

An Experimental Application of

Learnable Evolution Model and Genetic Algorithms
to Parameter Estimation in Digital Signal Filters Design

M. Coletti, T. Lash, C. Mandsager ,
R. S. Michalski, and R. Moustafa

P99- 9
MLI 99-5

May 1999

 2

An Exper imental Application of
Learnable Evolution Model and Genetic Algor ithms

to Parameter Estimation in Digital Signal Filter Design

Mark Coletti,Tom Lash, Craig Mandsager,
Ryszard S. Michalski* , and Rida Moustafa

Machine Learning and Inference Laboratory

George Mason University

*Also with Institute of Computer Science
Polish Academy of Sciences

ABSTRACT

This paper describes an application of LEM1, a preliminary implementation of Learnable
Evolution Model (LEM), and two canonical genetic algorithms, GA1 and GA2, to parameter
estimation in digital signal filter design. LEM1 alternates between two modes of operation:
Machine Learning mode, which employs AQ-18 rule learning system, and Darwinian Evolution
mode, which employs genetic algorithm GA2. Machine Learning mode generates hypotheses as
to what type of individuals in a population represent high fitness solutions. These hypotheses,
expressed in the form of attributional rules, are used to generate new populations of solutions.
When the top fitness of a population has not improved sufficiently during one mode, LEM1
switches to another mode. LEM1 alternates between the two modes until a global termination
condition is satisfied. In the experiments, LEM-1 significantly outperformed genetic algorithms
GA1 and GA2.

Keywords: Evolutionary computation, Learnable Evolution Model, Genetic Algorithms,
Function Optimization, Symbolic Learning, AQ18, Digital Filters.

1 INTRODUCTION

Parameter estimation problems solved by steepest descent methods require a computation of the

gradient of the error surface. Computation of the gradient of a multi-modal error surface can,

however, be extremely computationally intensive for problems with many variables. For some

spaces derivatives are not defined and gradients cannot be computed at all. To solve such

complex parameter estimation problems genetic algorithms can be used (Yao, Sethares, 1994).

 3

Unlike the steepest-descent approach, genetic algorithms do not require to compute the gradient

of the error surface. In addition, due to their inherent stochastic nature, genetic algorithms are

less susceptible to settling on a local minimum.

A major difficulty with genetic algorithms is that they are computationally inefficient because

they conduct a stochastic trial and error process. A new approach is offered by the Learnable

Evolution Model (LEM), which was recently introduced by Michalski (1998, 1999). LEM

combines machine learning with evolutionary computation in a novel way, and appears to

produce a significant speed-up of evolutionary processes over traditional evolutionary

computation algorithms.

In Machine Learning mode, LEM employs a learning system that generates descriptions that

differentiate high performing and low performing individuals in the population. Machine

Learning mode can use different machine learning methods. The first system implementing the

LEM approach, LEM1, applied the AQ15c symbolic learning method (Michalski, 1973;

Michalski et al., 86; Wnek et al, 1996). LEM1 and two evolutionary computation algorithms,

GA1 and GA2, were applied to the De Jong’s problem set (De Jong, 1975) and their inverse

(Michalski, 1998, Michalski and Zhang, 1999; Michalski, 1999). In these experiments, LEM1

significantly outperformed GA1 and GA2.

This paper describes an improved version of LEM1 (which uses AQ18 rather than AQ15c

learning program; see Michalski and Kaufman, 1999), and applies it to a different class

problems, specifically, to parameter estimation in digital filter design. In the experiments, LEM1

strongly outperformed the genetic algorithms GA1 and GA2.

2 BRIEF DESCRIPTION OF LEM1, GA1 AND GA2

The LEM method works by alternating between Darwinian Learning mode and Machine

Learning mode (the duoLEM version), or works solely in Machine Learning mode (the uniLEM

version). In this study we experimented with duoLEM version. In this version, a switch from one

mode to another is made when the fitness of the population is not improving sufficiently for a

certain number of generations.

The LEM method is defined as follows (Michalski, 1998, 1999):

1. Randomly, or according to certain prior rules reflecting domain knowledge, generate the

starting population of solutions (in the case of parameter estimation problems, this

population is a starting set of parameter values).

2. Execute Darwinian Evolution mode (using some form of selection, crossover and

mutation operators), as long as the best solution in a sequence of dar-probe iterations is

 4

better by the dar-threshold than the best solution found in previous generations.

3. Execute Machine Learning mode (using a machine learning method)

(a) Determine HIGH (high-performance) and LOW (low-performance) solutions in the

current population, according to the fitness function defined for a given task or

problem.

(b) Apply machine learning method for characterizing differences between HIGH and

LOW solutions.

(c) Generate a new population of solutions by replacing not-HIGH individuals by those

satisfying the learned description of HIGH solutions; the selection of new solutions

among those satisfying the description is random or according to the predefined

selection rules (a simple variant of the LEM method).

(d) Go to step (a), and then continue Machine Learning mode as long as the best solution

in a sequence of learn-length iterations is better by the learn-threshold than the

previously found best solution.

4. Switch to (2), and repeat the process. Continue switching between mode (2) and (3) until

the termination condition is met (the generated solution satisfactory, or the allocated

computation resources are exhausted).

In the LEM1 system, the step 3(b) is executed by supplying HIGH and LOW fitness individuals

to an AQ-type learning system. In our experiments, we used AQ18 system (Kaufman and

Michalski, 1999), which hypothesized attributional descriptions of high performing individuals.

These descriptions were used to generate a new population of individuals for the next

evolutionary computation step. GA1 and GA2, obtained from Ken De Jong, employ mutation

and standard selection operators to alter populations. GA2 also has a uniform crossover operator,

so a child has an equal probability of receiving a gene value from each parent. LEM1 uses GA2

during its genetic algorithm mode, employing mutation, standard selection, and crossover. These

algorithms do not use elitism.

3 PROBLEM STATEMENT

We applied the LEM1 system to problems of identifying parameters in digital filters. Fitness

functions were defined on the basis of equations specifying linear and non-linear filters. These

equations are described in the paper "Nonlinear Parameter Estimation via the Genetic

Algorithm" (Yao and Sethares, 1994):

Linear filter:

y(k) = -0.3y(k - 1) + 0.4y(k – 2) + 1.25u(k – 1) – 2.5u(k – 2) + n(k)

 Non-linear fitler:

 5

where:

k – is the sample index (or time)

n() – is a noise component ranging from -.25 to .25

u() – represents an inserted function (sin, step, etc.)

In the experiments, we assumed that the coefficients of these equations are unknown, that is, that

they are variables. Each individual in a population is thus a vector of four variable values. The

problem to be solved was to determine coefficients of these equations, given a list of y(k) values

for a number of k values.

To apply the evolutionary computation approach, coefficients -0.3, 0.4, 1.25, and -2.5 in both

equations were replaced by four real-valued variables. Values of these variables constitute

“genes,” and vectors of these values comprises “chromosomes,” or individuals of a population.

When substituted in the equation, the individual's chromosome yields a result that is compared

with the correct value computed from the equation. The fitness of an individual is inversely

proportional to the difference between the obtained result and correct value. Thus, the individual

whose chromosome gives the lowest error has the highest fitness.

The parameters of the genetic algorithms used were as follows, for both the linear and non-linear

equations:

Gene representation Real

Number of genes per individual 4

Gene landscape (constraint on range) -30 to 30

Number of individuals per generation 60

Mutation Rate 25%

Maximum number of births 100,000

Maximum number of generations 1500

 6

4 EXPERIMENTS
We ran LEM1, GA1, and GA2 for the linear and nonlinear filters with three different input data.

Yao and Sethares used a uniformly distributed random input over the interval (-2.5, 2.5). In

addition to this input, we used a unit step function 2.5u(k) and a sine wave 2.5sin(�/10) for

comparison. The landscape function generated an output array based on a 200 sample input

sequence and stored it for comparison against the populations.

Populations were generated, and the fitness of each individual was calculated by computing the

mean-squared error between the known values and the output generated by the individual's

genes. Yao and Sethares defined the fitness of the individual as the reciprocal of the mean-square

error over the 200 sample window:

We ran LEM1, GA1, GA2 ten times for the linear and nonlinear filters using the sine, step, and

uniform random inputs. Since the initial populations were generated randomly, the convergence

rate varied greatly between populations and generations. We averaged the ten runs of each type

together to try to get an aggregate performance comparison, but we found that the performances

varied greatly due to the random initial conditions of the system.

It was difficult to attain an average performance because a few runs would dominate the average.

So instead of an average performance for each method, the following figures show the learning

curves which converged the fastest from the three systems with different input functions.

Figures 1 to 9 show the results. Figures 1-3 show results from GA1, GA2 and LEM1 for

nonlinear filter with a sine wave input, Figures 4-6 show results from GA1, GA2 and LEM1 for

nonlinear filter with unit step input, Figures 7-9 show results from GA1, GA2 and LEM1 for

nonlinear filter with uniform noise input.

 7

GA1 Nonlinear Filter Sine Wave Input over
space (-30,30)

0

200

400

600

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

Generations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 1: GA1 learning curve, nonlinear filter, sine wave input.

GA2 Learning Curve, Nonlinear Filter Sine Wave
Input

0

2

4

6

8

1 95 18
9

28
3

37
7

47
1

56
5

65
9

75
3

84
7

94
1

10
35

11
29

12
23

13
17

14
11

15
05

15
99

Generations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 2: GA2 learning curve, nonlinear filter, sine wave input.

LEM-1 Learning Curve, Nonlinear Filter Sine
Input

0

20

40

60

80

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

63
8

68
7

73
6

78
5

83
4

Generations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 3: LEM-1 learning curve, nonlinear filter, sine input.

 8

GA1 Learning Curve, Nonlinear Filter Step Input

0
100
200
300
400
500
600
700
800

1 89 17
7

26
5

35
3

44
1

52
9

61
7

70
5

79
3

88
1

96
9

10
57

11
45

12
33

13
21

14
09

14
97

Generations

M
ea

n
-s

q
u

ar
e

E
rr

o
r

Figure 4: GA1 learning curve, nonlinear filter, unit step input.

GA2 Learning Curve, Nonlinear Filter Step Input

0
50

100
150
200
250
300
350

1 98 19
5

29
2

38
9

48
6

58
3

68
0

77
7

87
4

97
1

10
68

11
65

12
62

13
59

14
56

15
53

16
50

G enerations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 5: GA2 learning curve, nonlinear filter, unit step input.

LEM-1 Learning Curve, Nonlinear Filter Unit
Step Input

0
50

100
150
200
250
300

1 33 65 97 12
9

16
1

19
3

22
5

25
7

28
9

32
1

35
3

38
5

41
7

44
9

48
1

51
3

Generations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 6: LEM-1 learning curve, nonlinear filter, unit step input

 9

GA1 Learning Curve, Nonlinear Filter Uniform
Noise Input

0

5000

10000

15000

20000

1 92 18
3

27
4

36
5

45
6

54
7

63
8

72
9

82
0

91
1

10
02

10
93

11
84

12
75

13
66

14
57

Generations

M
ea

n
-s

q
u

ar
e

E
rr

o
r

Figure 7: GA1 learning curve, nonlinear filter, uniform noise input.

GA2 Learning Curve, Nonlinear Filter Uniform
Noise Input

0
2000
4000
6000
8000

10000
12000

1

10
2

20
3

30
4

40
5

50
6

60
7

70
8

80
9

91
0

10
11

11
12

12
13

13
14

14
15

15
16

16
17

Generations

M
ea

n
 S

q
u

ar
e

E
rr

o
r

Figure 8: GA2 learning curve, nonlinear filter, uniform random noise input.

LEM -1 Learning Curve, Nonlinear Filter
Uniform Noise Input

0

1000

2000

3000

4000

1 38 75 11
2

14
9

18
6

22
3

26
0

29
7

33
4

37
1

40
8

44
5

48
2

51
9

55
6

Generations

M
ea

n
-s

q
u

ar
e

E
rr

o
r

Figure 9: LEM-1 learning curve, nonlinear filter, uniform random noise input.

 10

In the figures, the horizontal axis represents number of generations and the vertical axis

represents the mean square error. As shown in the figures, in these experiments, LEM1 strongly

outperformed GA1 and GA2 in terms of the speed of convergence to the zero error. The effect of

Machine Learning mode is demonstrated by a dramatic drop in the mean-square error when the

system learned useful rules for generating the next generation of individuals. LEM1 toggled into

Machine Learning mode roughly 10-800 times through out course of a typical experiment. A

dramatic drop in mean-square error usually occurs within the first 100 generations.

Since we used four variables to represent the four weights of the filter, the error surface

generated by the mean-square error is four-dimensional. Such an error surface creates

difficulties for traditional search techniques. Such techniques, for example, the gradient descent

and LMS, are prone to finding local minima. To achieve the robustness of the evolutionary

computation approach, they would have to explore solutions in parallel. LEM1 improves over

genetic algorithms by accelerating the evolutionary process through a series of machine learning

steps.

5 SUMMARY

This experimental study demonstrated that LEM1, a simple implementation of the LEM

methodology, can produce significant speedups in the evolutionary process in comparison to

conventional genetic algorithms. This speedup comes from Machine Learning mode that

hypothesize rules characterizing differences between high and low performing individuals in

consecutive populations. New populations are generated based on these rules. Thus, LEM

generates new solutions using discovered patterns rather than stochastic operators employed in

genetic algorithms. As described in (Michalski, 1999) these patterns can be viewed as

qualitative differentials of the fitness landscape.

In our experiments, GA1, GA2, and LEM1 were applied to parameter estimation for non-linear

filters for unit step, sine wave, and noisy input. In each case, LEM1 strongly outperformed GA1

and GA2 in terms of the number of generations needed to reach the optimal solution.

In conclusion, the LEM1 system has performed surprisingly well on the problem of parameter

estimation for digital filters. It appears that the LEM approach is suitable for tackling complex

search problems. Another practical problem areas where we expect the LEM approach to work

well are function optimization problems and determining complex planning strategies.

 11

ACKNOWLEDGEMENTS

Authors thank Dr. Ken Kaufman and Qi Zhang for providing the original LEM-1 source code

and assisting us in using the system. Thanks go also to Dr. Kenneth De Jong for the source code

of GA1 and GA2. We are also grateful to Guido Cervone for his technical assistance. LEM1 and

AQ18 were developed at the GMU Machine Learning and Inference Laboratory.

This research was partially supported by a National Science Foundation under Grant No. IIS-

9904078. The development of AQ18 has been supported in part by the National Science

Foundation under grants IRI-9510644 and DMI-9496192, in part by the Office of Naval

Research under grant N00014-91-J-1351, and in part by the Advanced Research Projects Agency

under grant No. N00014-91-J-1854, administered by the Office of Naval Research.

REFERENCES

De Jong, K.A., An Analysis of the Behavior of a Class of Genetic Adaptive Systems, Ph.D.
Thesis, Department of Computer and Communication Sciences, University of Michigan, An
Arbor, 1975.

Kaufman, K. and Michalski, R. S., The AQ18 System for Natural Induction: A User’s Guide,
Reports of Machine Learning and Inference Laboratory, George Mason University, P98-11,
October, 1998.

Michalski, R. S., "AQVAL/1 -- Computer Implementation of a Variable-Value3d Logic System
VL and Examples of its Application to Pattern Recognition," Proceedings of the First
International Joint Conference on Pattern Recognition, Washington DC, pp. 3-17, October 30 -
November 1, 1973.

Michalski, R.S., “Learnable Evolution: Combining Symbolic and Evolutionary Learning,”
Proceedings of the Fourth International Workshop on Multistrategy Learning (MSL '98),
Desenzano del Garda, Italy, pp. 14-20, June 11-13, 1998.

Michalski, R.S., “LEARNABLE EVOLUTION: Evolutionary Processes Guided by Machine
Learning,” Reports of Machine Learning and Inference Laboratory, MLI 99-3, 1999; to appear
in Machine Learning Journal, 1999.

Michalski, R.S., Mozetic, I., Hong, J. Lavrac, N., "The Multi-Purpose Incremental Learning
System AQ15 and its Testing Application to Three Medical Domains," Proceedings of the AAAI,
Philadelphia, August 11-15, 1986.

 12

Michalski, R.S. and Zhang, Q., Initial Experiments with Learnable Evolution Model: An
Application of LEM1 to Function Optimization and Evolvable Hardware, Machine Learning and
Inference Reports, MLI 99-4, George Mason University, 1999.

Wnek, J., Kaufman, K., Bloedorn, E. and Michalski, R.S., “ Inductive Learning System AQ15c:
The Method and User’s Guide,” Reports of the Machine Learning and Inference Laboratory,
MLI 95-4, George Mason University, Fairfax, VA, March 1995.

Yao, Leehter and Sethares, William, “Nonlinear Parameter Estimation via the Genetic
Algorithm,” IEEE Transactions on Signal Processing, Vol. 42 No.4 p.927-935. 1994.

