
Proceedings of the International ICSC Symposium on
Advanced in Intelligent Data Analysis (AIDA),

The Rochester Institute of Technology, June 22-25, 1999.

A Measure of Description Quality for Data Mining
and its Implementation in the AQ18 Learning System

Ryszard S. Michalski* and Kenneth A. Kaufman
Machine Learning and Inference Laboratory

George Mason University
{michalski,kaufman}@gmu.edu

* Also with Institute of Computer Science,
Polish Academy of Sciences, Warsaw, Poland

Abstract

Given a sufficiently large database, it is usually possible to
derive many different hypotheses about the data. Therefore,
an important problem in data mining is which hypothesis
to select, or, more specifically, how to define a criterion
that best articulates the requirements of the given task
domain. This paper presents an approach to this problem,
in which a knowledge agent seeks descriptions that
optimize a problem-oriented description quality measure.
The proposed measure flexibly combines two criteria
characterizing descriptions, completeness and consistency
gain, into a single numerical measure of description quality
Q(w). It is shown that by modifying the parameter w in
Q(w), the proposed description quality specializes to
different measures described in the literature. The Q(w)
measure has been implemented in the AQ18 learning
system, and compared to several other methods, such as
Information Gain, PROMISE, CN2, IREP and RIPPER.
A general measure of description utility can be obtained by
integrating the description quality with description
simplicity through a Lexicographic Evaluation Functional
(LEF). Experimental results have demonstrated the
generality and the flexibility of the proposed method.

1 The Problem Statement

A typical objective in extracting knowledge from data is to
hypothesize general rules or patterns that can be used
effectively for predicting or classifying future data. Given a
sufficiently large database, one can generate a large number
of hypotheses characterizing the data. A question then
arises as to what criteria will lead to a hypothesis with the
maximum predictive accuracy, as well as other desirable
properties, such as generality and simplicity.

If one can make the assumption (usually unrealistic) that
data contains no noise, the preconditions for admissibility

of a hypothesis are consistency (no contradiction with any
datapoints) and completeness (coverage of all datapoints).
In real-world applications involving large databases, data
often contains errors or inconsistencies; the completeness
and consistency criteria should therefore be relaxed in such
situations. These two criteria tend to push in opposite
directions; increasing completeness may also increase
inconsistency, and vice versa. Therefore, one may seek a
hypothesis that is maximally consistent with the data at
the expense of completeness, maximally complete at the
expense of inconsistency, or a hypothesis representing
some combination of the two criteria. In addition, one
may seek a hypothesis that strives to maximize some
criterion of computational and/or cognitive simplicity.

The problem of concern in this paper is how to combine
the above criteria of hypothesis desirability into one
general measure of hypothesis quality. Specifically, it
proposes a method for combining completeness and
consistency gain (a newly introduced measure that
characterizes the description improvement over a random
guess) into one flexible measure Q(w). It also shows how
to combine Q(w) with a measure of description simplicity
into one general measure of hypothesis utility. Q(w) is
compared experimentally to several other measures, such
as Information Gain, PROMISE, and those used in the
CN2, IREP and RIPPER rule learning systems.

2 Combining Multiple Criteria

A general measure of description quality needs to take into
consideration several criteria, such as description
completeness, consistency, computational simplicity and
comprehensibility. This paper discusses two methods for
integrating multiple criteria into one measure, combining
individual criteria through a numerical function, and
employing a lexicographical evaluation functional,
(Michalski, 1983). The first method is used to combine

completeness and consistency gain (a newly introduced
measure) into the description quality measure Q(w) (see
Section 4), and the second method is used to combine Q(w)
with some measure of description simplicity. The
description quality measures presented here are general, i.e.,
independent of the description language. They can therefore
be applied to all types of data descriptions or patterns in
data. In this paper, we present them in the context of rule
learning methods.

The proposed measure has been implemented in the AQ18
learning system (Kaufman and Michalski, 1999). Here a
description of data representing one class (i.e., data records
sharing the same value of a designated output attribute)
consists of a set of attributional rules. Unlike the
conventional decision rules that use only <attribute> =
<value> or <attribute> <rel> <value> conditions, the
attributional rules employ a much wider set of operators,
defined in the attributional calculus (Michalski, 1999).
The attributional calculus is a logic-based description
language, with an expressive power between propositional
calculus and predicate calculus. It was specifically designed
to enhance both the expressive power and understandability
of the descriptions, as well as their closeness to equivalent
natural language descriptions. For that reason, the method
of learning attributional descriptions from examples has
been termed natural induction (Michalski, 1999).

Among the most important characteristics of a single rule
are the completeness (the percentage of positive examples
covered by it), and the consistency (the percentage of
examples covered by it that are in the positive class).
These two criteria pull in opposite directions. A rule that
covers more positive examples has a tendency to cover
more negative examples, and conversely, a rule that covers
fewer negative examples has a tendency to also cover fewer
positive examples. Therefore, one seeks a criterion for
evaluating the rule quality that strikes an appropriate
balance between these two requirements (e.g., Bergadano et
al, 1992). Several measures for evaluating rule quality
have been presented in the literature (e.g., Bruha, 1997).
No single criterion can fit, however, all practical problems.
For different problems, different criteria may be preferable.
Therefore, it would be advantageous to define a general and
flexible criterion that takes into consideration different
aspects of a description, and can be adjusted appropriately
for different problems. This paper proposes such a
criterion and compares it with several existing criteria.

The method presented here views pattern detection as a
process of searching for a general rule that optimizes a
multicriterion measure, defined to best reflect the
characteristics of the problem at hand. The measure
consists of elementary criteria, each representing one aspect

of the rule being evaluated. These elementary criteria are
selected from a menu of available elementary criteria. They
are combined into one measure through a lexicographical
evaluation functional (LEF), defined as a sequence:

<(c1, τ1), (c2, τ2), …, (cn, τn)>

where ci represents the ith elementary criterion, and τ i is
the tolerance associated with ci. The tolerance defines the
range, either absolute or relative, within which the value of
ci for a candidate rule can deviate from the best value in the
current set of rules. Let us assume, for example, that S is
a set of candidate patterns, and we define two elementary
evaluation criteria: to maximize completeness, and also
consistency. Let us assume further that hypotheses with
completeness less than 10% below the maximum
completeness achievable by any single rule in S may still
be acceptable, and that if two or more hypotheses satisfy
this criterion, the one with the highest consistency is to be
selected. This rule selection process can be specified by the
following LEF:

LEF = < (completeness, 10%), (consistency, 0%)>

It is possible that after applying both criteria, more than
one hypothesis remains in the set of candidates. In this
case the one that maximizes the first criterion is selected.

The advantages of the LEF approach are that it is very
simple and efficient, so that it can be effectively applied to
a very large number of candidate hypotheses. This way of
taking into consideration both completeness and
consistency requires a specification of the relative
importance of these criteria in the problem domain.

3 Completeness, Consistency, and
Consistency Gain

As the primary purpose of the rules is to classify future,
unknown cases, a typical measure of rule quality is the
testing accuracy, that is, the accuracy of classifying testing
examples, which are different from the training examples.
During a learning process, however, testing examples are
unavailable; one therefore needs a criterion that will be a
good approximator of the testing accuracy using only
training examples. Before we propose such a measure, we
need to introduce some notation and terminology. In the
literature, some of the concepts used here have been given
different names and notations. Here, we propose a notation
that is easy to understand and as consistent as possible with
the previous terminology.

Let P and N denote the total number of positive and
negative examples, respectively, in the training set of some
concept or decision class. Let R be a rule or a set of rules
generated to cover examples of that class, and p and n be
the number of positive and negative examples covered by
R, respectively. The ratio p / P, denoted compl(R), is
called the completeness or relative coverage of R. The
ratio p / (p + n), denoted cons(R), is called the consistency
or training accuracy of R and n / (p + n), denoted incon(R),
is the inconsistency or training error rate. If the relative
coverage of a ruleset (a set of rules for a single class) is
100%, the ruleset is a complete cover. If the inconsistency
of the ruleset is 0%, it is then a consistent cover.

Let us consider the question as to which is preferable: a
rule with 60% completeness and 99.7% consistency, or a
rule with 95% completeness and 98% consistency.
Clearly, the answer depends on the problem at hand. In
some application domains, notably in science, a rule (law)
must be consistent with all the data unless some of the data
are found erroneous. In other applications, in particular,
data mining, one may seek strong patterns that hold
frequently, but not always. Therefore, there is no single
measure of rule quality that is good for all problems.
Instead, we seek a flexible measure that can be easily
changed to fit any given problem at hand.

How then can we define such a measure of rule quality?
Let us first look at a measure based on the information
gain criterion, which is used as a method for selecting
attributes in decision tree learning (e.g. Quinlan, 1986).
This criterion can also be used for selecting rules, because a
rule can be viewed as a binary attribute that partitions
examples into those that satisfy the rule, and those that do
not satisfy it. The information gained by using rule R to
partition the example space E is:

Gain(R) = Info(E) – InfoR(E)

where Info(E) is the expected information from defining the
class of an example in E and InfoR(E) is the expected
information after partitioning the space using rule R. This
measure is based on the distribution of the examples both
in the space covered by the rule and in the space not
covered by it; as such, it does tend to increase both with
rule completeness and consistency.

Information gain has, however, one major disadvantage as a
rule evaluator. As mentioned above, it relies not only on
the informativeness of the rule, but also the
informativeness of the complement of the rule. That is, it
takes into consideration the entire partition created by the
rule, rather than solely on the space covered by it. This
concern is especially valid if there are more than two

decision classes. In such a situation, a rule may be highly
valuable for classifying examples of one specific class,
even if it does little to reduce the entropy of the training
examples in other classes. Another limitation of this
measure is that it does not provide means for modifications
in order to fit different problems (i.e., putting different
levels of emphasis on consistency and completeness).

Before we propose another measure of rule quality, let us
observe that relative frequency of positive and negative
examples in the training set of a given class should be a
factor in evaluating a rule. Clearly, a rule with 15%
completeness and 75% consistency could be quite attractive
if the total number of positive examples was very small
and the total number of negative examples was very large.
On the other hand, the same rule would be useless if P was
very large and N was very small. The distribution of
positive and negative examples in the whole training set
can be measured by the ratio P / (P + N). The distribution
of positive and negative examples in the set covered by the
rule can be measured by the consistency p / (p + n). Thus,
the difference between these distributions is
(p / (p + n)) – (P / (P + N)). This value can be normalized
by dividing it by (1 - (P / (P + N))), or equivalently
N / (P + N), so that in the case of identical distribution of
positive and negative events in the set covered by the rule
and in the training set, it returns 0, and in the case of
perfect consistency, it will return 1. This normalized
consistency measure thus shares the independence property
with statistical rule quality measures (Bruha, 1997).

This normalized consistency thus provides an indication of
the benefit of the rule over a randomly guessed assignment
to the positive class. It also allows for the possibility of
negative values, in accordance with our assertion that a rule
less accurate than the random guess based the example
distribution has a negative benefit. Reorganizing the
normalization term, we define the consistency gain of a
rule R, or briefly consig(R), as:

consig(R) = ((p / (p + n)) – (P / (P + N))) * (P + N) / N

4 Measuring Description Quality

In developing a description quality measure, one may
assume the desirability of maximizing both the
completeness compl(R), and the consistency gain,
consig(R). Clearly, a rule with both higher compl(R) and
consig(R) is more desirable than one with lower values. A
rule with either value equal to 0 is worthless. It makes
sense, therefore, to define a description quality measure that
evaluates to 1 when both of these components reach
maximum (have value 1), and 0 when either is equal to 0.

One way to achieve such a behavior would be to define a
description quality as a product of compl(R) and consig(R).
Such a formula, however, would not allow one to weigh
these factors differently in different applications. To
achieve this flexibility, we introduce a weight, w, defined
as the percentage of the description quality measure to be
borne by the completeness condition. Thus, the final form
of the description quality, Q(R,w) with weight w, or just
Q(w), if the rule R is implied, is:

Q(R, w) = compl(R)w * consig(R)(1 - w)

where compl(R) = p / P, and consig(R) = ((p / (p + n)) –
(P / (P + N))) * (P + N) / N.

By changing parameter w, one can change the relative
importance of completeness and the consistency gain to fit
a given problem. The above definition satisfies all the
criteria regarding desirable features of a rule evaluation
function given by Piatetsky-Shapiro (1991):

1. The rule quality should be 0 if the example
distribution in the space covered by the rule is the
same as in the entire data set. Note that Q(R,w) = 0
when p / (p + n) = P / (P + N), assuming w < 1.

2. All other things being equal, an increase in the rule’s
completeness should increase the quality of the rule.
Note that Q(R,w) increases monotonically with p.

3. All other things being equal, the quality of the rule
should decrease when the ratio of covered positive
examples in the data to either covered negative
examples or total positive examples decreases. Note
that Q(R,w) decreases monotonically as either n or
(P - p) increases, when P + N and p remain constant.

Another important criterion in measuring description
utility is its simplicity, measured in terms of the number
of expressions and operators are required to represent it in
the given description language. This measure can be
combined with Q(R,w) in a LEF to express overall
description utility.

5 Empirical Comparison of Rule
Evaluation Methods

In order to develop a sense of how the Q(w) rule rankings
compare to those done by other methods used in machine
learning systems, we performed a series of experiments on
different datasets. In the experiments we used the Q(w)
method with different weights (0, 0.25. 0.5, 0.75, 1), the
information gain criterion (Section 3), the PROMISE
method (Baim, 1982; Kaufman, 1997), and the methods

employed in the CN2 (Clark and Niblett, 1989), IREP
(Fürnkranz and Widmer, 1994), and RIPPER (Cohen,
1995) learning programs.

As was mentioned above, the information gain criterion is
based on the entropy of the examples in the area covered by
a rule, the area not covered by the rule, and the event space
as a whole. Like the information gain criterion, the
PROMISE method (Baim, 1982) was developed to evaluate
the quality of attributes, but can be usedfor rule evaluation
in a similar manner to the aforementioned information gain
criterion. In this context, the value is determined based on
the following expressions (which assume that p > n):

(1) Compute M = max(P - p, N - n)
(2) Assign to T the value P if P - p > N - n, and value N

if P - p ≤ N - n

PROMISE returns a value of (p / P) + (M / T) - 1 (the
“1” is a normalization factor to assure that all values are in
the range 0 to 1). When M is based on the positive class
(when P - p > N - n), PROMISE returns a value of zero.
Hence, PROMISE is not a useful measure of rule quality
when positive examples significantly outnumber the
negative ones. Note also that when P = N and p exceeds n,
the PROMISE value reduces to (p / P) + ((N - n) / N) – 1,
which is equal to (p / P) + ((P - n) / P) – 1, or:

 (p - n) /P

CN2 (Clark and Niblett, 1989) builds rules using a beam
search, as does the AQ-type learner, on which it was
partially based. In the case of two decision classes, it
selects a rule that minimizes the expression:

–((p /(p+n)) log2(p /(p+n)) + (n /(p+n)) log2(n /(p+n)))

This expression involves only the consistency,
p / (p + n); it does not involve any completeness
component. Thus, a rule that covers 50 positive and 5
negative examples is deemed of identical value to another
rule that covers 50,000 positive and 5000 negative
examples. Although the CN2 formula has a somewhat
different form than the consistency gain component of
Q(w), CN2’s rule evaluation can be expected to be similar
to Q(0) (consig(R) only). Indeed, in the examples shown
below, the two methods provide identical rule rankings.

A later version of CN2 (Clark and Boswell, 1991) offered a
new rule quality formula based on a Laplace error estimate.
This formula is closely tied to a rule’s consistency level,
while completeness still plays a minimal role.

IREP’s formula for rule evaluation (Fürnkranz and Widmer,
1994) is:

(p +N - n) / (P +N)

RIPPER (Cohen, 1995) uses a slight modification of the
above formula :

(p - n) / (P + N)

Since P and N are constant for a given problem, a rule
deemed preferable by IREP will also be preferred by
RIPPER. Thus, these two measures produce the same
ranking; in comparing different measures, we therefore only
show RIPPER’s rankings below. One can also notice that
RIPPER evaluation function returns a value the equal to
half of the PROMISE value when P = N and p exceeds n.
Thus, in such cases, the RIPPER ranking is same as the
PROMISE Ranking. Indeed, in the examples shown
below that have equal P and N, the two methods provide
identical rule rankings.

We compared these above methods on three datasets, each
consisting of 1000 training examples. Dataset A has 20%
positive and 80% negative examples, Dataset B has 50%
positive and negative examples, and Dataset C has 80%
positive examples and 20% of negative examples. In each
dataset, rules with different completeness and consistency
levels were compared using the following criteria:
Information Gain, PROMISE, the original CN2 evaluation
method, RIPPER, Q(0), Q(.25), Q(.5), Q(.75), and Q(1).
Results are shown in Table 1. The leftmost column
identifies the dataset, the next two give the numbers of
examples of each class covered by a hypothetical rule, and
the remaining columns list the evaluations and ranks on
the dataset of the rules by the various methods, where 1
indicates the best ranked rules and 7 indicates the worst.
There is, of course, no one answer regarding which ranking
is superior. It should be noted, however, that by
modifying the Q weights, one can tailor the rule evaluation
criterion according to the problem at hand.

Table 1. Rule Evaluations by Different Methods

Data Pos Neg Info Gain PROMISE CN2 RIPPRR Q(0) Q(.25) Q(.5) Q(.75) Q(1)

Set V R V R V R V R V R V R V R V R V R

A 50 5 .10 7 .24 7 .44 4 .05 7 .89 4 .65 7 .47 7 .34 7 .25 6

50 0 .12 6 .25 6 0 1 .05 6 1 1 .71 6 .5 6 .35 6 .25 6

200 200 5 .69 1 .99 1 .17 2 .20 1 .97 2 .98 1 .99 1 .99 1 1 1

pos 150 10 .39 2 .74 2 .34 3 .14 2 .92 3 .88 2 .83 2 .79 2 .75 2

150 30 .33 3 .71 3 .65 6 .12 3 .79 6 78 3 .77 3 .76 3 .75 2

800 100 15 .21 5 .48 5 .56 5 .09 5 .84 5 .74 4 .65 4 .57 5 .5 5

neg 120 25 .24 4 .57 4 .66 7 .10 4 .78 7 .73 5 .69 5 .64 4 .6 4

B 50 5 .03 7 .09 7 .44 3 .05 7 .82 3 .48 7 .29 7 .17 7 .1 7

250 25 .21 6 .45 5 .44 3 .23 5 .82 3 .72 5 .64 5 .57 5 .5 5

500 500 50 .76 1 .9 1 .44 3 .45 1 .82 3 .86 1 .91 1 .95 1 1 1

pos 500 150 .49 2 .7 3 .78 7 .35 3 .54 7 .63 6 .73 4 .86 2 1 1

200 5 .21 5 .39 6 .17 1 .20 6 .95 1 .77 4 .62 6 .5 6 .4 6

500 400 35 .44 3 .73 2 .40 2 .37 2 .84 2 .83 2 .82 2 .81 3 .8 3

neg 400 55 .38 4 .69 4 .53 6 .35 4 .76 6 .77 3 .78 3 .79 4 .8 3

C 50 5 .004 7 0 – .05 3 .44 7 .55 3 .32 6 .18 6 .11 6 .06 7

250 25 .02 5 0 – .44 3 .23 5 .55 3 .47 4 .41 5 .36 4 .31 5

800 500 50 .07 1 0 – .44 3 .45 1 .55 3 .56 3 .58 1 .60 1 .63 1

pos 500 150 .01 6 0 – .78 7 .35 3 < 0 7 < 0 7 < 0 7 < 0 7 .63 1

200 5 .05 3 0 – .17 1 .20 6 .88 1 .64 1 .47 3 .34 5 .25 6

200 400 35 .05 2 0 – .40 2 .37 2 .6 2 .57 2 .55 2 .52 2 .5 3

neg 400 55 .02 4 0 – .53 6 .35 4 .4 6 .42 5 .44 4 .47 3 .5 3

Columns labeled V indicate raw value.
Columns labeled R indicate rank assigned by the given evaluation method in the given dataset

6 Implementation of the Q(w)
Method in AQ18

The AQ18 learning system (Michalski, 1999) can operate
in one of two modes: the standard or “noisy” mode, which
relaxes the rule consistency requirement, and seeks rules
with the highest rank on the LEF criterion, and the special
or “no-noise” mode, which accepts only fully consistent
rules, and creates a complete cover.

To implement the “noisy” mode, the Q(w) evaluation
method has been employed in two places: one—during a
multi-step rule growing process (star generation), in which
the system repeatedly selects the best set of candidate rules
for the next step of rule specialization, and second—during
the completion of the process (star termination), in which
the best rule is determined and submitted for output. The
user may select a Q(w) weight for the program to use, or
AQ18 will apply a default weight of 0.5 (equal emphasis
on completeness and consistency).

During star generation, AQ18 uses a beam search strategy
to find the “best” generalizations of a “seed” example by
repeated applications of the “extension-against”
generalization rule (Michalski, 1983). In the “noisy”
mode, the system determines the Q(w) value of the
generated rules after each extension-against operation; the
rules with Q(w) value lower than that of the parent rule
(the rule from which they were generated through
specialization), are discarded. If that is the case for all rules
stemming from a given parent rule, the parent rule is

retained instead; this operation is functionally equivalent to
considering the negative example extended against as noise.

In order to speed up the star generation, the user may
specify a time-out threshold on the extension-against
process. If after a given number of consecutive extensions,
there has been no further improvement in rule quality
Q(w), the system considers the current ruleset of sufficient
quality, and terminates the extension process, thus ignoring
any remaining unexamined negative examples.

In the star termination step (i.e., after the last extension-
against operation), candidate rules are generalized in various
ways to determine if the resulting rules have a higher Q(w)
value. This optimization may introduce additional
inconsistency, but makes possible that a lower quality rule
may overtake initially higher quality ones if it produces
superior generalizations. The best resulting is selected for
output through the normal LEF process.

In the process of attempting to improve a rule, AQ18
applies a hill-climbing method. It generalizes the rule by
extending the reference in each of its component
conditions, then selects the highest-quality rule from
among those generalizations, until no generalization creates
further improvement. For conditions with nominal
attributes, the only generalization rule (operator) considered
is condition dropping. For conditions with linear attributes
(rank, interval, cyclic, or continuous), the system applies
the condition dropping, and the extending or closing the
interval generation rules. For conditions with structured
(hierarchically ordered) attributes, the system applies the
condition dropping operator and the generalization tree
climbing operator (Michalski, 1983).

Table 2. Effects of different generalization operators on the base rule:
[color = red v blue] & [length = 2 v 5] & [animal_type = dog v lion v bat]

Generalization Rule Resulting Rule

Dropping condition
(applied to nominal attributes)

[length = 2..4 v 8] & [animal_type = dog v lion v bat]

Dropping condition
(applied to linear attributes)

[color = red v blue] & [animal_type = dog v lion v bat]

Extending interval
(applies to linear attributes only)

[color = red v blue] & [length = 2..6 v 8] & [animal_type = dog v lion v bat]

Closing interval
(applies to linear attributes only)

[color = red v blue] & [length = 2..8] & [animal_type = dog v lion v bat]

Dropping condition
(applied to structured attributes)

[color = red v blue] & [length = 2..4 v 8]

Climbing generalization tree
(applies to structured attribute only)

[color = red v blue] & [length = 2..4 v 8] & [animal_type = mammal]

Examples of each of the application of these generalization
rules to the base rule [color = red v blue] &
[length = 2..4 v 8]& [animal_type = dog v lion v bat] are
presented in Table 2. In the base rule, color is a nominal
attribute, animal_type is a structured attribute, and length
is a linear attribute.

7 Summary

This paper introduced the measure of consistency gain, and
presented a method for integrating it with completeness
into a general and flexible measure of rule quality. The
proposed Q(w) measure can be specialized to different
specific formulae that weigh differently the two measures.
Experiments have shown that by varying the w parameter,
one can obtain different measures of rule quality, while
machine learning programs have traditionally had inflexible
criteria with respect to rule completeness and consistency.

Additionally, the Q(w) measure does not have to be used
as a single measure, but can be employed as one of
multiple criteria in the lexicographical evaluation
functional (LEF). Through a LEF, one may thus optimize
a rule learning process according to many different criteria.
A planned future research topic involves the quantification
of rule simplicity and its incorporation into a description
simplicity measure.

The Q(w) measure has been implemented in AQ18 during
the star generation and star termination processes (when
generating a set of rules covering a specific seed example).
In addition to handling inconsistency, the AQ18 program
also includes a mechanism for generating incomplete
rulesets without the computational overhead of generating
and then truncating complete rulesets (Kaufman and
Michalski, 1999). Such rulesets have the advantage of not
containing many spurious rules.

We have also introduced a mechanism especially useful for
data mining applications, in which AQ18 determines when
some negative examples should be ignored as noise. Such
determinations have resulted in rules with substantially
higher completeness, at a small cost to consistency, while
reducing the time required for learning.

Acknowledgments

The authors thank Qi Zhang for his comments and
criticism on the ideas presented in earlier versions of this
paper. This research was conducted in the Machine
Learning and Inference Laboratory at George Mason
University. The Laboratory’s activities have been
supported in part by the National Science Foundation under
Grants No. IIS-9904078 and IRI-9510644, in part by the
Defense Advanced Research Projects Agency under Grant
No. F49620-95-1-0462 administered by the Air Force
Office of Scientific Research, and in part by the Office of
Naval Research under Grant No. N00014-91-J-1351.

References
Baim, P.W., The PROMISE Method for Selecting Most
Relevant Attributes for Inductive Learning Systems. Report
No. UIUCDCS-F-82-898. Department of Computer Science,
University of Illinois, Urbana (1982).

Bergadano, F., Matwin S., Michalski, R.S. and Zhang, J . ,
Learning Two-tiered Descriptions of Flexible Concepts: The
POSEJDON System. Machine Learning 8, (1992) 5-43.

Bruha, I, Quality of Decision Rules: Definitions and
Classification Schemes for Multiple Rules, in Nakhaeizadeh,
G. and Taylor, C.C. (eds.) Machine Learning and Statistics,
The Interface, New York: John Wiley & Sons., Inc. (1997)
107-131.

Clark, P. and Boswell, R. Rule Induction with CN2: Some
Recent Improvements. in Kodratoff, Y. (ed.), Proceedings o f
the Fifth European Working Session on Learning (EWSL-91),
Berlin: Springer-Verlag (1991) 151-163.

Clark, P. and Niblett, T. The CN2 Induction Algorithm.
Machine Learning 3 (1989) 261-283.

Cohen, W. Fast Effective Rule Induction. Proceedings of the
12th International Conference on Machine Learning (1995).

Fürnkranz, J. and Widmer, G. Incremental Reduced Error
Pruning. Proceedings of the 11th International Conference on
Machine Learning (1994).

Kaufman, K.A. INLEN: A Methodology and Integrated System
for Knowledge Discovery in Databases. Ph.D. dissertation,
George Mason University, Fairfax, VA (1997).

Kaufman, K.A. and Michalski, R.S. Learning in an
Inconsistent World: Rule Selection in AQ18. Reports of the
Machine Learning and Inference Laboratory. MLI 99-1.
George Mason University, Fairfax, VA (1999).

Michalski, R.S. A Theory and Methodology of Inductive
Learning. In: Michalski, R.S. Carbonell, J.G., Mitchell, T.M.

(eds.), Machine Learning: An Artificial Intelligence
Approach. Tioga Publishing, Palo Alto, CA (1983) 83-129.

Michalski, R.S. NATURAL INDUCTION: A Theory and
Methodology of the STAR Approach to Machine Learning and
Data Mining. Reports of the Machine Learning and Inference
Laboratory. George Mason University (1999).

Piatetsky-Shapiro, G. Discovery, Analysis, and Presentation
of Strong Rules. In: Piatetsky-Shapiro, G., Frawley, W.
(eds.): Knowledge Discovery in Databases. AAAI Press,
Menlo Park, CA, (1991) 229-248.

Quinlan, J.R. Induction of Decision Trees. Machine Learning
1 (1986) 81-106.

