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ABSTRACT 

 
This paper describes an application of LEM1, a preliminary implementation of Learnable 
Evolution Model (LEM), and two canonical genetic algorithms, GA1 and GA2, to parameter 
estimation in digital signal filter design. LEM1 alternates between two modes of operation: 
Machine Learning mode, which employs AQ-18 rule learning system, and Darwinian Evolution 
mode, which employs genetic algorithm GA2. Machine Learning mode generates hypotheses as 
to what type of individuals in a population represent high fitness solutions. These hypotheses, 
expressed in the form of attributional rules, are used to generate new populations of solutions. 
When the top fitness of a population has not improved sufficiently during one mode, LEM1 
switches to another mode. LEM1 alternates between the two modes until a global termination 
condition is satisfied. In the experiments, LEM-1 significantly outperformed genetic algorithms 
GA1 and GA2. 
 

Keywords: Evolutionary computation, Learnable Evolution Model, Genetic Algorithms, 
Function Optimization, Symbolic Learning, AQ18, Digital Filters.  

 
 

 

 
1 INTRODUCTION 

Parameter estimation problems solved by steepest descent methods require a computation of the 

gradient of the error surface. Computation of the gradient of a multi-modal error surface can, 

however, be extremely computationally intensive for problems with many variables. For some 

spaces derivatives are not defined and gradients cannot be computed at all. To solve such 

complex parameter estimation problems genetic algorithms can be used (Yao, Sethares, 1994). 
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Unlike the steepest-descent approach, genetic algorithms do not require to compute the gradient 

of the error surface. In addition, due to their inherent stochastic nature, genetic algorithms are 

less susceptible to settling on a local minimum.  

A major difficulty with genetic algorithms is that they are computationally inefficient because 

they conduct a stochastic  trial and error process.  A new approach is offered by the Learnable 

Evolution Model (LEM), which was recently introduced by Michalski (1998, 1999). LEM 

combines machine learning with evolutionary computation in a novel way, and appears to 

produce a significant speed-up of evolutionary processes over traditional evolutionary 

computation algorithms. 

In Machine Learning mode, LEM employs a learning system that generates descriptions that 

differentiate high performing and low performing individuals in the population.  Machine 

Learning mode can use different machine learning methods. The first system implementing the 

LEM approach, LEM1,  applied the AQ15c symbolic learning method (Michalski, 1973; 

Michalski et al., 86; Wnek et al, 1996). LEM1 and two evolutionary computation algorithms, 

GA1 and GA2, were applied to the De Jong’s problem set (De Jong, 1975) and their inverse 

(Michalski, 1998, Michalski and Zhang, 1999; Michalski, 1999). In these experiments, LEM1 

significantly outperformed  GA1 and GA2. 

This paper describes an improved version of LEM1 (which uses AQ18 rather than AQ15c 

learning program; see Michalski and Kaufman, 1999), and applies it to a different class 

problems, specifically, to parameter estimation in digital filter design. In the experiments, LEM1 

strongly outperformed the genetic algorithms GA1 and GA2. 

 

2 BRIEF DESCRIPTION OF LEM1, GA1 AND GA2  

The LEM method works by alternating between Darwinian Learning mode and Machine 

Learning mode (the duoLEM version), or works solely in Machine Learning mode (the uniLEM 

version). In this study we experimented with duoLEM version. In this version, a switch from one 

mode to another is made when the fitness of the population is not improving sufficiently for a 

certain number of generations.   

The LEM method is defined as follows (Michalski, 1998, 1999):  

1. Randomly, or according to certain prior rules reflecting domain knowledge, generate the 

starting population of solutions (in the case of parameter estimation problems, this 

population is a starting set of parameter values). 

2. Execute Darwinian Evolution mode (using some form of selection, crossover and 

mutation operators), as long as the best solution in a sequence of dar-probe  iterations is 
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better by the dar-threshold than the best solution found in previous generations. 

3. Execute Machine Learning mode  (using a machine learning method) 

(a) Determine HIGH (high-performance) and LOW (low-performance) solutions in the 

current population, according to the fitness function defined for a given task or 

problem.  

(b) Apply machine learning method for characterizing differences between HIGH and 

LOW solutions.  

(c) Generate a new population of solutions by replacing not-HIGH individuals by those 

satisfying the learned description of HIGH solutions; the selection of new solutions 

among those satisfying the description is random or according to the predefined 

selection rules (a simple variant of the LEM method).  

(d) Go to step (a), and then continue Machine Learning mode as long as the best solution 

in a sequence of learn-length  iterations is better by the learn-threshold than the 

previously found best solution.  

4. Switch to (2), and repeat the process. Continue switching between mode (2) and (3) until 

the termination condition is met (the generated solution satisfactory, or the allocated 

computation resources are exhausted). 

In the LEM1 system, the step 3(b) is executed by supplying HIGH and LOW fitness individuals 

to an AQ-type learning system. In our experiments, we used AQ18 system (Kaufman and 

Michalski, 1999), which hypothesized attributional descriptions of high performing individuals. 

These descriptions were used to generate a new population of individuals for the next 

evolutionary computation step.  GA1 and GA2, obtained from Ken De Jong, employ mutation 

and standard selection operators to alter populations. GA2 also has a uniform crossover operator, 

so a child has an equal probability of receiving a gene value from each parent.  LEM1 uses GA2 

during its genetic algorithm mode, employing mutation, standard selection, and crossover.  These 

algorithms do not use elitism. 

3 PROBLEM STATEMENT 

We applied the LEM1 system to problems of identifying parameters in digital filters. Fitness 

functions were defined on the basis of equations specifying linear and non-linear filters. These 

equations are described in the paper "Nonlinear Parameter Estimation via the Genetic 

Algorithm" (Yao and Sethares, 1994):  

Linear filter:  

y(k) = -0.3y(k - 1) + 0.4y(k – 2) + 1.25u(k – 1) – 2.5u(k – 2) + n(k) 

 Non-linear fitler:  
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where:  

k – is the sample index (or time)  

n() – is a noise component ranging from -.25 to .25  

u() – represents an inserted function (sin, step, etc.)  

 

In the experiments, we assumed that the coefficients of these equations are unknown, that is, that 

they are variables. Each individual in a population is thus a vector of four variable values.  The 

problem to be solved was to determine coefficients of these equations, given a list of y(k) values 

for a number of k  values.  

 

To apply the evolutionary computation approach, coefficients -0.3, 0.4, 1.25, and -2.5 in both 

equations were replaced by four real-valued variables. Values of these variables constitute 

“genes,”   and vectors of these values comprises  “chromosomes,”  or individuals of a population.   

When substituted in the equation, the individual's chromosome yields a result that is compared 

with the correct value computed from the equation.  The fitness of an individual is inversely 

proportional to the difference between the obtained result and correct value.  Thus, the individual 

whose chromosome gives the lowest error has the highest fitness.  

 

The parameters of the genetic algorithms used were as follows, for both the linear and non-linear 

equations: 

 

Gene representation  Real 

Number of genes per individual   4 

Gene landscape (constraint on range) -30 to 30 

Number of individuals per generation 60 

Mutation Rate 25% 

Maximum number of births 100,000 

Maximum number of  generations 1500 
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4 EXPERIMENTS 
We ran LEM1, GA1, and GA2 for the linear and nonlinear filters with three different input data. 

Yao and Sethares used a uniformly distributed random input over the interval (-2.5, 2.5). In 

addition to this input, we used a unit step function 2.5u(k) and a sine wave 2.5sin(�/10) for 

comparison. The landscape function generated an output array based on a 200 sample input 

sequence and stored it for comparison against the populations.  

Populations were generated, and the fitness of each individual was calculated by computing the 

mean-squared error between the known values and the output generated by the individual's 

genes. Yao and Sethares defined the fitness of the individual as the reciprocal of the mean-square 

error over the 200 sample window: 

 
We ran LEM1, GA1, GA2 ten times for the linear and nonlinear filters using the sine, step, and 

uniform random inputs. Since the initial populations were generated randomly, the convergence 

rate varied greatly between populations and generations. We averaged the ten runs of each type 

together to try to get an aggregate performance comparison, but we found that the performances 

varied greatly due to the random initial conditions of the system.   

It was difficult to attain an average performance because a few runs would dominate the average.  

So instead of an average performance for each method, the following figures show the learning 

curves which converged the fastest from the three systems with different input functions.   

Figures 1 to 9 show the results. Figures 1-3 show results from GA1, GA2 and LEM1 for 

nonlinear filter with a sine wave input, Figures 4-6 show results from  GA1, GA2 and LEM1 for 

nonlinear filter with unit step input, Figures 7-9 show results from  GA1, GA2 and LEM1 for 

nonlinear filter with  uniform noise input.   
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Figure 1: GA1 learning curve, nonlinear filter, sine wave input. 
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Figure 2: GA2 learning curve, nonlinear filter, sine wave input. 
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Figure 3: LEM-1 learning curve, nonlinear filter, sine input. 
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GA1 Learning Curve, Nonlinear Filter Step Input
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Figure 4: GA1 learning curve, nonlinear filter, unit step input.  

GA2 Learning Curve, Nonlinear Filter Step Input
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Figure 5: GA2 learning curve, nonlinear filter, unit step input. 
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Figure 6: LEM-1 learning curve, nonlinear filter, unit step input 
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GA1 Learning Curve, Nonlinear Filter Uniform 
Noise Input
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Figure 7: GA1 learning curve, nonlinear filter, uniform noise input. 

GA2 Learning Curve, Nonlinear Filter Uniform 
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Figure 8: GA2 learning curve, nonlinear filter, uniform random noise input. 
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Figure 9: LEM-1 learning curve, nonlinear filter, uniform random noise input. 
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In the figures, the horizontal axis represents number of generations and the vertical axis 

represents the mean square error.  As shown in the figures, in these experiments, LEM1 strongly 

outperformed GA1 and GA2 in terms of the speed of convergence to the zero error. The effect of 

Machine Learning mode is demonstrated by a dramatic drop in the mean-square error when the 

system learned useful rules for generating the next generation of individuals. LEM1 toggled into 

Machine Learning mode roughly 10-800 times through out course of a typical experiment.  A 

dramatic drop in mean-square error usually occurs within the first 100 generations. 

Since we used four variables to represent the four weights of the filter, the error surface 

generated by the mean-square error is four-dimensional.  Such an error surface creates 

difficulties for traditional search techniques. Such techniques, for example, the gradient descent 

and LMS, are prone to finding local minima. To achieve the robustness of the evolutionary 

computation  approach, they would have to explore solutions in parallel. LEM1 improves over 

genetic algorithms by accelerating the evolutionary process through a series of machine learning 

steps.  

 

5 SUMMARY 

This experimental study demonstrated that LEM1, a simple implementation of the LEM 

methodology, can produce significant speedups in the evolutionary process in comparison to 

conventional genetic algorithms.  This speedup comes from Machine Learning mode that 

hypothesize rules characterizing differences between high and low performing individuals in 

consecutive populations.  New populations are generated based on these rules. Thus, LEM 

generates new solutions using discovered patterns rather than stochastic operators employed in 

genetic algorithms.  As described in  (Michalski, 1999) these patterns can be viewed as 

qualitative differentials of the fitness landscape. 

In our experiments, GA1, GA2, and LEM1 were applied to parameter estimation for non-linear 

filters for unit step, sine wave, and noisy input.  In each case, LEM1 strongly outperformed GA1 

and GA2 in terms of the number of generations needed to reach the optimal solution.  

In conclusion, the LEM1 system has performed surprisingly well on the problem of parameter 

estimation for digital filters. It appears that the LEM approach is suitable for tackling complex 

search problems. Another practical problem areas where we expect the LEM approach to work 

well are function optimization problems and determining complex planning strategies.   
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