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Abstract

Given a sufficiently large database, it is usugissibleto

derive many different hypotheses about the dtaerefore,
an importantproblemin datamining is which hypothesis
to select,or, more specifically, how to define a criterion

that best articulatesthe requirementsof the given task
domain. This papepresentsan approachto this problem,
in which a knowledge agent seeks descriptions that
optimize a problem-orienteddescription quality measure.
The proposed measure flexibly combines two criteria
characterizingdescriptions,completeness and consistency

gain, into a single numerical measured#scriptionquality

Q(w). It is shownthat by modifying the parametemw in

Q(w), the proposed description quality specializes to

different measuresdescribedin the literature. The Q(w)

measurehas been implementedin the AQ18 learning
system, and comparedto severalother methods,such as
Information Gain, PROMISE, CN2, IREP and RIPPER.
A general measure description utility canbe obtainedby

integrating the description quality with description

simplicity througha Lexicographic Evaluation Functional

(LEF). Experimental results have demonstratedthe
generality and the flexibility of the proposed method.

1 The Problem Statement

A typical objective in extracting knowleddgeom datais to
hypothesizegeneralrules or patternsthat can be used
effectively for predicting or classifying future data. Given
sufficiently large database, one ogeneratea large number
of hypothesescharacterizingthe data. A questionthen
arises as to what criteria witadto a hypothesiswith the
maximum predictive accuracy,as well as other desirable
properties, such as generality and simplicity.

If one canmakethe assumption(usually unrealistic) that
datacontainsno noise, the preconditionsfor admissibility

of a hypothesisare consistency(no contradictionwith any

datapointsland completenesgcoverageof all datapoints).
In real-world applicationsinvolving large databasesdata

often containserrors or inconsistenciesthe completeness
and consistencyriteria shouldthereforebe relaxedin such

situations. Thesetwo criteria tend to push in opposite
directions; increasing completenessmay also increase
inconsistencyandvice versa. Therefore,one may seeka

hypothesisthat is maximally consistentwith the data at

the expenseof completenessmaximally completeat the

expenseof inconsistency,or a hypothesis representing
some combinationof the two criteria. In addition, one

may seek a hypothesisthat strives to maximize some

criterion of computational and/or cognitive simplicity.

The problemof concernin this paperis how to combine
the above criteria of hypothesis desirability into one
general measureof hypothesisquality. Specifically, it
proposesa method for combining completenessand
consistency gain (a newly introduced measure that
characterizeshe descriptionimprovementover a random
guess) into one flexible measuren®( It also showshow
to combineQ(w) with a measureof descriptionsimplicity
into one generalmeasureof hypothesis utility. Q(w) is
comparecexperimentallyto severalother measuressuch
as Information Gain, PROMISE, and those used in the
CN2, IREP and RIPPER rule learning systems.

2 Combining Multiple Criteria

A general measure afescriptionquality needsto takeinto
consideration several criteria, such as description
completenessgonsistency,computationalsimplicity and
comprehensibility. This paperdiscusseswo methodsfor
integratingmultiple criteriainto one measure combining
individual criteria through a numerical function, and
employing a lexicographical evaluation functional,
(Michalski, 1983). The first methodis usedto combine



completenessand consistencygain (a newly introduced
measure)into the description quality measureQ(w) (see
Section 4), and the second method is usembtobineQ(w)
with some measure of description simplicity.  The
description quality measures presented herganeral,i.e.,
independent of the descriptitnguage They cantherefore
be appliedto all types of datadescriptionsor patternsin
data. In this paper, weresentthemin the contextof rule
learning methods.

The proposedneasurenasbeenimplementedn the AQ18

learningsystem(Kaufmanand Michalski, 1999). Here a

description ofdatarepresentingone class(i.e., datarecords
sharingthe samevalue of a designatedoutput attribute)
consists of a set of attributional rules.  Unlike the

conventionaldecision rules that use only <attribute> =

<value> or <attribute> <rd> <value> conditions, the

attributionalrules employ a much wider set of operators,
defined in the attributional calculus (Michalski, 1999).

The attributional calculus is a logic-based description
languagewith an expressivepower betweenpropositional
calculus and predicate calculus. It vegecifically designed
to enhance both thexpressivgpower and understandability
of the descriptions, asell astheir closenesdo equivalent
natural language descriptiongor that reasonthe method
of learning attributional descriptionsfrom exampleshas
been termedatural induction (Michalski, 1999).

Among the most importantcharacteristic®f a single rule

arethe completeness (the percentagef positive examples
coveredby it), and the consistency (the percentageof

examplescoveredby it that are in the positive class).
These two criterigoull in oppositedirections. A rule that
coversmore positive exampleshas a tendencyto cover
more negative examples, andnverselya rule that covers
fewer negative examples has a tendetacglso cover fewer
positive examples. Therefore,one seeksa criterion for

evaluating the rule quality that strikes an appropriate
balance between these tweruirementge.g., Bergadancet

al, 1992). Severalmeasuresfor evaluatingrule quality

havebeenpresentedn the literature (e.g., Bruha, 1997).
No single criterion can fit, however, gilacticalproblems.
For differentproblems,different criteria may be preferable.
Therefore, it would be advantagedosdefine a generaland
flexible criterion that takes into considerationdifferent
aspectf a description,and can be adjustedappropriately
for different problems. This paper proposessuch a

criterion and compares it with several existing criteria.

The method presentedhere views pattern detectionas a
processof searchingfor a generalrule that optimizes a
multicriterion measure, defined to best reflect the
characteristicsof the problem at hand. The measure
consists oBlementary criteria, each representingne aspect

of the rule being evaluated. Theseelementarycriteria are
selected from a menu of available elementary criteFtaey
are combinedinto one measurethrough a lexicographical
evaluation functional (LEF), defined as a sequence:

<(C11 Tl)v (021 TZ)v ey (QU Tn)>

wherec, representshe ith elementarycriterion, and t; is
thetolerance associatedavith ¢;. The tolerancedefinesthe
range, either absolute or relative, within which Ha¢ue of
¢ for a candidate rule can deviate from bestvaluein the
current set of rules. Let wssumefor examplethat S is
a setof candidatepatterns,and we define two elementary
evaluation criteria: to maximize completenessand also
consistency. Let us assumefurther that hypotheseawith
completenessless than 10% below the maximum
completeness achievaldby any singlerule in S may still
be acceptableandthat if two or more hypothesessatisfy
this criterion, the one with the highest consisteiscto be
selected. This rule selection process can be specifiditeby
following LEF:

LEF = < (completeness, 10%), (consistency, 0%)>

It is possiblethat after applying both criteria, more than
one hypothesisremainsin the set of candidates. In this
case the one that maximizes the first criterion is selected.

The advantage®f the LEF approachare that it is very
simple and efficient, so that @an be effectively appliedto
a very large numbeof candidatehypotheses. This way of
taking into consideration both completeness and
consistency requires a specification of the relative
importance of these criteria in the problem domain.

3 Completeness, Consistency, and

Consistency Gain

As the primary purposeof the rulesis to classify future,
unknown cases,a typical measureof rule quality is the
testing accuracy, that is, theaccuracyof classifyingtesting
exampleswhich are different from the training examples.
During a learningprocess,however, testing examplesare
unavailable;one thereforeneedsa criterion that will be a
good approximatorof the testing accuracy using only
training examples. Befonee proposesucha measurewe
needto introducesomenotationandterminology. In the
literature, somef the conceptsusedherehavebeengiven
different names and notations. Here, we proosetation
that is easy to understand and as consistent as posiible
the previous terminology.



Let P and N denotethe total number of positive and

negative examples, respectively, in the training ssbafe
concept or decision class. Let R#&eule or a setof rules
generatedo coverexamplesof that class,andp and n be

the numberof positive and negative examplescoveredby

R, respectively. The ratio p / P, denotedcompl(R), is

called the completeness or relative coverage of R.  The

ratiop / (p + n), denotedcons(R),is calledthe consistency

or training accuracy of R andn/ (p + n), denotedincon(R),

is the inconsistency or training eror rate.  If the relative

coverageof a ruleset(a setof rules for a single class)is

100%, the ruleset is@mplete cover. If the inconsistency
of the ruleset is 0%, it is thencansistent cover.

Let us considerthe questionas to which is preferable:a

rule with 60% completenesand99.7% consistencyor a

rule with 95% completenessand 98% consistency.
Clearly, the answerdependson the problem at hand. In

some application domaineptablyin sciencea rule (law)

must be consistent with all the data unless some afldtze
arefound erroneous. In other applications,in particular,
data mining, one may seek strong patternsthat hold

frequently,but not always. Therefore,thereis no single

measureof rule quality that is good for all problems.
Instead, we seek a flexible measurethat can be easily
changed to fit any given problem at hand.

How then can we define such a measureof rule quality?
Let us first look at a measurebasedon the information
gain criterion, which is used as a method for selecting
attributesin decisiontree learning (e.g. Quinlan, 1986).

This criterion can also be used for selecting rules, beause

rule can be viewed as a binary attribute that partitions
examples into those that satigfye rule, andthosethat do
not satisfy it. The information gainedby using rule R to
partition the example space E is:

Gain(R) = Info(E) — Infg(E)

where Info(E) is the expected information fralefining the
classof an examplein E and Infog(E) is the expected
information after partitioning the space using rRle This

measurds basedon the distribution of the exampleshoth
in the spacecoveredby the rule and in the spacenot

coveredby it; assuch,it doestendto increaseboth with

rule completeness and consistency.

Information gain has, however, one major disadvantage as

rule evaluator. As mentionedabove,it reliesnot only on
the informativeness of the rule, but also the
informativeness of the complement of thde. Thatis, it
takesinto consideratiorthe entire partition createdby the
rule, ratherthan solely on the spacecoveredby it. This
concernis especiallyvalid if there are more than two

decision classes. In such a situatiamule may be highly
valuablefor classifying examplesof one specific class,
evenif it doeslittle to reducethe entropy of the training
examplesin other classes. Another limitation of this
measure is that it does not proviaeansfor modifications
in orderto fit different problems(i.e., putting different
levels of emphasis on consistency and completeness).

Before we proposeanothermeasureof rule quality, let us
observethat relative frequencyof positive and negative
examplesn the training setof a given classshould be a
factor in evaluatinga rule. Clearly, a rule with 15%
completeness and 75% consistency cdiddjuite attractive
if the total numberof positive exampleswas very small
and the totahumberof negativeexampleswvasvery large.
On the other hand, the same rule would be uséld@3svas
very large and N was very small. The distribution of
positive and negativeexamplesin the whole training set
can be measured by the rafid (P + N). The distribution
of positive and negative examples in get coveredby the
rule can be measured by the consistgmtyp + n). Thus,
the difference between these distributions is
(p/ (P+n)—P/((P+N)). This valuecanbe normalized
by dividing it by (1 - (P / (P + N))), or equivalently
N /(P + N), so that in the casef identical distribution of
positive andnegativeeventsin the set coveredby the rule
andin the training set, it returns0, andin the case of
perfect consistency,it will return 1. This normalized
consistencymeasurehus sharesthe independence property
with statistical rule quality measures (Bruha, 1997).

This normalized consistendiius providesan indication of
the benefit of the rulever a randomlyguessedssignment
to the positive class. It also allows for the possibility of
negative values, in accordance with our assertionetinale
less accuratethan the random guess basedthe example
distribution has a negative benefit. Reorganizingthe
normalizationterm, we define the consistency gain of a
rule R, or briefly consig(R), as:

consig(R) = 0/ (p+n) - P/ (P+N))*(P+N)/N

4 Measuring Description Quality

In developing a description quality measure,one may
assume the desirability of maximizing both the
completenesscompl(R), and the consistency gain,
consig(R). Clearlya rule with both highercompl(R) and
consig(R) is more desirable than one with lowalues. A
rule with eithervalueequalto 0 is worthless. It makes
sense, therefore, to define a description quatigasurethat
evaluatesto 1 when both of these componentsreach
maximum (have value 1), and 0 when either is equal to 0.



Oneway to achievesucha behaviorwould be to define a
description quality as a product cdmpl(R) and consig(R).
Sucha formula, however,would not allow one to weigh
these factors differently in different applications. To
achievethis flexibility, we introducea weight, w, defined
asthe percentagef the descriptionquality measureto be
borne by the completeness condition. Thhs,final form
of the description quality, Q(Rw) with weightw, or just
Q(w), if the rule R is implied, is:

Q(R,w) = compl(RY * consig(R}* "

where compl(Rx p / P, andconsig(R)= ((p/ (p + n)) —
(P/(P+N))*(P+N)/N.

By changing parameterw, one can changethe relative
importance of completeness atia consistencygain to fit
a given problem. The above definition satisfiesall the
criteria regarding desirablefeaturesof a rule evaluation
function given by Piatetsky-Shapiro (1991):

1. The rule quality should be 0 if the example
distribution in the spacecoveredby the rule is the
sameasin the entiredataset. Notethat Q(Rw) =0
whenp/ (p+n) =P/ (P+N), assumingv < 1.

2. All otherthings being equal,an increasen the rule’s
completenesshould increasethe quality of the rule.
Note that Q(Ry) increases monotonically with

3. All otherthings being equal, the quality of the rule
should decreasewhen the ratio of covered positive
examplesin the data to either covered negative
examplesor total positive examplesdecreasesNote
that Q(Rw) decreasesnonotonically as either n or
(P - p) increases, wheR + N andp remain constant.

Another important criterion in measuring description
utility is its simplicity, measuredn termsof the number
of expressionandoperatorsare requiredto representit in
the given descriptionlanguage. This measurecan be
combined with Q(Rw) in a LEF to express overall
description utility.

5 Empirical Comparison of Rule

Evaluation Methods

In orderto developa senseof how the Q(w) rule rankings
compareto thosedoneby othermethodsusedin machine
learning systems, wperformeda seriesof experimentson
different datasets. In the experimentswe usedthe Q(w)
method with different weightg0, 0.25. 0.5, 0.75, 1), the
information gain criterion (Section 3), the PROMISE
method (Baim, 1982; Kaufman, 1997), and the methods

employedin the CN2 (Clark and Niblett, 1989), IREP
(Firnkranz and Widmer, 1994), and RIPPER (Cohen,
1995) learning programs.

As was mentionedbove,the information gain criterion is
based on the entropy of the examples in the evearedby
a rule, the area not covered by tide, andthe eventspace
as a whole. Like the information gain criterion, the
PROMISE method (Baim, 1982) was developedvaluate
the quality of attributeshut canbe usedforrule evaluation
in a similar manner to the aforementioriatbrmation gain
criterion. In this context, thealueis determinedbasedon
the following expressions (which assume thatn):

(1) ComputeM = max@ - p, N - n)
(2) Assign toT the valueP if P-p > N - n, andvalueN
ifP-p<N-n

PROMISE returns aalueof (p / P) + (M / T) - 1 (the
“1" is a normalization factor to assure ttek valuesarein
the range 0 td). WhenM is basedon the positive class
(whenP - p > N - n), PROMISE returnsa value of zero.
Hence,PROMISE is not a usefulmeasureof rule quality
when positive examples significantly outnumber the
negative ones. Note also that when N andp exceedd,
the PROMISE value reduces o (P) + (N-n) /N) — 1,
which is equal tog /P) + ((P-n)/P) -1, or:

(p-n)/P

CN2 (Clark andNiblett, 1989) builds rulesusing a beam
search,as does the AQ-type learner,on which it was
partially based. In the caseof two decision classes,it
selects a rule that minimizes the expression:

—~((p /(p+n)) logy(p /(p+n)) + (n /(p+n)) log,(n /(p+n)))

This expression involves only the consistency,
p/ (p + n) it doesnot involve any completeness
component. Thus, a rule that covers50 positive and 5
negativeexampless deemedf identical value to another
rule that covers 50,000 positive and 5000 negative
examples. Although the CN2 formula has a somewhat
different form than the consistencygain component of
Q(w), CN2's ruleevaluationcan be expectedo be similar
to Q(0) (consig(R)only). Indeed,in the examplesshown
below, the two methods provide identical rule rankings.

A later version of CN2 (Clark and Boswell991) offereda
new rule quality formula based @nlLaplaceerror estimate.
This formulais closelytied to a rule’s consistencylevel,
while completeness still plays a minimal role.

IREP’s formula for rule evaluation (Firnkranz antdmer,
1994) is:



(p +N-n)/ (P +N)

RIPPER (Cohen,1995) usesa slight modification of the
above formula :

(p -n)/(P+N)

Since P and N are constantfor a given problem, a rule
deemed preferable by IREP will also be preferred by
RIPPER. Thus, thesetwo measuresproducethe same
ranking; in comparing different measures, we thereforlg
show RIPPER’s rankings below. Opanalso noticethat
RIPPER evaluationfunction returnsa value the equalto
half of the PROMISEvaluewhenP = N andp exceeds.
Thus, in suchcasesthe RIPPERrankingis sameas the
PROMISE Ranking. Indeed, in the examplesshown
below that haveequalP andN, the two methodsprovide
identical rule rankings.

We comparedheseabovemethodson three datasetsgach
consisting of 1000 training example®atasetA has20%

positive and 80% negativeexamples,DatasetB has 50%

positive and negativeexamples,and DatasetC has 80%

positive examplesand 20% of negativeexamplesln each
datasetrules with different completenessnd consistency
levels were compared using the following criteria:

Information Gain, PROMISE, the origin@N2 evaluation
method,RIPPER, Q(0), Q(.25), Q(.5), Q(.75), and Q(1).

Results are shown in Table 1. The leftmost column

identifies the datasetthe next two give the numbers of

examples okachclasscoveredby a hypotheticalrule, and

the remaining columnslist the evaluationsand ranks on

the datasebf the rules by the various methods,where 1

indicatesthe best rankedrules and 7 indicatesthe worst.

There is, of course, no one answegardingwhich ranking

is superior. It should be noted, however, that by

modifying the Q weights, one can tailor thde evaluation
criterion according to the problem at hand.

Table 1. Rule Evaluations by Different Methods

Data] Pos| Neg|| Info Gain] PROMISE CN2 | RIPPRFR Q(0) Q(.25) | Q(5) Q(.75) Q1)
Set \ R] V R VIR]V Rl V Rl V R \ Rl V R \ R
A 50 sf{ 10| 7| 24| 7 | 44| 4] .05| 7) 89| 4| 65| 7 Jar| 7] 34| 7] 25| 6
50 off 12| 6] 25| 6 of1Jos|6) 1| 1) 7|6 ] 5]|6] 3|6 25|86
200| 200 s 69 ] 1| 99| 1 | a7] 220 1) 97 298| 1 oo 1] 99]1 1 1
pos| 150 10| 39| 2) 74| 2 | 34| 3| 14| 2] 92| 3| 88| 283|279 2] 5] 2
150 30off 33| 3| .71 3 | 65| 6| .12 3] 79| 6783 )77|3) 6|3 5] 2
800| 100 15)) 21| 5) 48| 5 | 556|509 5] 84| 5|74 4 |65|4]) 57|65 5 5
neg| 1200 25| 24| 4] 57| 4 | 66| 7| 10| 4] 78| 7].73] 5 | 69| 5| 64| 4 6 | 4
B 50 sf{ o3| 7| 09| 7 | 44| 3J.05| 7] 82| 3487 2ol 7] 17| 7 1|7
250 25| 21| 6] 45| 5 | 44| 3| 23| 5] 82| 3| .72 5 64| 5] 575 515
500| 500 soff 76| 1) 9| 1| 44| 3| 45| 1) 82| 3861 jor|1] 951 1 1
pos| 500 150 49| 2] 7| 3 |} 78| 7| 35| 3| 54| 7] .63| 6 |73 4| 86| 2 1 1
200 s 21 ] 5| 39| 6 | 7] 1 .20 6] 95 1).77| 4] 62|6] 5|6 41 6
500 400 3B)| 44| 3) 73| 2 40| 2] 37| 2) 84| 2|83 2 |82|2] 813 8 3
neg| 4o0| 5| 38| 4| 69| 4 | 53| 6| 35| 4] 76| 6] 77| 3 | .78] 3] 79| 4 8 | 3
C 50 s ooa] 7 o| — | .o5] 3 44| 7] 55| 3] 32|6|.18]6).11]6] 0|7
250 25)| 02 (5] 0| — | 44| 3| 23| 5] 55| 3474 |s|5] 3|4] 31|65
800 500 soff o7 1) o| — | 443 ).45| 1] 55| 3]56(3 |58l 1)]e60 1| 631
pos| soof asof o1 | 6] of - | 78| 7] 35| 3] <0o| 7]<0| 7 |<o] 7)<o| 7] 63| 1
200 sff os| 3 o — | .27|1].20( 6] 8| 1]64| 1 |47] 3] 38|5] 25| 6
200| 400 35| os| 2] o| — 402372 6| 2572|552 522 5 3
neg| 400 5| 02 4| o] — | 53| 6 .35| 4] 4| 642|544 4] 47]3 51 3




Columns labele® indicate raw value.
Columns labeled indicate rank assigned by the given evaluation method in the given dataset

6 Implementation of the
Method in AQ18

The AQ18 learningsystem(Michalski, 1999) can operate
in one of two modes: the standard“noisy” mode,which

relaxesthe rule consistencyrequirementand seeksrules

with the highest rank on theEF criterion, andthe special
or “no-noise” mode, which acceptsonly fully consistent
rules, and creates a complete cover.

Q(w)

To implement the “noisy” mode, the Q(w) evaluation
methodhasbeenemployedin two places:one—duringa

multi-step rule growing procegstar generation), in which

the system repeatedly selethe bestset of candidaterules

for the next stepf rule specializationand second—during
the completionof the procesgsar termination), in which

the bestrule is determinedand submittedfor output. The

usermay selecta Q(w) weight for the programto use, or

AQ18 will apply a defaultweight of 0.5 (equal emphasis
on completeness and consistency).

During stargeneration AQ18 usesa beamsearchstrategy
to find the “best” generalizationf a “seed” exampleby
repeated applications of the “extension-against”
generalizationrule (Michalski, 1983). In the “noisy”
mode, the system determinesthe Q(w) value of the
generatedules after each extension-againsbperation;the
ruleswith Q(w) value lower than that of the parentrule
(the rule from which they were generated through
specialization), are discarded. If that is the casalforules
stemming from a given parentrule, the parentrule is

retained instead; this operationfisictionally equivalentto
considering the negative example extended against as noise

In orderto speedup the star generation,the user may
specify a time-out threshold on the extension-against
process. If after a given numberadnsecutiveextensions,
there has been no further improvementin rule quality
Q(w), the systentonsiderghe currentrulesetof sufficient
quality, and terminates the extension process, ignsing
any remaining unexamined negative examples.

In the starterminationstep (i.e., after the last extension-
against operation), candidate rules are generalize@rious
ways to determine if the resulting rulkavea higher Q(w)

value. This optimization may introduce additional
inconsistency, but makes possible tadbwer quality rule

may overtakeinitially higher quality onesif it produces
superior generalizationsThe bestresultingis selectedor

output through the normal LEF process.

In the processof attemptingto improve a rule, AQ18

appliesa hill-climbing method. It generalizeshe rule by

extending the reference in each of its component
conditions, then selects the highest-quality rule from

among those generalizations, until no generalizatieates
further improvement. For conditions with nominal
attributes, the only generalizatioale (operator)considered
is condition dropping. For conditions with lineaattributes
(rank, interval, cyclic, or continuous),the systemapplies
the condition dropping, and the extending or closing the

interval generationrules. For conditionswith structured
(hierarchically ordered)attributes, the system applies the

condition dropping operator and the generalization tree

climbing operator (Michalski, 1983).

Table 2. Effects of different generalization operators on the base rule:
[color = red v blue] & [ength = 2 v 5] & [animal_type = dog Vv lion v bat]

Generalization Rule

Resulting Rule

Dropping condition
(applied to nominal attributes)

[length = 2..4 v 8] & animal_type = dog v lion v bat]

Dropping condition
(applied to linear attributes)

[color = red v blue] & animal_type = dog v lion v bat]

Extending interval
(applies to linear attributes only)

[color = red v blue] & [ength = 2..6 v 8] & animal_type = dog v lion v bat]

Closing interval
(applies to linear attributes only)

[color = red v blue] & [ength = 2..8] & [animal_type = dog v lion v bat]

Dropping condition
(applied to structured attributes)

[color =red v blue] & [ength=2..4 v 8]




Climbing generalization tree
(applies to structured attribute on

[color =red v blue] & [ength=2..4 v 8] & pnimal_type = mammal]

Examples of each of thepplicationof thesegeneralization
rules to the base rule [color = red v blue] &
[length = 2..4v 8]& [animal_type = dogV lion v bat] are
presented in Tabl2. In the baserule, color is a nominal
attribute,animal_type is a structuredattribute,andlength
is a linear attribute.

7 Summary

This paper introduced thmeasureof consistencygain, and
presentech methodfor integratingit with completeness
into a generaland flexible measureof rule quality. The
proposedQ(w) measurecan be specializedto different
specificformulaethat weigh differently the two measures.
Experiments have showthat by varying the w parameter,
one can obtain different measuresof rule quality, while
machine learning programs have traditionlhd inflexible

criteria with respect to rule completeness and consistency.

Additionally, the Q(w) measure doesnot haveto be used
as a single measure,but can be employed as one of
multiple criteria in the lexicographical evaluation
functional (LEF). Through a LEF, oneay thus optimize
a rule learningprocessaccordingto many different criteria.
A plannedfuture researchtopic involves the quantification
of rule simplicity andits incorporationinto a description
simplicity measure.

The Q(w) measurenasbeenimplementedn AQ18 during
the star generationand star termination processegwhen
generating a set afiles coveringa specific seedexample).
In additionto handling inconsistencythe AQ18 program
also includes a mechanism for generating incomplete
rulesetswithout the computationaloverheadof generating
and then truncating complete rulesets (Kaufman and
Michalski, 1999). Such rulesets hathe advantageof not
containing many spurious rules.

We have also introducealmechanisnmespeciallyuseful for

data mining applications, iwhich AQ18 determinesnvhen
some negative examples shouldigm@oredas noise. Such
determinationshave resultedin rules with substantially
higher completeness, atsmall costto consistencywhile

reducing the time required for learning.
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