
MULTISTRATEGY CONSTRUCTIVE INDUCTION

by

Eric E. Bloedorn

A Dissertation

Submitted to the

Graduate Faculty

of

George Mason University

in Partial Fulfillment of

the Requirements for the Degree

of

Doctor of Philosophy

Information Technology

Committee:

__________________________________ Ryszard S. Michalski, Dissertation Director

__________________________________ Kenneth De Jong

__________________________________ Larry Kerschberg

__________________________________ Gheorghe Tecuci

__________________________________ Carl Harris, Interim Associate Dean for
 Graduate Studies and Research

__________________________________ W. Murray Black, Interim Dean, School of
 Information Technology and Engineering

Date: ______________ Fall, 1996
 George Mason University
 Fairfax, Virginia

Multistrategy Constructive Induction

A dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy at George Mason University

By

Eric E. Bloedorn
B.A., Lawrence University, 1989

M.S., George Mason University, 1992

Director: Dr. Ryszard S. Michalski, Professor
Department of Computer Science and Systems Engineering

Fall 1996
George Mason University

Fairfax, Virginia

CHAPTER 1 INTRODUCTION

Machine learning (ML) algorithms are increasingly being pressed into service to help users

understand and detect patterns or regularities found in large amounts of data. These tools are

needed to help human analysts make sense of the increasing amount of complex data available

electronically from domains as diverse as computer vision, to world economics. One of the

primary difficulties preventing these ML algorithms from accurately and simply describing the

data is that all detected patterns must be stated in terms of attributes and values explicitly found

in the representation. When the data is complex and contains irrelevant attributes, too much

precision in the values, or inter-dependent attributes, current approaches fail to find simple,

accurate patterns. One method for overcoming the problem of a poor representation is to

simultaneously search for patterns, and for an improved representation of the problem itself. This

line of research is known as constructive induction (CI). Extending previous work on CI which

was primarily concerned with expanding the representation space by adding new terms, this

thesis introduces an implementation and framework for multistrategy constructive induction

(MCI). The MCI approach contains methods to not only expand the representation by adding new

problem-relevant attributes, but also to contract the representation space by removing attributes

and/or attribute-values.

1.1 Background

Learning is a central element of intelligence. With learning previous obstacles can be overcome,

previous approaches can be improved, and new problems may be solved quickly. Without

Chapter 1 - Introduction 2
__

learning past mistakes will be repeated and success will require either careful constraints on the

problem, or constant supervision. Because of its central role in intelligent behavior, learning has

been widely studied and is of interest to such varied fields as philosophy, cognitive science,

psychology, education, information science and artificial intelligence.

The emphasis in this thesis is on Machine Learning (ML). Machine learning is the study of how

learning processes can be automated, or modelled on a computer. One motivation for doing this

research is to build artificial systems that can autonomously perform some task or to act as

intelligent assistants to human users in performing complex tasks. Application areas of machine

learning are diverse and include such topics as computer vision, economics, medicine, and

engineering.

Although there are numerous applications and many domain specific techniques, much research

in ML is focused on general learning techniques. The work described here is more general and

can be categorized into the broad branch of techniques for "learning from examples." Learning

from examples is a problem of intermediate difficulty when all possible learning problems are

ranked based on the amount of effort which is required of the learner (Carbonell, et al., 1983).

This ranking is shown below:

1. Rote learning, memorization or the direct implantation of knowledge

2. Learning from instruction or learning by being told

3. Learning from analogy

4. Learning from examples

5. Learning from observation and discovery

Chapter 1 - Introduction 3
__

In "Rote learning" the learner has to perform little manipulation of the information given before

it is useful in solving a problem. The difficulty for the learner increases as one moves to

"Learning from instruction", "Learning from analogy", "Learning from examples", and finally

"Learning from observation and discovery". As one moves from one to five, the learner has an

increasing amount of responsibility and autonomy. The focus of this dissertation is on the class

of machine learning algorithms which perform learning from examples, or supervised

classification. In this type of learning, an external source or expert has assigned class labels to a

set of examples. The learner’s goal is to generate a hypothesis which discriminates each class

from all others. Although it could be performed when the class labels of all possible examples

are known, the most common case of learning from examples occurs when a learner is presented

with an incomplete set of known cases and is asked to generate general hypotheses from them.

These generalizations induced from the given examples describe the conditions under which

one class of examples is different from other classes (in the case of discriminant descriptions) or

different from any other class (in the case of characteristic descriptions). Such generalizations

can be used to predict the class of unseen examples. However, because the generalizations are

obtained through an inductive transformation, they may not correctly predict all of the new

cases. One factor that plays an important role in determining the predictive accuracy of learned

hypotheses is the representation of the problem.

1.2 Importance of the Problem

In learning from examples the first step is to build a representation of the problem. The

representation space of a problem is the space of possibilities defined by the domains of the

given descriptors. It is important that the representation space captures the necessary

information to characterize or discriminate the given classes of examples. In some cases the

important descriptors are known, but in many cases not. Take the problem of predicting when a

stock will increase in value. Is the previous day’s price important? What about the price or

Chapter 1 - Introduction 4
__

change in price of related stocks? What about other markets? Once the descriptors are selected,

then the granularity of the problem must be determined. Should values be stated in terms of

tens, hundreds or thousands of dollars? If the granularity is too fine, then general trends in the

data may be lost in local fluctuations. Conversely a coarse granularity can result in small

patterns being missed.

Once a representation has been determined, the goal of supervised classification methods is to

select those factors or conditions that are important in discriminating (or characterizing)

between the different classes of examples (e.g. differentiating between good times to sell stocks

from bad). Empirical methods for generating hypotheses look for the similarities and differences

between the like-labeled examples provided. The resulting hypotheses are generalizations of

these findings. If few examples exist, or the features are only weakly relevant to the problem,

the resulting patterns found may only coincidentally cover the data and not represent patterns

true for the entire set. For this reason the representation of the problem has a profound effect on

the performance of the learning algorithm.

(a)

(b)

Figure 1.1 - Diagrammatic visualization of the Monk2 representation space before (a) and after

(b) data-driven constructive induction

Chapter 3 - Multistrategy Constructive Induction

__

5

The effect of representation on the quality of the generated hypotheses is well illustrated by the

second Monk’s problem (Thrun, 1991). This problem is difficult because it has a distributed

coding, similar to parity problems. The goal concept is given as: An example is in class 1 if

exactly two of the six attributes have their first value. The original representation space with the

training examples in + and -, and the target concept shaded is shown in Figure 1.1(a) using

DIAV (Wnek, 1995).

The learning problem as represented in Fig. 1.1(a) is clearly difficult. There appears to be no

simple pattern or description. In fact, the rule shown in the shaded region is only 77% accurate

in predicting the class of unseen examples. On the other hand the problem of Figure 1.1(b) is

much easier to cover and describe. In this case the '+' squares (positive examples) can be

covered by a simple rule: [x7=2] => square is a positive example. The improved representation

space of Figure 1.1(b) was found by the program AQ17-DCI (Bloedorn, 1996). The

transformation made by AQ17-DCI was to generate a new attribute using the a counting

function called #VarEQ(x) function. This operator builds a new attribute for all values of x

found in the data. In this problem the most useful new attribute was #VarEQ(1) which counts

the number of attributes that take their first value. the value. The transformed representation

space including this attribute (x7 in the figure) is shown in Figure 1.1(b). (Attributes x5 and x6

were removed for clarity). In this new representation space generated rules were simple and had

a predictive accuracy of 100%.

1.3 Constructive Induction

In recognition of the important step of finding the appropriate representation space for a

problem, the idea of constructive induction (CI) was introduced (Michalski, 1983). This initial

definition of CI focused solely on the capability for "formulating new descriptors". Many

programs which perform CI today including LFC (Ragavan and Rendell, 1993), CITRE

Chapter 3 - Multistrategy Constructive Induction

__

6

(Matheus, 1989), FRINGE (Pagallo and Haussler, 1990) and GALA (Hu and Kibler, 1996), still

view CI in this way. However, the definition of CI has recently been extended by some to

include any change in the representation space (Wnek and Michalski, 1994; Bloedorn and

Michalski, 1996). In this new view, CI includes both expanders which enlarge the space by

formulating new descriptors, and contractors which reduce the space by removing descriptors,

or descriptor values. In this new view the process of learning is seen as two intertwined

searches. The first search is for a ‘good’ representation space. This step was previously

performed by the domain experts by themselves or in collaboration with experts in machine

learning which articulated the problem. The second search is for a hypothesis which

discriminates between the classes of examples given in the problem. This search can be

performed by any one of a number of learning methods. Well known programs for learning

hypotheses from examples include C4.5 (Quinlan, 1993), Backpropagation (Rummelhart and

McClelland, 1986), CN2 (Clark and Niblett, 1989) and AQ15c (Wnek, 1995), the program used

in the method described here.

The basic premise of research on constructive induction (CI) is that a precondition for

satisfactory learning results is a well-stated representation of the problem. If the representation

space is well chosen, then the results of learning will be satisfactory with almost any learning

method. Conversely, with a poor representation learning will be poor regardless of the method.

Constructive induction is oriented toward learning problems in which the representation space

defined by the training examples is of low quality. This occurs when the space contains weakly

relevant or irrelevant attributes, or there is a mismatch between the description language and the

target concept in the originally given representation space. Stated another way, Constructive

Induction can also be thought of as automatically determining an adequate “ representation space

bias” for learning.

The search for an improved representation space can be guided by information from three

Chapter 3 - Multistrategy Constructive Induction

__

7

sources (Wnek and Michalski, 1994) training data (as in data-driven constructive induction—

DCI), initial hypotheses learned from the data (as in hypothesis-driven constructive induction—

HCI), or expert knowledge provided by the user to the system (as in knowledge-driven

constructive induction—KCI). These approaches can also be combined into a multistrategy

constructive induction method (MCI). This thesis describes such a multistrategy constructive

induction method.

1.4 Potential Benefits

There are many potential benefits of a system which can improve the current representation

space without explicit expert guidance. The benefits of improved representation spaces include:

1) Increased predictive accuracy of learned hypotheses. When the representation space is

improved the learner can detect the patterns that better describe the given examples and can thus

better predict new examples.

2) Decreased complexity. Although accurate hypotheses can be learned from a poor

representation such learned hypotheses are often unnecessarily complex. Comprehensibility is

often important, especially when learning hypotheses for later use by people. Complexity is

measured in the experiments in Chapter 5 by the number of selectors and the number of rules in

the learned hypotheses. Chapter 5 also shows examples of significant decreases in complexity

due to changes made by MCI.

3) Decreased learning time. Decreased learning time is possible when the examples are arranged

in a pattern which is easy to describe for the chosen hypothesis language. Modifications to the

representation space, as shown in Figure 1.1, and in Chapter 5, can significantly simplify the

search for good hypotheses, and thus reduce learning time. Learning time is measured in the

experiments in seconds.

Chapter 3 - Multistrategy Constructive Induction

__

8

4) Higher Noise tolerance. When the representation space is well suited to learning, high levels

of misclassification noise can be tolerated without decrease in predictive accuracy. This is due

to the way the changes to the representation have better grouped like-labelled examples into

easier to describe clusters. Although valuable in some domains, this effect is not directly tested

in this thesis.

5) Fewer learning examples required. Fewer learning examples are required in improved

representation spaces because the remaining examples still clearly define the best hypotheses.

This effect is also not emprically validated here, but is clear from cases like Monk 2 shown

previously.

6) Improved performance on related problems. One of the control strategies introduced here for

multistrategy constructive induction method stores a record of its performance on past examples

which helps it perform better on related future problems. This memory allows the system to

learn how to improve the representation space of future problems so that future learned rules are

of high quality.

7) Improved performance on single problems with multiple pathologies. Most real-world

induction problems are difficult because they have a mixture of inappropriately represented

attributes, or over-precise attribute values or irrelevant attributes. As shown in chapter 5,

multistrategy constructive induction can improve on even these multi-pathological cases.

Some of these benefits have been empirically shown by other researchers, but usually for a

narrow range of synthetic problems. Chapter 5 will demonstrate most of these benefits on both

synthetic and two real-world problems.

1.5 Thesis

Chapter 3 - Multistrategy Constructive Induction

__

9

Multistrategy Constructive Induction (MCI) is a solution to the problem of learning simple,

predictively accurate rules from examples in representations which contain irrelevant attributes,

inter-dependent attributes, and large attribute domains. MCI is the only method to combine

representation space modification operators (RSMOs) to address all of these difficulties. This

allows MCI to solve problems that no single-strategy method alone can solve. The MCI

framework presented here can include representation space modification operators which make

use any possible computational strategy. The implementation presented here makes use of

heuristics, statistics and learned hypotheses. Methods which use other knowledge-driven and

evolutionary computation techniques are also outlined. A method for meta-level learning in

which the system itself acquires the control rules necessary for determining which RSMO is

best suited for the given problem is also outlined and shown to be a useful and effective control

strategy.

The defense of this thesis is organized as follows: Chapter 2 provides background and

motivation for this research. This chapter provides definitions of important terms and describes

related work. Chapter 3 defines multistrategy constructive induction, the tools combined, and

their various control strategies. An analysis of the links between MCI and the Inferential Theory

of Learning (ITL) (Michalski, 1993) is given to provide a deeper understanding of the

transformations being performed. The architecture of multistrategy constructive induction as

implemented in AQ17-MCI is given in Chapter 4. This is followed by an analysis of the

relationship between MCI and the Inferential Theory of Learning (Michalski, 1993). Chapter 5

describes the set of experiments designed to evaluate the effectiveness of the proposed

approach. The last chapter, Chapter 6, provides a summary of results and an identification and

analysis of outstanding research problems.

1.6 Major Contributions

This dissertation introduces a novel methodology for multistrategy constructive induction. The

Chapter 3 - Multistrategy Constructive Induction

__

10

major contributions of this approach are 1) it incorporates multiple computational methods for

constructive induction including representation space expansion and contraction, 2) it

incorporates multiple inferential techniques. It uses deduction to arrive at a meta-decision

concerning which representation space modifier to select, and induction when inducing a new

(or modifying a previous) meta-rule from a set of meta-examples, and 3) it is a learning system

capable of improving its own performance over time through meta-learning. The proposed

method is built on established individual empirical induction and constructive induction

techniques and is capable of incorporating knowledge from many sources including 1) directly

from the user, 2) from analysis of the data, and 3) from analysis of learned hypotheses.

The proposed multistrategy approach helps to overcome the brittleness of current learning

methods by automating the search for representation spaces which are better suited to learning

predictively accurate rules. This approach helps overcome the problems such methods have with

complex real-valued data by including a method for attribute-value discretization, and with

noisy data, by including many methods for representation space contraction. The meta-learning

capabilities eliminate the need for the need for human expertise to guide the selection of these

tools. The relationship between characteristics of a dataset and appropriate representation space

transformations are not generally known. A learning approach to this meta-learning task

eliminates the need to explicitly determine this relationship before using the available tools.

Chapter 3 - Multistrategy Constructive Induction

__

11

CHAPTER 2 BACKGROUND AND MOTIVATION

This chapter provides background and motivation for research in multistrategy constructive

induction. Definitions of learning from examples, representation space and constructive

induction are given. This is followed by an analysis of why current selective inductive learning

algorithms fail and how these failures are currently addressed.

2.1 Definitions

2.1.1 Learning From Examples

Multistrategy constructive induction performs both a search for an adequate representation space

with which to represent examples, and a search for hypotheses which describe the examples. The

latter search is performed as an inductive inference and is a form of learning from examples. The

problem of learning from examples is defined as follows (Michalski, 1983):

Given:

* A set of observational statements (facts), F, that represent a collection of implications
where each statement denotes a description of an example of concept or class Ki and i
is a set indexing classes Ki

* A tenative inductive assertion (which maybe null),
* Background knowledge that defines the assumptions and constraints imposed on the

observational statements and generated candidate inductive assertions, and any
relevant problem domain knowledge. The last includes the preference criterion
characterizing the desirable properties of the sought inductive assertion

Find:

* A set of concept recognition rules, H, H: { Di ::> Ki} , i � I, that are consistent with the
background knowledge

Chapter 3 - Multistrategy Constructive Induction

__

12

where Di is a concept description of class Ki, or a description of the conditions under which, if

satisfied, an object is considered an instance of class Ki. A simple learning example is shown in

Figure 2.1.

Given:

Attributes:

X Domain { 0,1} , Y Domain { 0,1}

Facts:

F = { X=0, Y=0 ::> Class0

 X=0, Y=1 ::> Class0

 X=1, Y=1 ::> Class1

Initial Assertion: Null

Output: A description of Class0 and Class1

 [X=0] ::> [Class = 0]

 [X=1] ::> [Class = 1] (Hypothesis 1)

Figure 2.1 - Learning from Examples

The facts, or examples composing the set F, are stated in terms of attribute-value vectors in

Figure 2.1. In this type of representation an example is a vector of n terms where n is the number

of attributes. This is the type of representation that will be used throughout this thesis. The set of

attributes and their possible values, or domains, constitute the representation space. Another

description could also have been generated in Figure 2.1 for class1. This more complex

description is:

[X=1][Y=1] ::> [Class =1] (Hypothesis 2)

Both Hypothesis1 and Hypothesis 2 describe all of the examples in F (and are thus complete with

respect to F) and both cover only those examples from Class 1 and not Class 0. In larger

problems the number of equivalent hypothesis can be very large. A heuristic, or bias for selecting

one hypothesis from a set can be provided explicitly as part of the background knowledge (in the

Chapter 3 - Multistrategy Constructive Induction

__

13

form of a preference criterion in AQ15c) or implicitly based on the learning algorithm used. Such

a selection is sometimes known as a learning bias (Gordon and Desjardins, 1995)i.

2.1.2 Representation Space

The representation space is the space in which fact (examples), hypotheses and background

knowledge are represented. The representation space is spanned over descriptors that are

elementary concepts used to characterize examples from some viewpoint. Individual cells in the

representation space correspond to individual examples and are defined as vectors of single

argument descriptors (attributes). The hypothesis language is the language used to describe

concepts within the representation space. Typical constructs of the hypothesis language include

nested axis-parallel hyper-rectangles (decision trees), arbitrary axis-parallel hyper-rectangles

(conjunctive rules with internal disjunction, as used in VL1), or hyperplanes or higher degree

surfaces (neural nets). The hypothesis language used in this thesis is VL1 although some of the

techniques could be used with any hypothesis language (and associated learning algorithm).

2.1.3 Constructive Induction

Constructive induction performs two intertwined searches: a search for an adequate

representation space and a search for hypotheses within that space. The problem of representation

space search in an attribute-value representation can be formally defined as:

Given:

* A set of attributes, A
* Background knowledge that defines constraints imposed on the the attributes in A
* One or more of the following:
 - Knowledge defining relationships between attributes in A, or about individual
 attributes in A
 - A set of observational statements (facts), F, that represent a collection of
 implications where each statement denotes a description of an example of concept

i The approach used by one method for building more robust learning algorithms is to better understand and control
all formns of learning bias. This approach is described in Section 2.3.

Chapter 3 - Multistrategy Constructive Induction

__

14

 - A tentative inductive assertion
* Background knowledge that defines preference criterion characterizing the desirable
properties of the sought representation space

Find:

* A representation space satisfying the preference criterion.

The preference criterion for a new representation space may consist of statistical metrics

describing the minimal ‘ information value’ of an individual attribute, or the minimal correlation

between an attribute value range and the class. It may also be indirectly evaluated by testing the

predictive accuracy and simplicity of the hypotheses learned from that space.

When background knowledge about the problem is used to find an improved representation

space, the search is knowledge-driven, and an algorithm which combines this knowledge-based

search with a search for a hypotheses is known as knowledge-driven constructive induction

(KCI) (Wnek and Michalski, 1994). Similarly, when a search for hypotheses is combined with an

analysis of the given set of examples is to guide the search for an improved representation space,

it is known as data-driven constructive induction (DCI). Hypothesis-driven constructive

induction (HCI) occurs when a hypothesis (which may be learned from a subset of the examples

in a previous iteration) is used for the representation-space search in a CI learning system.

2.2 Assumptions of Selective Inductive Learning Algorithms

Before discussing how a more general inductive learning algorithm could be created, it is useful

to analyze in more detail the assumptions made by selective inductive learning methods because

it can predict when these methods will fail and what can be done to overcome this failure. These

assumptions are true for all selective induction learning algorithms, regardless of hypothesis

language or computational strategy. In addition to these assumptions, all learning algorithms,

regardless of the large space of possibilities, must make certain choices about which parts of the

space to be searched, or which hypotheses are preferable.

Chapter 3 - Multistrategy Constructive Induction

__

15

Selective induction methods make a number of assumptions about the representation, and the

distribution of examples. These assumptions can be categorized into three types: 1)

completeness, 2) correctness and 3) appropriateness (Figure 2.2). Completeness refers to the

extent to which the knowledge provided to the system is sufficient for the system to generate a

complete and consistent description of the various classes. Incompleteness is often unavoidable

due to the difficulty in obtaining labelled examples. In a medical diagnosis domain patients

displaying all possible symptoms and characteristics will not normally be available. Correctness

refers to the accuracy with which data is given to the system. Incorrectness can manifest itself in

individual attribute values, attributes themselves or example class membership. A common cause

of incorrectness is measurement error. Appropriateness refers to the match between proximity in

the representation space and proximity of class membership. Selective induction methods assume

that the given data is in an appropriate form so that examples which are close to each other in the

representation space are also close to (in the case of hierarchically, or linearly ordered classes) or

identical (in the case of nominally ordered classes) in class membership as well (Belyaev, 1991,

Rendell and Seshu, 1990). When any of these assumptions are violated the representation space

is inadequate for selective induction and poor hypotheses (low predictive accuracy and high

complexity) result. To achieve a learning method which can overcome any of these deficiencies

of the representation space, methods for correcting each of these inadequacies must be

developed.

Although related work on overcoming problems of incompleteness and incorrectness are detailed

in the following sections this thesis focuses on only inappropriateness. Problems of

inappropriateness like continuous attributes, dependencies between non-class attributes and

irrelevant attributes are problems of the representation space. Constructive induction methods,

including the MCI method described here, are methods for searching for improved representation

spaces. Additional methods for overcoming incompleteness and incorrectness may be added to

Chapter 3 - Multistrategy Constructive Induction

__

16

an MCI system, but are out of the scope of this thesis.

Problems

Inappropriate Incomplete Incorrect

Figure 2.2 - A Taxonomy of Representation Space Inadequacies

2.2.1 Inappropriateness

An induction problem is inappropriate to a representation language if there is a mismatch

between the concept boundaries in the space and the capabilities of the descriptive constructs of

the language to describe these boundaries. The source of this inappropriateness can lie in the set

of attribute values, or the attributes themselves.

2.2.1.1 Abstraction

An example of inappropriate attribute value set would be one in which the provided values blur

the concept boundaries by being too broad or too precise. Value sets that contain too few values

can be difficult to learn discriminatory rules from because the granularity is too coarse. One

approach for handling this problem is to increase the granularity. Such an approach would be

performing a concretion operation (in terms of the Inferential Theory of Learning (Michalski,

1993)) and would require knowledge from some outside source.

An attribute domain that contains a large number of values (as occurs with continuous attributes

especially) can also cause problems. Many induction methods, such as decision trees and

decision rules, perform best when value sets are small and appropriate to the problem at hand (A

demonstration of this is given in section 5.1). The size of an attribute domain can sometimes be a

Chapter 3 - Multistrategy Constructive Induction

__

17

measure of the level of granularity of an attribute: a large attribute domain means that examples

are precisely defined along that dimension and vice versa. Over-precision can result in learned

descriptions that are too precise and overfit the data. Overprecision in attribute value sets is

sometimes difficult to avoid when the data provided to the system is continuous, and meaningful

discretization intervals are unknown. Although they are performing an abstraction of the given

values, this work is usually referred to as automatic discretization of attribute data (Catlett, 1991;

Pfahringer, 1995; Fayyad and Irani, 1993), or as a method for efficiently splitting on continuous

attributes (Fulton, et al, 1995). Dougherty et al (1995) proposes a taxonomy of discretization

methods based on three different axes: global vs. local, supervised vs. unsupervised and static vs.

dynamic. The global vs. local axis refers to the scope of discretization, whether a small part of

the space is discretized in the context of other attributes as in c4.5 (Quinlan, 1996) or the entire

space is discretized over each attribute independently. The supervised vs. unsupervised axis

refers to the use of class information when making decision about appropriate interval

boundaries, and static-dynamic describes whether discretization is performed for all attributes

simultaneously or in sequence. The Chi-merge algorithm (Kerber, 1992) adapted for use within

AQ17-MCI is a supervised, global static discretization method which iteratively merges adjacent

intervals of an attribute until a χ2 threshold set by the user is met.

2.2.1.2 Attribute Independence

Inappropriate attributes are those attributes which are relevant to the problem at hand, but which

are not independent of each other. Because selective induction algorithms assume that the

dimensions of the sapce can be searched independently, such cross-attribute concepts are difficult

to capture. For example, the parity problem when stated in terms of the presence or absence of

individual attributes, is an attribute-inappropriately stated problem for any induction method

which uses axis-parallel hyperrectangles as descriptive constructs. When inappropriate attributes

exist attribute construction methods can be invoked which try to combine the given attributes in

Chapter 3 - Multistrategy Constructive Induction

__

18

more problem-relevant manner. A number of systems have been developed with this goal. These

methods can be classified into data-driven, hypothesis-driven, knowledge-driven and

multistrategy (Wnek and Michalski, 1994; See also Section 2.3.3). Some representative of each

of these types are: AQ17-DCI (Bloedorn and Michalski, 1991, Bloedorn and Michalski, 1996)

BLIP (Wrobel, 1989), CITRE (Matheus, 1990), FRINGE (Pagallo, 1989), MIRO (Drastal, 1989)

and STABB (Utgoff, 1986). The AQ17-MCI system uses methods from AQ17-DCI, and AQ17-

HCI (Wnek and Michalski, 1994).

2.2.1.3 Irrelevant Attributes

An attribute can also be inappropriate if it is not relevant to the given classification task.

Selective induction learning methods perform a selection of attributes from the given set, and as

such are not significantly affected by small numbers of irrelevant attributes. However, with an

increasing need to automate the process of knowledge discovery from data, and to find patterns

as quickly as possible, induction methods are needed which are robust to even large numbers of

irrelevant attributes.

Work in detecting and removing irrelevant attributes can be divided into a filter approach or a

wrapper approach (John, Kohavi and Pfleger, 1994). In the filter approach feature selection is

performed as a pre-processing step to induction. Because it is separated from the induction

algorithm filters are fast, they can be used with any induction algorithms once filtering is done,

and can be used on large datasets. However, they they may not agree on the relevancy of certain

attributes with the induction algorithm (Imam, 1996). Methods for filtering include those based

on information theory as in DCI-SEL, included in AQ17-MCI (Section 4.5.3.1), and the method

of Koller and Sahami (1996), LVF, a probabilistic method (Liu and Setiono, 1996), and RELIEF

(Kira and Rendell, 1992) which uses heuristics and samples of data in order to find relevant

attributes (Liu and Setiono, 1996). The wrapper approach uses the induction algorithm itself to

Chapter 3 - Multistrategy Constructive Induction

__

19

make estimates of the relevance of the given attributes. This can also be called hypothesis-driven

filtering. This is the approach taken in HCI-SEL included in AQ17-MCI (See Section 4.5.3.2),

and also (John, Kohavi and Pfleger, 1994; Vafaie and Dejong, 1994).

2.2.2 Incompleteness

An induction problem is incomplete if attribute values, attributes (descriptors), or examples are

missing. Incompleteness with respect to examples is a fundamental problem in all but trivial

summative induction cases. Thus, although selective induction methods do not assume a

complete set of examples will be available for learning, they do assume that the training set has a

certain degree of completeness. This degree of completeness is satisfied when the training set

contains a sufficient number of representative, or prototypical examples so that class boundaries

can be accurately determined. Example incompleteness is addressed in knowledge acquisition

systems such as DISCIPLE (Tecuci and Kodratoff, 1990). In DISCIPLE, machine learning

methods are used to guide the questioning of the expert to most efficiently fill gaps in the

knowledge base. Selective, or constructive induction methods do not have mechanisms for

acquiring new examples.

A problem may also be incomplete due to attribute (concept) incompleteness. Attribute

incompleteness is present when identical examples are present in more than one class (when

ambiguous examples exist in the data). This type of incompleteness is a common problem.

Methods for overcoming attribute incompleteness differ from those designed for overcoming

inappropriate attributes because in this case the attribute required is not a simple function of the

current attributes. Thus methods which try combinations of current attributes will fail here. The

source for these attributes must come from a domain expert. This knowledge acquisition task is

most effective when it is focused on filling the known gaps in the knowledge base. One method

for overcoming this problem is CERI which is a part of NeoDICISPLE (Tecuci, 1992). In this

approach similar to the repertory grids based on personal construct theory of Kelly (Kelly, 1955),

Chapter 3 - Multistrategy Constructive Induction

__

20

a guided interaction with the user takes place in which the expert is asked to make distinctions

between concepts appearing in the positive and negative instances of the rule. In asking very

specific questions to the user, the elicitation of useful knowledge is easy for the expert and yet is

useful for filling in 'gaps' in the knowledge base.

2.2.3 Incorrectness

Problem incorrectness occurs when some attribute-values, attributes or instances are incorrectly

labelled. Incorrectness or error can occur in any stage along the data acquisition process.

Incorrectness is most often associated with noise in the training data due to poor sensor readings.

Differentiating between the effects of instance noise (misclassification) and attribute-value noise

is extremely difficult as often the only manifestation of this noise is the distribution of

exceptional instances which are distant from other instances of the same class in the

representation space.

Some methods for dealing with incorrect instances, or attribute values, are based on identifying

noisy or exceptional instances by using statistical methods applied to the distribution of attribute

values, or instances such as in ESEL (Michalski, and Larson, 1978). An alternative method is to

use rule coverage to guide example selection as in AQ-NT (Bala, 1993).

2.3 Methods for Building more General Learning Algorithms

As has been shown in Shaffer (1994) and Rao, Gordon, and Spears, (1995) there is no hope for

building a universal learner. However, it may be that there do exist learning methods for a large

set of the more interesting possible concepts to be learned. In order to find an inductive learning

algorithm that can perform well on a wide variety of problems researchers have taken three

general approaches: 1) explicitly delineate the biases used by the learning algorithm and select

the best for the given learning problem 2) select the best a priori defined bias by selecting from a

Chapter 3 - Multistrategy Constructive Induction

__

21

fixed set of learning algorithms, or 3) modify the representation spaceii.

2.3.1 Modify the Inductive Bias

Because there exist many equally consistent inductive generalizations of a given set of training

examples, additional knowledge is used to bias the search toward the most preferred

generalizations, or parts of the representation space (Gordon and Desjardins, 1995); (Mitchell,

1980). If the correct bias for a learning problem is selected, then the correct generalizations are

made resulting in increased predictive accuracy, reduced complexity and reduced learning time

(Provost, 1992). Unfortunately, it is impossible to know for certain which bias is correct a priori.

However, it may be possible to find certain problems for which certain biases perform well.

Building explicit controls to various type of bias is the goal of work in this category.

SBS (Provost, 1992) makes explicit a number of learning biases, including the definitions of the

space, the method for searching the space. It also introduces the idea of inductive policy. The

definition of the space is the hypothesis language (decision trees, decision rules etc.) or the use of

attribute-value representation. The method for searching spaces is the way in which the algorithm

searches for hypotheses and the heuristics it uses for selecting certain examples from which to

learn. Inductive policy is a statement of the reason certain bias choices are made. With explicit

control of inductive policy a user can trade-off performance traits such as increased learning

speed for decreased coverage of examples.

2.3.2 Select the best Inductive Learner

Another way to build a learning system that performs well on a wide variety of problems is to

iiAnother way to improve the performance of an inductive learning algorithm is to focus on improving the
interpretation of learned hypothses. Michalski's second tier approach is one such method (Michalski, 1989). See also
(Kubat 1996).

Chapter 3 - Multistrategy Constructive Induction

__

22

select the most appropriate learning algorithm for the problem. Simply stated, if different

learning algorithms have different strengths, then a combination of these algorithms will have the

union of these strengths. This approach is taken by the MCS system (Brodley, 1993) One

problem with this approach is finding a set of individual algorithms which span the set of

possible learing problems. If this set is too small, then the combination approach is still

incomplete. If the set is too large then the selection of the appropriate tool becomes complex and

time consuming. The Machine Learning Toolbox (Graner, Sharma, Sleeman, et al., 1992) is an

example of this approach in which the user must determine the best learner to use.

The VBMS system (Variable Bias Management System) (Rendell, Seshu and Tcheng, 1987) tries

to find a match between problem characteristics and learning algorithms. Initially the meta-level

learner has no knowledge of which algorithms are best for which problems. Gradually this

knowledge is built up as it tries all its available algorithms and then records their performance.

VBMS uses a clustering algorithm, PLS1 (Rendell, 1983), to build descriptions of the regions of

expertise of the different learning algorithms. The VBMS system is of particular interest because

it tries to perform a meta-level learning. However, it uses only a small set of problem

characteristics to guide meta-learning (the number of examples and the number of features) and

combines only three similar learning algorithms. Despite these limitations initial results were

promising for learning meta-level control.

Further motivation for learning characterizations of learning algorithms in hopes of better

predicting which algorithm will perform best for a given problem comes from Aha (1992). In this

work Aha describes an empirical method for generalizing results from case studies and lists

characteristics of problems from which to learn these rules. In this method he proposes a five step

approach, the first step of which is to collect case study details. These meta-level attributes

describing the problem are, unfortunately difficult to obtain without detailed knowledge of the

target concepts. These difficult attributes include: "number of target concepts", "correlations of

Chapter 3 - Multistrategy Constructive Induction

__

23

attributes to target concept disjuncts", "distribution of instances within disjuncts of target

concepts", "distribution of instances among concepts" and "amount and type of noise subjected to

the instances, attributes and target concepts". The meta-attributes of AQ17-MCI listed in Table

4.1 do not require such detailed knowledge of the target concepts.

The work (Brazdil et al, 1994) is also interested in characterizing learning algorithms. In this

work the results of the StatLog project (Michie, et al 1994) were used to build characterizations

using C4.5. The StatLog project includes results for 22 different learning algorithms on more

than 20 different datasets. Classification problems are described by 15 meta-level attributes.

These include 'simple' measures, statistical measures and information-based measures (Figure

3.2). The simple measures are

The number of examples (N),

the number of attributes (p),

the number of classes (k)

the proportion of binary attributes (Bin_att),

the errors quantified by costs (Cost)

the statistical measures include

standard deviation ratio (SDratio)

mean value of correlation (Correl)

canonical correlation for the best single combination of attributes (Cancor1)

the first normalized eigenvalues of canonical discriminant matrix (Fract1)

skewness

kurtosis

The information-based measures include:

entropy of classes (Hc)

entropy of attributes (Ha)

mean mutual information of class and attributes (Mca)

Chapter 3 - Multistrategy Constructive Induction

__

24

noise-signal ratio (Ha-Mca)/Mca

The goal of this work differed from that of meta-rules of AQ17-MCI not only in that it was

learning rules for different learning algorithms rather than CI operators, but also in that it was

trying to predict the numerical value of the error. AQ17-MCI meta-rules are only intended to

predict which operator will perform best.

2.3.3 Modify the Representation Space

A different approach to solving the problem of selective superiority is to fix the inductive

algorithm and its bias, and to search for an improved representation space. This is the

constructive induction approach as described in Section 1.3. Here constructive induction is

viewed as any method that modifies the representation space. Changes may be expansions to the

representation space caused by attribute construction or attribute-value addition, or they may be

contractions caused by attribute removal or attribute-value removal.

The idea of constructive induction was first introduced by Michalski (Michalski, 1978). Since

then a number of other methods for constructive induction have been developed. In (Wnek and

Michalski, 1994) a classification of these approaches is introduced based on the primary method

used to guide modifications to the representation space. The four methods include knowledge-

driven (KCI), data-driven (DCI), hypothesis driven (HCI) and Multistrategy (MCI). The

following sections will describe each of the methods in more detail.

2.3.3.1 KCI

Knowledge driven methods base representation space modification on knowledge provided by

the user. This knowledge is usually represented as definitions of domain-specific transformations

such as constructing a new attribute. Such domain-specific knowledge often results in useful new

attributes and shorter more predictively accurate rules. However, such knowledge is often hard to

Chapter 3 - Multistrategy Constructive Induction

__

25

obtain or sometimes express.

Donoho and Rendell (1996) identify an ordering of knowledge used for constructive induction

ranging from complete theories to fragmentary knowledge. At one end of the scale is the MIRO

system (Drastal et al, 1989) which uses an almost complete theory from the domain to build an

abstraction space in which learning will be better, LAIR (Elio and Watanabe, 1991), which is an

incremental deductive approach to attribute construction, and TGCI (Donoho and Rendell,

1995). The AQ15 and AQ15c programs (Michalski et al, 1986; Wnek et al, 1995) requires

complete knowledge when making use of its a-rules, l-rules or b-rules tables for defining new

attributes. At the other end of the scale are systems which use fragments of knowledge.

Knowledge of attribute units (dimensional analysis) is used in the COPER system (Kokar, 1986)

to guide the system toward meaningful combintions of attributes, and in AQ17-DCI (Bloedorn

and Michalski, 1996; See also Section 4.5.5.4).

2.3.3.2 DCI

Data-driven methods base representation space modifications on an analysis of the provided

training data. The correlations and interrelationships between attributes are used to expand the

representation space by constructing new features, or possibly reducing the space by removing

irrelevant attributes. Data-driven approaches are appealing because they do not require domain

expertise, and are not tied to a specific knowledge representation such as trees or rules.

The GALA system (Hu and Kibler, 1996) especially emphasizes the ability of data-driven

approaches to be used as a pre-processor for a variety of learning methods. The authors

demonstrate the effectiveness of GALA's construction of new attributes for C4.5, CN2, a

perceptron and backpropagation. GALA also introduces a useful concept of relative improvement

for judging the quality of new attributes. Because such attributes are generated from those given

Chapter 3 - Multistrategy Constructive Induction

__

26

it would be unnecessary to introduce a new attribute, even if it had a high absolute 'value', if it

did not help dicriminate the given classes any better than its parents. GALA is limited however in

it approach in that it performs only feature construction, uses only boolean operators of 'and' and

'not' and requires that the given attributes be converted to booleans before processing. The step of

'booleanizing' adds is expensive: the authors report a complexity of O(AVE) where A is the

number of attributes, V is the maximum number of attribute values and E is the number of

examples.

AQ17-DCI (Bloedorn and Michalski, 1991, 1996), expands the representation space through

attribute construction, and contracts the space through attribute-value abstraction and attribute

removal. Attribute construction is based on a generate and test approach using algebraic and

logical operands. Using the set of operators selected by the user the algorithm generates pair-wise

and multi-argument functions of the original attributes. These attributes are evaluated using an

information gain ratio (Quinlan, 1989), or PROMISE (Baim, 1982) metric. If their information

value is greater than a user-defined threshold, then the new attribute is added to the available set

for learning. Abstraction of attribute values is performed using the Chi-merge algorithm (Kerber,

1992). This algorithm repeatedly merges adjacent intervals while the merging does not overly

blur class boundaries. Attribute-value and class correlation is calculated using a χ2 statistic.

Attribute selection is based on a simple filter - those attributes with an individual information

value less than a user-defined threshold are removed from the available set.

Another method for attribute construction from data is done in BACON (Langley, Bradshaw and

Simon, 1983; Langley et al, 1987) and ABACUS (Greene, 1988). These programs do not search

for class descriptions given labelled examples, but instead build new attributes that are numerical

functions of the original attributes. Attribute construction is based on the interdependencies

between attributes in the data. EF, the equation discovery function within FAHRENHEIT is

another equation discovery algorithm (Zembowicz, and Zytkow, 1991). Unlike BACON,

Chapter 3 - Multistrategy Constructive Induction

__

27

however, EF takes a more rigorous approach to handling the problem of propagating error when

generating new attributes which allows it to converge faster to equations which better match the

data. These approaches are closely related to the work of Sutton and Matheus in their program

for finding polynomial functions (Sutton and Matheus, 1989) and of canonical discriminant

analysis in CAF (Yip, and Webb, 1994). The former work uses a linear regression algorithm is

used to find candidate attributes. The pairs of attributes found are used as a basis for new

attributes. The CAF algorithm uses discriminant analysis to find a linear combination of

discriminating attributes. CAF performs a a statistical clustering analysis to find new attributes

which maximally separate class centroids.

STAGGER (Schlimmer, 1987), uses a variety of data-driven methods to search for a good

representation and to find the best hypotheses within the representation. These three interacting

components include 1) a module for adjusting the weights of symbolic descriptions, 2) a module

for adding new boolean combinations of features, and 3) a module for abstracting attribute-

values into discrete intervals. Attribute construction is only invoked when STAGGER makes a

prediction error on a training example. The type of construction made is based on the type of

error. When the hypotheses is too general a new element which specializes the current

hypotheses is added using AND. When the hypothesis is too specific, a new element which

generalizes the hypotheses is added using OR. The attribute-value abstraction module uses a

beam search to quantize a real-values range into discrete intervals. Each potential interval is

merged or retained based on the number of positive and negative examples, or utility of that

interval. STAGGER more tightly couples learning with representation space modification than

AQ17-MCI, but it has fewer operators for representation space change, and does not learn control

knowledge that will carry over between learning problems.

LFC (Ragavan and Rendell, 1993) performs data-driven construction of new attributes while

constructing a decision tree. LFC uses a lookahead before it creates each node in the decision

Chapter 3 - Multistrategy Constructive Induction

__

28

tree. This lookahead is constrained by a number of heuristics in order to allow LFC to be of

reasonable speed. A benefit of this lookahead is that the replication problem common in decision

trees when the available examples are difficult to split on one attribute, is much reduced. Like

STAGGER, LFC uses only logical operators to construct new terms from the original set. MRP

(Perez and Rendell, 1995) also performs feature construction iteratively with decision tree

generation. Unlike LFC, however, MRP uses multidimensional projections to find arbitarily

complex logical relationships. Although the projection method used within MRP has also been

used to perform feature selection, MRP is primarily designed for feature construction. Both MRP

and LFC, primarily differ from AQ17-MCI in the way they generate new attributes while

generating a decision tree, in their use of only methods for attribute construction and not

selection or abstraction (and as such have no meta-level of control for representation space

modification), and in their restriction to only logical combinations of attributes.

2.3.3.3 HCI

Hypothesis-driven methods base modification of the representation space on patterns found in

the generated hypotheses. These patterns can signal the method that new attributes should be

constructed or removed. Hypothesis driven methods do not require domain expertise, but are tied

to a specific hypothesis language.

Utgoff's STABB (Shift to a Better Bias) program constructs new features to add to the concept

description language when a new example is not properly classified by the current hypotheses

(Utgoff, 1986). New features are built using a least-disjunction method or a constraint

backpropogation method. In the least-disjunction method the least-specific disjunction of

existing terms is built which corrects the current hypothesis. In the constraint backpropogation

method new terms are built deductively by tracing the reasoning used when applying a successful

operator. These operators control problem solving behavior in the LEX system.

Chapter 3 - Multistrategy Constructive Induction

__

29

AQ17-HCI (Wnek, and Michalski, 1994) can both expand the representation space by building

new attributes based on strong patterns found in the learned hypotheses, and contract the space

by removing attributes. Attributes are built by detecting the best-performing patterns found in a

previous iteration. Patterns may be a group of rules, a part of a rule or even a part of the condition

of one term. The strength of a pattern is a function of the number of positive and negative

examples covered by the pattern.

FRINGE (Pagallo and Haussler, 1990) is a hypothesis-driven method for constructing new

attributes based on patterns found in decision trees (FRINGE). The FRINGE algorithm generates

new features by conjoining or disjoining the parent and grandparent nodes of all positive fringes

in the tree depending on the position of the child node relative to the parent. This algorithm was

found not to perform well on CNF-type problems which led to the introduction of Symmetric

FRINGE (Pagallo, 1990) and DCFringe (Yang, et al , 1991). Despite these modifications these

algorithms appear to be useful only for a small class of DNF and CNF-type concepts.

CITRE (Constructive Induction on Decision Trees), (Matheus, 1989) generates new conjunctive

terms after a decision tree is built. Feature construction is motivated by excessive disjuncts

(replication) in the learned hypotheses. New terms are constructed based on attributes found

along the tree path (recent path, or all the way from root to leaf). These new features are filtered

out based on possible domain knowledge, and evaluated using either an information gain metric,

or a competitive metric. In the latter, the usefulness of a new feature is based on whether it is

used in later decision tree construction.

2.3.3.4 Multistrategy Constructive Induction

Multistrategy constructive induction methods use a combination of the KCI, DCI and HCI

approaches to make changes to the representation space. Multistrategy methods are thus the most

Chapter 3 - Multistrategy Constructive Induction

__

30

flexible approach, but also require additional heuristics of computation in order to select and

integrate the other approaches.

CN2-MCI (Kramer, 1994) uses both hypotheses and data to guide attribute construction. CN2-

MCI first analyzes the learned hypotheses to find co-occurring attributes. These pairs of

attributes are selected as the operands for new attributes. The examples in the two-dimensional

projection of these attribute pairs are then clustered to find the definition of the new attribute.

Only the top new attributes are retained for the next iteration of learning and evaluation. The

cycle of learning, evaluation and attribute construction stops when there are a user-defined

number of iterations with no improvement. CN2-MCI is categorized as a multistrategy

constructive induction method because it uses information from both hypotheses, and data to

generate new attributes. However, it differs significantly from AQ17-MCI in that it does not

include other methods for representation space modification including representation space

contraction by attribute removal or abstraction. Additionally, because AQ17-MCI performs

multiple transformations to the representation, it includes control strategies for selecting the most

appropriate one for the given problem. This meta-level control of representation space modifiers

is not included in CN2-MCI because it only performs feature construction.

Chapter 3 - Multistrategy Constructive Induction

__

31

CHAPTER 3 MULTISTRATEGY CONSTRUCTIVE INDUCTION

3.1 Background

Related work in the area of constructive induction, and multistrategy constructive induction was

given in the previous chapter. This chapter describes and motivates the novel and more general

architecture found in AQ17-MCI. Multistrategy constructive induction is a process for learning

hypotheses from examples in which the search for the preferred hypotheses is combined with a

multi-operator search for an improved representation space. This more sophisticated approach is

motivated by the inability of simpler methods to perform well on problems that contain one or

more of the following pathologies: a) large numbers of irrelevant attributes, b) large, possibly

continuous attribute-value domains, and c) attributes with interdependencies. The goal of this

research is to not only produce a single learning system which can solve problems made difficult

by these pathologies individually, but to produce single system which can learn even when two

or more of these pathologies are present. To achieve the level of performance needed for the

increasing number of real-world applications where such patholgies are common, a multistrategy

method for learning is required.

To design an effective multistrategy architecture each of the components of a multistrategy

system must be carefully selected. This chapter describes the design decisions involved in

building a multistrategy constructive induction system, introduces and motivates a novel learned

approach to MCI, and describe the links between this design and the inferential theory of learning

(Michalski, 1993, Michalski, 1992).

Chapter 3 - Multistrategy Constructive Induction

__

32

3.2 Design Goals

The goal of this multistrategy constructive induction (MCI) learning method is to build a learning

system that can generate simple, predictively accurate hypotheses from a learning problem that is

poorly represented. The representation space may be poor due to the presence of irrelevant

attributes, too much detail in the attribute values, or inter-dependencies between attributes. Some

representational problems, however, such as incompleteness (no relevant attributes, or attribute-

values present), are outside the scope of this thesis. This goal requires the system to be able to

perform a wide variety of transformations on the input provided. Clearly, there are two factors

important in controlling how successful such systems are in achieving this goal: 1) what

transformation operators are combined and 2) how they are combined.

3.3 Selecting Representation Space Modification Operators

The choice of individual representation space modification (RSM) operators available to a

multistrategy approach determines the capabilities of the whole system. The individual strategies

of a multistrategy system should be selected for their coverage of the possible types of problems.

A set of operators should be selected so that the resulting whole will efficiently solve most, if not

all, of the types of problems that could arise. In chapter 2, three categories of learning problem

pathologies - inappropriateness, incompleteness and incorrectness were described. AQ17-MCI

includes operators for representation space expansion (e.g. attribute construction) to overcome

inappropriateness (of attributes), and representation space contraction to overcome some

incorrectness and inapropriateness (of feature values). While a large set of operators may appear

best in order to overcome the greatest number of pathologies, a minimal set of such strategies

reduces the chance of redundancy and makes operator selection simpler.

A strong set of RSM operators is of little use, however if they cannot be used together due to

Chapter 3 - Multistrategy Constructive Induction

__

33

differences in representation. Strategies which represent knowledge in different forms (e.g.

decision trees and connectionist networks) may require the construction of translation methods or

knowledge interchange format so that such methods can communicate results to each other and

to the final hypothese language. Such translations often result in loss of information and will

require additional computation time and resources. A preferred approach would have a set of

operators that operated on the same representation.

The best design of an multistrategy constructive induction system is one that includes a wide

variety of disjoint methods that can perform both expansion and contraction of the representation

space, and which share a common representation.

3.4 Controlling Representation Space Modification Operators

Another factor in determining the success of a multistrategy approach is the method of strategy

selection and combination. Just as learning can be characterized as a search through the

representation space, the selection of an appropriate operator in a multistrategy system can be

characterized as a search through a space of operator choices. For this reason well known search

methods can also be used as operator selection methods. A description of the relative strengths

and weaknesses of different search operators when applied to this problem follow.

3.4.1 Random and Exhaustive Operator Selection

The simplest method for combining two or more operators is to randomly select between them.

This method may sometimes find the correct ordering, but it may take an unnecessarily long time

by selecting operators that are clearly not needed (e.g. if it selects attribute abstraction for a

multiplexor problem), or it may even perform operations that user does not wish (e.g. the user

has a preference for DCI over HCI-based attribute generation). When no other alternative is

Chapter 3 - Multistrategy Constructive Induction

__

34

possible random selection can be the only alternative. Another simple approach is an exhaustive

or parallel search in which all possible combinations are tried and evaluated. This method is

guaranteed to find the best possible solution, but it will be the most expensive possible method in

terms of time and memory and may be compuationally infeasible for even moderately sized

problems. A variation of this exhaustive method is to perform a sampling evaluation. In a

sampling method only a subset of the data, repeatedly sampled, is used to evaluate the usefulness

of operator transformations on the problem. The operator selected for the problem is the one with

the best average performance over all the samples. The greatest drawback of this method is that it

will still require a relatively large amount of time and resources to have enough certainty in the

results. It is also unnecessary to sample every possible operator when the characteristics of the

problem can offer some guidance. For example feature selection is not necessary if the number of

attributes is already small. The algorithmic approach described next partially addresses this by

recognizing that the operators have different characteristics and may be optimally ordered.

3.4.2 Algorithmic Operator Selection

Another class of search methods uses an iterative, but fixed approach. In this algorithmic class

the available search operators are applied one at time in a pre-specified order. For example in a

constructive induction problem the system can be set to always reduce the space using attribute-

removal and attribute-value abstraction before doing any attribute construction. In this way it is

hoped the algorithm will be faster because attributes which are irrelevant will not be combined.

However, this approach may prove counter-productive because attributes which are useful in

combination may appear to be irrelevant alone. Consider the simple example shown in figure

3.1. In this two-class classification problem x1 and x2 individually are uncorrelated with class.

However, it is clear to see that x1=x2 for class1 and x1<>x2 for class2. Such a simple

combination could not be found if either these attributes were removed. Similar problems occur

in every fixed algorithmic ordering of operators. For example, abstraction followed by attribute

Chapter 3 - Multistrategy Constructive Induction

__

35

generation can result in much different rules than attribute generation followed by abstraction. In

Section 5.4.3 MCI is applied to a computer vision problem. In this problem DCI-Quant

(abstraction) followed by DCI-Gen (generation) resulted in hypotheses which on average had

35.8 rules, 679.1 selectors and took 83.1 seconds to learn. With the ordering reversed the

hypotheses contained only an average of 3.3 rules, 54 selectors and took only 3 seconds to learn.

However, the opposite ordering was better in the application of MCI to economics. In this

problem described in Section 5.4.2. Here, abstraction followed by generation resulted in rules

with an average predictive accuracy of 76.3%, the opposite ordering resulted in hypotheses with

an average predictive accuracy of 43.7% accurate. The ordering is optimal for one class of

problems, but not another. This still fails to achieve the goal of a widely applicable learning

approach. The other problem with this approach is that it cannot take advantage of user-expertise

or domain knowledge when it is available, and can not improve its performance over time. It will

always perform the same for a specific learning problem, regardless of past experience.

class1

 x1 x2
2 2
4 4
3 3

class2
x1 x2
2 3
3 4
4 2

Figure 3.1 - Example of individually irrelevant attributes which provide perfect classification in
combination

3.4.3 Heuristic

Another approach to finding an improved representation is to allow the user to either make the

changes to the representation space directly through knowledge-driven CI (the user removes

attributes, adds new attributes, or selects new attribute-domains) or to control the representation

space modification tools available in AQ17-MCI. Both KCI, and direct user-control of operators

is supported in AQ17-MCI. The drawback of both approaches is that it relies on the expertise or

Chapter 3 - Multistrategy Constructive Induction

__

36

domain knowledge of the human controller to either to make the correct changes to the

representation space, or to select the correct sequence of operators to solve the problem. This

toolbox approach simply makes program options and parameters accessible to the user. If the

user does not understand the problem and the tools well enough, then this approach reduces to

either the previous algorithmic, or random approaches described earlier. If the user is

knowledgeable about the representation space and which attributes should be removed and/or

combined, then a constructive induction learning method is hardly needed. The user has enough

expertise to set up the problem to either solve it himself, or allow a simple selective induction

learner to solve it. Although it is an approach that allows the user to provide knowledge when it

is available (knowledge-driven constructive induction or KCI) it fails when this knowledge is

unavailable and it requires the constant attention of the expert or it will repeat past mistakes.

A more sophisticated form of heuristic search in which general, rather than (or in addition to)

domain-specific expertise is used, is also possible. In this form of heuristic search operator-rules

are used to guide operator selection. These rules map a description of the representation space

itself to the choice of operator. For example a operator for removing attributes may only be

invoked if the total number of attributes used to describe the given problem is greater than 20. By

using general problem characteristics in conditions of these operator-rules this type of heuristic

search is more general the specific KCI approach previously described. A weakness of this

approach is the difficulty in describing the conditions under which certain operators are

successful against when they are not. These rules may also need to be updated as new problems

are encountered.

Some work has been done in knowledge acquisition aimed at helping the user construct a

knowledge base that could be used for this meta-learning task. The KAISER system (Dabija et al,

1995) is used to iteratively refine, by means of interactions with a domain expert, the knowledge

encoded in a decision tree of that expert's domain. One 'impropriety', or problem with a decision

Chapter 3 - Multistrategy Constructive Induction

__

37

tree, that KAISER is designed to correct is 'Similar class'. This is the tree replication problem and

occurs when "...more than one node tries to separate the same set of classes at different places in

a decision tree." (p. 94). The correction for this problem is to generate a new attribute which

alone separates the examples in the subtree. As stated by the authors, the difference between this

approach and the constructive induction (CI) approach to repairing poor decision trees is that CI

attempts to fix the problems without assistance from the user. However most CI methods do not

take into account the wide variety of possible 'improprieties' that a learned hypotheses may

contain, and the wide variety of corrections that made be made. The next section outlines a more

general CI approach to this problem.

3.4.4 Learned Control Rules

It is from the weaknesses and strengths of the previously described methods for operator

selection that a novel approach to operator selection using learned operator-rules was developed.

Previous approaches were poor because they could not take advantage of domain specific

knowledge when available, and could not easily be updated when a new learning situation found

them to be performing poorly. A method which learned control rules for selecting the appropriate

representation space modification operator would be useful because it would require little

knowledge on the part of the user, but could use it if it was available, and could automatically

update its operator selection approach based on experience.

Motivation for learned control rules arise partially from the realization that learning methods are

often used on a sequence of learning tasks, and that the completion of previous related tasks can

improve the performance of the learner on a new task when these problems are related (Thrun

and O'Sullivan, 1996; Caruana, 1993).

Guiding constructive induction via learned control rules is a strong method because it can use

user-supplied knowledge when available, and it can learn from past failures and successes.

Chapter 3 - Multistrategy Constructive Induction

__

38

Learned control rules in the form of decision rules are readily accessible and comprehensible to a

domain expert. These rules can be understood and manually revised if needed. An example of

such a rule is shown in Figure 3.2. Further motivation for attempting to characterize CI operators

is provided by the work of Aha (1992) and and the success of (Brazdil et al, 1994) described

earlier in Section 2.3.2.

 if [num_attributes = 48..64] ::> perform_data_driven_attribute_selection

Figure 3.2 - An example rule controlling the invocation of data-driven attribute selection

Furthermore, such rules can also be learned empirically from examples of past success and

failures. A description of a system which performs this operation is given in chapter 4.

The previous section described the decisions important to building an effective multistrategy

constructive induction algorithm. These design considerations are important for the design of any

multistrategy learning system. The next section shows how the operations performed by MCI can

be understood in terms of fundamental inferential transmutations of the Inferential Theory of

Learning (Michalski, 1993). This analysis not only provides a general framework in which to

describe the current capabilities, but it also suggests new capabilities of MCI.

3.5 An Analysis of MCI based on the Inferential Theory of Learning

This section dicusses the links between the Inferential Theory of Learning (ITL), to the

representation space modification operators (RSMOs) as they are used in MCI, and the

architecture of MCI itself. A complete discussion of the Inferential theory is available in

(Michalski, 1993), but a brief description is included here for clarity.

Chapter 3 - Multistrategy Constructive Induction

__

39

3.5.1 Outline of the Inferential Theory of Learning

In the Inferential Theory of Learning (ITL), learning is viewed as a goal-oriented process of

improving the learner's knowledge. Learning processes are viewed as patterns of inference called

knowledge transmutations. Some of the basic transmutations include generalization, abstraction,

and specialization. A basic premise of the theory is that learning processes can be described in

terms of the application of various inferential operators. Along one dimension the theory

classifies inferential processes into inductive and deductive. Inductive processes are falsity

preserving, while deductive processes are truth preserving. To use the fundamental equation for

inference: P U BK |= C, where P stands for Premise, BK is the reasoner's background knowledge

and C is the consequent, deduction derives C given P and BK, while induction derives P given C

and BK. The second dimension of the classification of inferential processes is contingent vs.

conclusive. Conclusive processes are strong and are based on domain-independent knowledge,

while contingent processes are weak because they are based on domain-dependent knowledge.

This classification of inferential transmutations clarifies the differences between many inferential

processes and reveals some new, little explored combinations.

3.5.2 Representation Space Modification Operators as Transmutations

This section describes the relationship between ITL transmutations and representation space

modification operators (RSMOs). Special attention will be given to those RSMOs in the current

MCI architecture, but other possible operators will also be described.

A Multistrategy constructive induction system may include any number of RSMOs. These

operators include expanders that increase the size of the space and contactors which reduce the

size of the space. Expansion operators include those that add attribute values and those that add

attributes. Although the addition of new attribute-values would be a form of concretion and is not

presently available in MCI, there do exist many methods for attribute construction. Contraction

Chapter 3 - Multistrategy Constructive Induction

__

40

operators reduce the size of the representation space through attribute removal (or selection) and

abstraction.

Expansion operators may make use of a number of different knowledge transmutations. When

viewed in the Inferential Theory of Learning, the expansion of the space by the addition of new

attributes can be viewed as a derivation. transmutation. As described in this theory the underlying

process of a derivation may range from a randomization to an equivalence. In attribute

construction based on equivalence derivation or reformulationiii, new attributes are generated

from given knowledge structures, (original attributes, generated hypotheses) and are equivalent to

their parent structures. This attribute construction method is used in MCI in the #VarEQ(x)

operator which counts the number of attributes from a set which have the value x. A specialized

case of this attribute construction method is shown in Figure 3.1. The constructed attribute is

simply reformulating the three Food attributes into four boolean attributes.

Original attributes: Food1 Food2 Food3
 apple milk toast
 milk eggs toast
Generated attributes: Exists(apple) Exists(milk) Exists(toast) Exists(eggs)
 yes yes yes no
 no yes yes yes

Figure 3.3 - Attribute construction based on an equivalence derivation

Intermediate derivations are neither equivalence relations nor randomizations, and can also be

used to generate new attributes. The construction of a new attribute generated by taking the sum

of two original attributes would be a deductive derivation. This is the type of attribute

construction performed in DCI and also used in AQ17-MCI. Such derivations are important

because they make explicit relationships between attributes that any inductive learning algorithm

iii Matheus (Matheus, 1989) would call this incidental constructive induction because no induction was done during
construction

Chapter 3 - Multistrategy Constructive Induction

__

41

based on an attribute-value representation (e.g. AQ, C4.5, Backprop) is unable to represent. An

example of attribute construction based on the deductive derivation operator of comparison is

shown in Figure 3.4. Deductive derivations in MCI include: addition, subtraction, multiplication,

comparison, maximum, minimum, and average.

Original attributes: OutputYear1 OutputYear2
 1000 1100
 1121 1221

Generated attributes: Equal(OY1,OY2) LessThan(OY1,OY2) Greater(OY1,OY2)
 yes no no
 no no yes

Fig 3.4 - Attribute construction based on an deductive derivation (comparison)

Attribute construction can also be based on an analogical derivation. An example of thisiv can be

found in (Bloedorn, 1993a). In this method a genetic algorithm approach is used to search for

new attributes using a crossover operator. In ITL a similzation analogy is performed when the

"similarity between two entities in terms of some descriptor(s), and the knowledge the one entity

has property A" is used to hypothesize new knowledge that the second entity also has property A

(p. 23, Michalski, 1993). In the genetic algorithm example we know that parent attributes p1 and

Parent attributes: p1: Property 1) discriminates given classes
 Property 2) Is a function of x1 and x2 (e.g. x1+x2)
 p2: Property 1) discriminates given classes
 Property 2) Is a function of x7, x9 and x5 (e.g. (x7*x9)+x5)

Generated attributes: c1: Property - is a function of x1 and x5 (e.g. x1+x5)
 c2: Property - is a function of x7, x9 and x2 (e.g. (x7*x9)+x2)

Figure 3.5 - Attribute construction using analogical derivation

 p2 have the property that they are discriminatory attributes. We also know that p1 has the

ivThe analogical inference described here is more precisely known as a similzation because the reference sets of both
objects are in the same class.

Chapter 3 - Multistrategy Constructive Induction

__

42

property that it is a function of attributes x1 and x2, and that p2 is a function of x7, x9 and x5. It

is known that the usefulness of a function in discriminating classes is itself a function of the

usefulness of the component attributes. From this we infer that the new attributes (c1 and c2)

which share properties of p1 and p2 will also have the propoerty of their parents - that they are

discriminatory. An example of the crossover method to construct new attributes is shown in

figure 3.5. This type of construction is not currently a part of MCI, but is possible in this

framework.

Attribute construction based on inductive derivation requires that the attribute construction

method have available meta-level knowledge about the attributes being combined. This is

necessary to constrain the search for new attributes. As such, it is very knowledge-intensive and

potentially domain specificv. However this approach can also produce very powerful new

attributes which could predict regions of the space and allow learning algorithms to perform

much better with sparse datasets (Matheus, 1990). This type of inductive derivation of new

attributes using a goal-driven property transfer algorithm is described in (Bloedorn, 1993b). In an

inductive derivation

Parent Attributes: BayLength+BayWidth BayLength+BayHeight
Constructed attribute: BayWidth+BayHeight

IF
 (UNIT Y (IS FT))(UNIT X (IS FT))
 ((MEASURE X) (MEASURE Y) (DIFFERENT X Y))
 (TYPE X (IS NUMERIC)) (TYPE Y (IS NUMERIC)))

THEN
 ADD(X,Y)

Figure 3.6 - Attribute construction using inductive derivation

v Matheus (Matheus, 1989) would call this region predictive attribute construction

Chapter 3 - Multistrategy Constructive Induction

__

43

 reasoning is performed which derives an explanation from effects. In the example shown in

figure 3.6. the effect is that the new attributes (BayLength+BayWidth) and

(BayLength+BayHeight) are useful sums (e.g. comprehensible, disciminatory). The explanation

for this effect is that these are good attributes to combine because in both cases the original

attributes have units of feet, they don't combine the same attribute (BayLength+BayLength) and

the type of both attributes is numeric. This explanation leads to the suggestion that

BayWidth+BayHeight may be a useful new attribute using the ADD operator. In this example,

the system inductively learns a meta-level rule which characterizes when it is appropriate to add

two attributes. This new rule is used to construct other attribute combinations.

This new attribute is constructed based on knowledge of the attributes’ units, and type. The

examples of previous successful attribute constructions shown were inductively generalized to a

meta-level rule. This rule was then applied to generate a new attribute BayWidth+BayHeight.

This type of attribute construction is not presently available in MCI, but may also be included.

The randomization derivation may also be used to generate new attribute. An example of this is

the mutation operator used in the genetic algorithm method for constructing new attributes

described earlier (Bloedorn, 1993a). An example is shown in Figure 3.7. In this example the

operator used to combine two attributes is randomly reassigned from addition to multiplication.

 Parent attributes: x1+x2
 Generated attribute: x1*x2

Figure 3.7 - Attribute construction using randomization derivation

Contraction operators reduce the size of the representation space through attribute removal and

attribute-value removal (or discretization). As it is implemented in MCI, attribute removal is a

non-inferential selection transmutation which picks those attributes which are relevant. Selection

is a non-inferential transmutation because it does not modify the meaning or content of the input

Chapter 3 - Multistrategy Constructive Induction

__

44

knowledge, but manipulates the attribute values as data (p. 13, Michalski, 1993). Attribute-value

removal performs a reduction in the granularity, or “amount of information about a set of

entities” . In this case the “set of entities” is the domain of that attribute. Attribute-value removal

is performing an abstraction transmutation which in this case (and most typically) is a deductive

inference.

MTL Algorithm

1) Use the input to activate the segments of
the learner’s prior knowledge base relevant
to the input and the learning goal

 a) Calculate relevance relationship
between input and BK

 b) Store knowledge in KB as DIH traces

2) Determine type of relationship between
input information to the learning process and
the BK
 a) The input represents new
information - perform synthetic learning to
cover new example or store example

 b) The input is implied by, or implies
a part of the BK - perform analytic learning
to derive an explanatory structure which
links the input with the involved part of the
BK

 c) The input contradicts some part of
the BK - revise the BK through synthetic
learning or manage inconsistency.

 d) The input evokes an analogy to a
part of BK - if the analogy passes an
“ importance criterion” store the analogy and
its links to the BK

 e) The input is already known to the
learner - updated a measure of confidence

associated with this part of the BK.

Chapter 3 - Multistrategy Constructive Induction

__

45

MCI Algorithm

1) Use the input to activate the segments of
the learner’s prior knowledge base relevant
to the input and the learning goal

 a) Calculate relevance relationship
between input (meta-vector, result) and BK
(stored meta-rules)

 b) Store knowledge in KB as rules

2) Determine type of relationship between
input information to the learning process and
the BK
 a) The input represents new
information - perform synthetic learning
(meta-level) learning to cover new example
and store example (full memory model).

 b) The input is covered by a BK
metarule - store the input and update weight
of metarule.

 c) The input contradicts some part of
the BK - specialize the BK metarule through
synthetic learning.

 d) Not possible in current
representation

 e) The input is already known to the
learner - updated a measure of confidence
associated with this part of the BK.

Figure 3.8. A comparison of MTL framework and the MCI algorithm

3.5.3 MCI as Multistrategy Task-adaptive Learning

The previous section detailed how various representation space modification operators can be

viewed as transformations in the ITL framework. Figure 3.8 shows how the overall approach of

the MCI method can also be analyzed within the framework of ITL and be shown to be a

multistrategy task-adaptive learner (MTL). As described in ITL, (p. 25 (Michalski, 1993)). “The

underlying idea of MTL is that a learning strategy should be tailored to the learning task.” MCI

fits the learning strategy (selecting which RSM operators to use) to the learning task based on the

input to the learning process (the problem and its description) and its background knowledge (the

learned metarules).

3.5.4 Summary

This analysis of MCI when viewed within the conceptual framework of ITL has provided a

Chapter 4 - The AQ17-MCI System 46

deeper understanding of the MCI algorithm. It demonstrates this by showing the mapping

between the MCI RSMO operators and the fundamental knowledge transmutations of ITL.

Presenting MCI in an ITL framework has revealed additional RSMOs that are not currently a part

of MCI. These methods include attribute construction via analogical, inductive or randomization

derivations. It also reveals how the framework of the MCI system can be seen as an instantiation

of the Multistrategy Task-Adaptive Learning framework.

Another useful benefit of the analysis of MCI in terms of ITL is that it reinforces the need to

view learning in a broader scope as goal-guided inference (Michalski and Ram, 1994). This view

emphasizes the importance of introspective analysis of the system's knowledge and reasoning

processes, and maintaining a memory of past successes and failures. The concept of a goal-

dependency network discussed by the authors can also not only be used for reasoning about

dependencies and priorities for learning, but also for reasoning about the attributes in the current

representation space.

In summary, the MCI method has been shown to perform a double intertwined search for an

adequate representation space, and for hypotheses within that space by invoking a series of

knowledge transmutations. The transformations performed depend on the input data and the

learning goal. The input data consists of the definitions of attributes and their values, the class-

labelled examples and the learning parameters. The learning goal is specified at the meta-level by

the accuracy and simplicity thresholds of learned rules, and at the learning level by the by the

criteria parameters. Although it is currently implemented with a rule-based hypotheses generator,

other types of learners using other types of representations could be used. These other

representations include decision trees, or connectionist networks. A different set of RSMOs

would need to be constructed for non-predicate based representations, but the fundamental

architecture of MCI could remain the same. The remainder of this thesis will focus on the current

implementation of MCI which uses a decision rule representation for learned hypotheses and

Chapter 4 - The AQ17-MCI System 47

learned meta-rules.

Chapter 4 - The AQ17-MCI System 48

CHAPTER 4 THE AQ17-MCI SYSTEM

This chapter describes the design and features of the AQ17-MCI system. First the general

architecture is described in section 4.1 followed by detailed descriptions of each of the

components in the later sections.

4.1 General Architecture

AQ17-MCI implements the principles of multistrategy constructive induction described in

chapter 3. In this approach learning from examples is performed as an iterative double search.

One search is for an improved representation space. This search is performed by the

Representation Space Modification (RSM) Module. This module includes a toolbox of available

operators and a

USER

Input Data

Representation Space
Modification

Rule Evaluation

OUTPUT

Decision Rule
Generation

Figure 4.1 - A functional diagram of the MCI method

Chapter 4 - The AQ17-MCI System 49

controller for selecting operators for the current problem. The other search is for the best

hypothesis within that space, given the preference criteria. This search is performed by the AQ

learning algorithm as implemented within AQ15c (Wnek et al, 1995). Control cycles between

search for a hypothesis and search for an improved representation space, until the evaluation

module determines that either the learned hypothesis meets the user-defined thresholds, or that

no more improvement can be made. The general architecture of AQ17-MCI is shown in figure

4.1.vi

4.2 Input Data

The input data are initially a user-provided training dataset plus a characterization of the initial

representation space, which includes a description of attributes, their types and their domains.

The training dataset is split into a primary and a secondary dataset. The primary training set is

supplied to the Decision Rule Generation module, which uses an empirical inductive learning

program (AQ15c) to generate general concept descriptions (rulesets). The obtained rulesets are

evaluated in terms of their complexity and their performance on the secondary training set. Based

on the results of this evaluation, the system decides either to stop the learning process (the

obtained rules are output as the solution), or to move to the Representation Space Modification

module. This decision is based on control meta-rules (Section 4.5.). The final decision rules are

evaluated on the testing examples to determine their performance. The partitioning of input data

is shown in Figure 4.2.

The representation space modification is done by an application of various RSM operators,

acting as constructors or destructors. Once a new representation space has been determined, both

viFigure 4.1 shows the decision rule generation module (search for a hypothesis) being invoked before the
representation space modification module (search for a representation) as this allows the system to first determine
whether modifications to the representation are needed at all.

Chapter 4 - The AQ17-MCI System 50

the primary and secondary training dataset are reformulated into this space, and the process is

repeated. The next sections describe in greater detail various aspects of the above process.

Figure 4.2. The partitioning of input examples and their roles

4.3 Decision Rule Generation

The search for hypotheses withing a given representation space is performed in AQ17-MCI by

the AQ algorithm. The AQ algorithm, as implemented in AQ15c (Wnek et al, 1995) performs a

beam search (the size of which is user determined) for a set of decision rules which cover all the

positive examples and none of the negative examples. This search is done by randomly selecting

a 'seed' event for a class, covering that example with a very specific cover (conjunct), and then

extending that cover in all dimensions, stopping each time a negative example is found. If all

positive examples are covered in this one 'star', then a new class is selected and the process is

repeated. If not, then a new disjunct is started, and a new seed is selected from the same class and

star generation is repeated. This proess of 'seed' selection, and extension-against (negative

examples) is repeated until all examples are covered. Afterward the tenative hypotheses may be

modified by other post-processes which may generalize the cover by "dropping conditions." The

end result is a set of decision rules for each class in the data. An example of a rule produced by

AQ is shown below.

Class1-Outhypo
cpx

Learn intermediate rulesets in the
original representation space

Evaluate predictive accuracy of the
intermediate rulesets for testing the
adequacy of the representation space

Evaluate predictive accuracy of the
final rulesets generated in the
transformed representation space

Input
Examples

Training Examples:
Primary set

Training Examples:
Secondary set

Testing Examples

Chapter 4 - The AQ17-MCI System 51

1 [color = blue] [size = small] [shape = square]
2 [color = red]

Figure 4.3 - An example AQ generated rule

This rule states "an object is in class1 if: it is blue, small and square, or it it red". The first line

(starting with "1" in Figure 4.3 is a rule or complex. A rule is made up of conjunctions of

conditions or selectors such as [color = red]. AQ15c is a full-featured rule learning program and

although it constitutes a part of AQ17-MCI the user has access to all of the learning parameters

and options available in AQ15c for controlling such things as rule type and rule intersection.

4.4 Rule Evaluation

Each time new rules are generated they are evaluated. Rule generation occurs either as part of the

itial detection step in which the need for representation space change is determined, or after a

representation space modification (RSM) operator has been selected and applied to the data.

Control is returned to either the representation space modification module, or the process stops

depending upon the results of this rule evaluation. Rule evaluation is based on a number of

criteria. As described in (Bergadano, Matwin, and Michalski,, 1988) the quality of a concept

description may be judged by three criteria: accuracy, simplicity and cost. In their approach, as in

MCI, the user selects the relative importance of each of these criteria. The AQ17-MCI rule

evaluation module uses only accuracy and simplicity to evaluate rule quality. Cost is not used

explicitly because it can be included in the preference criteria within AQ to find the rules with

minimal cost.

The predictive accuracy of a rule set is a measure of the ability of the rule set to correctly

classify examples that were previously unseen. In MCI predictive accuracy is tested using a

secondary training set. The secondary set consists of those training examples not available to the

learner during hypotheses generation. One advantage of this holdout method is that rules learned

Chapter 4 - The AQ17-MCI System 52

from the primary training set, but which perform well on the secondary set, are less likely to

overfit the original data. Predictive accuracy is measured as the percentage of secondary training

examples correctly classified.

The Complexity of a ruleset is evaluated by counting the number of rules in the ruleset and the

total number of conditions (or selectors).

The final quality of the rule is evaluated lexiographically. Rulesets are evaluated first according

to the accuracy criterion. If the accuracy is within a user defined threshold of the goal accuracy,

the ruleset is then further evaluated according to the complexity criterion. If the ruleset does not

meet the minimum standard for accuracy, it is rejected and no further processing is done. The

lexiographic evaluation permits the user to set a constraint on the minimum allowable accuracy.

4.5 Representation Space Modification

The representation space modification module (RSMM) is responsible for determining which

modification operator to apply to the current learning problem, recording the operator selected

with a vector description of the problem, making the changes to the training and testing examples

and updating the meta-rules. Figure 4.4 shows the design of the RSMM.

RSM operator selection is performed by the RSMM by matching the characteristics of the current

problem against stored meta-rules. This matching is done with a modified version of the ATEST

module within AQ15c. This module requires, as input, an example to be tested and a set of class

descriptions. The test example is extracted from the current problem. The meta-attributes which

make up this meta-example are described in Table 4.1. The meta-rules used are either provided

by a user, and/or learned in previous iterations

Chapter 4 - The AQ17-MCI System 53

Meta-Rules

Meta-
Examples

Learning
Problem

 Meta-
attribute Extract

Operator Selection

Representation Space
Modification Operators

(RSMOs)

Modified Representation
Space

AQ15

Figure 4.4 - Architecture of the Representation Space Modification Module

of the program and describe the conditions (properties of the learning problem) under which

RSM operators have most improved the representation space.

4.5.1 Meta-attributes

Meta-rules are used to guide the selection of which representation space modification operator is

appropriate for a given learning problem. Meta-rules relate the properties of the example dataset

and the rule evaluation results on the secondary training set to the most appropriate operators.

These rules can be initially provided by the user and incrementally improved by the system, or

they can be learned by the system as it tries to solve the problems it faces. Meta-rules, and the

meta-examples from which they are learned, are stated in terms of meta-attributes.

The meta-examples are described in terms of meta-attributes. Meta-attributes can be organized

into four classes: 1) those characterizing types of the original attributes (numeric, multivalued

nominal, Boolean, etc.), 2) those characterizing attribute quality, which is currently judged using

an information gain ratio measure (Quinlan, 1993), 3) those characterizing the expected level of

quality of the examples, and 4) those characterizing the changes in the performance of the

Chapter 4 - The AQ17-MCI System 54

Meta-attribute
category

Meta-attribute Values Explanation

Meta-attributes
detecting the
presence of various
types of attributes

Numeric_attributes_present Yes, No Yes, if data contains two
more numeric attributes;

No, otherwise

 Nominal_attributes_present Yes, No Yes, if data contains two or
more multi-valued
nominal attributes;

No, otherwise

 Boolean_attributes_present Yes, No Yes, if data contains two or
more Boolean attributes;

No, otherwise

 Number_of_attributes integer Number of attributes in
current space

Meta-attributes
characterizing the
attribute quality

Irrelevant_attributes_present Yes, No Yes, if data contains any
irrelevant attributes;

No, otherwise

Meta-attributes
estimating ruleset
performance

Last_simplicity integer Total number of selectors in
learned rules

 Performance_estimation Accuracy
in
percentag
e
(1..100%)

Predictive accuracy of the
last ruleset generated from
the primary training example
set and tested on the
secondary testing set.

 Selector-rule_ratio real total # selectors/ total # rules

 Average_number_of_uniquely
_ covered_examples_per_rule

real Sum of unique weights/

of rules

 Example-rule_ratio real Total # of examples/

Total # of rules

 Average_number_of_internal_
disjunctions

real > 1.0 # values in selectors/

of selectors

Meta-attributes
estimating the
quality of examples

Relative_rule_weight1 real <=
1.0

tweight rule #2/

tweight rule #1

 Relative_rule_weight2 real <=
1.0

tweight rule of last rule /

tweight rule #1

Chapter 4 - The AQ17-MCI System 55

 Training_examples_percent_of
_total

real # train given / # of examples
possible

Table 4.1 - Meta-attributes for characterizing a learning problem

generated rules on the secondary training dataset. Table 4.1 presents a list of the current meta-

attributes. All of these meta-attributes are extracted automatically by the system after initial

hypotheses are learned.

4.5.1.1. Attribute Type

The applicability of some RSM operators depends on the type of the attributes. For example,

arithmetic operators (for constructing new attributes from current attributes) applies to numeric

attributes, while logical operators apply to Boolean and multi-valued nominal attributes. The

type of attributes for which different RSM operators are available are currently all the types

supported by the AQ learning module: linear (numeric integer, continuous), nominal (multi-

valued and boolean) and structured.

4.5.1.2 Attribute Quality

Attribute quality measures the ability of a single attribute to discriminate among given classes of

examples. An attribute may contribute individually, or as part of an attribute group. Individual

attribute quality can be measured statistically by calculating the ability of an attribute to partition

the example set appropriately. One such measure is the information gain ratio used in C4.5

(Quinlan, 1993), or by PROMISE (Baim, 1982).

The value of the meta-attribute "Irrelevant_Attributes_Present" is "Yes" if any one of the

attributes in the given group of attributes has an information gain ratio greater than a user-defined

minimum (default 0.1). This meta-attribute is useful for detecting irrelevant attributes, or if all

Chapter 4 - The AQ17-MCI System 56

attributes are below this threshold - for inferring that the given attributes may be correlated with

each other, a situation in which attribute generation is useful.

The contribution of an individual attribute in the context of a set of attributes can be measured by

analyzing rules generated from examples described in terms of these attributes (Wnek and

Michalski, 1994). In this measure an attribute is viewed as irrelevant if it is not present in the

rules, or is present only in the "light" rules (rules associated with low values of t-weight

parameter the coverage of training examples by a rule). The AQ17-MCI method currently uses

only the statistical information gain metric in order to judge attribute quality for use in the meta-

attributes. However, the logical method based on hypotheses is used when the HCI method for

feature selection is then invoked on the data.

There exist a number of alternative measures of individual attribute quality. One measure is

attribute utility (Imam, et al., 1993). An attribute's utility is the sum of the class utilities of an

attribute. The class utility of an attribute is the number of classes whose attribute value set has no

common values with the value set occurring in the given class. An attribute is considered

irrelevant if its attribute utility is low. Another approach is the one used by rough set systems. In

this method the quality of an attribute is measured by taking the difference in performance which

occurs when rules are learned from the set including, vs. excluding, this attribute. This approach's

strength lies in the fact that attribute quality is judged in the context of other attributes. This

prevents problems which occur when an attribute is removed when it's average discriminatory

power is low, but it is vital for a specific class, or when the quality of an attribute appears to be

high even though it discriminates examples which are already easy to describe with other

attributes (overlapping discrimination). These other approaches can be used in the AQ17-MCI

framework, but currently are not available.

4.5.1.3 Example Quality

Chapter 4 - The AQ17-MCI System 57

The quality of training examples is characterized in terms of three meta-attributes. The first two,

relative-rule-weight1, and relative-rule-weight2, measure the distribution of examples in the

space by looking at the relative coverage of the heaviest rule for a class against the coverage of

the second heaviest rule and the lightest rule respectively. The focus of these meta-attributes it to

try to capture the degree to which the training examples are distributed in a way that is easy to

capture by the rules. If relative_rule_weight1 is high then that means the top rule covers many

more examples than the second heaviest rule in the class. Assuming that training examples are

provided in a proportion that reflects their true proportions, then this heavy cluster covers the

most typical examples, while the other rules are covering less typical, and possibly noisy

examples. The presence of these outlier examples, or noise, can mislead some attribute

construction techniques, and statistically-based quantization. Thus, it may be wise to not apply

these operators when this condition holds. If relative-rule-weight1 is low, then this means the

examples are distributed fairly evenly across the space in a way that may be hard to capture. This

is true for concepts which are spread across attributes such as 'm-of-n' or multiplexor problems.

Such 'spread' concepts present a clear need for attribute construction methods which capture and

explicitly characterize these interactions. Rule-weight2 has a similar motivation as rule-weight1

except that the conclusion that the concept is spread is even better supported when rule-weight2

is low.

The final example quality meta-attribute is 'Training_examples_percentage_of_total'. This meta-

attribute is included to measure the confidence in the given training set as being prototypical of

the real distribution. If this attribute is low, then the learning algorithm is forced to learn from a

very sparse space. In such a case bias-strengthening (Utgoff, 1986; Gordon, 1990; Gordon and

Desjardins, 1995) operations, such as attribute-removal or abstraction can be very dangerous.

This measure also dramatically reveals one of the differences between synthetic examples and

real-world domains. In the former, it is usually the case that a large percentage of the total

Chapter 4 - The AQ17-MCI System 58

learning space is labelled with class information, while in the latter this ratio is often very small.

Chapter 4 - The AQ17-MCI System 59

4.5.1.4 Rule Performance

Rule performance is measured directly by determing the predictive accuracy in

'Performance_estimation' and the number of rules in 'Last_simplicity', and indirectly by rule

coverage in 'Selector-rule-ratio', 'Average_number_of_uniquely_covered_examples' and

'Average_number_of_of_internal_disjunction'. The direct measurements are useful to guide the

system into learning when conservative or dramatic changes are needed in the representation

space. If the predictive accuracy is already high and the rules are fairly simple, then the concept

representation space is fairly promising. In this case a conservative method such as constructing

new attributes would be preferable to a more dangerous modification in which attributes are

removed.

Selector-rule-ratio is used to help determine if attribute removal is possible. When AQ15c learns

rules which are maximally general or of minimal length only the necessary attributes are included

in the learned rules. If the selector-rule ratio shows that only a small percentage of the available

attributes are being used in any given rule, then some attributes may be redundant or irrelevant.

This signals the attribute-removal operators to be invoked.

The Average_number_of_uniquely_covered_examples_per_rule meta-attribute tries to capture

the ease with which the rules covered the distribution of examples. If this number is high then the

learned rules within a class are not overlapping - they are each covering a different clusters of

examples. Attribute construction may be useful here to bring together these clusters of examples

into fewer, larger and easier to describe clusters. If this meta-attribute is low, then rules are

probably overlapping to a fairly high degree, but it is still hard to describe the cluster.

Quantization may be used to here to reduce the distances between examples in the space by

removing unnecessary detail. This may make rule coverage easier in the next generation.

Example_rule_ratio provides similar information about the ability of the current hypotheses to

Chapter 4 - The AQ17-MCI System 60

cover the examples.

The average_number_of_internal disjunctions counts the number of values present, on average,

in each selector of each learned rule. Based on the assumption that in a good representation space

rules are simple, the presence of large numbers of internal disjunctions (e.g. [x1 = 1,3,5,7,9])

singnals the need for some kind of change. It may be that the attributes are measured with an

excessive precision. To correct such a situation, the valueset of the attribute may be reduced, and

the values of this attribute in the examples may be substituted by more abstract values.

Overprecision can be reduced by abstraction. See Section 2.2.1.1 for a description of related

work. AQ17-MCI uses a Chi-merge method to abstract attributes (Kerber, 1992).

4.5.2 Applying Meta-rules for Operator Selection

Each example dataset is characterized by a vector of the previously listed meta-attributes and

their values. Operator selection is a deductive process of applying previously learned

representation space modification operator rules to these meta-attribute vectors. This matching

procedure calculates a degree of match between the meta-example and the meta-rules. This

degree of match is calculated based on the relative number of conditions that match.

Representation space modification operators are then ranked in decreasing order of meta-rule

match. If no single meta-rule is the top rule, then selection between equivalent operators is based

on the user’s preference, if they are available, or random choice otherwise.

It may occur that the same RSM operator is repeatedly selected. In other words the search

stagnates on a local maximum. AQ17-MCI attempts to prevent this by updating the database

characterization after each ruleset evaluation. If this fails and the same operator is repeatedly

selected, the next best matching operator is selected. Since the meta-attributes are updated

continuously, the selection stage picks the operator that best matches the current database

characterization. If all available operators fail to match the description (i.e., the degree of match

Chapter 4 - The AQ17-MCI System 61

is below a threshold) then selection stops and MCI evaluates the current ruleset on the testing

examples. At minimum the best performance of MCI will be that which is achieved when no

modifications are made to the representation space. In this case the performance of MCI will be

equal to just selective induction.

Constructors Destructors

Data-driven Hypothesis-driven

abstraction

ArithmeticLogical

Value-
grouping

Rule-
grouping

Representation Space
Search Operators

Multi-valued Binary

Condition-
grouping

Data-driven

Attribute-
removing

Hypothesis-driven

Attribute-removal

Figure 4. 5. A hierarchy showing the representation space modification operators in AQ17-MCI

Figure 4.5 presents a hierarchy of RSM operators used in AQ17-MCI. This hierarchy presents the

types of modifications that may be performed within the attribute-value representation within

which AQ operates. This hierarchical organization captures the relationships between RSM

operators and allows selection rules to provide better guidance when confronted with new

domains. The current MCI system has capabilities for both data-driven and hypothesis-driven

construction of attributes, attribute removal by hypothesis, and statistical information and

abstraction.

4.5.3 Example Reformulation

After the representation space modification has been selected, the training data are reformulated

in this space. The generation module has a number of fundamental CI operators with which it can

Chapter 4 - The AQ17-MCI System 62

modify the primary and secondary training set. These operators include those used by a number

of other systems (Bloedorn and Michalski, 1996; Wnek and Michalski, 1994) Some of these

fundamental operators have been reported by others, notably Rendell and Seshu (Rendell and

Seshu, 1990) The following MCI operators are equivalent to the terms used in Rendell: attribute

removal (projection), and hypothesis-driven constructive induction (superpositioning).

4.5.3.1 Attribute Removal

Attribute removal makes a selection of a set X' of attributes from the original attribute set X. In

MCI, attribute removal is done either in a hypothesis-driven approach using HCI-SEL (Wnek and

Michalski, 1994), or in a data-driven approach using DCI-SEL (Bloedorn and Michalski, 1996).

In the logic-based approach the irrelevancy of an attribute is calculated by analyzing rules

generated by the Decision Rule Generation module. For each attribute, a sum is calculated of the

total number of examples covered by a discriminant rule which includes that attribute. Attributes

that are irrelevant will be useful only to explain instances that are distant from the majority of

examples in the distribution. Thus, these attributes will have low total-weight sums. In the data-

driven approach an information gain ratio is used to calculate the 'quality' of an individual

attribute. If the quality if less than a user-defined value (default 0.01) then the attribute is

removed. An example of attribute removal is shown below.

Before:
Strong_box-events
color material age shape
red cardboard 12 square
blue wood 3 rectangle
green wood 5 square

After
Strong_box-events
material age
cardboard 12
wood 3
wood 5

4.5.3.2 Abstraction

Chapter 4 - The AQ17-MCI System 63

Abstraction is the merging of attribute values into intervals. Currently MCI implements only

abstraction, based on the Chi-merge correlation between an attribute-value interval and the class.

This method was proposed by Kerber (Kerber, 1992). Abstraction selects a set V' ℘ V (where V

is the domain of A) of allowable values for attribute A. Abstraction can be used to reduce multi-

valued large nominal domains, or real-valued continuous domains into domains consisting of

only a small number of discrete values which represent intervals in the original representation.

An example of abstraction on the attribute 'age' is shown below. In this example the ages 3..5

have been mapped to 0 and 12 has been mapped to 1.

Before:
Strong_box-events
color material age shape
red cardboard 12 square
blue wood 3 rectangle
green wood 5 square

After
Strong_box-events
color material age shape
red cardboard 1 square
blue wood 0 rectangle
green wood 0 square

4.5.3.3 Hypothesis-driven Attribute Generation

Hypothesis-driven attribute generation is a method for constructing new attributes based on an

analysis of inductive hypotheses. Useful concepts in the rules can be extracted and used to define

new attributes. These new attributes are useful because they explicitly express hidden

relationships in the data. This method of hypothesis analysis as a means of constructing new

attributes is detailed in a number of places including (Wnek and Michalski, 1991, Wnek and

Michalski, 1994). Wnek and Michalski define three types of hypothesis patterns from the

simplest (value-groupings) to the most complex (rule-groupings). which is implemented in

AQ17-HCI. AQ17-HCI is used in MCI to perform rule-based constructions of attributes based on

value-groupings, condition groupings, rule-groupings, and attribute removal. An example of

hypothesis-driven attribute generation is shown below. In this example a new attribute 'ca1' has

been generated. This attribute takes the value 1 when [material=wood][age=3..5] and 0

otherwise.

64

Before:
Strong_box-events
color material age shape
red cardboard 12 square
blue wood 3 rectangle
green wood 5 square

After
Strong_box-events
color material age shape ca1
red cardboard 12 square 0
blue wood 3 rectangle 1
green wood 5 square 1

4.5.3.4 Data-driven Attribute Generation

Data-driven (DCI) methods build new attributes based on an analysis of the training data. One

such method is AQ17-DCI (Bloedorn and Michalski, 1996). In AQ17-DCI new attributes are

constructed based on a generate and test method using generic domain-independent arithmetic

and boolean operators. In addition to simple binary application of arithmetic operators including

+, -, * , and integer division, there are multi-argument functions such as maximum value,

minimum value, average value, most-common value, least-common value, and #VarEQ(x) (a

cardinality function which counts the number of attributes in an instance that take the value x).

Another multi-argument operator is the boolean counting operator. This operator takes a vector

of m boolean-valued attributes (m>=2) and counts the number of true values for a particular

instance. This approach is able to capture m-of-n type concepts. Data-based logical construction

in MCI is performed by AQ17-DCI using the multi-argument functions of #VarEQ(x), most-

common, least-common, boolean counting, and binary boolean operators. Data-driven attribute

construction is performed by AQ17-DCI through maximum, minimum, average, and +, -, * and

integer division.

The complexity of attribute DCI-Gen depends on the construction method used. The binary

operators are O(A2Ex) where A is the number of attributes and Ex is the number of examples.

The functional operators are O(AEx) when knowledge about attribute units is used to determine

the set of attributes. The #VarEQ(x) operator which actually builds many new attributes is

Chapter 4 - The AQ17-MCI System 65

O(DAEx) where D is the size of the domain of all the attributes being combined. An example of

attribute construction using the AQ17-DCI method is shown below. In this example a new

attribute 'l*w' has been generated which is the product of length and width which is better

understood as the area of one side of the box.

Before:
Strong_box-events
 material age shape length width
cardboard 12 square 3 3
wood 3 rectangle 6 2
wood 5 square 4 4

After
Strong_box-events
material age shape length width l*w
cardboard 12 square 3 3 9
wood 3 rectangle 6 2 12
wood 5 square 4 4 16

4.5.4 Storing Experience of Operator Selection

Each time a strategy is selected, and evaluated against the secondary training examples data, the

results of the modification must be stored. If the application resulted in an improvement in rule

quality, the meta-example characterizing the dataset is inserted into the knowledge base under the

class representing the RSM operator which made the useful modification of the representation

space. If the quality remained constant or declined, then the representation space is returned to its

previous state, and a new operator is selected. Thus learning does not currently occur when a rule

fails to predict a successful operator. The failure of the first operator is only corrected implicitly

when another operator is found to be successful for the current problem. If all RSM operators fail

to improve the space, the vector characterizing the problem is stored as a positive example of the

class representing no modifications.

AQ if:

[Last_simplicity = 3..15]

Interpretation:

Perform no change to the representation space if the learned rules are simple.

Chapter 4 - The AQ17-MCI System 66

DCI-Quant if:

[Last_simplicity = 19..46] & [Training_examples_percent_of_total = 0]

Interpretation:

Perform quantization of the space if the last learned rules were moderately complex and the
training examples provided is only a small percentage of the total possible space (common in
real-world problems).

Figure 4.6. Examples of learned meta-rules

Given a set of classified meta-examples, new meta-rules can be learned or improved. Meta-rules

are generated by AQ15c, or provided by the user. Learning of meta-rules is invoked at the

conclusion of a learning session. This occurs when a problem is solved (the learned rules exceed

the user thresholds for quality), or no more operators can be tried. The new meta-rules generalize

the previous meta-examples Meta-rules will now be capable of classifying unseen databases

according their suitability to representation space modification. Examples of learned meta-rules

are presented in Figure 4.6. These meta-rules are learned from a set of fourteen meta-training

examples representing fourteen datasets. These datasets and the predictive accuracy of these

learned meta-rules are described in Chapter 5.

4.6 Summary

This chapter described in detail the AQ17-MCI system which implements multistrategy

constructive induction. In this system, learned hypotheses are repeatedly evaluated on predictive

accuracy and complexity after various modifications to the representation space are made. Those

modifications that result in improved hypotheses are retained, while those that do not are

discarded - a greedy search with lookahead of one. Different operator control methods can be

Chapter 4 - The AQ17-MCI System 67

used to select RSMO's including: a) random selection when no knowledge, or meta-rules is

provided, b) fixed ordering (e.g. First construct new attributes via DCI-Generate and HCI-

Generate, select relevant attributes with HCI-Select, then abstract attribute values with DCI-

Quant, and finally select attributes with DCI-Select) and c) learned meta-rules. Chapter 5

describes experiments applying AQ17-MCI on a variety of synthetic and real-world problems.

68

CHAPTER 5 EXPERIMENTS

5.1 Experimental Goals

This chapter provides empirical support for multistrategy constructive induction as described in

this thesis. The goal of this chapter is to show that multistrategy constructive induction a)

outperforms traditional selective induction alone, and b) outperforms any single-strategy

constructive induction method from the set that make up MCI. The performance metric used here

is predictive classification accuracy. Predictive classificication accuracy is measured as the

percentage of correct classifications made by the final hypothesis for a set of test examples. Test

examples are randomly selected and were unavailable during hypothesis generation. The

performance of MCI will be evaluated in two ways: 1) its ability to solve a wide variety of

representation space problems within one application framework, and 2) its ability to solve

problems with multiple pathologies requiring the individual representation space modification

operators to work together.

5.2 Experimental Design

The single most important factor influencing the success of inductive learning is the quality of

the representation space (RS). Here the representation space is defined as being the space of

descriptors and their values. Although also important, the qualities of the examples themselves,

such as their typicality and accuracy, are not directly a part of the representation space, and as

Chapter 4 - The AQ17-MCI System 69

such are not addressed by the representation space modification operators discussed here. The

qualities of the RS being focused on are:

a) Suitability of attribute-values to classification task. If attributes are measured with too little

precision then concept boundaries are blurred and difficult to discriminate. Conversely too much

precision can artificially expand the distances between examples increasing the possibility that

important patterns will be missed (i.e. failure to see the forest for the trees). Overprecision is

most often seen in problems with many numeric attributes such as those present in problems in

computer vision or economics.

b) Relevance of the attributes to the classification task. The true correlation between the class

attribute and the other attributes is often difficult to determine without extensive data or

background knowledge. Having only truly relevant attributes available in the RS increases the

possibility that the learned hypotheses will truly capture strong patterns and be predictively

accurate. However, often even experts disagree, or don't know what factors are relevant to a

classification task. For example, in segmenting an image into classes of objects, or retrieving

relevant documents from a large text collection, attribute relevance can be a serious problem.

c) Independence of attributes. Selective induction learning algorithms assume that all the

attributes are independent. Such algorithms cannot express even very simple correlations

between attributes such as 'height = width'. The independence assumptions is often violated for

real-world domains because every attribute which is thought to have an effect on the outcome is

included regardless of their likely non-independence.

Learning in a representation space that satisfies these criteria is easy. Unfortunately, designing a

Chapter 4 - The AQ17-MCI System 70

RS for a given problem which satisfies these criteria is often extremely difficult, especially for

real-world problems. In fact in many real-world applications, knowing the relevant attributes, and

whether they are independent or not is part of the problem.

In order to expand the applicability of machine learning to these real-world problems, an

automated, or partially automated method for finding an improved representation space must be

found. The MCI approach has been designed to perform this automated search for an improved

representation space and to correct the problems that arise when each of the previous criteria are

not satisfied.

The following experiments are designed to evaluate the ability of the representation space

modification operators in MCI to find an improved representation space. In the first set of

artificial problems the necessary transformations are known. This allows the experimental results

to be compared with predicted outcomes. In the latter examples, the exact form of the goal

concept is not known. For these problems the results of MCI operations are evaluated based on

the change in predictive accuracy, and the knowledge generated (e.g. the meaning of the

attributes generated)

Evaluating the MCI method, when it is uses learned meta-rules to guide the search for an

improved representation space, is complicated by the fact that the performance is determined by

the quality of the knowledge available to it in the form of meta-rules. This knowledge cannot be

obtained without some input from a user either in the construction of the meta-rules directly or

indirectly from the selection of meta-examples. In either case, it can be argued that the true

performance of the overall system cannot be accurately determined because of the bias provided

by outside knowledge. Although it is impossible to obtain an “average” measure of performance

Chapter 4 - The AQ17-MCI System 71

because of this user bias, it is possible to obtain an upper performance bound. This can be

achieved by evaluating all the available representation space modification (RSM) operators for a

given problem. The best individual performance is then selected as the performance of MCI. If

the meta-rules are perfectly accurate in predicting the correct class than MCI will perform at this

upper level. The quality of the meta-attributes in extracting relevant cues for operator selection,

and in the meta-rules for predicting operator class is separately evaluated in section 5.5.

Chapter 4 - The AQ17-MCI System 72

5.3 Synthetic Problems

This set of artificial problems was generated to carefully evaluate the effectiveness of MCI to

overcome a learning problem made difficult by: a) overprecise measurement of attribute values,

b) the presence of irrelevant attributes, and 3) the presence of non-independent attributes. If the

necessary transformation are made, the simple DNF rule which is the design goal concept, should

easily be found by the underlying induction algorithm AQ15c.

5.3.1 Description

This problem set consists of four 2 term DNF functions (e.g. the goal concept consists of 2

disjuncts) first described in (Bloedorn, Michalski and Wnek, 1994) The goal concept for each of

the six problems is the same. However, in all but the first case the goal concept has been

obscured by a different type of problem. The three different problems, corresponding to the three

criteria of section 5.2 are: 1) Overly large attribute domain sizes in which like-labelled examples

are distant in the representation space (criteria a) 2) Irrelevant attributes (criteria b) and 3)

Dependent attributes (criteria c). A more detailed description of each of the 4 problems (the

original and each of the three described) is given below. The attributes used in this problem set

have between two and 60 different values. The values are linearly ordered. The domains of

attributes x1, x2, and x3 have domains of [0..5] in the base case while x4 and x5 have a domain

of [0..1]. The goal of this set of experiments is to determine the effectiveness of the available set

of RSM operators to overcome the different difficulties introduced to the simple base problem.

1) Problem t0 original DNF

Chapter 4 - The AQ17-MCI System 73

Positive class: [x1=3,4] [x2=1..3][x3=1,2] v [x3=3,4][x4=1][x5=1]

2) Problem t1 (Overprecision: the domains of attributes x4 and x5 have been expanded 10-fold)

Positive class: [x1=3,4] [x2=1..3][x3=1,2] v [x3=3,4][x4=10..19][x5=10..19]

3) problem t2 (inappropriate attributes: the decimal value of x3 has been mapped using a 4 place

parity coding, e.g. 3 = 0 1 1 1. The selection of a particular equivalent coding is random)

Positive class: [x1= 3,4] [x2=1..3][[#attributes(x6..x9)=1]=1,2] v

 [[#attributes(x10..x13)=1]=3,4][x4=1][x5=1]

4) Problem t3 (the first 30 attributes are irrelevant)

Positive class: [x31=3,4] [x32=1..3][x33=1,2] v [x33=3,4][x34=1][x35=1]

5.3.2 Method

All five of the RSM operators, DCI-Gen, DCI-Quant, DCI-Sel, HCI-Gen and HCI-Sel were

applied to problems t0, t1, t2 and t3. Each problem was evaluated using 10-fold cross validation

(Weiss and Kulikowski, 1991) Significance is calculated using a two-tailed student t-test.

5.3.3 Results

Table 5.1 shows the predictive accuracy of AQ alone (no representation space modification) and

AQ17-MCI for the four DNF problems. By combining the performance of multiple RSM

operators, AQ17-MCI performs better than AQ alone on all the corrupted learning problems.

Chapter 4 - The AQ17-MCI System 74

Additionally, Table 5.2 shows that no single RSM operator can correct all three learning

problems, showing that some combination of strategies is required to achieve high performance

over the range of problems.

Table 5.1 - Results of AQ and AQ17-MCI on 3 artificial problems

 Problem

Method

Baseline DNF expanded

domain

distributed

coding

irrelevant

attributes

AQ

Avg. Accuracy

Avg. #Rules

Avg. #Selectors

Avg. L. Time (sec)

100.0

8.1

17.3

0.5

96.8

15.6

45.6

13.9

93.9

33.5

146.0

3.82

87.9

18.6

172.3

440.2

AQ17-MCI

Avg. Accuracy

Avg. #Rules

Avg. #Selectors

Avg. L. Time (msec)

Avg. CI Time (sec)

AQ only

100.0

8.1

17.3

0.5

0

Quant

100.01

8.91

20.41

3.311

0.2

Generate

98.63

14.21

51.31

8.51

6.0

Select

99.62

20.5

135.4

121.11

0.9
(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1)

Problem T0 (Original DNF)

The base learning problem (t0) is clearly easy to learn. The rules learned without modification to

the representation space average 8.10 rules with 17.3 selectors, take 0.45 milliseconds to learn

and have 100% predictive accuracy. The learned rules for the positive class exactly match the

Chapter 4 - The AQ17-MCI System 75

goal target concept given above.

Problem T1 (Expanded Domains)

In problem t1 the simple DNF problem of t0 has been complicated by artificially expanding the

size of the attribute domains of x4 and x5 10-fold. In the original representation of the problem

these attributes were binary, but now they each take 10 values. As these attributes are only used

in one of the disjuncts in the goal concept it would be expected that learned rules would be more

complex, but have about the same predictive accuracy as in t0. This is exactly what occurs: AQ

generates an average of 15.6 rules (92% increase over t0), 45.6 selectors (163% increase) in

13.91 milliseconds with a predictive accuracy of 96.8%. However, the DCI-QUANT system was

able, to a high degree, correctly identify which intervals were meaningful and make the necessary

repair to the representation. The rules 'fixed' by this transformation were 100% accurate (± 0.0),

had 8.9 rules, with an average of 20.4 selectors. These rules are only slightly more complex than

the rules learned in the original space and required a learning time of 3.31 milliseconds.

Problem T2 (Attribute Interaction)

In problem t2, t0 has been complicated by introducing non-independent attributes. The simple

description of the goal concept has been 'blurred' (Rendell and Ragavan, 1993) by spreading the

values of x2 and x3 across 8 additional attributes (x6..x9 now represent the value of x2; and

x10..x13 now hold the value of x3). This blurring has reduced the predictive accuracy to 93.9%,

increased the number of rules from 8.10 to 33.5 (313% increase), increased the number of

selectors from 17.3 to 146 (743% increase) and increased the learning time from 0.45

milliseconds to 3.82 msec (748% increase). However, this problem has been corrected by the

Chapter 4 - The AQ17-MCI System 76

DCI-GENERATE method using the SUM operator. SUM uses information about attribute units

to guide construction of new attributes. With new attributes, DCI-Generate was able to learn

rules which were 98.6% accurate (±1.82 α = 0.1), had 14.2 rules and 51.3 selectors.

Chapter 4 - The AQ17-MCI System 77

Problem T3 (Irrelevant Attributes)

In this problem t0 has been complicated by 30 additional, randomly generated attributes. The

learning algorithm must select the important attributes from the irrelevant. AQ15c performs

attribute selection well, but with large amounts of irrelevant attributes, even AQ15c's

performance can degrade. This is what was found with problem t3: AQ learned rules that were

only 87.9% predictively accurate (± 6.16 α=0.1), had 18.6 rules, 172.3 selectors and took 440.15

milliseconds to learn. DCI-Select was able to perform the correct transformation to the

representation space resulting in rules that were significantly more accurate (99.6% ± 0.87

α=0.01), had shorter rules, 135.4 selectors and took significantly shorter time to learn 121.06

milliseconds (± 18.71).

In addition to these results, the effect of other MCI operators on these four datasets was

measured. These results (Table 5.2) show that although some transformations are beneficial,

some are not. For example, attribute generation can be incorrectly encouraged, by expanded

domains and irrelevant attributes, into generating attributes that appear to be relevant, but really

are not. Attribute abstraction can also be harmful to learning if applied to problems which are

already well suited as shown in the results for DCI-Quant in the Baseline DNF case. This would

not occur in AQ17-MCI, because it checks to see if modification to the representation space is

needed by learning hypotheses in the initial space. This kind of extra processing and damamging

effects are avoided by this simple initial check. The results for DCI-Select also point out the

difficulty of detecting attribute relevance in the presence of attribute interaction. In this case the

rules learned in the DCI-Select transformed space were significantly worse than the rules learned

in the initial space (predictive accuracy: 93.9 vs 69.0)

Chapter 4 - The AQ17-MCI System 78

Table 5.2 - Performance of individual RSM operators on 3 DNF problems

 Problem
Method

Baseline DNF expanded
domain

distributed
coding

irrelevant
attributes

DCI-Generate

Avg. Accuracy
Avg. #Rules
Avg. #Selectors
Avg. L. Time (sec)
Avg. CI Time (sec)

100.0
7.8
18.4
1.0
.02

92.0
16.7
65.22
61.91
1.6

98.6
14.2
51.3
8.5
6.0

85.2
17.7
191.3
836.71
4.9

DCI-Quant

Avg Accuracy
Avg. #Rules
Avg. #Selectors
Avg. L. Time (sec)
Avg. CI Time (sec)

85.91
8
17.93
0.31
6.7

100.0
8.9
20.4
3.31
0.2

94.7
33.5
149.1
5.51
0.2

87.0
29.31
223.63
233.81
3.3

DCI-Select

Avg. Accuracy
Avg. #Rules
Avg. #Selectors
Avg. L. Time (msec)
Avg. CI Time (sec)

91.31
10.4
29.02
0.41

89.22
19.71
57.22
14.2
0.1

69.01
2.01
4.01
0.21
0.2

99.6
20.5
135.4
121.1
0.9

HCI-Select

Avg. Accuracy
Avg. #Rules
Avg. #Selectors
Avg. L. Time (msec)
Avg. CI Time (sec)

100.0
8.1
17.3
0.5
3.7

96.8
15.6
45.6
13.9
3.7

93.9
33.5
146.0
3.82
4.9

89.7
20.1
191.4
631.81
5.2

HCI-Generate

Avg. Accuracy
Avg. #Rules
Avg. #Selectors
Avg. L. Time (msec)
Avg. CI Time (sec)

100.0
7.5
15.8
0.6
3.7

95.8
7.51
19.61
6.31
4.3

94.4
131
46.91
3.111
5.2

93.1
7.21
29.81
116.241
9.1

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1)

5.4 Real Problems

Chapter 4 - The AQ17-MCI System 79

This section provides examples of the performance of AQ17-MCI on two real-world domains.

These domains are segmentation of visual scenes, and GNP change prediction from economic

and demographic data. These domains show how AQ17-MCI produces the best results when

multiple RSM operators are used together. This supports somewhat the claim that the problems

identified (overprecision, irrelevant attributes and attribute-interdependencies) are present in real

problems.

5.4.2 World Economics

5.4.2.1 Description

The ability to detect economic trends is an important and difficult problem. Like many real

problems finding the right representation is very difficult. In the experiments described here the

goal is to find patterns in demographic and economic data which can be used to predict GNP

(Gross National Product).

Table 5.3 - Initial representation Space of GNP Problem

 Population (age 10-14) as % of total

 Population *age 15-64) as % of total

 Urban Population growth rate

 Urban/rural growth difference

 Crude birth date (per thousand population)

 Crude death rate (per thousand population)

 Agricultural land as % of totall land area

 Net deforestation rate (annual %)

Chapter 4 - The AQ17-MCI System 80

 Food producation per capita (1979-1981 = 100)

 Energy consumption per capita (kg of oil equivalent)

Attributes characterizing a country in a given year. Training examples provide a characterization

of a country for 5 years for a total of (11*5 = 55 attributes)

As a first step toward predicting GNP for a given country and year, the following problem was

formulated in which the goal was to characterize levels of GNP change based on economic and

demographic attributes. The data were obtained from a World Bank database (Bloedorn and

Kaufman, 1996). Although the entire database contains economic and demographic records for

the countries of the world from 1965 to 1990, (Kaufman, 1994) these experiments focus on a

smaller set of countries during the period from 1986 to 1990.

5.4.2.2 Method

In the experiment we considered 41 countries based on their geographic distribution (x from the

Americas, x from Europe, etc.) and the completeness of their records in the database. Changes of

GNP were quantized into four equal-intervals: low (0 to 0.5625), medium (0.5626 to 1.125), high

(1.126 to 1.6875) and very high (over 1.6875). The countries were described by 11 attributes,

each sampled over a period of 5 years. Thus each country was described by 55 attributes. The

initial representation space for this problem is shown in Figure 5.3. The quality of the generated

rules was evaluated using a 10-fold cross-validation method (Weiss and Kulikowski, 1991).

Selective Induction

The standard approach to solving this problem is to apply a selective induction learning

Chapter 4 - The AQ17-MCI System 81

algorithm to the raw data directly. The results obtained for this approach are shown below. This

is the baseline performance.

Table 5.4 - GNP results after learning in the original representation space

 Avg. Accuracy (%) Avg. # Rules Avg. # Selectors Avg. Learning Time

(sec)

AQ alone 46.2 6.72 19.5 171.9

Chapter 4 - The AQ17-MCI System 82

Single Strategy Constructive Induction

All available RSM operators were applied to the problem with the results shown in Table 5.5.

The HCI methods have a built in check for improvements in predictive accuracy over the

baseline case. For this problem the transformations introduced by both HCI-Gen and HCI-Sel

were no better than the baseline. For the data-driven methods, the transformations did make a

difference. DCI-Gen, on average, added 14 new attributes for each problem. Examples of the

attributes generated are shown in table 5.6. DCI-Quant reduced the domain size from an average

of 15.4 to and average of 5.2. This not only caused a reduction in learning time from 171.9

seconds to 11.2 seconds, but an increase in average predictive accuracy from 46.2% to 58.0%.

DCI-Sel removed an average of 7 attributes from each problem, but this resulted in little overall

improvement in learned hypotheses. DCI-Quant also effectively removed 21 attributes from the

space by reducing their domains size to a single value. This likely contributed to the significant

reduction in learning time.

Table 5.5 - GNP results after applying individual RSM operators to the original problem

 Avg.

Accuracy (%)

Avg.

Rules

Avg.

Selectors

Avg.

Learning Time

(s)

Avg.

CI Time (s)

DCI-Gen 64.3 5.9 18.3 205.5 0.3

DCI-Quant 58.0 7.2 20.1 11.2 1.3

DCI-Sel 46.2 6.7 19.5 122.7 0.2

HCI-Sel 46.2 6.7 19.5 171.9 2.0

Chapter 4 - The AQ17-MCI System 83

HCI-Gen 46.2 6.7 19.5 171.9 1.6

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1)

Multistrategy Constructive Induction

Table 5.5 shows examples of applying multiple RSM operators to the same problem. The best

results occurred with the quantization of attributes followed by the generation of new attributes.

These results are interesting for two reasons. The first reason is that the search for an improved

representation space is shown to not be best searched by a simple greedy method; although the

DCI-Gen space seemed best at first (Table 5.4), the DCI-Quant space followed by DCI-Gen (with

DCI-Gen adding an average of 15.6 attributes) actually resulted in higher predictive accuracy and

much shorter learning time. Good meta-rules may be able to overcome this problem by forcing

the system to perform DCI-Quant first based on the characteristics of the problem. The other

point is that these results also show that the order of RSM operators is important. This further

supports the need for control methods which are not fixed in order. Additional experiments

involving combinations of three RSM operators, but these did not result in an improvement.

Table 5.6 - GNP Results after applying multiple RSM operators

Method

Avg.

Accuracy (%)

Avg.

Rules

Avg.

Selectors

Avg.

L. Time (s)

Avg.

CI Time

(s)

DCI-Gen-> DCI-Sel 64.3 5.9 18.3 188.8 0.3

DCI-Gen->DCI-Quant 43.7 7.0 19.6 77.9 2.1

Chapter 4 - The AQ17-MCI System 84

DCI-Sel-> DCI-Gen 66.1 5.9 18.4 187.5 0.5

DCI-Sel-> DCI-Quant 53.4 7.5 21.2 38.6 1.5

DCI-Quant-> DCI-Gen 76.3 7.0 17.9 28.22 0.7

DCI-Quant-> HCI-Gen 58.03 7.2 20.1 9.76 3.2

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1)

5.4.2.3 Results

The results for DCI-Quant followed by DCI-Gen (Table 5.6) shown an approximately 80%

increase in predictive accuracy, slightly less complex rules, and significantly lower learning time

over rules learned in the original space (Table 5.3). The multiple transformations were not only

very useful for prediction, but were also easy to understand. Examples of generated attributes are

shown in table 5.8. These new attributes are natural combinations of the originals based on

operators like Average and Minus. An example of a learned rule in the abstracted space

Table 5.7 - Summary of results for GNP problem

Method

Avg.

Accuracy (%)

Avg.

Rules

Avg.

Selectors

Avg.

L. Time (s)

Avg.

CI Time

(s)

AQ only 46.2 6.7 19.5 171.9 0

DCI-Gen

(Best Single RSM)

64.3 5.9 18.3 205.5 0.3

DCI-Quant-> DCI-Gen

(Best Multiple RSM)

76.3 7.0 17.9 28.22 0.7

with new attributes is shown below. This result shows that the operators in AQ17-MCI can be

used together in order to produce a final result that no single method could.

Chapter 4 - The AQ17-MCI System 85

Countries with very high increase in GNP:
[Death Rate is low] &

[AVG(%PopulationAgeBracketB) vii is very high] &

[AVG(Population Growth Rate) is low] OR

[AVG(Urban Population Growth) is very low] &

[AVG(Urban vs. RuralGrowth Difference) is very low]

Interpretation: Countries with a very high increase in GNP are characterized by low death rate,

the average perecentage of the population age 15 to 64 years is very high and the overal

popoulation growth rate is low, or the average urban population growth is very low, and the

average difference between urban and rural population growth rate is very low.

Table 5.8 - Examples of new relevant attributes constructed by DCI-Generate

Name Operator

used

Description

Avg (Population growth rate) Average The average population growth rate 1986 to 1990

ChgeEnergyCons86-88 Minus Change in energy consumption of a country

between 1988 and 1986

Avg(%Population Age

Bracket B)

Average The average percentage of the population age 15

to 64 years old

AveEnergyCons86-90 Average Average Energy Consumption of a country

between 1986 and 1990

5.4.3 Computer Vision

viiGenerated attributes are shown in italics

Chapter 4 - The AQ17-MCI System 86

5.4.3.1 Description

This section details an application of multistrategy constructive induction to the interpretation of

natural scenes. In this problem the goal is develop a method which can accurately distinguish

objects in outdoor scenes under varying perceptual conditions. The approach used here is to learn

characterizations of classes of natural objects (sky, trees, road) from images that have been

labelled. These characterizations, based on features extracted for pixel windows, can then be

applied to new scenes in order to predict the presence of natural objects.

5.4.3.2 Method

In the experiment the input to the learner was a training image which includes selected examples

of the visual concepts to be learned: sky, trees and road. A windowing operator, of size 5x5

scanned over the training area, was used to extract a number of attributes including: color

intensity (red, green and blue), horizontal and vertical line, high frequency spot, horizontal and

vertical v-shape, and Laplacian operators. The quality of the generated rules was evaluated using

a 10-fold cross-validation method. This data set has 450 examples equally distributed between

the three classes.

Selective Induction

The standard approach to solving this problem is to apply a selective induction learning

algorithm to the raw data directly. The results obtained for this approach are shown in Table 5.9.

This is the baseline performance.

Chapter 4 - The AQ17-MCI System 87

Table 5.9 - Computer vision results after learning in the original representation space

 Avg. Accuracy (%) Avg. # Rules Avg. # Selectors Avg. Learning Time

(sec)

AQ alone 72.5 27.7 94.8 231.7

Single Strategy Constructive Induction

An exhaustive algorithm was used to find the best transformations to the representation space. In

phase 1, all the available RSM operators were applied to the raw data (Table 5.10). This table

shows a dramatic improvement resulting from quantization of the data. The DCI-Quant operator

reduced average attribute domain size from 256 to 14. The rules learned after the attribute values

had been quantized were significantly more predictively accurate, and the learning time was

significantly shorter than for rules learned in the original space. However, rule complexity

increased from an average of 27.7 rules to 34.6 rules and there was a significant increase in

number of selectors used in the rules.

The rules learned from the space expanded by DCI-Generate were also significantly more

accurate than the rules learned in the original space. DCI-Generate added on average 10 new

attributes, the strongest of which described absolute and relative differences in the amount of red,

green and blue color intensities. Given the green trees, the dark road and the blue sky present in

the training images this is not surprising. The tree class included new attributes that stated: [green

> red] and [green > blue]. The introduction of these new attributes to the representation space

resulted in a significant improvement to all aspects of the resulting rules. In the new

Chapter 4 - The AQ17-MCI System 88

representation space significantly more predictively accurate rules, fewer in number, and of less

complexity were learned in shorter time than in the original representation space.

Table 5.10 - Computer vision results after applying individual RSM operators

 Avg.

Accuracy (%)

Avg.

Rules

Avg.

Selectors

Avg.

L. Time (s)

Avg.

CI Time (s)

DCI-Sel 75.3 34.7 74.61 215.1 3.1

DCI-Quant 85.91 34.6 114.7 10.81 5.7

DCI-Gen 87.11 18.51 63.51 171.11 8.1

HCI-Gen 71.4 24.9 89.1 359.0 5.9

HCI-Sel 72.5 27.7 94.8 280.6 5.4

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1)

The transformations the representation space made by the other operators were not as useful as

those made by DCI-Quant and DCI-Gen. DCI-Sel was the next most useful transformation. DCI-

Sel consistently removed attributes x4..x8, which are attributes like: horizontal and vertical line,

high frequency spot, horizontal and vertical v-shape that describe the patterns within the 5x5

extraction window. This resulted in a slight increase in predictive accuracy, a significant

reduction in the number of selectors present in the rules and in learning time, but an increase in

the number of rules generated. HCI-Sel made only small changes in the representation space of

the problem removing only two attributes over the course of the ten runs. HCI-Gen was also

conservative in its modifications constructed new attributes on only three of the ten runs. Two of

these three resulted in decreases in predictive accuracy while the third resulted in no change.

Chapter 4 - The AQ17-MCI System 89

These single-strategy results are encouraging and lead to the investigation of combinations of

operators, especially attribute generation through DCI-Gen combined with abstraction of the

space through DCI-Quant. The next section describes these experiments.

Multistrategy Constructive Induction

Table 5.11 shows the results from combinations of the three RSM operators: DCI-Gen, DCI-

Quant, and DCI-Sel that made significant improvements to the representation space. The

previous section showed how initial abstraction of the space was useful, but may have been

suboptimal given the increase in rule complexity. This finding was reinforced when DCI-Gen

was run on the abstracted space. Although the new attributes resulted in fewer rules, they were

less accurate than those learned in the DCI-Quant only space, and were more complex. The

contraction of the space may be removing some important information. If the operators are

reversed and DCI-Quant is applied to the space already expanded by DCI-Gen, the space is

significantly improved in almost all respects: Both learning time and predictive accuracy are now

significantly better than in both the original space and the DCI-Gen only space, while rule

complexity and number slightly increased from the DCI-Gen only space, but is still significantly

smaller than in the original representation.

DCI-Sel used after DCI-Gen also results some improvements. DCI-Sel after DCI-Gen results in a

small increase in predictive accuracy over DCI-Gen alone, a significant decrease in learning time

and the number of selectors used, but an increase in the number of rules. In this space as in the

original representation, DCI-Sel removed attributes x4..x8. DCI-Gen followed by DCI-Quant and

then DCI-Sel was tried, but resulted in no improvement in predictive accuracy of the learned

Chapter 4 - The AQ17-MCI System 90

rules.

Table 5.11 - Computer vision results after applying multiple RSM operators

 Avg.

Accuracy

(%)

Avg.

Rules

Avg.

Selectors

Avg.

L. Time (s)

Avg.

CI Time (s)

DCI-Quant ->DCI-Gen 85.41 25.6 147.8 283.0 5.7+1.4 = 7.1

DCI-Gen ->DCI-Quant 93.41(3) 20.51 63.71 104.51(1) 8.1+19.3=27.4

DCI-Gen->DCI-Sel 90.31 25.7 53.61(3) 142.21(2) 5.7+1.0 = 6.7

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1)

5.4.3.3 Results

The multiple transformations generated by AQ17-MCI, attribute generation followed by attribute

quantization, resulted in rules which are significantly more accurate, can be learned much faster,

and are much less complex than rules learned in the original representation.

The DCI-Gen combined with DCI-Quant result suggests that there is both an interaction between

attributes and an excess of detail in the original representation. By performing DCI-Gen first, this

interaction appears to be at least partially captured, and the abstraction operator of DCI-Quant

can now safely perform its operation without looking at the context provided by the other

attributes. Because DCI-Quant (using the Chi-merge algorithm) views each attribute

independently it may remove information that is important to classification. Doing DCI-Gen first,

Chapter 4 - The AQ17-MCI System 91

this danger is reduced. Before any general conclusions can be drawn about the best ordering of

RSM operators it must be remembered that the previous GNP problem was best solved using a

DCI-Quant, DCI-Gen ordering. The conclusion that can be drawn from this is simply that some

patterns are best described in the original formulation of the problem, and some only become

apparent after abstraction. If abstraction is sensitive to interactions betweem attributes it may be

possible to eliminate such ordering effects, but such a method would have to search an enormous

space of both combinations and abstraction levels. An approach which more tightly couples the

search for combinations and abstraction level is an interesting and important area for future

research. In the meantime it reinforces the need to flexibly combine RSM operators and not hard-

code certain orderings. The learned meta-rule approach of AQ17-MCI has such a flexible

capability.

The attributes constructed by DCI-Gen were not only useful for classification, but also have an

easily interpretable mearning as differences in color intensities. The difference in color intensity

between red and green, and between green and blue, were consistently in the top three most

informative attributes as measured by information gain Table 5.12. The difference between red

and blue was also generated, but was not found to be of high discriminatory power.

Table 5.12 - Examples of new relevant attributes constructed by DCI-Generate

Name Operator used Description

red - green subtraction intensity difference between red and green

green - blue subtraction intensity difference between green and blue

Multistrategy constructive induction helped not only to increase the prediction accuracy, but also

generated a number of meaningful new attributes. These transformations explicitly found one

Chapter 4 - The AQ17-MCI System 92

combination of color intensities based on difference that was useful. This ability to clearly see

and understand the transformations made by the operators allows researchers to better understand

the results. It may also inspire the use of other representations. In this case a hue, intensity and

saturation representation may be used as well for example. The results from applying AQ17-MCI

to this computer vision problem shows that the operators in AQ17-MCI can be used together in

order to produce a final result that no single method could.

5.5 Learning Meta Control Rules

This section describes the measures taken to acquire and evaluate meta-rules used to control the

selection of representation space modification operators. These meta-rules describe the

conditions under which each of the operators produces the greatest improvement to the

representation space. These conditons are built up from meta-attributes extracted for both the

data and initial hypotheses learned from the given problem.

The quality of the meta-rules is measured by their ability to predict the correct operator ‘class’ for

a given vector description of a learning problem. This ability is primarily determined the quality

of the meta-representation space although different learning algorithms may perform differently

on the same data. A complete search of the learning bias space and the meta-attribute space is

outside the scope of this thesis. In this thesis, the meta-learning algorithm will be fixed to

AQ15c, and the bias will be set to the default criteria.

5.5.1 Description

The meta-attributes used to describe the given learning problem at hand are given in Table 4.1.

The values for the meta-attributes are extracted for 11 artificial and 3 real datasets (Table 5.13).

Chapter 4 - The AQ17-MCI System 93

These problems were selected because they represented examples of both a) when each of the

five available representation space modification operators perforned best and b) when no

modification

Table 5.13 - Descriptions of meta-examples used in evaluating meta-attributes

Key Name Description Best RSM operator Source

M1 Monk Problem #1 DCI-GENERATE Thrun et al., 1991

M2 Monk Problem #2 DCI-GENERATE Thrun et al., 1991

NIM2 Noisy and Irrelevant Monk

Problem #2

DCI-SELECT Bloedorn et al,

1993

t1.10 Irrelevant DNF t1 with 10%

training

none - AQ Bloedorn, 1996

t1.20 Irrelevant DNF t1 with 20%

training

DCI-SELECT Bloedorn, 1996

t1.60 Irrelevant DNF t1 with 60%

training

DCI-SELECT Bloedorn, 1996

t3.60 Overprecise DNF t3 with 60%

training

DCI-QUANT Bloedorn, 1996

t3.40 Overprecise DNF with 40%

training

DCI-QUANT Bloedorn, 1996

Security Unix user profiles DCI-QUANT Maloof and

Michalski, 1995

Hepatitis Hepatitis prediction DCI-GENERATE UC-Irvine

t1.40 Irrelevant DNF t1 with 20%

training

HCI-SELECT Bloedorn, 1996

M1DCI Monk Problem #1 with DCI

generated (x1=x2) attribute

none-AQ Bloedorn, 1993

Chapter 4 - The AQ17-MCI System 94

M2DCI Monk Problem #2 with DCI

generated #VarEQ(1) attribute

none-AQ Bloedorn et al,

1993

Scale_hepatitis Hepatitis problem after

QUANT abstraction

HCI-GENERATE Bloedorn, 1996

was best. The predictive accuracy of the learned meta-rules was evaluated using leave-one-out.

5.5.2 Meta-Rule Evaluation: Holdout

This section describes how the meta-rules learned from the meta-example dataset of Table 5.13

were evaluated. Two tests were performed. In both tests the training data consisted of the entire

set of examples less one. This single held-out example was used for testing. Evaluation of the

correct class was based on the degree of match between the test example and the learned meta-

rules. If the correct class had the highest degree of match the accuracy was 100%, otherwise the

accuracy was 0. In this first test, all 6 distinct classes of representation space modification were

used. The six classes are: —

 1. None - No change needed, AQ alone performed well

 2. DCI-GENERATE- Data-driven attribute construction

 3. DCI-QUANT- Data-driven attribute value abstraction

 4. DCI-SELECT- Data-driven attribute selection

 5. HCI-GENERATE- Hypothesis-driven attribute construction

 6. HCI-SELECT- Hypothesis-driven attribute selection

Because there are many continuously valued meta-attributes it became necessary to abstract these

Chapter 4 - The AQ17-MCI System 95

many values into more meaningful ranges. This process was done using DCI-Quant. The

intervals found to be important, for the numeric-valued meta-attributes, are shown in Table 5.14.

Rules were learned over 14 problem sets using a leave-one-out method. The meta-rules learned

for one of these sets, using the discretized domains is shown below (the only example of the

HCI-Select class was held out, so there is no learned rule for that class).

Chapter 4 - The AQ17-MCI System 96

Table 5.14 - Intervals found for meta-attributes using DCI-Quant

Attribute Name Intervals Attribute Name Intervals

Average_number_of_internal_

disjunctions

[1.0..1.2]

[1.4..3.8]

Number_of_attributes [5..28]

[55]

Relative_rule_weight1 0.13..0.49]

[0.62..0.99]

Selector_rule_ratio [1.0..1.3]

[1.92..4.31]

Relative_rule_weight2 [0.03..0.16]

[0.18..0.34]

Average_number_of_

uniquely_covered_exam

ples per_rule

[3.64..5.5]

[8.2..14.5]

[15.67..56.33]

Performance_estimation [73..87]

[90..95]

[100..100]

Example_rule_ratio [4.69..16.29]

[18.45..56.3]

Last_simplicity [3..15]

[19..46]

[48..155]

Training_examples_

percent_of_total

[0]

[5.5..39]

DCI-Gen if:

[Relative_rule_weight1 = 0.62..0.99] & [Training_examples_percent_of_total = 5.5..39] OR

[Performance_estimation = 73..87] & [Example_rule_ratio = 4.69..16.29]

Interpretation:

Perform DCI Generation of attributes if the second disjunct in every rule covers almost as many

examples as the heaviest rule, and the training set represents a high percentage of the total

possible space; or if the predictive accuracy of the last run was relatively low and, individually,

the rules cover a relativly small number of examples.

Chapter 4 - The AQ17-MCI System 97

These rules are stating that DCI-Gen is useful if the concepts are blurred across attributes. This

occurs when the coverage of learned rules is low across most rules.

DCI-Select if:

[Last_simplicity = 48..155] & [Avg. #_of_uniquely_covered_examples = 8.2..14.5] &

[Example_rule_ratio = 4.69..16.29]

Interpretation:

Perform DCI Selection of attributes if the last set of rules learned had a high number of selectors,

and the learned rules had a moderate degree of overlap, and and, individually, the rules cover a

relativly small number of examples.

This rule is saying that DCI-Select is useful when the simplicity of the learned rules is high and

there are no strong heavy rules learned.

AQ if:

[Last_simplicity = 3..15]

Interpretation:

Chapter 4 - The AQ17-MCI System 98

Perform no change to the representation space if the learned rules are simple.

DCI-Quant if:

[Last_simplicity = 19..46] & [Training_examples_percent_of_total = 0]

Interpretation:

Perform DCI-Quant abstraction of the space if the last learned rules were moderately complex

and the training examples provided is only a small percentage of the total possible space. This

latter condition is clearly common when the size of the attribute domains are large.

HCI-Gen if:

[Number_of_attributes = 5..28] & [Selector_rule_ratio = 5..9.64]

Interpretation:

Perform HCI generation of attributes if the number of attributes is relatively low and the rules

contain a large number of conditions.

Chapter 4 - The AQ17-MCI System 99

The predictive accuracy of the learned rules for the 6 classes was 7/14 or 50%. This is

significantly better than random guessing (1/6 or 16%). When we evaluate what types of

mistakes were made, it can be seen that the rules were working even better. A detailed

description of the seven mistakes are given below. This shows that although the RSM operator

selected was not the best possible, an RSM operator which could improve the RS was selected

10 of the 14 (71%) of the time.

In the second experiment the available RSM operators have been placed into only three classes

for meta-rule purposes:

 1. No modification (AQ only)

 2. Representation Space Expansion (DCI-, HCI-GENERATE))

 3. Representation Space Contraction (DCI, HCI-SELECT, and DCI-QUANT)

With learning from these fewer, hierarchically ordered classes, the learned meta-rules predictied

the best RSM operator for 12 of the 14 examples (86%). Mistakes were made on the Monk #1

problem when RS contraction was selected instead of expansion and for T1.10 when contraction

was suggested instead of the correct choice of no change (Figure 5.15). Interestingly, the T1.10

problem clearly needs some kind of attribute selection because of its many low quality attributes,

but because there are so few training examples, both DCI and HCI with their default settings

result in learned rules which perform worse than the rules learned in the original space.

Table 5.15 - Descriptions of RSM operator selection errors

Chapter 4 - The AQ17-MCI System 100

Problem Best RSM Best

Accurac

y

Meta-rule

selected RSM

Accuracy Original

Accuracy

Security DCI-SCALE 96% DCI-ADD 87% 89%

T1.40 HCI-SEL 93% DCI-SELECT 90..95% 91%

Scaled_hepatiti

s

HCI-

GENERATE

97% DCI-

GENERATE

95% 95%

Hepatitis DCI-

GENERATE

97% HCI-

GENERATE

86% 73%

Monk4 DCI-SELECT 93% DCI-

GENERATE

91% 93%

T1.20 DCI-SELECT 89% DCI-

GENERATE

88% 90%

T1.60 DCI-SELECT 97% HCI-SELECT 92% 92%

In summary, learned meta-rules can select an RSM operator that improves the representation

space with a high degree of accuracy.

5.5.3 Meta-Rule Evaluation: Incremental

This section describes an experiment designed to evaluate how the incremental addition of new

examples affected the performance of learned meta-rules. More specifically the goal of this

experiment is to determine how many times the meta-rule controller must quess before making

the correct choice. The dataset used for this experiment was the same as in Section 5.5.2. The

Chapter 4 - The AQ17-MCI System 101

first step was to randomly assign an example for every meta-class: a rule cannot be learned, and a

class cannot be predicted if at least one example is not given. With these six examples removed

for training, the testing began. Each of the remaining eight examples were tested against the

current rules, giving a degree of match between that example and all six classes. If the correct

class matched the training example then the assigned rank was 0. If the correct class was the

second strongest matching class, then the assigned rank was 1. The possible ranks ranged from 0

to 5. Perfect meta-rules always predict the correct class right away and would average a rank of 0

for every class. An exhaustive approach would average a rank of 5 because every operator

(represented by the six classes) would be tried. If learned meta-rules are indeed improving over

time, then the rank for a class will decrease as new examples are made available for training.

Examples are indexed from 1 to 14.

In the first experiment examples 10 (Hepatitis), 6 (t1.60), 9 (Security), 14 (Scale-Hepatitis), 11

(t1.40) and 13 (M2DCI) were assigned to the classes DCI-Gen, DCI-Scale, DCI-Quant, HCI-

Gen, HCI-Sel and AQ respectively. Characteristic meta-rules were learned from these examples.

The remaining eight examples were then tested against the learned rules, assigned a rank and

then added to the appropriate class. The results of these tests are shown in Table 5.16. Class rank

is shown by "/". Those classes with the same degree of match have equal rank.

Table 5.16 shows that even with very few examples the meta-rules perform quite well. The best

class was selected first (rank=0) for 3 of the last five test cases. With so little data it is hard to

draw strong conclusions, but these results are promising. It is also interesting to see the change

broken down by class. DCI-Quant had rank 2 after 1 meta-example, but predicted the class of

t3.60 correctly right away when it had two meta-examples. Similarly AQ went from rank 4 to

rank 0, and DCI-Sel went from rank 4 to rank 0. The ranks of DCI-Gen and HCI-Gen did not

Chapter 4 - The AQ17-MCI System 102

improve probably because the initial example was so different than the second example

(Hepatitis to Monk1) and (Scale-Hepatitis to Monk2).

Table 5.16 - Predicted Ranks for learned meta-rules: experiment 1

Index Name Correct

Class

Rank Class order by degree of match

8 t340 DCI-Quant 3 DCI-Sel/HCI-SEl/DCI-Quant

1 Monk1 DCI-Gen 5 AQ/DCI-Quant/DCI-Sel/HCI-Sel/HCI-Gen/DCI-Gen

4 t1.10 AQ 4 HCI-Sel/DCI-Sel/DCI-Quant/DCI-Gen/AQ

12 M1-DCI AQ 0 AQ/DCI-Gen/DCI-Quant/DCI-Sel-HCI-Sel/HCI-Gen

7 t3.60 DCI-Quant 0 DCI-Quant/DCI-Sel-AQ-HCI-Sel/DCI-Gen/HCI-Gen

5 t1.20 DCI-Select 4 AQ-HCI-Sel/DCI-Gen-DCI-Quant/DCI-Sel/HCI-Gen

2 Monk2 HCI-Gen 5 DCI-Sel/DCI-Gen/AQ/DCI-Quant/HCI-Sel/HCI-Gen

3 Monk4 DCI-Sel 0 DCI-Sel/DCI-Quant/AQ-HCI-Sel/DCI-Gen-HCI-Gen

In the second experiment examples 1 (Monk1), 5 (t1.20), 9 (Security), 2 (Monk2), 11 (t1.40) and

4 (t1.10) were assigned to the classes DCI-Gen, DCI-Scale, DCI-Quant, HCI-Gen, HCI-Sel and

AQ respectively. Characteristic meta-rules were learned from these examples. The remaining

eight examples were then tested against the learned rules, assigned a rank and then added to the

appropriate class. The results of these tests are shown in Table 5.17.

Although the average for this experiment is slightly worse than for the previous experiment,

some individual classes still show improvement. DCI-Sel improved from rank 1 to rank 0, and

even more dramatically AQ improved from rank 5 to rank 0. DCI-Quant increased in rank from 0

Chapter 4 - The AQ17-MCI System 103

(for t3.60), to 3 for test problem t3.40. The smaller amount of training data in the second

example apparently mislead it the meta-rules to select DCI-Sel and HCI-Sel before DCI-Quant.

HCI-Gen and DCI-Gen had the same problems as in the previous test case- the examples used in

the previous iteration were very different than those used in the next iteration. This time the

training cases were Monk1 and Monk2 and the test cases were Hepatitis and Scale-Hepatitis

respectively.

Table 5.17 - Predicted Ranks for learned meta-rules: experiment 2

Index Name Correct

Class

Rank Class order by degree of match

7 t3.60 DCI-Quant 0 DCI-Quant/AQ-DCI-Sel-HCI-Sel/DCI-Gen-HCI-Gen

6 t1.60 DCI-Sel 1 HCI-Sel/DCI-Sel-AQ/DCI-Quant/DCI-Gen-HCI-Gen

14 Scale-

Hep

HCI-Gen 5 DCI-Sel/AQ-HCI-Sel/DCI-Quant/DCI-Gen-HCI-Gen

3 Monk4 DCI-Sel 0 DCI-Sel/DCI-Quant/AQ-HCI-Sel/HCI-Gen/DCI-Gen

8 t3.40 DCI-Quant 3 DCI-Sel/AQ-HCI-Sel/DCI-Quant/HCI-Gen/DCI-Gen

10 Hepatitis DCI-Gen 5 DCI-Sel/HCI-Gen/HCI-Sel/AQ/DCI-Quant/DCI-Gen

12 M1DCI AQ 5 DCI-Sel/DCI-Gen/DCI-Quant-HCI-Gen/HCI-Sel-AQ

13 M2DCI AQ 0 AQ/DCI-Sel/DCI-Gen/DCI-Quant-HCI-Add/HCI-Sel

The section described four different experiments designed to evaluate the effectiveness of

learning meta-rules for selecting the best representation space modification operator. The first

two experiments used a traditional leave-one-out methodology and showed with very few meta-

Chapter 4 - The AQ17-MCI System 104

examples the best operator was selected 50% of the time and an operator that improved the space

was selected 71% of the time. Furthermore, when the RSM operator classes are organized

hierarchically the best class was selected 86% of the time. The second set of experiments showed

that the ability to predict the best class does improve as more examples are provided and that this

improvement can be seen after only two examples of a class have been seen.

105

CHAPTER 6 CONCLUSIONS

6.1 Summary

This thesis presents an approach to multistrategy constructive induction (MCI) in which

multiple representation space modification operators are used to transform difficult problems

into easy problems. This work showed that MCI can significantly improve the quality of learned

hypotheses for a wide variety of problems, MCI can be composed of RSM operators using

different computational strategies (statistics, evolutionary compuation, heuristics), and that the

control rules (meta-rules) which select RSM operators can be learned from past experience with

a high degree of accuracy.

Additionallyviii, this dissertation introduces a novel methodology for multistrategy constructive

induction. The approach 1) incorporates multiple computational methods for constructive

induction including representation space expansion and contraction, 2) incorporates multiple

inferential techniques in its use of deduction to arrive at a meta-decision concerning which

representation space modifier to select, and induction when inducing a new (or modifying a

previous) meta-rule from a set of meta-examples, and 3) it is a learning system capable of

improving its own performance over time through meta-learning. The proposed method is built

on established individual empirical induction and constructive induction techniques and is

capable of incorporating knowledge from many sources including a) directly from the user, b)

viiiSome of this section is a reiteration of section 1.6.

Chapter 4 - The AQ17-MCI System 106

from analysis of the data, and c) from analysis of learned hypotheses.

The proposed multistrategy approach helps to overcome the brittleness of current learning

methods by automating the search for representation spaces which are better suited to learning

predictively accurate rules. This approach helps overcome the problems such methods have with

complex real-world data. Continuous-valued data problems are overcome by including a method

for attribute-value discretization. Misclassification noise can be corrected by attribute selection.

Poorly represented attributes can be improved with attribute generation with DCI-Gen or HCI-

Gen. The meta-learning capabilities eliminate the need for human expertise to guide the

selection of these tools. The relationship between characteristics of a dataset and appropriate

representation space transformations are not generally known. A learning approach to this meta-

learning task eliminates the need to explicitly determine this relationship before using the

available tools. Such meta-rules also are helping to discover general principles of inductive

learning currently unknown or poorly understood. However, as each learning example is a

dataset, this learning requires data which is not available in great quantities. Additional

experiments with significantly more data are required to find meta-learning trends for which

there is high confidence.

6.2 Future Work

Although quite powerful already, there are a number of additions and improvements that can be

made to AQ17-MCI. These additions focus on the control strategy and the available

representation space modification operators.

The control strategy currently performs a 1-fold knowledge-driven greedy search. If a

Chapter 4 - The AQ17-MCI System 107

modification results in an improvement the space is changed and search continues. However, it

may occur that the best set of transformations necessary to correct a problem do not result in

improvements at every step. A greedy approach with no look-ahead will not find combinations of

operators that do not improve the space at every step. One way to overcome this limitation is to

see which combinations of operators often occur together and bundle them as one operator. For

example abstraction followed by attribute-generation can result in a large gain in performance. If

performed in one step, the greedy control method cannot separate the two steps even if one alone

results in a decrease in performance. The control strategy is also restricted to controlling only the

data-driven and hypothesis-driven operatrors. Those transformations suggested by the user are

automatically made before any other modification. In order to encourage learning across

problems, the knowledge acquired from past problems should be stored and used for future

problems. AQ17-MCI may make use of a goal-dependency network (GDN) (Michalski and

Stepp, 1986) to record knowledge about domains and past successes in order make better use of

user-given knowledge.

The available operators in the toolbox of AQ17-MCI can also be expanded and improved. As

described in chapter 3, there are a number of other attribute construction methods, that make use

of other inferential transmutations, which could be included: a) attribute construction using a

genetic algorithm, or b) analogy based meta-learning for acquiring better meta-rules. The current

operators can also be improved. The current abstraction operator uses chi-merge. This method

does not produce hierarchies of ordered attributes, nor does it take into account the abstraction of

other attributes. This is a problem for any algorithm that only looks at the data one attribute at a

time. Linear hierarchies could result in even better descriptions of the available data because it

would give to AQ the detail (precision) of the lowest level when it needed it, while also

providing the abstractions of large intervals to use when describing areas within a class.

Chapter 4 - The AQ17-MCI System 108

REFERENCES

Aha, D., "Generalizing from Case Studies: A Case Study", Proceedings of the Ninth

International Workshop on Machine Learning, p. 1-10, Edinburgh, Scotland, 1992

Baim, P.W., "The PROMISE Method for Selecting Most Relevant Attributes for Inductive

Learning Systems", Reports of the Intelligent Systems Group, Department of Computer Science,

University of Illinois at Urbana-Champaign, ISG 82-5, 1982.

Bala, J., "Learning to Recognize Visual Concepts: Development and Imnplementation of a

Method for Texture Concept Acquisition Through Inductive Learning", Ph.D. dissertation,

School of Information Technology and Engineering, Reports of the Machine Learning and

Inference Laboratory, MLI93-3, Center for Artificial Intelligence, George Mason University,

March 1993.

Banerji, R.B., "Learning in the Limit in a Growing Language," Proceedings of IJCAI-87, pp.

280-282, Milan, Italy, 1987.

Bergadano, F., Matwin, S., Michalski, R.S., "A General Criterion for Measuring Quality of

Concept Descriptions," Center for AI, George Mason University, MLI 88-31, 1988.

Belyaev, L., Falcone, L.P., "Noise-Resistant Classification," Proceedings of the Eighth

International Workshop on Machine Learning, pp. 581-585, Evanston, Ill., 1991.

Bloedorn, E., and Kaufman, K., "Data-Driven Constructive Induction in INLEN," Reports of the

Machine Learning and Inference Laboratory, George Mason University, 1996.

Bloedorn, E., Michalski, R.S. and Wnek, J., "Matching Methods to Problems," George Mason

University, Machine Learning and Inference Laboratory, 1994.

Bloedorn, E., and Michalski, R.S., "Constructive Induction from Data in AQ17-DCI: Further

Experiments," Center for Artificial Intelligence, George Mason University, MLI 91-12, 1991.

Chapter 4 - The AQ17-MCI System 109

Bloedorn, E., "Constructing Problem Relevant Attributes for Classification Using a Genetic

Algorithm: CI-GA," Report for INFT 910: Advanced Topics in AI: Evolutionary Computation,

George Mason University, 1993.

Bloedorn, E., "Goal-Driven Property Transfer: An Implementation and Application," Class-

Report, George Mason University, Report for CS-785 Knowledge Acquisition, 1993.

Bloedorn, E., and Michalski, R.S., "The AQ17-DCI System and it Application to World

Economics," Proceedings of the Ninth International Symposium on Methodologies for Intelligent

Systems, pp. Zakopane, Poland, 1996.

Brazdil, P., Gama, J. and Henery, R., "Characterizing the Applicability of Classification

Algorithms using Meta Leval Learning", in Machine Learning-ECML-94, F., Bergadano, and L.

de Raedt (Eds.), Springer Verlag. 1994.

Brodley, C., "Addressing the Selective Superiority Problem: Automatic Algorithm/Model Class

Selection," Proceedings of the Tenth International Conference on Machine Learning, pp. 17-24,

1993.

Callan, J.P., and Utgoff, P.E., "Constructive Induction on Domain Information," Proceedings of

AAAI-91, pp. 614-619, 1991.

Callan, J.P., Utgoff, P.E., "A Transformational Approach to Constructive Induction,"

Proceedings of the Eight International Workshop on Machine Learning, pp. 122-126, Evanston,

Ill., 1991.

Carbonell, J.G., Michalski, R.S. and Mitchell, T.M., "An Overview of Machine Learning,"

Machine Learning: An Artificial Intelligence Approach, Ryszard S. Michalski, Jaime G.

Carbonell and Tom M. Mitchell (Eds.), Morgan Kaufmann, 1983.

Caruana, R., "Multi-task Learning: A Knowledge-Based Source of Inductive Bias", Proceedings

of the Tenth International Conference on Machine Learning, p. 41-49, Amherst, MA, 1993.

Chapter 4 - The AQ17-MCI System 110

Catlett, J., "On Changing Continuous Attributes Into Ordered Discrtete Attributes", in Y.

Kodratoff (Ed.) Proceedings of the European Working Session on Learning, Berlin, Germany,

Springer-Verlag, pp. 164-178, 1991.

Clarke, P., and Reichgelt, H., "Explorations in Representation Change," Proceedings of IJCAI-91

Workshop on Evaluating and Changing Representation in Machine Learning, pp. 90-95, Sydney,

Australia, 1991.

Cohen, W.W., "An Analysis of Representation Shift in Concept Learning," Proceedings of the

7th International Conference on Machine Learning, pp. 104-112, Austin, TX, 1990.

Dabija, V., Tsujino, K., and Nishida, S., "Learning to Learn Decision Trees", Proceedings of

AAAI-94, p. 88-95, 1994.

Donoho, S., and Rendell, L., "Representing and Restructuring Domain Theories: A Constructive

Induction Approach", Journal of Artificial Intelligence Research, Vol. 2., pp. 411-446.

Donoho, S. and Rendell, L., "Constructive Induction Using Fragmentary Knowledge",

Proceedings of the Thirteenth International Conference on Machine Learning, Bari, Italy, pp.

113-121, 1996.

Dougherty, J., Kohavi, R., and Sahami, M., "Supervised and Unsupervised Discretization of

Continuous Features", Proceedings of the Twelfth International Conference on Machine

Learning, pp. 194-202. San Francisco, 1995.

Drastal, G., Czako, G., and Raatz, S., "Induction in an Abstraction Space: A Form of

Constructive Induction," Proceedings of IJCAI-89. pp. 708-712, 1989.

Elio, R., and Watanabe, L, "An Incremental Deductive Strategy for Controlling Constructive

Induction in Learning from Examples", Machine Learning, Vol. 7, p. 7-44. Kluwer Academic,

1991.

Chapter 4 - The AQ17-MCI System 111

Fayyad, U., Irani, K., "Multi-internval discretization of continuous-valued attributes for

classification learning", Proceedings of the 13th International Joint Conference on Artificial

Intelligence, Morgan Kaufmann, pp. 1022-1027, 1993.

Fulton, T., Kasif, S., and Salzberg, S., "Efficient Algorithms for Finding Multi-way Splits for

Decision Trees", Proceedings of the Twelfth International Conference on Machine Learning

(ML95), Armand Preditis andStuart Russel (Eds.), Morgan Kaufmann, p. 244-251, Tahoe City,

CA, July 1995.

Genest, J., Matwin, S. and Plante, B., "Explanation-Based Learning with Incomplete Theories: A

Three-step Approach," Proceedings of the 7th International Conference on Machine Learning,

pp. 286-294, Austin, TX, 1990.

Gordon, D., Active Bias Adjustment for Incremental Supervised Concept Learning, Department

of Computer Science, University of Maryland, Ph.D, 1990.

Gordon, D.F., and Desjardins, M., "Evaluation and Selection of Biases in Machine Learning,"

ML, 20, Vol. pp. 1995.

Graner, N., Sharma, S., Sleeman, D. et al., "The Machine Learning Toolbox," Department of

Computer Science, University of Aberdeen, AUCS/TR9207, 1992.

Greene, G., "Quantitative Discovery: Using Dependencies to Discover Non-Linear Terms",

Masters Thesis, University of Illinois, Urbana-Champaign, 1988.

Gregg, M., Gunsch, H., Rendell, L.A., "Opportunistic Constructive Induction," Proceedings of

the Eight International Workshop on Machine Learning, p. 147-152, Evanston, Ill., 1991.

Hong, J., Mozetic, I., and Michalski, R. S., "AQ15: Incremental Learning of Attribute-Based

Descriptions from Examples, the Method and User's Guide," Report ISG 86-5, UIUCDCS-F-86-

949, p. Computer Science Dept., University of Illinois at Urbana-Champaign, 1986.

Chapter 4 - The AQ17-MCI System 112

Hu, Y., and Kibler, D., "Generation of Attributes for Learning Algorithms", Proceedings of the

Thirteenth National Conference on Artificial Intelligence (AAAI96), p. 806-811, Portland, OR,

1996.

Imam, I., Michalski, R.S. and Kerschberg, L., "Integrating Machine Learning and Statistical

Techniques for Mining in Databases," submitted to the First International Workshop on

Knowledge Discovery in Databases, pp. Washington, D.C., 1993.

Imam, I., "Determing Attribute Relevancy", Proceedings of the Ninth International Symposium

on Methodologies for Intelligent Systems, pp. Zakopane, Poland, 1996.

John, G., Kohavi, R., and Pfleger, K., "Irrelevant Features and the Subset Selection Problem",

Proceedings of the Eleventh International Conference on Machine Learning (ML94), Morgan

Kaufmann, pp. 121-129.

Kaufman, K., "Comparing International Development Patterns Using Multi-Operator Learning

and Discovery Tools," Proceedings of the AAAI-94 Workshop on Knowledge Discovery in

Databases, pp. 431-440, Seattle, WA, 1994.

Kelly, G.A., The Psychology of Personal Constructs, Norton, New York, 1955.

Kerber, R., "ChiMerge: Discretization of Numeric Attributes," Proceedings of the Tenth

National Conference on Artificial Interlligence, pp. 123-128, San Jose, CA, 1992.

Kira, K., and Rendell, L., "The Feature Selection Problem: Tradtional Methods and a New

Algorithm", In Proceedings of AAAI-92, pp. 129-134, MIT Press, 1992.

Kokar, M., "Discovering Functional Formulas through Changing Representation Base",

Proceedings of AAAI-86, p. 455-459, Philadelphia, PA, 1986.

Koller, D., and Sahami, M., "Toward Optimal Feature Selection", in Proceedings of the

Thirteenth International Conference on Machine Learning (ML96), p. 284-292, 1996.

Chapter 4 - The AQ17-MCI System 113

Kramer, Stefan, "CN2-MCI: A Two-Step Method for Constructive Induction", Proceedings of

the Eleventh International Conference on Machine Learning (ML94), p. 33-39. 1994.

Kubat, M., "Second Tier for Decision Trees", Proceedings of the Thirteenth International

Conference on Machine Learning, p. 293-301, Bari, Italy, 1996.

Langley, P., Bradshaw, G., and Simon, H., "Rediscovering Chemistry with the BACON System",

In R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.), Machine Learning: An Artificial

Intelligence Approach, Morgan Kaufmann, Los Altos, CA, 1983.

Langley, P., Simon, H., Bradshaw, G., and Zytkow, J., "Scientific Discovery: Computational

Explorations of the Creative Processes", MIT Press, Cambridge, MA, 1987.

Ling, X., and Ungar, L., "Inventing Theoretical Terms in Inductive Learning of Functions -

Search and Constructive Methods," Proceedings of the 4th International Symposium on

Methodologies for Intelligent Systems, pp. 332-341, 1989.

Liu, H., and Setiono, R., "A Probabilistic Approach to Feature Selection - A Filter Solution",

Proceedings of the Thirteenth International Conference on Machine Learning (ML96), p. 319-

327, Bari, Italy, 1996.

Matheus, C., Feature Construction: An Analytic Framework and an Application to Decision

Trees, University of Illinois at Urbana-Champaign, Ph.D, 1990.

Matheus, C.J., and Rendell, L., "Constructive Induction on Decision Trees," Proceedings of

IJCAI-89, pp. 645-650, Detroit, MI, 1989.

Matheus, C.J., "Adding Domain Knowledge to SBL through Feature Construction," Proceedings

of AAAI-90, pp. 803-808, Boston, MA, 1990.

Matheus, C.J., "A Constructive Induction Framework," Proceedings of the 6th International

Workshop on Machine Learning, pp. 474-475, Ithaca, NY, 1989.

Chapter 4 - The AQ17-MCI System 114

Matwin, S., and Plante, B., "A Deductive-Inductive Method for Theory Revision," Machine

Learning: A Multistrategy Approach, R.S. Michalski and G. Tecuci (Eds.), San Mateo, CA:

Morgan Kaufmann Publishers, 1992.

Mehra, P., "Constructing Representations Using Inverted Spaces," Proceedings of the 6th

International Workshop on Machine Learning, pp. 472-473, Ithaca, NY, 1989.

Mehra, P., Rendell, L. and Benjamin, W., "Principled Constructive Induction," Proceedings of

IJCAI-89, pp. 651-656, Detroit, MI, 1989.

Michalski, R.S., "Pattern Recognition as Knowledge-Guided Computer Induction," (Technical

Report No. 927). Department of Computer Science, University of Illinois, Urbana-Champaign,

IL, 1978.

Michalski, R.S., "A Theory and Methodology of Inductive Learning," Artificial Intelligence,

Vol. pp. 1983.

Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N., "The multi-purpose Incremental Learning

System AQ15 and its Testing Application to Three Medical Domains", Proceedings of AAAI-86,

p. 1041-1045, Philadelphia, PA, 1986.

Michalski, R.S., "Two-Tiered Concept Mearning, Inferential Matching, and Conceptual

Cohesiveness", In Similarity and Analogical Reasoning, S. Vosniadou, and A. Ortony (Eds.), p.

122-145, Cambridge University Press, 1989.

Michalski, R.S., and Watanabe, L.M., "Constructive Closed-Loop Learning: Fundamental Ideas

and Examples," George Mason University, Reports of Machine Learning and Inference

Laboratory MLI-88-1, 1988.

Michalski, R.S., "Inferential Learning Theory as a Basis for Multistrategy Task-Adaptive

Learning," Proceedings of the First International Workshop on Multistrategy Learning, pp. 3-18,

Harpers Ferry, WV, 1991.

Chapter 4 - The AQ17-MCI System 115

Michalski, R.S., "Toward a Unified Theory of Learning: An Outline of Basic Ideas," Invited

presentation at the First World Conference on the Fundamentals of Artificial Intelligence, pp.

Paris, France, 1991.

Michalski, R.S., "Inferential Theory of Learning: Developing Foundations for Multistrategy

Learning," GMU Center for AI, MLI 92-03, 1992.

Michalski, R.S., "Inferential Theory of Learning: Developing Foundations for Multistrategy

Learning," Machine Learning: A Multistrategy Approach, R.S. Michalksi and G. Tecuci (Eds.),

San Mateo, CA: Morgan Kaufmann, 1993.

Michalski, R.S., and Ram, A., "Learning as Goal-Driven Inference", Reports of the Machine

Learning and Inference Laboratory, MLI94-26, George Mason University, Fairfax, VA, July

1994.

Michie, D., Spiegelhalter, D.J. and Taylor, C., Machine Learning, Neural and Statistical

Classification, Ellis Horwood, 1994.

Mitchell, T., "The Need for Biases in Machine Learning," Rutgers University, CBM-TR-117,

1980.

Mohan, S., and Tong, C., "Automatic Construction of a Hierarchical Generate-and-Test

Algorithm," Proceedings of the 6th International Workshop on Machine Learning, pp. 483-484,

Ithaca, NY, 1989.

Pagallo, G., and Haussler, D., "Boolean Feature Discovery in Emprical Learning", Machine

Learning Vol. 5, p. 71-99, Kluwer Academic, 1990.

Pagallo, G., "Adaptive Decision Tree Algorithms for Learning from Examples", PhD Thesis,

University of California at Santa Cruz, June, 1990.

Perez, E., and Rendell, L., "Using Multidimensional Projection to Find Relations", Proceedings

of the Twelfth International Conference on Machine Learning, p. 447-455, Morgan Kaufmann,

1995.

Chapter 4 - The AQ17-MCI System 116

Pfahringer, B., "Compression-Based Discretization of Continuous Attributes", Proceedings of the

Twelfth International Conference on Machine Learning, pp. 456-463. San Francisco, 1995.

Provost, F., J., Policies for the Selection of Bias in Inductive Machine Learning, University of

Pittsburgh, Ph.D, 1992.

Quinlan, J.R., C4.5: Programs for Machine Learning, San Mateo, CA: Morgan Kaufmann, 1993.

Quinlan, J.R., "Improved Use of Continuous Attributes in C4.5", Journal of Artificial

Intelligence Research, Vol. 4., pp. 77-90, 1996.

Ragavan, H., and Rendell, L., "Lookahead Feature Construction for Learning Hard Concepts",

Proceedings of the Tenth International Conference on Machine Learning (ML93), 1993.

Rao, R., Gordon, D., and Spears, W., "For Every Generalization Action is there Really an Equal

and Opposite Reaction? Analysis of the Conservation Law for Generalization Performance",

Proceedings of the Twelfth International Conference on Machine Learning, p. 471-479, Morgan

Kaufmann, 1995.

Rendell, L., and Seshu, R., "Learning Hard Concepts Through Constructive Induction:

Framework and Rationale," Computer Intelligence, Vol. pp. 1990.

Rendell, L., Seshu, R. and Tcheng, D., "More Robust Concept Learning Using Dynamically-

Variable Bias" Proceedings of the Fourth International Machine Learning Workshop, pp. 66-78,

Irvine, CA, 1987.

Rummelhart, D.E., and McClelland, J.L. (Eds.), Parallel Distributed Processing: Psychological

and Biological Models, MIT Press, 1986.

Schaffer, C., "A Conservation Law for Generalization Performance", Proceedings of the Eleventh

International Conference on Machine Learning, p. 259-265, Morgan Kaufmann, 1994.

Chapter 4 - The AQ17-MCI System 117

Schlimmer, J.C., Concept Acquisition through Representational Adjustment, University of

California, Irvine, 1987.

Sutton, and Matheus, C., "Learning Polynomial Functions by Feature Construction", Proceedings

of the Eighth International Workshop on Machine Leanring (ML91), p. 208-212, 1991.

Tecuci, G., and Kodratoff, Y., Apprenticeship Learning in Imperfect Domain Theories, in

Machine Learning: An Artificial Intelligence Approach, Vol III, Y. Kodratoff and R.S. Michalski

(Eds.), Morgan Kaufmann, Los Altos, CA, 1990.

Thrun, S., and O'Sullivan, J., "Discovering Structure in Multiple Learning Tasks: The TC

Algorithm", Proceedings of the Thirteenth International Conference on Machine Learning

(ML96), p. 489-597, Morgan Kaufmann, Bari, Italy, 1996.

Utgoff, P., "Shift of Bias for Inductive Concept Learning," Machine Learning: An Artificical

Intelligence Approach, R.S. Michalski, J. Carbonnel and T. Mitchell (Eds.), San Mateo, CA:

Morgan Kaufman, 1986.

Vafaie, H., and De Jong, K., Improving the Performance of a Rule Induction System Using

Genetic Algorithms", in Machine Learning: A Multistrategy Approach", Vol. IV, R.S. Michalski,

and G. Tecuci (Eds.), Morgan Kaufmann, San Mateo, CA, 1994.

Watanabe, L., and Elio, R., "Guiding Constructive Induction for Incremental Learning from

Examples," Proceedings of IJCAI-87, pp. 293-296, Milan, Italy, 1987.

Weiss, S.M., and Kulikowski, C.A., Computer Systems that Learn, San Mateo, CA: Morgan

Kaufmann, 1991.

Wnek, J., and Michalski, R.S., "Hypothesis-Driven Constructive Induction in AQ17 - A Method

and Experiments," Proceedings of IJCAI-91 Workshop on Evaluating and Changing

Representation in Machine Learning, pp. 13-22, Sydney, Australia, 1991.

Chapter 4 - The AQ17-MCI System 118

Wnek, J., "Hypothesis-driven Constructive Induction", Ph.D. dissertation, School of Information

Technology and Engineering, Reports of the Machine Learning and Inference Laboratory,

MLI93-8, Center for Artificial Intelligence, George Mason University, March 1993.

Wnek, J., "User Manual: Specification and Guide through the Diagrammatic Visualization

System," George Mason University, Machine Learning and Inference Laboratory, MLI95-5,

1995.

Wnek, J., and Michalski, R.S., "Hypothesis-driven Constructive Induction in AQ17-HCI: A

Method and Experiments," Machine Learning, 14, pp. 139-168, Vol. p. 1994.

Wnek, J., Kaufman, K., Bloedorn, E., and Michalski, R.S., "Selective Inductive Learning Method

AQ15c: The Method and User's Guide", Reports of the Machine Learning and Inference

Laboratory, MLI95-4, George Mason Univerity, Fairfax, VA, 1995.

Wrobel, S., "Demand-Driven Concept Formation," Knowledge Representation and Organization

in Machine Learning, K. Morik (Eds.), Berlin Heidelberg: Springer Verlag, 1989.

Yang, Der-Shung, Rendell, L., and Blix, G., "A Scheme for Feature Construction and a

Comparison of Empirical Methods", Proceedings of the Twelfth International Joint Conference

on Artificial Intelligence, Sydney, Australia, 1991.

Yip, S., and Webb, G., "Incorporating Canonical Discriminant Attributes in Classification

Learning", Proceedings of the Tenth Canadian Conference on Artificial Intelligence, p. 63-70,

Morgan Kaufmann, 1994.

Zembowicz, R., and Zytkow, J., "Automated Discovery of Empirical Equations from Data",

Proceedings of ISMIS91, Z. Ras (Ed.), Springer-Verlag, 1991.

