgmportance,
such assupport disparity, completenesand consistencyor each condition in the rule and
for the rule as a whole (the if-part). The support, denotep, s/ defined as the number of
positive training examples that satisfy the given condition(s). digparity, denoted by, is
defined as the number of negative training examples that stitésfyiven condition(s). The
completeness, denotewmpl is defined ap / P, whereP is the total number of training
examples in the positive class. The consistency, decoteglis defined asp(/ p +n). The
program also generates other annotations, such as exceptions, amhitgigyality, which
are described elsewhere (e.g., Kaufman and Michalski, 1999).

The following example illustrates one of the attributional rulesegated by a knowledge
scout seeking demographic patterns in a World Factbook databasefrealsat simplified
form). For this experiment, countries of the world were divided inigsels representing
different fertility rate ranges. Figure 2 presents a ruleatherizing 16 of the 42 countries
with the smallest fertility rates (no more than 2 per woman).



Fertility < 2 per woman if:

p n compl cons

[Birth Rate =10..20 per 1000 peogdle 42 20 100% 68%
[Religion isR. Catholicor Orthodoxor Anglicanor Shintq 24 31 57%  44%
[Infant Mortality Rate< 40 per 1000 babiés 41 54 98%  43%
[Population Growth Rate< 4% 32 56 76% 36%
[Literacy> 70%)] 35 71 83% 33%
[Life Expectancy =60..80 yeark 41 92 98%  31%
[Death Rate 5..15 per 1000 peogdle 42 102 100% 29%
[Net Migration Rate> -10 per 1000 people 42 140 100% 23%
Rule Total (all conditions): 16 O 38%  100%

Figure 2. Example of an annotated rule in the attributional calculus.

3  ASSOCIATION GRAPHS

The attributional rules provide details about relationships amonbuaési or concepts. To
illustrate such relations graphically and with less detaildexeloped a visualization method
called association graphs In an association graph, nodes represent attributes or concepts,
and directed weighted links indicate relationships among nodes. Thertthekénk, the
stronger the relationship (based on the consistency of the attributmmdition). Links are
annotated by symbols indicating the type of relationship between cotnecties. A
monotonically growing (decreasing) functional relationship between nedsdicated by the
symbol “+” (“=*). A functional relationship that has its maximumigimum) in the middle
of the range of the independent attribute is indicated by the symb@lv®). Links that
represent relationships that do not follow to any of the above typésftanalabeled. These
symbols are also used when the relationship only approximates one of tioesklp classes
defined above.

A rule relating several attributional conditions to another conditiorpsesented by linking
the involved conditions with an arc. For example, Figure 3 shows an assoayraph
representing the rule from Figure 2.
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Figure 3. An association graph representing the attributional rule from Figure 2.

A somewhat similar approach to knowledge visualization is used ITCHEMENTINE

system, a data mining toolkit commercially developed by Integysiesis, Ltd. A major
difference between the association graphs and the representations Gd&=MENTINE is

that the former are able to represent multi-argument relatsishot just binary
relationships.

Another difference is that the association graphs are represestatt a higher level of
abstraction, because their nodes represent attributes, rather thadusddattribute values,
and their links can represent sets of composite conditions employgdhatenal calculus,
rather than only attribute-value conditions.

4 A LANGUAGE FOR DEFINING KNOWLEDGE SCOUTS: KGL-1

As mentioned above, knowledge scouts are defined by creating scriptknowledge
generation language. Below is a brief description of our firsgtimerof such a language,
called KGL-1 (Kaufman and Michalski, 1998). KGL-1 has been designedditgdo the
following requirements:

1. The language integrates database operators, knowledge base opanatdasowledge
generation operators in a single representational system.
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Inductive inference and any other knowledge generating programs tategrathe
inductive database can be invoked by individual KGL-1 operators.

3. Results from any KGL-1 operator can be used as inputs to any operator forthdyiare
semantically applicable.

4. Parameters to be used in running any knowledge generating progrdre specified as
arguments of the corresponding KGL-1 operator.

5. KGL-1 statements can refer to various properties of the dathendatabase (For
example, “If there are 10% new examples of class A in thebasea invoke a rule
learning operator”; “Determine the percentage of missing values in the databas

6. KGL-1 statements can refer to the properties of generated knevedye background
knowledge, in particular, the name, the type and the domain of attritheesgtributional
rules and their components, the groups of rules (rulesets), all comparfethe
annotations of the rules, etc. (For example, “Select nominal aésilwith five or fewer
values in their domain, and generate for them decision rules usimgnadirical attributes
as independent variables,” “If the completeness of the firstimuderuleset for a given
class is at least 95%, remove all remaining rules from tlesetyl or “Determine all
conditions in a ruleset for a given class whose consistencyve &@9% and support is
between 30 and 50.”)

7. Looping and branching are implemented as in conventional programming languages.

8. KGL-1 has capabilities for defining data management, knowledge maesag and
knowledge generation tasks that may be involved in the extraction, nam@pul
generation and displaying of any data or knowledge in the systemex&mple, select a
target dataset from a database, generate an attributionattriibes satisfies certain
criteria, and display and/or print it under given conditions).

KGL-1 has been patrtially implemented in the INLEN system ([Mdiski and Kaufman,

1998). To illustrate how KGL-1 can be used for building knowledge scoutseHguesents
a simple KGL-1 script for creating a knowledge base that incluadaeng other things, the
attributional rule shown in Figure 2, and for analyzing that knowledge.n@mts are

italicized and bracketed.

The log file output from the above script is shown in Figure 5. Tle fiart of the output
shows the number of strong rules, as determined by three critetau&: the Fertility
ruleset was found too complex (having more than 150 conditions), a learocesprwas

repeated using only the four most relevant independent attributes, eamidet! by the

operator SELECT. The last part of the output presents numbers ofi@osdiit the ruleset
for Life Expectancy that exceed different thresholds regartieg £ nratio (support divided

by disparity, assuming that the disparity is not zero; when digpsuziero, all thresholds are
satisfied). The last three lines indicate one consistent conditidhe ruleset for Life

Expectancy.

As shown above, KGL-1 provides a unique combination of features, which isesenpin
other languages for automated knowledge discovery. Specificallypjtogts the use of an
attributional calculus representation, the employment of diverse symlealrning and



inference methods, a tight coupling with the annotated rulesets, arabitie to build
advanced knowledge scouts. Most existing languages for data exploration use d®#&3etbg-
approach. One exception is M-SQL, which extends the SQL data quenalge by adding
to it the ability to query for certain types of rules and to invokassociation rule generating
operator (Imielinski, Virmani, and Abdulghani, 1996). KGL-1 differs frorSKL in that it

is able to define complex data mining plans that involve many ditféypes of knowledge
generation operators, and more closely resembles a programmingdanthan a query

language.

open PEOPLE
do CHAR(decision=all, pfile=peoplel.Irn)

strongPGrulesl = #rules(PGR, compl >= 60)

strongPGrules2 = #rules(PGR, supp >= 25)

strongPGrules3 = #rules(PGR,
num_conds(cons >= 50 and supp > 10) > 2)
print “Number of strong PGR rules:
Type 1 =", strongPGrulesl, *,
Type 2 =*“, strongPGrules2, “,
Type 3 =“, strongPGrules3
if #conditions(Fert) > 150

begin
do SELECT(attributes, decision=Fert,
thresh=4, out=PEOPLEZ2, criterion=max)
do CHAR(pfile=peoplel.Irn, decision=Fert)
then

{Select PEOPLE database}
{Characterize concepts
representing single values
of all attributes, using
parameters specified in file
peoplel.lrn}

{Count rules for Population}
{Growth Rate that satisfy}

{three different conditions}
{for threshold of strength}

{Is Fert ruleset too

complex?}

{If so, find “thresh” best}
{independent attributes,

end {recharacterize}
fori=1t0 6
begin {For each value of i, 1-6,}
print “Number of LE conditions with p/n {count & display number of}
ratio of at least”, i, 11 =", {Life Expectancy conditions}
#conditions(LE, cons >=i/(i+1)) {with consistency ¢ i/(i+1)}
end

Figure 4. A KGL-1 script for defining a knowledge scout exploring a demographic database.

Number of Strong PGR rules: Type 1 =1, Type 2 =1, Type3=7
Selecting best attributes from PEOPLE for concept F ert —

Attributes chosen:

Birth Rate, Predominant Religion, Life Expectancy, Death Rate
Number of LE Conditions with p/n ratio of at least
Number of LE Conditions with p/n ratio of at least
Number of LE Conditions with p/n ratio of at least
Number of LE Conditions with p/n ratio of at least
Number of LE Conditions with p/n ratio of at least
Number of LE Conditions with p/n ratio of at least
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Figure 5. Output from the KGL fragment from Figure 4.

A language that takes a different approach to the acquisition of knowledge ik KQNh et
al. 1994). KQML is viewed as a tool by which intelligent agenty otanmunicate among
themselves and exchange the information needed to complete their indiagksa It is thus
designed to permit queries for individual pieces of knowledge. KGerdiffom KQML in

10



that it focuses more on queries for knowledge that fits a giveraabtmplate (e.g., rules of
a certain degree of strength), and that within the language omaltant to diverse learning
and discovery operators to generate the knowledge base to be used.

The CLEMENTINE system allows a user to specify a plan feeguence of actions by a
simple interface. KGL differs in that the language allowssiecification of branching and
looping conditions that may be based on the knowledge base or on lodgihedssgriables,
and in employing different, more diverse, and in some cases sigtlificaore powerful
knowledge generation operators.

5 STUDY 1: AKNOWLEDGE SCOUT FOR DETERMINING RELATIONSHIPS
IN A MEDICAL DATABASE

Among major means for improving medical decision making and prevensegsds is to

develop more advanced models of the relationships among medical conditions,

manifestations, lifestyles, and therapies. Such models must be tableepresent
multidimensionality of relations, for example, that a confluenceegéml factors may be
needed to develop a given disease. Such relations are difficult torecdpt statistical
correlations or covariances among individual factors.

tomach Ulcer
Rule 7
SS- Rectal Polyps
Rule 4 Rule 6
&)
Asthma “ _
Rule 2 ————
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i 4 0,{4‘ L
D, /l" ""’rﬁ

E \
— S 4"’ 4 ‘
' © >

Years in
Neighborhood

Figure & An association graph linking a group of diseases with patient characteristics
determined from a subset of the ACS Second Cancer Prevention Study database.
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Our first efforts toward building such models involved developing a knowledget that
searches for strong patterns in a database representing faatsdéseases, manifestations
and lifestyles, which the American Cancer Society’s Second €C&neeention Study (CPS-
I1). For our preliminary experiments, we selected a small $ufsecords (73,553 records
from 1.2 million), the subset pertaining to male non-smokers, ages 50a8%. p&tient was
characterized in terms of such attributes as “rotundity” (a iomaif the patient’s height and
weight), the amount of exercise, the number of hours of sleep, theieddesel, the use of
mouthwash, etc. Each record had background information on the respondent| as wel
information on whether or not he had occurrences of any of the 25 types oédiSéaspilot
study involved an application of an inductive rule learning operator to ajener
multidimensional patterns that link factors with individual diseadsny patterns were
generated. Figure 6 presents a collection of interrelated patising aconcept association
graph(Section 3).

This study was preliminary, and should not be taken as new medical kigewlélowever,
these early results show a significant potential of the proposdidodutogy. Generated
models can provide new insights into relationships between diseasifestgls, and assist
doctors in the disease diagnosis and treatment. They can als@as&uwiles to patients for
disease prevention.

6 STUDY 22 AKNOWLEDGE SCOUT FOR DETERMINING PATTERNSIN
PARENT-CHILD DATABASE

This study used the National Youth Survey database (Elliott, 1976). Stdicdentacross the
United States were interviewed along with their parents or athdt guardians. The dataset
contained 1735 records, about 30% of whose approximately 600 attributes rmguorese
responses by the adult, 65% of which represented responses by the sndight eest
represented environmental factors. A knowledge scout was createtitiong a KGL-1
script for generating rules for the 415 discrete-valued (eithernabror linearly ordered)
attributes taken as decision attributes, after having reduced thseddtty invoking an
operator to select the 25 attributes most likely relevant to thisioe attribute, and then
projecting the data accordingly. The KGL program (Figure 7) tledected the strongest
rules (those with a completeness over 80%, or a completeness over @@ gowering over
50 training examples.

begin
fori=0to 414
begin
open SURVEY
do SELVAR(decision=i, out=SURVEY2, thresh=25, cri terion=avg)
do DISCSET(decision=0, scope=1, compile=no)
end
end
open SURVEY2
fori=0to 414
begin
forall rules(i, compl > 80 or (compl > 60 and sup p > 50))
print “decision =", i, “ class = “, class, “ rno =" rno
end
end

12



Figure 7. A KGL-1 program for survey data exploration.

Below is an example of one of many rules generated and citedtemng rule. It describes
the class of responses in which the responding adult said the student det into trouble
with the law. There were 1618 responses in this class, and 65 ingdtgveeclass (adults
who said the student did get into trouble with the law).

Adult says student does not get into trouble with the law if:

p n compl cons
[Student’s frequency of lying about agd per week 1512 52 93% 96%
[Student says stealing over $5Miongorvery wrong 1587 60 99% 96%
[Student hired prostitute in past yeatwice] 1603 63 99%
96%
[Student stole car in past yeatwice 1612 64 99% 96%
Rule Total: 1376 54 85% 96%

The above rule, which is self-explanatory, can be viewed as an atosaeuery to create a
characterization of students that their guardians believe do nottgetouble with the law.
This study shows that the proposed line of research can provide a esefusion of
database technology.

7 SUMMARY AND FUTURE RESEARCH

This paper presented a novel approach in combining advanced learning, anfarehc
representation techniques in order to build knowledge scouts, personajentedigents that

can assist in complex data mining tasks by focusing on the typedtefns that are likely to

be of interest to a given user. These scouts can be applied aégaihductive database, a
system that integrates data and knowledge base technologiesaitttive inference and

discovery.

The use of association graphs provides a visualization of generatngath data and
knowledge that is easy to understand. Similarly, expressinginulles attributional calculus
provides for understandable knowledge that can be annotated with variolgswiigt
describe characteristics of the knowledge. A KGL-1 scriptble ¢ call upon multiple
inference and data exploration operators to create, access and query such knowledge.

The initial version of the KGL-1 language is implemented withinIMieEN system, and is
tightly coupled to its data and knowledge structures. A planned topic for further devetopme
is to create a general version of the language that can bedappliether knowledge
structures, while broadening its expressiveness.

We have alluded to the task of user modeling and updating a profile imeer tFuture
research will explore the topic of adapting techniques of learmdgraintaining patterns
that change over time and applying them to this problem.
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