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CHAPTER 1 INTRODUCTION 

Machine learning (ML) algorithms are increasingly being pressed into service to help users 

understand and detect patterns or regularities found in large amounts of data. These tools are 

needed to help human analysts make sense of the increasing amount of complex data available 

electronically from domains as diverse as computer vision, to world economics. One of the 

primary difficulties preventing these ML algorithms from accurately and simply describing the 

data is that all detected patterns must be stated in terms of attributes and values explicitly found 

in the representation. When the data is complex and contains irrelevant attributes, too much 

precision in the values, or inter-dependent attributes, current approaches fail to find simple, 

accurate patterns. One method for overcoming the problem of a poor representation is to 

simultaneously search for patterns, and for an improved representation of the problem itself. This 

line of research is known as constructive induction (CI). Extending previous work on CI which 

was primarily concerned with expanding the representation space by adding new terms, this 

thesis introduces an implementation and framework for multistrategy constructive induction 

(MCI). The MCI approach contains methods to not only expand the representation by adding new 

problem-relevant attributes, but also to contract the representation space by removing attributes 

and/or attribute-values. 

 

1.1 Background 

Learning is a central element of intelligence. With learning previous obstacles can be overcome, 

previous approaches can be improved, and new problems may be solved quickly. Without 
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learning past mistakes will be repeated and success will require either careful constraints on the 

problem, or constant supervision. Because of its central role in intelligent behavior, learning has 

been widely studied and is of interest to such varied fields as philosophy, cognitive science, 

psychology, education, information science and artificial intelligence. 

 

The emphasis in this thesis is on Machine Learning (ML). Machine learning is the study of how 

learning processes can be automated, or modelled on a computer. One motivation for doing this 

research is to build artificial systems that can autonomously perform some task or to act as 

intelligent assistants to human users in performing complex tasks. Application areas of machine 

learning are diverse and include such topics as computer vision, economics, medicine, and 

engineering. 

 

Although there are numerous applications and many domain specific techniques, much research 

in ML is focused on general learning techniques. The work described here is more general and 

can be categorized into the broad branch of techniques for "learning from examples." Learning 

from examples is a problem of intermediate difficulty when all possible learning problems are 

ranked based on the amount of effort which is required of the learner (Carbonell, et al., 1983). 

This ranking is shown below: 

 

1. Rote learning, memorization or the direct implantation of knowledge 

2. Learning from instruction or learning by being told 

3. Learning from analogy 

4. Learning from examples 

5. Learning from observation and discovery 
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In "Rote learning" the learner has to perform little manipulation of the information given before 

it is useful in solving a problem. The difficulty for the learner increases as one moves to 

"Learning from instruction", "Learning from analogy", "Learning from examples", and finally 

"Learning from observation and discovery". As one moves from one to five, the learner has an 

increasing amount of responsibility and autonomy. The focus of this dissertation is on the class 

of machine learning algorithms which perform learning from examples, or supervised 

classification. In this type of learning, an external source or expert has assigned class labels to a 

set of examples. The learner’s goal is to generate a hypothesis which discriminates each class 

from all others. Although it could be performed when the class labels of all possible examples 

are known, the most common case of learning from examples occurs when a learner is presented 

with an incomplete set of known cases and is asked to generate general hypotheses from them. 

These generalizations induced from the given examples describe the conditions under which 

one class of examples is different from other classes (in the case of discriminant descriptions) or 

different from any  other class (in the case of characteristic descriptions). Such generalizations 

can be used to predict the class of unseen examples. However, because the generalizations are 

obtained through an inductive transformation, they may not correctly predict all of the new 

cases. One factor that plays an important role in determining the predictive accuracy of learned 

hypotheses is the representation of the problem.  

 

1.2 Importance of the Problem 

In learning from examples the first step is to build a representation of the problem. The 

representation space of a problem is the space of possibilities defined by the domains of the 

given descriptors. It is important that the representation space captures the necessary 

information to characterize or discriminate the given classes of examples. In some cases the 

important descriptors are known, but in many cases not. Take the problem of predicting when a 

stock will increase in value. Is the previous day’s price important? What about the price or 
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change in price of related stocks? What about other markets? Once the descriptors are selected, 

then the granularity of the problem must be determined. Should values be stated in terms of 

tens, hundreds or thousands of dollars? If the granularity is too fine, then general trends in the 

data may be lost in local fluctuations. Conversely a coarse granularity can result in small 

patterns being missed.  

 

Once a representation has been determined, the goal of supervised classification methods is to 

select those factors or conditions that are important in discriminating (or characterizing) 

between the different classes of examples (e.g. differentiating between good times to sell stocks 

from bad). Empirical methods for generating hypotheses look for the similarities and differences 

between the like-labeled examples provided. The resulting hypotheses are generalizations of 

these findings. If few examples exist, or the features are only weakly relevant to the problem, 

the resulting patterns found may only coincidentally cover the data and not represent patterns 

true for the entire set. For this reason the representation of the problem has a profound effect on 

the performance of the learning algorithm.  

 

 
(a)  

(b)

Figure 1.1 - Diagrammatic visualization of the Monk2 representation space before (a) and after 

(b) data-driven constructive induction 
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The effect of representation on the quality of the generated hypotheses is well illustrated by the 

second Monk’s problem (Thrun, 1991). This problem is difficult because it has a distributed 

coding, similar to parity problems. The goal concept is given as: An example is in class 1 if 

exactly two of the six attributes have their first value. The original representation space with the 

training examples in + and -, and the target concept shaded is shown in Figure 1.1(a) using 

DIAV (Wnek, 1995). 

 

The learning problem as represented in Fig. 1.1(a) is clearly difficult. There appears to be no 

simple pattern or description. In fact, the rule shown in the shaded region is only 77% accurate 

in predicting the class of unseen examples. On the other hand the problem of Figure 1.1(b) is 

much easier to cover and describe. In this case the '+' squares (positive examples) can be 

covered by a simple rule: [x7=2] => square is a positive example.  The improved representation 

space of Figure 1.1(b) was found by the program AQ17-DCI (Bloedorn, 1996). The 

transformation made by AQ17-DCI was to generate a new attribute using the a counting 

function called #VarEQ(x) function. This operator builds a new attribute for all values of x 

found in the data. In this problem the most useful new attribute was #VarEQ(1) which counts 

the number of attributes that take their first value. the value. The transformed representation 

space including this attribute (x7 in the figure) is shown in Figure 1.1(b).  (Attributes x5 and x6 

were removed for clarity). In this new representation space generated rules were simple and had 

a predictive accuracy of 100%. 

 

1.3 Constructive Induction 

In recognition of the important step of finding the appropriate representation space for a 

problem, the idea of constructive induction (CI) was introduced (Michalski, 1983). This initial 

definition of CI focused solely on the capability for "formulating new descriptors". Many 

programs which perform CI today including LFC (Ragavan and Rendell, 1993), CITRE 
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(Matheus, 1989), FRINGE (Pagallo and Haussler, 1990) and GALA (Hu and Kibler, 1996), still 

view CI in this way. However, the definition of CI has recently been extended by some to 

include any  change in the representation space (Wnek and Michalski, 1994; Bloedorn and 

Michalski, 1996). In this new view, CI  includes both expanders which enlarge the space by 

formulating new descriptors, and contractors which reduce the space by removing descriptors, 

or descriptor values. In this new view the process of learning is seen as two intertwined 

searches. The first search is for a ‘good’  representation space. This step was previously 

performed by the domain experts by themselves or in collaboration with experts in machine 

learning which articulated the problem. The second search is for a hypothesis which 

discriminates between the classes of examples given in the problem. This search can be 

performed by any one of a number of learning methods. Well known programs for learning 

hypotheses from examples include C4.5 (Quinlan, 1993), Backpropagation (Rummelhart and 

McClelland, 1986), CN2 (Clark and Niblett, 1989) and AQ15c (Wnek, 1995), the program used 

in the method described here. 

 

The basic premise of research on constructive induction (CI) is that a precondition for 

satisfactory learning results is a  well-stated representation of the problem.  If the representation 

space is well chosen, then the results of learning will be satisfactory with almost any learning 

method. Conversely, with a poor representation learning will be poor regardless of the method. 

Constructive induction is oriented toward learning problems in which the representation space 

defined by the training examples is of low quality. This occurs when the space contains weakly 

relevant or irrelevant attributes, or there is a mismatch between the description language and the 

target concept in the originally given representation space. Stated another way, Constructive 

Induction can also be thought of as automatically determining an adequate “ representation space 

bias”  for learning.  

 

The search for an improved representation space can be guided by information from three 
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sources (Wnek and Michalski, 1994) training data (as in data-driven constructive induction—

DCI), initial hypotheses learned from the data (as in hypothesis-driven constructive induction—

HCI), or expert knowledge provided by the user to the system (as in knowledge-driven 

constructive induction—KCI). These approaches can also be combined into a multistrategy 

constructive induction method (MCI). This thesis describes such a multistrategy constructive 

induction method. 
 

1.4 Potential Benefits 

There are many potential benefits of a system which can improve the current representation 

space without explicit expert guidance. The benefits of improved representation spaces include: 

 

1) Increased predictive accuracy of learned hypotheses. When the representation space is 

improved the learner can detect the patterns that better describe the given examples and can thus 

better predict new examples. 

 

2) Decreased complexity. Although accurate hypotheses can be learned from a poor 

representation such learned hypotheses are often unnecessarily complex. Comprehensibility is 

often important, especially when learning hypotheses for later use by people. Complexity is 

measured in the experiments in Chapter 5 by the number of selectors and the number of rules in 

the learned hypotheses. Chapter 5 also shows examples of significant decreases in complexity 

due to changes made by MCI. 

 

3) Decreased learning time. Decreased learning time is possible when the examples are arranged 

in a pattern which is easy to describe for the chosen hypothesis language. Modifications to the 

representation space, as shown in Figure 1.1, and in Chapter 5, can significantly simplify the 

search for good hypotheses, and thus reduce learning time. Learning time is measured in the 

experiments in seconds. 
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4) Higher Noise tolerance. When the representation space is well suited to learning, high levels 

of misclassification noise can be tolerated without decrease in predictive accuracy. This is due 

to the way the changes to the representation have better grouped like-labelled examples into 

easier to describe clusters. Although valuable in some domains, this effect is not directly tested 

in this thesis. 

 

5) Fewer learning examples required. Fewer learning examples are required in improved 

representation spaces because the remaining examples still clearly define the best hypotheses. 

This effect is also not emprically validated here, but is clear from cases like Monk 2 shown 

previously. 

 

6) Improved performance on related problems. One of the control strategies introduced here for 

multistrategy constructive induction method stores a record of its performance on past examples 

which helps it perform better on related future problems. This memory allows the system to 

learn how to improve the representation space of future problems so that future learned rules are 

of high quality. 

 

7) Improved performance on single problems with multiple pathologies. Most real-world 

induction problems are difficult because they have a mixture of inappropriately represented 

attributes, or over-precise attribute values or irrelevant attributes. As shown in chapter 5, 

multistrategy constructive induction can improve on even these multi-pathological cases.  

 

Some of these benefits have been empirically shown by other researchers, but usually for a 

narrow range of synthetic problems. Chapter 5 will demonstrate most of these benefits on both 

synthetic and two real-world problems. 

 

1.5 Thesis 
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Multistrategy Constructive Induction (MCI) is a solution to the problem of learning simple, 

predictively accurate rules from examples in representations which contain irrelevant attributes, 

inter-dependent attributes, and large attribute domains. MCI is the only method to combine 

representation space modification operators (RSMOs) to address all of these difficulties. This 

allows MCI to solve problems that no single-strategy method alone can solve. The MCI 

framework presented here can include representation space modification operators which make 

use any possible computational strategy. The implementation presented here makes use of 

heuristics, statistics and learned hypotheses. Methods which use other knowledge-driven and 

evolutionary computation techniques are also outlined. A method for meta-level learning in 

which the system itself acquires the control rules necessary for determining which RSMO is 

best suited for the given problem is also outlined and shown to be a useful and effective control 

strategy.  

 

The defense of this thesis is organized as follows: Chapter 2 provides background and 

motivation for this research. This chapter provides definitions of important terms and describes 

related work. Chapter 3 defines multistrategy constructive induction, the tools combined, and 

their various control strategies. An analysis of the links between MCI and the Inferential Theory 

of Learning (ITL) (Michalski, 1993) is given to provide a deeper understanding of the 

transformations being performed. The architecture of multistrategy constructive induction as 

implemented in AQ17-MCI is given in Chapter 4. This is followed by an analysis of the 

relationship between MCI and the Inferential Theory of Learning (Michalski, 1993). Chapter 5 

describes the set of experiments designed to evaluate the effectiveness of the proposed 

approach. The last chapter, Chapter 6, provides a summary of results and an identification and 

analysis of outstanding research problems. 

 

1.6 Major Contributions 

This dissertation introduces a novel methodology for multistrategy constructive induction.  The 
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major contributions of this approach are 1) it incorporates multiple computational methods for 

constructive induction including representation space expansion and contraction, 2) it 

incorporates multiple inferential techniques. It uses deduction to arrive at a meta-decision 

concerning which representation space modifier to select, and induction when inducing a new 

(or modifying a previous) meta-rule from a set of meta-examples, and 3) it is a learning system 

capable of improving its own performance over time through meta-learning. The proposed 

method is built on established individual empirical induction and constructive induction 

techniques and is capable of incorporating knowledge from many sources including 1) directly 

from the user, 2) from analysis of the data, and 3) from analysis of learned hypotheses.  

 

The proposed multistrategy approach helps to overcome the brittleness of current learning 

methods by automating the search for representation spaces which are better suited to learning 

predictively accurate rules. This approach helps overcome the problems such methods have with 

complex real-valued data by including a method for attribute-value discretization, and with 

noisy data, by including many methods for representation space contraction. The meta-learning 

capabilities eliminate the need for the need for human expertise to guide the selection of these 

tools. The relationship between characteristics of a dataset and appropriate representation space 

transformations are not generally known. A learning approach to this meta-learning task 

eliminates the need to explicitly determine this relationship before using the available tools.  
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CHAPTER 2 BACKGROUND AND MOTIVATION 

This chapter provides background and motivation for research in multistrategy constructive 

induction. Definitions of learning from examples, representation space and constructive 

induction are given. This is followed by an analysis of why current selective inductive learning 

algorithms fail and how these failures are currently addressed. 

 

2.1 Definitions 

 

2.1.1 Learning From Examples 

 

Multistrategy constructive induction performs both a search for an adequate representation space 

with which to represent examples, and a search for hypotheses which describe the examples. The 

latter search is performed as an inductive inference and is a form of learning from examples. The 

problem of learning from examples is defined as follows (Michalski, 1983): 

 
Given:  

*  A set of observational statements (facts), F, that represent a collection of implications 
where each statement denotes a description of an example of concept or class Ki and i 
is a set indexing classes Ki 

*  A tenative inductive assertion (which maybe null), 
*  Background knowledge that defines the assumptions and constraints imposed on the 

observational statements and generated candidate inductive assertions, and any 
relevant problem domain knowledge. The last includes the preference criterion 
characterizing the desirable properties of the sought inductive assertion 

 
Find: 

*  A set of concept recognition rules, H, H: { Di ::> Ki} , i �  I, that are consistent with the 
background knowledge 
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where Di is a concept description of class Ki, or a description of the conditions under which, if 

satisfied, an object is considered an instance of class Ki. A simple learning example is shown in 

Figure 2.1. 

 

Given:   

Attributes:  

X Domain { 0,1} , Y Domain { 0,1}        

Facts:  

F = {  X=0, Y=0 ::> Class0 

         X=0, Y=1 ::> Class0 

         X=1, Y=1 ::> Class1   

Initial Assertion: Null 

Output: A description of Class0 and Class1  

       [X=0] ::> [Class = 0] 

       [X=1] ::> [Class = 1]  (Hypothesis 1) 

 

Figure 2.1 - Learning from Examples 

 

The facts, or examples composing the set F, are stated in terms of attribute-value vectors in 

Figure 2.1. In this type of representation an example is a vector of n terms where n is the number 

of attributes. This is the type of representation that will be used throughout this thesis. The set of 

attributes and their possible values, or domains, constitute the representation space. Another 

description could also have been generated in Figure 2.1 for class1. This more complex 

description is: 

 

[X=1][Y=1] ::> [Class =1]  (Hypothesis 2) 

 

Both Hypothesis1 and Hypothesis 2 describe all of the examples in F (and are thus complete with 

respect to F) and both cover only those examples from Class 1 and not Class 0. In larger 

problems the number of equivalent hypothesis can be very large. A heuristic, or bias for selecting 

one hypothesis from a set can be provided explicitly as part of the background knowledge (in the 
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form of a preference criterion in AQ15c) or implicitly based on the learning algorithm used. Such 

a selection is sometimes known as a learning bias (Gordon and Desjardins, 1995)i. 

 

2.1.2 Representation Space 

 

The representation space  is the space in which fact (examples), hypotheses and background 

knowledge are represented. The representation space is spanned over descriptors that are 

elementary concepts used to characterize examples from some viewpoint. Individual cells in the 

representation space correspond to individual examples and are defined as vectors of single 

argument descriptors (attributes). The hypothesis language  is the language used to describe 

concepts within the representation space. Typical constructs of the hypothesis language include 

nested axis-parallel hyper-rectangles (decision trees),  arbitrary axis-parallel hyper-rectangles 

(conjunctive rules with internal disjunction, as used in VL1), or hyperplanes or higher degree 

surfaces (neural nets). The hypothesis language used in this thesis is VL1 although some of the 

techniques could be used with any hypothesis language (and associated learning algorithm). 

 

2.1.3 Constructive Induction 

 

Constructive induction performs two intertwined searches: a search for an adequate 

representation space and a search for hypotheses within that space. The problem of representation 

space search in an attribute-value representation can be formally defined as: 

 
Given:  

*  A set of attributes, A 
*  Background knowledge that defines constraints imposed on the the attributes in A 
*  One or more of the following:  
 - Knowledge defining relationships between attributes in A, or about individual 
 attributes in A 
 - A set of observational statements (facts), F, that represent a collection of 
 implications where each statement denotes a description of an example of concept  

                                                 
i The approach used by one method for building more robust learning algorithms is to better understand and control 
all formns of learning bias. This approach is described in Section 2.3. 



Chapter 3 - Multistrategy Constructive Induction 
  
______________________________________________________________________________ 
 

 

14 

 - A tentative inductive assertion 
*  Background knowledge that defines preference criterion characterizing the desirable 
properties of the sought representation space 

 
Find: 

*  A representation space satisfying the preference criterion.  

 

The preference criterion for a new representation space may consist of statistical metrics 

describing the minimal ‘ information value’  of an individual attribute, or the minimal correlation 

between an attribute value range and the class. It may also be indirectly evaluated by testing the 

predictive accuracy and simplicity of the hypotheses learned from that space. 

 

When background knowledge about the problem is used to find an improved representation 

space, the search is knowledge-driven, and an algorithm which combines this knowledge-based 

search with a search for a hypotheses is known as knowledge-driven constructive induction 

(KCI) (Wnek and Michalski, 1994). Similarly, when a search for hypotheses is combined with an 

analysis of the given set of examples is to guide the search for an improved representation space, 

it is known as data-driven constructive induction (DCI). Hypothesis-driven constructive 

induction (HCI) occurs when a hypothesis (which may be learned from a subset of the examples 

in a previous iteration) is used for the representation-space search in a CI learning system. 

 

2.2 Assumptions of Selective Inductive Learning Algorithms 

 

Before discussing how a more general inductive learning algorithm could be created, it is useful 

to analyze in more detail the assumptions made by selective inductive learning methods because 

it can predict when these methods will fail and what can be done to overcome this failure. These 

assumptions are true for all selective induction learning algorithms, regardless of hypothesis 

language or computational strategy. In addition to these assumptions, all learning algorithms, 

regardless of the large space of possibilities, must make certain choices about which parts of the 

space to be searched, or which hypotheses are preferable.  
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Selective induction methods make a number of assumptions about the representation, and the 

distribution of examples. These assumptions can be categorized into three types: 1) 

completeness, 2) correctness and 3) appropriateness (Figure 2.2). Completeness refers to the 

extent to which the knowledge provided to the system is sufficient for the system to generate a 

complete and consistent description of the various classes. Incompleteness is often unavoidable 

due to the difficulty in obtaining labelled examples. In a medical diagnosis domain patients 

displaying all possible symptoms and characteristics will not normally be available. Correctness 

refers to the accuracy with which data is given to the system. Incorrectness can manifest itself in 

individual attribute values, attributes themselves or example class membership. A common cause 

of incorrectness is measurement error. Appropriateness refers to the match between proximity in 

the representation space and proximity of class membership. Selective induction methods assume 

that the given data is in an appropriate form so that examples which are close to each other in the 

representation space are also close to (in the case of hierarchically, or linearly ordered classes) or 

identical (in the case of nominally ordered classes) in class membership as well (Belyaev, 1991, 

Rendell and Seshu, 1990). When any of these assumptions are violated the representation space 

is inadequate for selective induction and poor hypotheses (low predictive accuracy and high 

complexity) result. To achieve a learning method which can overcome any of these deficiencies 

of the representation space, methods for correcting each of these inadequacies must be 

developed.  

 

Although related work on overcoming problems of incompleteness and incorrectness are detailed 

in the following sections this thesis focuses on only inappropriateness. Problems of 

inappropriateness like continuous attributes, dependencies between non-class attributes and 

irrelevant attributes are problems of the representation space. Constructive induction methods, 

including the MCI method described here, are methods for searching for improved representation 

spaces. Additional methods for overcoming incompleteness and incorrectness may be added to 
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an MCI system, but are out of the scope of this thesis. 

 

 
Problems

Inappropriate Incomplete Incorrect  
 

Figure 2.2 - A Taxonomy of Representation Space Inadequacies 

 

 

2.2.1 Inappropriateness 

 

An induction problem is inappropriate to a representation language if there is a mismatch 

between the concept boundaries in the space and the capabilities of the descriptive constructs of 

the language to describe these boundaries. The source of this inappropriateness can lie in the set 

of attribute values, or the attributes themselves. 

 

2.2.1.1 Abstraction 

 

An example of inappropriate attribute value set would be one in which the provided values blur 

the concept boundaries by being too broad or too precise.  Value sets that contain too few values 

can be difficult to learn discriminatory rules from because the granularity is too coarse. One 

approach for handling this problem is to increase the granularity. Such an approach would be 

performing a concretion operation (in terms of the Inferential Theory of Learning (Michalski, 

1993)) and would require knowledge from some outside source.  

 

An attribute domain that contains a large number of values (as occurs with continuous attributes 

especially) can also cause problems. Many induction methods, such as decision trees and 

decision rules, perform best when value sets are small and appropriate to the problem at hand (A 

demonstration of this is given in section 5.1). The size of an attribute domain can sometimes be a 
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measure of the level of granularity of an attribute: a large attribute domain means that examples 

are precisely defined along that dimension and vice versa. Over-precision can result in learned 

descriptions that are too precise and overfit the data. Overprecision in attribute value sets is 

sometimes difficult to avoid when the data provided to the system is continuous, and meaningful 

discretization intervals are unknown. Although they are performing an abstraction of the given 

values, this work is usually referred to as automatic discretization of attribute data (Catlett, 1991; 

Pfahringer, 1995; Fayyad and Irani, 1993), or as a method for efficiently splitting on continuous 

attributes (Fulton, et al, 1995). Dougherty et al (1995) proposes a taxonomy of discretization 

methods based on three different axes: global vs. local, supervised vs. unsupervised and static vs. 

dynamic. The global vs. local axis refers to the scope of discretization, whether a small part of 

the space is discretized in the context of other attributes as in c4.5 (Quinlan, 1996) or the entire 

space is discretized over each attribute independently. The supervised vs. unsupervised axis 

refers to the use of class information when making decision about appropriate interval 

boundaries, and static-dynamic describes whether discretization is performed for all attributes 

simultaneously or in sequence. The Chi-merge algorithm (Kerber, 1992) adapted for use within 

AQ17-MCI is a supervised, global static discretization method which iteratively merges adjacent 

intervals of an attribute until a χ2 threshold set by the user is met. 

 

2.2.1.2 Attribute Independence 

 

Inappropriate attributes are those attributes which are relevant to the problem at hand, but which 

are not independent of each other. Because selective induction algorithms assume that the 

dimensions of the sapce can be searched independently, such cross-attribute concepts are difficult 

to capture. For example, the parity problem when stated in terms of the presence or absence of 

individual attributes, is an attribute-inappropriately stated problem for any induction method 

which uses axis-parallel hyperrectangles as descriptive constructs. When inappropriate attributes 

exist attribute construction methods can be invoked which try to combine the given attributes in 
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more problem-relevant manner. A number of systems have been developed with this goal. These 

methods can be classified into data-driven, hypothesis-driven, knowledge-driven and 

multistrategy (Wnek and Michalski, 1994; See also Section 2.3.3). Some representative of each 

of these types are: AQ17-DCI (Bloedorn and Michalski, 1991, Bloedorn and Michalski, 1996) 

BLIP (Wrobel, 1989), CITRE (Matheus, 1990),  FRINGE (Pagallo, 1989), MIRO (Drastal, 1989) 

and STABB (Utgoff, 1986). The AQ17-MCI system uses methods from AQ17-DCI, and AQ17-

HCI (Wnek and Michalski, 1994). 

 

2.2.1.3 Irrelevant Attributes 

 

An attribute can also be inappropriate if it is not relevant to the given classification task. 

Selective induction learning methods perform a selection of attributes from the given set, and as 

such are not significantly affected by small numbers of irrelevant attributes. However, with an 

increasing need to automate the process of knowledge discovery from data, and to find patterns 

as quickly as possible, induction methods are needed which are robust to even large numbers of 

irrelevant attributes. 

 

Work in detecting and removing irrelevant attributes can be divided into a filter approach or a 

wrapper approach (John, Kohavi and Pfleger, 1994). In the filter approach feature selection is 

performed as a pre-processing step to induction. Because it is separated from the induction 

algorithm filters are fast, they can be used with any induction algorithms once filtering is done, 

and can be used on large datasets. However, they they may not agree on the relevancy of certain 

attributes with the induction algorithm (Imam, 1996). Methods for filtering include those based 

on information theory as in DCI-SEL, included in AQ17-MCI (Section 4.5.3.1), and the method 

of Koller and Sahami (1996), LVF, a probabilistic method (Liu and Setiono, 1996), and RELIEF 

(Kira and Rendell, 1992) which uses heuristics and samples of data in order to find relevant 

attributes (Liu and Setiono, 1996). The wrapper approach uses the induction algorithm itself to 
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make estimates of the relevance of the given attributes. This can also be called hypothesis-driven 

filtering. This is the approach taken in HCI-SEL included in AQ17-MCI (See Section 4.5.3.2), 

and also (John, Kohavi and Pfleger, 1994; Vafaie and Dejong, 1994). 

 

2.2.2 Incompleteness 

 

An induction problem is incomplete if attribute values, attributes (descriptors), or examples are 

missing. Incompleteness with respect to examples is a fundamental problem in all but trivial 

summative induction cases. Thus, although selective induction methods do not assume a 

complete set of examples will be available for learning, they do assume that the training set has a 

certain degree of completeness. This degree of completeness is satisfied when the training set 

contains a sufficient number of representative, or prototypical examples so that class boundaries 

can be accurately determined. Example incompleteness is addressed in knowledge acquisition 

systems such as DISCIPLE (Tecuci and Kodratoff, 1990). In DISCIPLE, machine learning 

methods are used to guide the questioning of the expert to most efficiently fill gaps in the 

knowledge base. Selective, or constructive induction methods do not have mechanisms for 

acquiring new examples.  

 

A problem may also be incomplete due to attribute (concept) incompleteness. Attribute 

incompleteness is present when identical examples are present in more than one class (when 

ambiguous examples exist in the data). This type of incompleteness is a common problem. 

Methods for overcoming attribute incompleteness differ from those designed for overcoming 

inappropriate attributes because in this case the attribute required is not a simple function of the 

current attributes. Thus methods which try combinations of current attributes will fail here. The 

source for these attributes must come from a domain expert. This knowledge acquisition task is 

most effective when it is focused on filling the known gaps in the knowledge base. One method 

for overcoming this problem is CERI which is a part of NeoDICISPLE (Tecuci, 1992). In this 

approach similar to the repertory grids based on personal construct theory of Kelly (Kelly, 1955), 
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a guided interaction with the user takes place in which the expert is asked to make distinctions 

between concepts appearing in the positive and negative instances of the rule. In asking very 

specific questions to the user, the elicitation of useful knowledge is easy for the expert and yet is 

useful for filling in 'gaps' in the knowledge base.  

 

2.2.3 Incorrectness 

 

Problem incorrectness occurs when some attribute-values, attributes or instances are incorrectly 

labelled. Incorrectness or error can occur in any stage along the data acquisition process. 

Incorrectness is most often associated with noise in the training data due to poor sensor readings. 

Differentiating between the effects of instance noise (misclassification) and attribute-value noise 

is extremely difficult as often the only manifestation of this noise is the distribution of 

exceptional instances which are distant from other instances of the same class in the 

representation space. 

 

Some methods for dealing with incorrect instances, or attribute values, are based on identifying 

noisy or exceptional instances by using statistical methods applied to the distribution of attribute 

values, or instances such as in ESEL (Michalski, and Larson, 1978). An alternative method is to 

use rule coverage to guide example selection as in AQ-NT (Bala, 1993). 

 

2.3 Methods for Building more General Learning Algorithms 

 

As has been shown in Shaffer (1994) and Rao, Gordon, and Spears, (1995) there is no hope for 

building a universal learner. However, it may be that there do exist learning methods for a large 

set of the more interesting possible concepts to be learned. In order to find an inductive learning 

algorithm that can perform well on a wide variety of problems researchers have taken three 

general approaches: 1) explicitly delineate the biases used by the learning algorithm and select 

the best for the given learning problem  2) select the best a priori defined bias by selecting from a 



Chapter 3 - Multistrategy Constructive Induction 
  
______________________________________________________________________________ 
 

 

21 

fixed set of learning algorithms, or 3) modify the representation spaceii. 

 

2.3.1 Modify the Inductive Bias 

 

Because there exist many equally consistent inductive generalizations of a given set of training 

examples, additional knowledge is used to bias the search toward the most preferred 

generalizations, or parts of the representation space (Gordon and Desjardins, 1995); (Mitchell, 

1980). If the correct bias for a learning problem is selected, then the correct generalizations are 

made resulting in increased predictive accuracy, reduced complexity and reduced learning time 

(Provost, 1992). Unfortunately, it is impossible to know for certain which bias is correct a priori. 

However, it may be possible to find certain problems for which certain biases perform well. 

Building explicit controls to various type of bias is the goal of work in this category.   

 

SBS (Provost, 1992) makes explicit a number of learning biases, including the definitions of the 

space, the method for searching the space. It also introduces the idea of inductive policy. The 

definition of the space is the hypothesis language (decision trees, decision rules etc.) or the use of 

attribute-value representation. The method for searching spaces is the way in which the algorithm 

searches for hypotheses and the heuristics it uses for selecting certain examples from which to 

learn. Inductive policy is a statement of the reason certain bias choices are made. With explicit 

control of inductive policy a user can trade-off performance traits such as increased learning 

speed for decreased coverage of examples. 

 

2.3.2 Select the best Inductive Learner 

 

Another way to build a learning system that performs well on a wide variety of problems is to 

                                                 
iiAnother way to improve the performance of an inductive learning algorithm is to focus on improving the 
interpretation of learned hypothses. Michalski's second tier approach is one such method (Michalski, 1989). See also 
(Kubat 1996). 
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select the most appropriate learning algorithm for the problem. Simply stated, if different 

learning algorithms have different strengths, then a combination of these algorithms will have the 

union of these strengths. This approach is taken by the MCS system (Brodley, 1993) One 

problem with this approach is finding a set of individual algorithms which span the set of 

possible learing problems. If this set is too small, then the combination approach is still 

incomplete. If the set is too large then the selection of the appropriate tool becomes complex and 

time consuming. The Machine Learning Toolbox (Graner, Sharma, Sleeman, et al., 1992) is an 

example of this approach in which the user must determine the best learner to use. 

 

The VBMS system (Variable Bias Management System) (Rendell, Seshu and Tcheng, 1987) tries 

to find a match between problem characteristics and learning algorithms. Initially the meta-level 

learner has no knowledge of which algorithms are best for which problems. Gradually this 

knowledge is built up as it tries all its available algorithms and then records their performance. 

VBMS uses a clustering algorithm, PLS1 (Rendell, 1983), to build descriptions of the regions of 

expertise of the different learning algorithms. The VBMS system is of particular interest because 

it tries to perform a meta-level learning. However, it uses only a small set of problem 

characteristics to guide meta-learning (the number of examples and the number of features) and 

combines only three similar learning algorithms. Despite these limitations initial results were 

promising for learning meta-level control. 

 

Further motivation for learning characterizations of learning algorithms in hopes of better 

predicting which algorithm will perform best for a given problem comes from Aha (1992). In this 

work Aha describes an empirical method for generalizing results from case studies and lists 

characteristics of problems from which to learn these rules. In this method he proposes a five step 

approach, the first step of which is to collect case study details. These meta-level attributes 

describing the problem are, unfortunately difficult to obtain without detailed knowledge of the 

target concepts. These difficult attributes include: "number of target concepts", "correlations of 
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attributes to target concept disjuncts", "distribution of instances within disjuncts of target 

concepts", "distribution of instances among concepts" and "amount and type of noise subjected to 

the instances, attributes and target concepts". The meta-attributes of AQ17-MCI listed in Table 

4.1 do not require such detailed knowledge of the target concepts. 

 

The work (Brazdil et al, 1994) is also interested in characterizing learning algorithms. In this 

work the results of the StatLog project (Michie, et al 1994) were used to build characterizations 

using C4.5. The StatLog project includes results for 22 different learning algorithms on more 

than 20 different datasets. Classification problems are described by 15 meta-level attributes. 

These include 'simple' measures, statistical measures and information-based measures (Figure 

3.2). The simple measures are 

The number of examples (N),  

the number of attributes (p),  

the number of classes (k) 

the proportion of binary attributes (Bin_att), 

the errors quantified by costs (Cost) 

the statistical measures include 

standard deviation ratio (SDratio) 

mean value of correlation (Correl) 

canonical correlation for the best single combination of attributes (Cancor1) 

the first normalized eigenvalues of canonical discriminant matrix (Fract1) 

skewness 

kurtosis 

The information-based measures include: 

entropy of classes (Hc) 

entropy of attributes (Ha) 

mean mutual information of class and attributes (Mca) 
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noise-signal ratio (Ha-Mca)/Mca 

The goal of this work differed from that of meta-rules of AQ17-MCI not only in that it was 

learning rules for different learning algorithms rather than CI operators, but also in that it was 

trying to predict the numerical value of the error. AQ17-MCI meta-rules are only intended to 

predict which operator will perform best. 

 

2.3.3 Modify the Representation Space 

 

A different approach to solving the problem of selective superiority is to fix the inductive 

algorithm and its bias, and to search for an improved representation space. This is the 

constructive induction approach as described in Section 1.3. Here constructive induction is 

viewed as any method that modifies the representation space. Changes may be expansions to the 

representation space caused by attribute construction or attribute-value addition, or they may be 

contractions caused by attribute removal or attribute-value removal.  

 

The idea of constructive induction was first introduced by Michalski (Michalski, 1978). Since 

then a number of other methods for constructive induction have been developed. In (Wnek and 

Michalski, 1994) a classification of these approaches is introduced based on the primary method 

used to guide modifications to the representation space. The four methods include knowledge-

driven (KCI), data-driven (DCI), hypothesis driven (HCI) and Multistrategy (MCI). The 

following sections will describe each of the methods in more detail. 

 

2.3.3.1 KCI 

 

Knowledge driven methods base representation space modification on knowledge provided by 

the user. This knowledge is usually represented as definitions of domain-specific transformations 

such as constructing a new attribute. Such domain-specific knowledge often results in useful new 

attributes and shorter more predictively accurate rules. However, such knowledge is often hard to 
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obtain or sometimes express.  

 

Donoho and Rendell (1996) identify an ordering of knowledge used for constructive induction 

ranging from complete theories to fragmentary knowledge. At one end of the scale is the MIRO 

system (Drastal et al, 1989) which uses an almost complete theory from the domain to build an 

abstraction space in which learning will be better, LAIR (Elio and Watanabe, 1991), which is an 

incremental deductive approach to attribute construction,  and TGCI (Donoho and Rendell, 

1995). The AQ15 and AQ15c programs (Michalski et al, 1986; Wnek et al, 1995) requires 

complete knowledge when making use of its a-rules, l-rules or b-rules tables for defining new 

attributes. At the other end of the scale are systems which use fragments of knowledge. 

Knowledge of attribute units (dimensional analysis) is used in the COPER system (Kokar, 1986) 

to guide the system toward meaningful combintions of attributes, and in AQ17-DCI (Bloedorn 

and Michalski, 1996; See also Section 4.5.5.4). 

 

2.3.3.2 DCI 

 

Data-driven methods base representation space modifications on an analysis of the provided 

training data. The correlations and interrelationships between attributes are used to expand the 

representation space by constructing new features, or possibly reducing the space by removing 

irrelevant attributes. Data-driven approaches are appealing because they do not require domain 

expertise, and are not tied to a specific knowledge representation such as trees or rules. 

 

The GALA system (Hu and Kibler, 1996) especially emphasizes the ability of data-driven 

approaches to be used as a pre-processor for a variety of learning methods. The authors 

demonstrate the effectiveness of GALA's construction of new attributes for C4.5, CN2, a 

perceptron and backpropagation. GALA also introduces a useful concept of relative improvement 

for judging the quality of new attributes. Because such attributes are generated from those given 
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it would be unnecessary to introduce a new attribute, even if it had a high absolute 'value', if it 

did not help dicriminate the given classes any better than its parents. GALA is limited however in 

it approach in that it performs only feature construction, uses only boolean operators of 'and' and 

'not' and requires that the given attributes be converted to booleans before processing. The step of 

'booleanizing' adds is expensive: the authors report a complexity of O(AVE) where A is the 

number of attributes, V is the maximum number of attribute values and E is the number of 

examples. 

 

AQ17-DCI (Bloedorn and Michalski, 1991, 1996), expands the representation space through 

attribute construction, and contracts the space through attribute-value abstraction and attribute 

removal. Attribute construction is based on a generate and test approach using algebraic and 

logical operands. Using the set of operators selected by the user the algorithm generates pair-wise 

and multi-argument functions of the original attributes. These attributes are evaluated using an 

information gain ratio (Quinlan, 1989), or PROMISE (Baim, 1982) metric. If their information 

value is greater than a user-defined threshold, then the new attribute is added to the available set 

for learning. Abstraction of attribute values is performed using the Chi-merge algorithm (Kerber, 

1992). This algorithm repeatedly merges adjacent intervals while the merging does not overly 

blur class boundaries. Attribute-value and class correlation is calculated using a χ2 statistic. 

Attribute selection is based on a simple filter - those attributes with an individual information 

value less than a user-defined threshold are removed from the available set.  

 

Another method for attribute construction from data is done in BACON (Langley, Bradshaw and 

Simon, 1983; Langley et al, 1987) and ABACUS (Greene, 1988). These programs do not search 

for class descriptions given labelled examples, but instead build new attributes that are numerical 

functions of the original attributes. Attribute construction is based on the interdependencies 

between attributes in the data. EF, the equation discovery function within FAHRENHEIT is 

another equation discovery algorithm (Zembowicz, and Zytkow, 1991). Unlike BACON, 
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however, EF takes a more rigorous approach to handling the problem of propagating error when 

generating new attributes which allows it to converge faster to equations which better match the 

data. These approaches are closely related to the work of Sutton and Matheus in their program 

for finding polynomial functions (Sutton and Matheus, 1989) and of canonical discriminant 

analysis in CAF (Yip, and Webb, 1994). The former work uses a linear regression algorithm is 

used to find candidate attributes. The pairs of attributes found are used as a basis for new 

attributes. The CAF algorithm uses discriminant analysis to find a linear combination of 

discriminating attributes. CAF performs a a statistical clustering analysis to find new attributes 

which maximally separate class centroids. 

 

STAGGER (Schlimmer, 1987),  uses a variety of data-driven methods to search for a good 

representation and to find the best hypotheses within the representation. These three interacting 

components include 1) a module for adjusting the weights of symbolic descriptions, 2) a module 

for adding new boolean combinations of features, and 3) a module for abstracting attribute-

values into discrete intervals. Attribute construction is only invoked when STAGGER makes a 

prediction error on a training example. The type of construction made is based on the type of 

error. When the hypotheses is too general a new element which specializes the current 

hypotheses is added using AND. When the hypothesis is too specific, a new element which 

generalizes the hypotheses is added using OR. The attribute-value abstraction module uses a 

beam search to quantize a real-values range into discrete intervals. Each potential interval is 

merged or retained based on the number of positive and negative examples, or utility of that 

interval. STAGGER more tightly couples learning with representation space modification than 

AQ17-MCI, but it has fewer operators for representation space change, and does not learn control 

knowledge that will carry over between learning problems. 

 

LFC (Ragavan and Rendell, 1993) performs data-driven construction of new attributes while 

constructing a decision tree. LFC uses a lookahead before it creates each node in the decision 
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tree. This lookahead is constrained by a number of heuristics in order to allow LFC to be of 

reasonable speed. A benefit of this lookahead is that the replication problem common in decision 

trees when the available examples are difficult to split on one attribute, is much reduced. Like 

STAGGER, LFC uses only logical operators to construct new terms from the original set. MRP 

(Perez and Rendell, 1995) also performs feature construction iteratively with decision tree 

generation. Unlike LFC, however, MRP uses multidimensional projections to find arbitarily 

complex logical relationships. Although the projection method used within MRP has also been 

used to perform feature selection, MRP is primarily designed for feature construction. Both MRP 

and LFC, primarily differ from AQ17-MCI in the way they generate new attributes while 

generating a decision tree, in their use of only methods for attribute construction and not 

selection or abstraction (and as such have no meta-level of control for representation space 

modification), and in their restriction to only logical combinations of attributes.  

 

2.3.3.3 HCI 

 

Hypothesis-driven methods base modification of the representation space on patterns found in 

the generated hypotheses. These patterns can signal the method that new attributes should be 

constructed or removed. Hypothesis driven methods do not require domain expertise, but are tied 

to a specific hypothesis language.  

 

Utgoff's STABB (Shift to a Better Bias) program constructs new features to add to the concept 

description language when a new example is not properly classified by the current hypotheses 

(Utgoff, 1986). New features are built using a least-disjunction method or a constraint 

backpropogation method. In the least-disjunction method the least-specific disjunction of 

existing terms is built which corrects the current hypothesis. In the constraint backpropogation 

method new terms are built deductively by tracing the reasoning used when applying a successful 

operator. These operators control problem solving behavior in the LEX system. 
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AQ17-HCI (Wnek, and Michalski, 1994) can both expand the representation space by building 

new attributes based on strong patterns found in the learned hypotheses, and contract the space 

by removing attributes. Attributes are built by detecting the best-performing patterns found in a 

previous iteration. Patterns may be a group of rules, a part of a rule or even a part of the condition 

of one term. The strength of a pattern is a function of the number of positive and negative 

examples covered by the pattern.  

 

FRINGE (Pagallo and Haussler, 1990) is a hypothesis-driven method for constructing new 

attributes based on patterns found in decision trees (FRINGE). The FRINGE algorithm generates 

new features by conjoining or disjoining the parent and grandparent nodes of all  positive fringes 

in the tree depending on the position of the child node relative to the parent. This algorithm was 

found not to perform well on CNF-type problems which led to the introduction of Symmetric 

FRINGE (Pagallo, 1990) and DCFringe (Yang, et al , 1991). Despite these modifications these 

algorithms appear to be useful only for a small class of DNF and CNF-type concepts. 

 

CITRE (Constructive Induction on Decision Trees), (Matheus, 1989)  generates new conjunctive 

terms after a decision tree is built. Feature construction is motivated by excessive disjuncts 

(replication) in the learned hypotheses. New terms are constructed based on attributes found 

along the tree path (recent path, or all the way from root to leaf). These new features are filtered 

out based on possible domain knowledge, and evaluated using either an information gain metric, 

or a competitive metric. In the latter, the usefulness of a new feature is based on whether it is 

used in later decision tree construction. 

 

2.3.3.4 Multistrategy Constructive Induction 

Multistrategy constructive induction methods use a combination of the KCI, DCI and HCI 

approaches to make changes to the representation space. Multistrategy methods are thus the most 
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flexible approach, but also require additional heuristics of computation in order to select and 

integrate the other approaches.  

 

CN2-MCI (Kramer, 1994) uses both hypotheses and data to guide attribute construction. CN2-

MCI first analyzes the learned hypotheses to find co-occurring attributes. These pairs of 

attributes are selected as the operands for new attributes. The examples in the two-dimensional 

projection of these attribute pairs are then clustered to find the definition of the new attribute. 

Only the top new attributes are retained for the next iteration of learning and evaluation. The 

cycle of learning, evaluation and attribute construction stops when there are a user-defined 

number of iterations with no improvement. CN2-MCI is categorized as a multistrategy 

constructive induction method because it uses information from both hypotheses, and data to 

generate new attributes. However, it differs significantly from AQ17-MCI in that it does not 

include other methods for representation space modification including representation space 

contraction by attribute removal or abstraction. Additionally, because AQ17-MCI performs 

multiple transformations to the representation, it includes control strategies for selecting the most 

appropriate one for the given problem. This meta-level control of representation space modifiers 

is not included in CN2-MCI because it only performs feature construction. 
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CHAPTER 3 MULTISTRATEGY CONSTRUCTIVE INDUCTION 

3.1 Background 

 

Related work in the area of constructive induction, and multistrategy constructive induction was 

given in the previous chapter. This chapter describes and motivates the novel and more general 

architecture found in AQ17-MCI. Multistrategy constructive induction is a process for learning 

hypotheses from examples in which the search for the preferred hypotheses is combined with a 

multi-operator search for an improved representation space. This more sophisticated approach is 

motivated by the inability of simpler methods to perform well on problems that contain one or 

more of the following pathologies: a) large numbers of irrelevant attributes, b) large, possibly 

continuous attribute-value domains, and c) attributes with interdependencies. The goal of this 

research is to not only produce a single learning system which can solve problems made difficult 

by these pathologies individually, but to produce single system which can learn even when two 

or more of these pathologies are present. To achieve the level of performance needed for the 

increasing number of real-world applications where such patholgies are common, a multistrategy 

method for learning is required. 

 

To design an effective multistrategy architecture each of the components of a multistrategy 

system must be carefully selected. This chapter describes the design decisions involved in 

building a multistrategy constructive induction system, introduces and motivates a novel learned 

approach to MCI, and describe the links between this design and the inferential theory of learning 

(Michalski, 1993, Michalski, 1992). 
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3.2 Design Goals 

The goal of this multistrategy constructive induction (MCI) learning method is to build a learning 

system that can generate simple, predictively accurate hypotheses from a learning problem that is 

poorly represented. The representation space may be poor due to the presence of irrelevant 

attributes, too much detail in the attribute values, or inter-dependencies between attributes. Some 

representational problems, however, such as incompleteness (no relevant attributes, or attribute-

values present), are outside the scope of this thesis. This goal requires the system to be able to 

perform a wide variety of transformations on the input provided. Clearly, there are two factors 

important in controlling how successful such systems are in achieving this goal: 1) what 

transformation operators are combined and 2) how they are combined. 

 

3.3  Selecting Representation Space Modification Operators 

 

The choice of individual representation space modification (RSM) operators available to a 

multistrategy approach determines the capabilities of the whole system. The individual strategies 

of a multistrategy system should be selected for their coverage of the possible types of problems. 

A set of operators should be selected so that the resulting whole will efficiently solve most, if not 

all, of the types of problems that could arise. In chapter 2, three categories of learning problem 

pathologies - inappropriateness, incompleteness and incorrectness were described. AQ17-MCI 

includes operators for representation space expansion (e.g. attribute construction) to overcome 

inappropriateness (of attributes), and representation space contraction to overcome some 

incorrectness and inapropriateness (of feature values). While a large set of operators may appear 

best in order to overcome the greatest number of pathologies, a minimal set of such strategies 

reduces the chance of redundancy and makes operator selection simpler.  

 

A strong set of RSM operators is of little use, however if they cannot be used together due to 



Chapter 3 - Multistrategy Constructive Induction 
  
______________________________________________________________________________ 
 

 

33 

differences in representation. Strategies which represent knowledge in different forms (e.g. 

decision trees and connectionist networks) may require the construction of translation methods or 

knowledge interchange format so that such methods can communicate results to each other and 

to the final hypothese language. Such translations often result in loss of information and will 

require additional computation time and resources. A preferred approach would have a set of 

operators that operated on the same representation.  

 

The best design of an multistrategy constructive induction system is one that includes a wide 

variety of disjoint methods that can perform both expansion and contraction of the representation 

space, and which share a common representation. 

 

3.4 Controlling Representation Space Modification Operators 

 

Another factor in determining the success of a multistrategy approach is the method of strategy 

selection and combination. Just as learning can be characterized as a search through the 

representation space, the selection of an appropriate operator in a multistrategy system can be 

characterized as a search through a space of operator choices. For this reason well known search 

methods can also be used as operator selection methods. A description of the relative strengths 

and weaknesses of different search operators when applied to this problem follow. 

 

3.4.1 Random and Exhaustive Operator Selection 

 

The simplest method for combining two or more operators is to randomly select between them. 

This method may sometimes find the correct ordering, but it may take an unnecessarily long time 

by selecting operators that are clearly not needed (e.g. if it selects attribute abstraction for a 

multiplexor problem), or it may even perform operations that user does not wish (e.g. the user 

has a preference for DCI over HCI-based attribute generation). When no other alternative is 
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possible random selection can be the only alternative. Another simple approach is an exhaustive 

or parallel search in which all possible combinations are tried and evaluated. This method is 

guaranteed to find the best possible solution, but it will be the most expensive possible method in 

terms of time and memory and may be compuationally infeasible for even moderately sized 

problems. A variation of this exhaustive method is to perform a sampling evaluation. In a 

sampling method only a subset of the data, repeatedly sampled, is used to evaluate the usefulness 

of operator transformations on the problem. The operator selected for the problem is the one with 

the best average performance over all the samples. The greatest drawback of this method is that it 

will still require a relatively large amount of time and resources to have enough certainty in the 

results. It is also unnecessary to sample every possible operator when the characteristics of the 

problem can offer some guidance. For example feature selection is not necessary if the number of 

attributes is already small. The algorithmic approach described next partially addresses this by 

recognizing that the operators have different characteristics and may be optimally ordered. 

 

3.4.2 Algorithmic Operator Selection 

 

Another class of search methods uses an iterative, but fixed approach. In this algorithmic class 

the available search operators are applied one at time in a pre-specified order. For example in a 

constructive induction problem the system can be set to always reduce the space using attribute-

removal and attribute-value abstraction before doing any attribute construction. In this way it is 

hoped the algorithm will be faster because attributes which are irrelevant will not be combined. 

However, this approach may prove counter-productive because attributes which are useful in 

combination may appear to be irrelevant alone.  Consider the simple example shown in figure 

3.1. In this two-class classification problem x1 and x2 individually are uncorrelated with class. 

However, it is clear to see that x1=x2 for class1 and x1<>x2 for class2. Such a simple 

combination could not be found if either these attributes were removed. Similar problems occur 

in every fixed algorithmic ordering of operators. For example, abstraction followed by attribute 
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generation can result in much different rules than attribute generation followed by abstraction. In 

Section 5.4.3 MCI is applied to a computer vision problem. In this problem DCI-Quant 

(abstraction) followed by DCI-Gen (generation) resulted in hypotheses which on average had 

35.8 rules, 679.1 selectors and took 83.1 seconds to learn. With the ordering reversed the 

hypotheses contained only an average of 3.3 rules, 54 selectors and took only 3 seconds to learn. 

However, the opposite ordering was better in the application of MCI to economics. In this 

problem described in Section 5.4.2. Here, abstraction followed by generation resulted in rules 

with an average predictive accuracy  of 76.3%, the opposite ordering resulted in hypotheses with 

an average predictive accuracy of 43.7% accurate. The ordering is optimal for one class of 

problems, but not another. This still fails to achieve the goal of a widely applicable learning 

approach. The other problem with this approach is that it cannot take advantage of user-expertise 

or domain knowledge when it is available, and can not improve its performance over time. It will 

always perform the same for a specific learning problem, regardless of past experience.  

 
class1 

 x1 x2 
2 2 
4 4 
3 3 

 

class2 
x1 x2 
2 3 
3 4 
4 2 

 
Figure 3.1 - Example of individually irrelevant attributes which provide perfect classification in 
combination 

 

3.4.3 Heuristic 

 

Another approach to finding an improved representation is to allow the user to either make the 

changes to the representation space directly through knowledge-driven CI (the user removes 

attributes, adds new attributes, or selects new attribute-domains) or to control the representation 

space modification tools available in AQ17-MCI. Both KCI, and direct user-control of operators 

is supported in AQ17-MCI. The drawback of both approaches is that it relies on the expertise or 
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domain knowledge of the human controller to either to make the correct changes to the 

representation space, or to select the correct sequence of operators to solve the problem. This 

toolbox approach simply makes program options and parameters accessible to the user. If the 

user does not understand the problem and the tools well enough, then this approach reduces to 

either the previous algorithmic, or random approaches described earlier. If the user is 

knowledgeable about the representation space and which attributes should be removed and/or 

combined, then a constructive induction learning method is hardly needed. The user has enough 

expertise to set up the problem to either solve it himself, or allow a simple selective induction 

learner to solve it. Although it is an approach that allows the user to provide knowledge when it 

is available (knowledge-driven constructive induction or KCI) it fails when this knowledge is 

unavailable and it requires the constant attention of the expert or it will repeat past mistakes. 

 

A more sophisticated form of heuristic search in which general, rather than (or in addition to) 

domain-specific expertise is used, is also possible. In this form of heuristic search operator-rules 

are used to guide operator selection. These rules map a description of the representation space 

itself to the choice of operator. For example a operator for removing attributes may only be 

invoked if the total number of attributes used to describe the given problem is greater than 20. By 

using general problem characteristics in conditions of these operator-rules this type of heuristic 

search is more general the specific KCI approach previously described. A weakness of this 

approach is the difficulty in describing the conditions under which certain operators are 

successful against when they are not. These rules may also need to be updated as new problems 

are encountered.  

 

Some work has been done in knowledge acquisition aimed at helping the user construct a 

knowledge base that could be used for this meta-learning task. The KAISER system (Dabija et al, 

1995) is used to iteratively refine, by means of interactions with a domain expert, the knowledge 

encoded in a decision tree of that expert's domain. One 'impropriety', or problem with a decision 
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tree, that KAISER is designed to correct is 'Similar class'. This is the tree replication problem and 

occurs when "...more than one node tries to separate the same set of classes at different places in 

a decision tree." (p. 94). The correction for this problem is to generate a new attribute which 

alone separates the examples in the subtree. As stated by the authors, the difference between this 

approach and the constructive induction (CI) approach to repairing poor decision trees is that CI 

attempts to fix the problems without assistance from the user. However most CI methods do not 

take into account the wide variety of possible 'improprieties' that a learned hypotheses may 

contain, and the wide variety of corrections that made be made. The next section outlines a more 

general CI approach to this problem.  

 

3.4.4 Learned Control Rules 

 

It is from the weaknesses and strengths of the previously described methods for operator 

selection that  a novel approach to operator selection using learned operator-rules was developed. 

Previous approaches were poor because they could not take advantage of domain specific 

knowledge when available, and could not easily be updated when a new learning situation found 

them to be performing poorly. A method which learned control rules for selecting the appropriate 

representation space modification operator would be useful because it would require little 

knowledge on the part of the user, but could use it if it was available, and could automatically 

update its operator selection approach based on experience.  

 

Motivation for learned control rules arise partially from the realization that learning methods are 

often used on a sequence of learning tasks, and that the completion of previous related tasks can 

improve the performance of the learner on a new task when these problems are related (Thrun 

and O'Sullivan, 1996; Caruana, 1993).  

Guiding constructive induction via learned control rules is a strong method because it can use 

user-supplied knowledge when available, and it can learn from past failures and successes. 
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Learned control rules in the form of decision rules are readily accessible and comprehensible to a 

domain expert. These rules can be understood and manually revised if needed. An example of 

such a rule is shown in Figure 3.2. Further motivation for attempting to characterize CI operators 

is provided by the work of Aha (1992) and and the success of (Brazdil et al, 1994) described 

earlier in Section 2.3.2. 

 

 if [num_attributes = 48..64] ::> perform_data_driven_attribute_selection 

 

Figure 3.2 - An example rule controlling the invocation of data-driven attribute selection 

 

Furthermore, such rules can also be learned empirically from examples of past success and 

failures. A description of a system which performs this operation is given in chapter 4.  

 

The previous section described the decisions important to building an effective multistrategy 

constructive induction algorithm. These design considerations are important for the design of any 

multistrategy learning system. The next section shows how the operations performed by MCI can 

be understood in terms of fundamental inferential transmutations of the Inferential Theory of 

Learning (Michalski, 1993). This analysis not only provides a general framework in which to 

describe the current capabilities, but it also suggests new capabilities of MCI. 

 

3.5 An Analysis of MCI based on the Inferential Theory of Learning 

 

This section dicusses the links between the Inferential Theory of Learning (ITL), to the 

representation space modification operators (RSMOs) as they are used in MCI, and the 

architecture of MCI itself. A complete discussion of the Inferential theory is available in 

(Michalski, 1993), but a brief description is included here for clarity.  
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3.5.1 Outline of the Inferential Theory of Learning 

 

In the Inferential Theory of Learning (ITL), learning is viewed as a goal-oriented process of 

improving the learner's knowledge. Learning processes are viewed as patterns of inference called 

knowledge transmutations. Some of the basic transmutations include  generalization, abstraction, 

and specialization. A basic premise of the theory is that learning processes can be described in 

terms of the application of various inferential operators. Along one dimension the theory 

classifies inferential processes into inductive and deductive. Inductive processes are falsity 

preserving, while deductive processes are truth preserving. To use the fundamental equation for 

inference: P U BK |= C, where P stands for Premise, BK is the reasoner's background knowledge 

and C is the consequent, deduction derives C given P and BK, while induction derives P given C 

and BK. The second dimension of the classification of inferential processes is contingent vs. 

conclusive. Conclusive processes are strong and are based on domain-independent knowledge, 

while contingent processes are weak because they are based on domain-dependent knowledge. 

This classification of inferential transmutations clarifies the differences between many inferential 

processes and reveals some new, little explored combinations. 

 

3.5.2 Representation Space Modification Operators as Transmutations 

This section describes the relationship between ITL transmutations and representation space 

modification operators (RSMOs). Special attention will be given to those RSMOs in the current 

MCI architecture, but other possible operators will also be described.  

 

A Multistrategy constructive induction system may include any number of RSMOs. These 

operators include expanders that increase the size of the space and contactors which reduce the 

size of the space. Expansion operators include those that add attribute values and those that add 

attributes. Although the addition of new attribute-values would be a form of concretion and is not 

presently available in MCI, there do exist many methods for attribute construction. Contraction 
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operators reduce the size of the representation space through attribute removal (or selection) and 

abstraction.  

 

Expansion operators may make use of a number of different knowledge transmutations. When 

viewed in the Inferential Theory of Learning, the expansion of the space by the addition of new 

attributes can be viewed as a derivation. transmutation. As described in this theory the underlying 

process of a derivation may range from a randomization to an equivalence. In attribute 

construction based on equivalence derivation or reformulationiii, new attributes are generated 

from given knowledge structures, (original attributes, generated hypotheses) and are equivalent to 

their parent structures. This attribute construction method is used in MCI in the #VarEQ(x) 

operator which counts the number of attributes from a set which have the value x. A specialized 

case of this attribute construction method is shown in Figure 3.1. The constructed attribute is 

simply reformulating the three Food attributes into four boolean attributes.   

 
Original attributes:  Food1 Food2 Food3 
   apple  milk  toast 
   milk  eggs  toast 
Generated attributes: Exists(apple) Exists(milk) Exists(toast)  Exists(eggs) 
   yes  yes  yes   no 
   no  yes  yes   yes 
 

Figure 3.3 - Attribute construction based on an equivalence derivation 

 

Intermediate derivations are neither equivalence relations nor randomizations, and can also be 

used to generate new attributes. The construction of a new attribute generated by taking the sum 

of two original attributes would be a deductive derivation. This is the type of attribute 

construction performed in DCI and also used in AQ17-MCI. Such derivations are important 

because they make explicit relationships between  attributes that any inductive learning algorithm 

                                                 
 
iii Matheus (Matheus, 1989) would call this incidental constructive induction because no induction was done during 
construction 
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based on an attribute-value representation (e.g. AQ, C4.5, Backprop) is unable to represent. An 

example of attribute construction based on the deductive derivation operator of comparison is 

shown in Figure 3.4. Deductive derivations in MCI include: addition, subtraction, multiplication, 

comparison, maximum, minimum, and average. 

 
Original attributes:  OutputYear1 OutputYear2 
   1000  1100 
   1121  1221 
 
Generated attributes: Equal(OY1,OY2) LessThan(OY1,OY2) Greater(OY1,OY2) 
   yes   no   no 
   no   no   yes 
 

Fig 3.4 - Attribute construction based on an deductive derivation (comparison) 

 

Attribute construction can also be based on an analogical derivation. An example of thisiv can be 

found in (Bloedorn, 1993a). In this method a genetic algorithm approach is used to search for 

new attributes using a crossover operator. In ITL a similzation analogy is performed when the 

"similarity between two entities in terms of some descriptor(s), and the knowledge the one entity 

has property A" is used to hypothesize new knowledge that the second entity also has property A 

(p. 23, Michalski, 1993). In the genetic algorithm example we know that parent attributes p1 and 

 
Parent attributes: p1: Property 1) discriminates given classes 
         Property 2) Is a function of x1 and x2 (e.g. x1+x2) 
   p2: Property 1) discriminates given classes 
         Property 2) Is a function of x7, x9 and x5 (e.g. (x7*x9)+x5) 
    
Generated attributes:  c1: Property -  is a function of x1 and x5 (e.g. x1+x5) 
   c2: Property -  is a function of x7, x9 and x2 (e.g. (x7*x9)+x2) 
 
 

Figure 3.5 - Attribute construction using analogical derivation 

 

 p2 have the property that they are discriminatory attributes. We also know that p1 has the 
                                                 
ivThe analogical inference described here is more precisely known as a similzation because the reference sets of both 
objects are in the same class. 
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property that it is a function of attributes x1 and x2, and that p2 is a function of x7, x9 and x5. It 

is known that the usefulness of a function in discriminating classes is itself a function of the 

usefulness of the component attributes. From this we infer that the new attributes (c1 and c2) 

which share properties of p1 and p2 will also have the propoerty of their parents - that they are 

discriminatory. An example of the crossover method to construct new attributes is shown in 

figure 3.5. This type of construction is not currently a part of MCI, but is possible in this 

framework. 

 

Attribute construction based on inductive derivation requires that the attribute construction 

method have available meta-level knowledge about the attributes being combined. This is 

necessary to constrain the search for new attributes. As such, it is very knowledge-intensive and 

potentially domain specificv. However this approach can also produce very powerful new 

attributes which could predict regions of the space and allow learning algorithms to perform 

much better with sparse datasets (Matheus, 1990). This type of inductive derivation of new 

attributes using a goal-driven property transfer algorithm is described in (Bloedorn, 1993b). In an 

inductive derivation 

 
Parent Attributes:  BayLength+BayWidth BayLength+BayHeight 
Constructed attribute:  BayWidth+BayHeight 
 
IF 
     (UNIT Y (IS FT))(UNIT X (IS FT)) 
     ((MEASURE X) (MEASURE Y) (DIFFERENT X Y)) 
     (TYPE X (IS NUMERIC)) (TYPE Y (IS NUMERIC))) 
 
THEN 
 ADD(X,Y) 
 

Figure 3.6 - Attribute construction using inductive derivation 

 

                                                 
 
v Matheus (Matheus, 1989) would call this region predictive attribute construction 
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 reasoning is performed which derives an explanation from effects. In the example shown in 

figure 3.6. the effect is that the new attributes (BayLength+BayWidth) and 

(BayLength+BayHeight) are useful sums (e.g. comprehensible, disciminatory). The explanation 

for this effect is that these are good attributes to combine because in both cases the original 

attributes have units of feet, they don't combine the same attribute (BayLength+BayLength) and 

the type of both attributes is numeric. This explanation leads to the suggestion that 

BayWidth+BayHeight may be a useful new attribute using the ADD operator. In this example, 

the system inductively learns a meta-level rule which characterizes when it is appropriate to add 

two attributes. This new rule is used to construct other attribute combinations. 
 

This new attribute is constructed based on knowledge of the attributes’  units, and type. The 

examples of previous successful attribute constructions shown were inductively generalized to a 

meta-level rule. This rule was then applied to generate a new attribute BayWidth+BayHeight. 

This type of attribute construction is not presently available in MCI, but may also be included. 

 

The randomization derivation may also be used to generate new attribute. An example of this is 

the mutation operator used in the genetic algorithm method for constructing new attributes 

described earlier (Bloedorn, 1993a). An example is shown in Figure 3.7. In this example the 

operator used to combine two attributes is randomly reassigned from addition to multiplication. 

 
 Parent attributes: x1+x2 
 Generated attribute: x1*x2 
 

Figure 3.7 - Attribute construction using randomization derivation 

 

Contraction operators reduce the size of the representation space through attribute removal and 

attribute-value removal (or discretization). As it is implemented in MCI, attribute removal is a 

non-inferential selection transmutation which picks those attributes which are relevant. Selection 

is a non-inferential transmutation because it does not modify the meaning or content of the input 



Chapter 3 - Multistrategy Constructive Induction 
  
______________________________________________________________________________ 
 

 

44 

knowledge, but manipulates the attribute values as data (p. 13, Michalski, 1993). Attribute-value 

removal performs a reduction in the granularity, or “amount of information about a set of 

entities” . In this case the “set of entities”  is the domain of that attribute. Attribute-value removal 

is performing an abstraction transmutation which in this case (and most typically) is a deductive 

inference. 

 
MTL Algorithm 
 
1) Use the input to activate the segments of 
the learner’s prior knowledge base relevant 
to the input and the learning goal 
 
 a) Calculate relevance relationship 
between input and BK 
 
 
 b) Store knowledge in KB as DIH traces 
 
2) Determine type of relationship between 
input information to the learning process and 
the BK 
 a) The input represents new 
information - perform synthetic learning to 
cover new example or store example 
  
  
 b) The input is implied by, or implies 
a part of the BK - perform analytic learning 
to derive an explanatory structure which 
links the input with the involved part of the 
BK 
  
 c) The input contradicts some part of 
the BK - revise the BK through synthetic 
learning or manage inconsistency. 
 
 d) The input evokes an analogy to a 
part of BK - if the analogy passes an 
“ importance criterion”  store  the analogy and 
its links to the BK 
 
 e) The input is already known to the 
learner - updated a measure of confidence 

associated with this part of the BK. 
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MCI Algorithm 
 
1) Use the input to activate the segments of 
the learner’s prior knowledge base relevant 
to the input and the learning goal 
 
 a) Calculate relevance relationship 
between input (meta-vector, result) and BK 
(stored meta-rules) 
 
 b) Store knowledge in KB as rules 
 
2) Determine type of relationship between 
input information to the learning process and 
the BK 
 a) The input represents new 
information - perform synthetic learning 
(meta-level) learning to cover new example 
and store example (full memory model). 

  
 b) The input is covered by a BK 
metarule - store the input and update weight 
of metarule. 
  
  
 c) The input contradicts some part of 
the BK - specialize the BK metarule through 
synthetic learning. 
 
 d) Not possible in current 
representation 
  
  
 
 e) The input is already known to the 
learner - updated a measure of confidence 
associated with this part of the BK. 

 
Figure 3.8. A comparison of MTL framework and the MCI algorithm 

 

3.5.3 MCI as Multistrategy Task-adaptive Learning 

 

The previous section detailed how various representation space modification operators can be 

viewed as transformations in the ITL framework. Figure 3.8 shows how the overall approach of 

the MCI method can also be analyzed within the framework of ITL and be shown to be a 

multistrategy task-adaptive learner (MTL). As described in ITL, (p. 25 (Michalski, 1993)). “The 

underlying idea of MTL is that a learning strategy should be tailored to the learning task.”  MCI 

fits the learning strategy (selecting which RSM operators to use) to the learning task based on the 

input to the learning process (the problem and its description) and its background knowledge (the 

learned metarules). 

 

3.5.4 Summary 

 

This analysis of MCI when viewed within the conceptual framework of ITL has provided a 
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deeper understanding of the MCI algorithm. It demonstrates this by showing the mapping 

between the MCI RSMO operators and the fundamental knowledge transmutations of ITL. 

Presenting MCI in an ITL framework has revealed additional RSMOs that are not currently a part 

of MCI. These methods include attribute construction via analogical, inductive or randomization 

derivations.  It also reveals how the framework of the MCI system can be seen as an instantiation 

of the Multistrategy Task-Adaptive Learning framework.  

 

Another useful benefit of the analysis of MCI in terms of ITL is that it reinforces the need to 

view learning in a broader scope as goal-guided inference (Michalski and Ram, 1994). This view 

emphasizes the importance of introspective analysis of the system's knowledge and reasoning 

processes, and maintaining a memory of past successes and failures. The concept of a goal-

dependency network discussed by the authors can also not only be used for reasoning about 

dependencies and priorities for learning, but also for reasoning about the attributes in the current 

representation space.  

 

In summary, the MCI method has been shown to perform a double intertwined search for an 

adequate representation space, and for hypotheses within that space by invoking a series of 

knowledge transmutations. The transformations performed depend on the input data and the 

learning goal. The input data consists of the definitions of attributes and their values, the class-

labelled examples and the learning parameters. The learning goal is specified at the meta-level by 

the accuracy and simplicity thresholds of learned rules, and at the learning level by the by the 

criteria parameters. Although it is currently implemented with a rule-based hypotheses generator, 

other types of learners using other types of representations could be used. These other 

representations include decision trees, or connectionist networks. A different set of RSMOs 

would need to be constructed for non-predicate based representations, but the fundamental 

architecture of MCI could remain the same. The remainder of this thesis will focus on the current 

implementation of MCI which uses a decision rule representation for learned hypotheses and 
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learned meta-rules. 
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CHAPTER 4 THE AQ17-MCI SYSTEM 

This chapter describes the design and features of the AQ17-MCI system. First the general 

architecture is described in section 4.1 followed by detailed descriptions of each of the 

components in the later sections. 

 

4.1 General Architecture 

 

AQ17-MCI implements the principles of multistrategy constructive induction described in 

chapter 3. In this approach learning from examples is performed as an iterative double search. 

One search is for an improved representation space. This search is performed by the 

Representation Space Modification (RSM) Module. This module includes a toolbox of available 

operators and a  

 
USER

Input Data

Representation Space
Modification

Rule Evaluation

OUTPUT

Decision Rule
Generation

 

Figure 4.1 - A functional diagram of the MCI method 
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controller for selecting operators for the current problem. The other search is for the best 

hypothesis within that space, given the preference criteria.  This search is performed by the AQ 

learning algorithm as implemented within AQ15c (Wnek et al, 1995). Control cycles between 

search for a hypothesis and search for an improved representation space, until the evaluation 

module determines that either the learned hypothesis meets the user-defined thresholds, or that 

no more improvement can be made. The general architecture of AQ17-MCI is shown in figure 

4.1.vi 

 

4.2 Input Data 

 

The input data are initially a user-provided training dataset plus a characterization of the initial 

representation space, which includes a description of attributes, their types and their domains. 

The training dataset is split into a primary and a secondary dataset. The primary training set is 

supplied to the Decision Rule Generation module, which uses an empirical inductive learning 

program (AQ15c) to generate general concept descriptions (rulesets). The obtained rulesets are 

evaluated in terms of their complexity and their performance on the secondary training set. Based 

on the results of this evaluation, the system decides either to stop the learning process (the 

obtained rules are output as the solution), or to move to the Representation Space Modification 

module. This decision is based on control meta-rules (Section 4.5.). The final decision rules are 

evaluated on the testing examples to determine their performance. The partitioning of input data 

is shown in Figure 4.2. 

 

The representation space modification is done by an application of various RSM operators, 

acting as constructors or destructors. Once a new representation space has been determined, both 

                                                 
 
viFigure 4.1 shows the decision rule generation module (search for a hypothesis) being invoked before the 
representation space modification module (search for a representation) as this allows the system to first determine 
whether modifications to the representation are needed at all. 
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the primary and secondary training dataset are reformulated into this space, and the process is 

repeated. The next sections describe in greater detail various aspects of the above process.  

Figure 4.2. The partitioning of input examples and their roles 

 

4.3 Decision Rule Generation  

 

The search for hypotheses withing a given representation space is performed in AQ17-MCI by 

the AQ algorithm. The AQ algorithm, as implemented in AQ15c (Wnek et al, 1995) performs a 

beam search (the size of which is user determined) for a set of decision rules which cover all the 

positive examples and none of the negative examples. This search is done by randomly selecting 

a 'seed' event for a class,  covering that example with a very specific cover (conjunct), and then 

extending that cover in all dimensions, stopping each time a negative example is found. If all 

positive examples are covered in this one 'star', then a new class is selected and the process is 

repeated. If not, then a new disjunct is started, and a new seed is selected from the same class and 

star generation is repeated. This proess of 'seed' selection, and extension-against (negative 

examples) is repeated until all examples are covered. Afterward the tenative hypotheses may be 

modified by other post-processes which may generalize the cover by "dropping conditions." The 

end result is a set of decision rules for each class in the data. An example of a rule produced by 

AQ is shown below. 
 

Class1-Outhypo 
# cpx 

Learn intermediate rulesets in the
original representation space

Evaluate predictive accuracy of the
intermediate rulesets for testing the
adequacy of the representation space

Evaluate predictive accuracy of the
final rulesets generated in the
transformed representation space

Input
Examples

Training Examples:
Primary set

Training Examples:
Secondary set

Testing Examples
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1 [color = blue] [size = small] [shape = square] 
2 [color = red]  

Figure 4.3 - An example AQ generated rule 
 

This rule states "an object is in class1 if: it is blue, small and square, or it it red". The first line 

(starting with "1" in Figure 4.3 is a rule  or complex. A rule is made up of conjunctions of 

conditions or selectors  such as [color = red]. AQ15c is a full-featured rule learning program and 

although it constitutes a part of AQ17-MCI the user has access to all of the learning parameters 

and options available in AQ15c for controlling such things as rule type and rule intersection. 

 

4.4 Rule Evaluation 

 

Each time new rules are generated they are evaluated. Rule generation occurs either as part of the 

itial detection step in which the need for representation space change is determined, or after a 

representation space modification (RSM) operator has been selected and applied to the data. 

Control is returned to either the representation space modification module, or the process stops 

depending upon the results of this rule evaluation. Rule evaluation is based on a number of 

criteria. As described in (Bergadano, Matwin, and Michalski,, 1988) the quality of a concept 

description may be judged by three criteria: accuracy, simplicity and cost. In their approach, as in 

MCI, the user selects the relative importance of each of these criteria. The AQ17-MCI rule 

evaluation module uses only accuracy and simplicity to evaluate rule quality. Cost is not used 

explicitly because it can be included in the preference criteria within AQ to find the rules with 

minimal cost. 

 

The predictive accuracy  of a rule set is a measure of the ability of the rule set to correctly 

classify examples that were previously unseen. In MCI predictive accuracy is tested using a 

secondary training set. The secondary set consists of those training examples not available to the 

learner during hypotheses generation.  One advantage of this holdout method is that rules learned 
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from the primary training set, but which perform well on the secondary set, are less likely to 

overfit the original data. Predictive accuracy is measured as the percentage of secondary training 

examples correctly classified. 

 

The Complexity  of a ruleset is evaluated by counting the number of rules in the ruleset and the 

total number of conditions (or selectors). 

 

The final quality of the rule is evaluated lexiographically. Rulesets are evaluated first according 

to the accuracy criterion. If the accuracy is within a user defined threshold of the goal accuracy, 

the ruleset is then further evaluated according to the complexity criterion. If the ruleset does not 

meet the minimum standard for accuracy, it is rejected and no further processing is done. The 

lexiographic evaluation permits the user to set a constraint on the minimum allowable accuracy. 

 

4.5 Representation Space Modification 

The representation space modification module (RSMM) is responsible for determining which 

modification operator to apply to the current learning problem, recording the operator selected 

with a vector description of the problem, making the changes to the training and testing examples 

and updating the meta-rules. Figure 4.4 shows the design of the RSMM. 

 

RSM operator selection is performed by the RSMM by matching the characteristics of the current 

problem against stored meta-rules. This matching is done with a modified version of the ATEST 

module within AQ15c. This module requires, as input, an example to be tested and a set of class 

descriptions. The test example is extracted from the current problem. The meta-attributes which 

make up this meta-example are described in Table 4.1. The meta-rules used are either provided 

by a user, and/or learned in previous iterations  
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Figure 4.4 - Architecture of the Representation Space Modification Module 

 

of the program and describe the conditions (properties of the learning problem) under which 

RSM operators have most improved the representation space.  

 

4.5.1 Meta-attributes 

 

Meta-rules are used to guide the selection of which representation space modification operator is 

appropriate for a given learning problem. Meta-rules relate the properties of the example dataset 

and the rule evaluation results on the secondary training set to the most appropriate operators. 

These rules can be initially provided by the user and incrementally improved by the system, or 

they can be learned by the system as it tries to solve the problems it faces. Meta-rules, and the 

meta-examples from which they are learned, are stated in terms of meta-attributes.  

 

The meta-examples are described in terms of  meta-attributes. Meta-attributes can be organized 

into four classes: 1) those characterizing types of the original attributes (numeric, multivalued 

nominal, Boolean, etc.), 2) those characterizing attribute quality, which is currently judged using 

an information gain ratio measure (Quinlan, 1993), 3) those characterizing the expected level of 

quality of the examples, and 4) those characterizing the changes in the performance of the 
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Meta-attribute 
category 

Meta-attribute Values Explanation 

Meta-attributes 
detecting the 
presence of various 
types of attributes  

Numeric_attributes_present Yes, No Yes, if data contains two 
more numeric attributes; 

No, otherwise 

 Nominal_attributes_present Yes, No Yes, if data contains two or 
more multi-valued 
nominal  attributes; 

No, otherwise 

 Boolean_attributes_present Yes, No Yes, if data contains two or 
more Boolean attributes; 

No, otherwise 

 Number_of_attributes integer Number of attributes in 
current space 

Meta-attributes 
characterizing the 
attribute quality  

Irrelevant_attributes_present Yes, No Yes, if data contains any 
irrelevant attributes; 

No, otherwise 

Meta-attributes 
estimating ruleset 
performance 

Last_simplicity integer Total number of selectors in 
learned rules 

 Performance_estimation Accuracy 
in 
percentag
e 
(1..100%) 

Predictive accuracy of the 
last ruleset generated from 
the primary training example 
set and tested on the 
secondary testing set. 

 Selector-rule_ratio real total # selectors/ total # rules 

 Average_number_of_uniquely
_ covered_examples_per_rule 

real Sum of unique weights/ 

# of rules 

 Example-rule_ratio real Total # of examples/ 

Total # of rules 

 Average_number_of_internal_ 
disjunctions 

real > 1.0 # values in selectors/ 

# of selectors 

Meta-attributes 
estimating the 
quality of examples 

Relative_rule_weight1 real <= 
1.0 

tweight rule #2/ 

tweight rule #1 

 Relative_rule_weight2  real <= 
1.0 

tweight rule of last rule / 

tweight rule #1 
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 Training_examples_percent_of
_total 

real # train given / # of examples 
possible 

Table 4.1 - Meta-attributes for characterizing a learning problem 

generated rules on the secondary training dataset. Table 4.1 presents a  list of the current meta-

attributes. All of these meta-attributes are extracted automatically by the system after initial 

hypotheses are learned. 

 

4.5.1.1. Attribute Type 

 

The applicability of some RSM operators depends on the type of the attributes. For example, 

arithmetic operators (for constructing new attributes from current attributes) applies to numeric 

attributes, while logical operators apply to Boolean and multi-valued nominal attributes.  The 

type of attributes for which different RSM operators are available are currently all the types 

supported by the AQ learning module: linear (numeric integer, continuous), nominal (multi-

valued and boolean) and structured.  

 

4.5.1.2 Attribute Quality 

 

Attribute quality measures the ability of a single attribute to discriminate among given classes of 

examples. An attribute may contribute individually, or as part of an attribute group. Individual 

attribute quality can be measured statistically by calculating the ability of an attribute to partition 

the example set appropriately. One such measure is the information gain  ratio used in C4.5 

(Quinlan, 1993), or by PROMISE (Baim, 1982). 

 

The value of  the meta-attribute "Irrelevant_Attributes_Present" is "Yes" if any one of the 

attributes in the given group of attributes has an information gain ratio greater than a user-defined 

minimum (default 0.1). This meta-attribute is useful for detecting irrelevant attributes, or if all 
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attributes are below this threshold - for inferring that the given attributes may be correlated with 

each other, a situation in which attribute generation is useful.  

 

The contribution of an individual attribute in the context of a set of attributes can be measured by 

analyzing rules generated from examples described in terms of these attributes (Wnek and 

Michalski, 1994). In this measure an attribute is viewed as irrelevant if it is not present in the 

rules, or is present only in the "light" rules (rules associated with low values of t-weight 

parameter the coverage of training examples by a rule). The AQ17-MCI method currently uses 

only the statistical information gain metric in order to judge attribute quality for use in the meta-

attributes. However, the logical method based on hypotheses is used when the HCI method for 

feature selection is then invoked on the data.  

 

There exist a number of alternative measures of individual attribute quality. One measure is 

attribute utility  (Imam, et al., 1993). An attribute's utility is the sum of the class utilities of an 

attribute. The class utility of an attribute is the number of classes whose attribute value set has no 

common values with the value set occurring in the given class. An attribute is considered 

irrelevant if its attribute utility is low. Another approach is the one used by rough set systems. In 

this method the quality of an attribute is measured by taking the difference in performance which 

occurs when rules are learned from the set including, vs. excluding, this attribute. This approach's 

strength lies in the fact that attribute quality is judged in the context of other attributes. This 

prevents problems which occur when an attribute is removed when it's average discriminatory 

power is low, but it is vital for a specific class, or when the quality of an attribute appears to be 

high even though it discriminates examples which are already easy to describe with other 

attributes (overlapping discrimination). These other approaches can be used in the AQ17-MCI 

framework, but currently are not available. 

 

4.5.1.3 Example Quality 
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The quality of training examples is characterized in terms of three meta-attributes. The first two, 

relative-rule-weight1, and relative-rule-weight2, measure the distribution of examples in the 

space by looking at the relative coverage of the heaviest rule for a class against the coverage of 

the second heaviest rule and the lightest rule respectively. The focus of these meta-attributes it to 

try to capture the degree to which the training examples are distributed in a way that is easy to 

capture by the rules. If relative_rule_weight1 is high then that means the top rule covers many 

more examples than the second heaviest rule in the class. Assuming that training examples are 

provided in a proportion that reflects their true proportions, then this heavy cluster covers the 

most typical examples, while the other rules are covering less typical, and possibly noisy 

examples. The presence of these outlier examples, or noise, can mislead some attribute 

construction techniques, and statistically-based quantization. Thus, it may be wise to not apply 

these operators when this condition holds. If relative-rule-weight1 is low, then this means the 

examples are distributed fairly evenly across the space in a way that may be hard to capture. This 

is true for concepts which are spread across attributes such as 'm-of-n' or multiplexor problems. 

Such 'spread' concepts present a clear need for attribute construction methods which capture and 

explicitly characterize these interactions. Rule-weight2 has a similar motivation as rule-weight1 

except that the conclusion that the concept is spread is even better supported when rule-weight2 

is low.  

 

The final example quality meta-attribute is 'Training_examples_percentage_of_total'. This meta-

attribute is included to measure the confidence in the given training set as being prototypical of 

the real distribution. If this attribute is low, then the learning algorithm is forced to learn from a 

very sparse space. In such a case bias-strengthening (Utgoff, 1986; Gordon, 1990; Gordon and 

Desjardins, 1995) operations, such as attribute-removal or abstraction can be very dangerous. 

This measure also dramatically reveals one of the differences between synthetic examples and 

real-world domains. In the former, it is usually the case that a large percentage of the total 
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learning space is labelled with class information, while in the latter this ratio is often very small. 
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4.5.1.4 Rule Performance 

 

Rule performance is measured directly by determing the predictive accuracy in 

'Performance_estimation' and the number of rules in 'Last_simplicity', and indirectly by rule 

coverage in 'Selector-rule-ratio', 'Average_number_of_uniquely_covered_examples' and 

'Average_number_of_of_internal_disjunction'. The direct measurements are useful to guide the 

system into learning when conservative or dramatic changes are needed in the representation 

space. If the predictive accuracy is already high and the rules are fairly simple, then the concept 

representation space is fairly promising. In this case a conservative method such as constructing 

new attributes would be preferable to a more dangerous modification in which attributes are 

removed. 

 

Selector-rule-ratio is used to help determine if attribute removal is possible. When AQ15c learns 

rules which are maximally general or of minimal length only the necessary attributes are included 

in the learned rules. If the selector-rule ratio shows that only a small percentage of the available 

attributes are being used in any given rule, then some attributes may be redundant or irrelevant. 

This signals the attribute-removal operators to be invoked. 

 

The Average_number_of_uniquely_covered_examples_per_rule meta-attribute tries to capture 

the ease with which the rules covered the distribution of examples. If this number is high then the 

learned rules within a class are not overlapping - they are each covering a different clusters of 

examples. Attribute construction may be useful here to bring together these clusters of examples 

into fewer, larger and easier to describe clusters. If this meta-attribute is low, then rules are 

probably overlapping to a fairly high degree, but it is still hard to describe the cluster. 

Quantization may be used to here to reduce the distances between examples in the space by 

removing unnecessary detail. This may make rule coverage easier in the next generation. 

Example_rule_ratio provides similar information about the ability of the current hypotheses to 
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cover the examples.  

 

The average_number_of_internal disjunctions counts the number of values present, on average, 

in each selector of each learned rule. Based on the assumption that in a good representation space 

rules are simple, the presence of large numbers of internal disjunctions (e.g. [x1 = 1,3,5,7,9]) 

singnals the need for some kind of change. It may be that the attributes are measured with an 

excessive precision.  To correct such a situation, the valueset of the attribute may be reduced, and 

the values of this attribute in the examples may be substituted by more abstract values. 

Overprecision can be reduced by abstraction. See Section 2.2.1.1 for a description of related 

work. AQ17-MCI uses a Chi-merge method to abstract attributes (Kerber, 1992). 

 

4.5.2 Applying Meta-rules for Operator Selection 

Each example dataset is characterized by a vector of the previously listed meta-attributes and 

their values. Operator selection is a deductive process of applying previously learned 

representation space modification operator rules to these meta-attribute vectors. This matching 

procedure calculates a degree of match between the meta-example and the meta-rules. This 

degree of match is calculated based on the relative number of conditions that match. 

Representation space modification operators are then ranked in decreasing order of meta-rule 

match. If no single meta-rule is the top rule, then selection between equivalent operators is based 

on the user’s preference, if they are available, or random choice otherwise. 

 

It may occur that the same RSM operator is repeatedly selected. In other words the search 

stagnates on a local maximum. AQ17-MCI attempts to prevent this by updating the database 

characterization after each ruleset evaluation. If this fails and the same operator is repeatedly 

selected, the next best matching operator is selected. Since the meta-attributes are updated 

continuously,  the selection stage picks the operator that best matches the current  database 

characterization. If all available operators fail to match the description (i.e., the degree of match 
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is below a threshold) then selection stops and MCI evaluates the current ruleset on the testing 

examples. At minimum the best performance of MCI will be that which is achieved when no 

modifications are made to the representation space. In this case the performance of MCI will be 

equal to just selective induction. 

 

Constructors Destructors

Data-driven Hypothesis-driven

abstraction

ArithmeticLogical

Value-
grouping

Rule-
grouping

Representation Space
Search Operators

Multi-valued Binary

Condition-
grouping

Data-driven

Attribute-
removing

Hypothesis-driven

Attribute-removal
 

Figure 4. 5. A hierarchy showing the representation space modification operators in AQ17-MCI 

 

Figure 4.5 presents a hierarchy of RSM operators used in AQ17-MCI. This hierarchy presents the 

types of modifications that may be performed within the attribute-value representation within 

which AQ operates. This hierarchical organization captures the relationships between RSM 

operators and allows selection rules to provide better guidance when confronted with new 

domains. The current MCI system has capabilities for both data-driven and hypothesis-driven 

construction of attributes, attribute removal by hypothesis, and statistical information and 

abstraction. 

 

4.5.3 Example Reformulation 

 

After the representation space modification has been selected, the training data are reformulated 

in this space. The generation module has a number of fundamental CI operators with which it can 
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modify the primary and secondary training set. These operators include those used by a number 

of other systems (Bloedorn and Michalski, 1996; Wnek and Michalski, 1994) Some of these 

fundamental operators have been reported by others, notably Rendell and Seshu (Rendell and 

Seshu, 1990) The following MCI operators are equivalent to the terms used in Rendell: attribute 

removal (projection), and hypothesis-driven constructive induction (superpositioning). 

 

4.5.3.1 Attribute Removal 

 

Attribute removal makes a selection of a set X' of attributes from the original attribute set X. In 

MCI, attribute removal is done either in a hypothesis-driven approach using HCI-SEL (Wnek and 

Michalski, 1994), or in a data-driven approach using DCI-SEL (Bloedorn and Michalski, 1996). 

In the logic-based approach the irrelevancy of an attribute is calculated by analyzing rules 

generated by the Decision Rule Generation module. For each attribute, a sum is calculated of the 

total number of examples covered by a discriminant rule which includes that attribute. Attributes 

that are irrelevant will be useful only to explain instances that are distant from the majority of 

examples in the distribution. Thus, these attributes will have low total-weight sums. In the data-

driven approach an information gain ratio is used to calculate the 'quality' of an individual 

attribute. If the quality if less than a user-defined value (default 0.01) then the attribute is 

removed. An example of attribute removal is shown below. 

 

Before: 
Strong_box-events 
color    material    age    shape 
red       cardboard 12     square 
blue     wood          3     rectangle 
green   wood          5     square 
 

After 
Strong_box-events 
material      age 
cardboard   12 
wood           3 
wood           5 

 

4.5.3.2 Abstraction 
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Abstraction is the merging of attribute values into intervals. Currently MCI implements only 

abstraction, based on the Chi-merge correlation between an attribute-value interval and the class. 

This method was proposed by Kerber (Kerber, 1992). Abstraction selects a set V' ℘ V (where V 

is the domain of A) of allowable values for attribute A. Abstraction can be used to reduce multi-

valued large nominal domains, or real-valued continuous domains into domains consisting of 

only a small number of discrete values which represent intervals in the original representation. 

An example of abstraction on the attribute 'age' is shown below. In this example the ages 3..5 

have been mapped to 0 and 12 has been mapped to 1.  

Before: 
Strong_box-events 
color    material    age    shape 
red       cardboard 12     square 
blue     wood          3     rectangle 
green   wood          5     square 
 

After 
Strong_box-events 
color  material      age    shape 
red     cardboard     1      square 
blue    wood           0      rectangle 
green  wood           0      square 

 

4.5.3.3 Hypothesis-driven Attribute Generation 

 

Hypothesis-driven attribute generation is a method for constructing new attributes based on an 

analysis of inductive hypotheses. Useful concepts in the rules can be extracted and used to define 

new attributes. These new attributes are useful because they explicitly express hidden 

relationships in the data. This method of hypothesis analysis as a means of constructing new 

attributes is detailed in a number of places including (Wnek and Michalski, 1991, Wnek and 

Michalski, 1994). Wnek and Michalski define three types of hypothesis patterns from the 

simplest (value-groupings) to the most complex (rule-groupings). which is implemented in 

AQ17-HCI. AQ17-HCI is used in MCI to perform rule-based constructions of attributes based on 

value-groupings, condition groupings, rule-groupings, and attribute removal. An example of 

hypothesis-driven attribute generation is shown below. In this example a new attribute 'ca1' has 

been generated. This attribute takes the value 1 when [material=wood][age=3..5] and 0 

otherwise. 
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Before: 
Strong_box-events 
color    material    age    shape 
red       cardboard 12     square 
blue     wood          3     rectangle 
green   wood          5     square 
 

After 
Strong_box-events 
color    material    age    shape      ca1 
red       cardboard 12     square      0 
blue     wood          3     rectangle  1 
green   wood          5     square      1 

 

4.5.3.4 Data-driven Attribute Generation 

 

Data-driven (DCI) methods build new attributes based on an analysis of the training data. One 

such method is AQ17-DCI (Bloedorn and Michalski, 1996). In AQ17-DCI new attributes are 

constructed based on a generate and test method using generic domain-independent arithmetic 

and boolean operators. In addition to simple binary application of arithmetic operators including 

+, -, * , and integer division, there are multi-argument functions such as maximum value, 

minimum value, average value, most-common value, least-common value, and #VarEQ(x) (a 

cardinality function which counts the number of attributes in an instance that take the value x). 

Another multi-argument operator is the boolean counting operator. This operator takes a vector 

of m boolean-valued attributes (m>=2) and counts the number of true values for a particular 

instance. This approach is able to capture m-of-n type concepts. Data-based logical construction 

in MCI is performed by AQ17-DCI using the multi-argument functions of #VarEQ(x), most-

common, least-common, boolean counting, and binary boolean operators. Data-driven attribute 

construction is performed by AQ17-DCI through maximum, minimum, average, and +, -, *  and 

integer division.  

 

The complexity of attribute DCI-Gen depends on the construction method used. The binary 

operators are O(A2Ex) where A is the number of attributes and Ex is the number of examples. 

The functional operators are O(AEx) when knowledge about attribute units is used to determine 

the set of attributes. The #VarEQ(x) operator which actually builds many new attributes is 
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O(DAEx) where D is the size of the domain of all the attributes being combined. An example of 

attribute construction using the AQ17-DCI method is shown below. In this example a new 

attribute 'l*w' has been generated which is the product of length and width which is better 

understood as the area of one side of the box. 

Before: 
Strong_box-events 
 material    age    shape   length   width 
cardboard 12     square     3            3 
wood          3     rectangle  6           2 
wood          5     square     4            4 
 

After 
Strong_box-events 
material    age    shape   length  width   l*w 
cardboard 12     square      3        3         9 
wood          3     rectangle  6         2        12 
wood          5     square      4        4         16 

 

4.5.4 Storing Experience of Operator Selection 

 

Each time a strategy is selected, and evaluated against the secondary training examples data, the 

results of the modification must be stored. If the application  resulted in an improvement in rule 

quality, the meta-example characterizing the dataset is inserted into the knowledge base under the 

class representing the RSM operator which made the useful modification of the representation 

space. If the quality remained constant or declined, then the representation space is returned to its 

previous state, and a new operator is selected. Thus learning does not currently occur when a rule 

fails to predict a successful operator. The failure of the first operator is only corrected implicitly 

when another operator is found to be successful for the current problem. If all RSM operators fail 

to improve the space, the vector characterizing the problem is stored as a positive example of the 

class representing no modifications.  

 
AQ if: 
 
[Last_simplicity = 3..15] 
 
Interpretation: 
 
Perform no change to the representation space if the learned rules are simple. 
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DCI-Quant if: 
 
[Last_simplicity = 19..46] & [Training_examples_percent_of_total = 0] 
 
Interpretation: 
 
Perform quantization of the space if the last learned rules were moderately complex and the 
training examples provided is only a small percentage of the total possible space (common in 
real-world problems). 
 

Figure 4.6. Examples of learned meta-rules 

 

Given a set of classified meta-examples, new meta-rules can be learned or improved. Meta-rules 

are generated by AQ15c, or provided by the user. Learning of meta-rules is invoked at the 

conclusion of a learning session. This occurs when a problem is solved (the learned rules exceed 

the user thresholds for quality), or no more operators can be tried. The new meta-rules generalize 

the previous meta-examples Meta-rules will now be capable of classifying unseen databases 

according their suitability to representation space modification. Examples of learned meta-rules 

are presented in Figure 4.6. These meta-rules are learned from a set of fourteen meta-training 

examples representing fourteen datasets. These datasets and the predictive accuracy of these 

learned meta-rules are described in Chapter 5. 

 

4.6 Summary 

 

This chapter described in detail the AQ17-MCI system which implements multistrategy 

constructive induction. In this system, learned hypotheses are repeatedly evaluated on predictive 

accuracy and complexity after various modifications to the representation space are made. Those 

modifications that result in improved hypotheses are retained, while those that do not are 

discarded - a greedy search with lookahead of one. Different operator control methods can be 
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used to select RSMO's including: a) random selection when no knowledge, or meta-rules is 

provided, b) fixed ordering (e.g. First construct new attributes via DCI-Generate and HCI-

Generate, select relevant attributes with HCI-Select,  then abstract attribute values with DCI-

Quant, and finally select attributes with DCI-Select) and c) learned meta-rules. Chapter 5 

describes experiments applying AQ17-MCI on a variety of synthetic and real-world problems.  
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CHAPTER 5 EXPERIMENTS 

5.1 Experimental Goals 

 

This chapter provides empirical support for multistrategy constructive induction as described in 

this thesis. The goal of this chapter is to show that multistrategy constructive induction a) 

outperforms traditional selective induction alone, and b) outperforms any single-strategy 

constructive induction method from the set that make up MCI. The performance metric used here 

is predictive classification accuracy. Predictive classificication accuracy is measured as the 

percentage of correct classifications made by the final hypothesis for a set of test examples. Test 

examples are randomly selected and were unavailable during hypothesis generation. The 

performance of MCI will be evaluated in two ways: 1) its ability to solve a wide variety of 

representation space problems within one application framework, and 2) its ability to solve 

problems with multiple pathologies requiring the individual representation space modification 

operators to work together.  

 

5.2 Experimental Design 

 

The single most important factor influencing the success of inductive learning is the quality of 

the representation space (RS). Here the representation space is defined as being the space of 

descriptors and their values. Although also important, the qualities of the examples themselves, 

such as their typicality and accuracy, are not directly a part of the representation space, and as 
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such are not addressed by the representation space  modification operators discussed here. The 

qualities of the RS being focused on are: 

 

a) Suitability of attribute-values to classification task. If attributes are measured with too little 

precision then concept boundaries are blurred and difficult to discriminate. Conversely too much 

precision can artificially expand the distances between examples increasing the possibility that 

important patterns will be missed (i.e. failure to see the forest for the trees). Overprecision is 

most often seen in problems with many numeric attributes such as those present in problems in 

computer vision or economics. 

 

b) Relevance of the attributes to the classification task. The true correlation between the class 

attribute and the other attributes is often difficult to determine without extensive data or 

background knowledge. Having only truly relevant attributes available in the RS increases the 

possibility that the learned hypotheses will truly capture strong patterns and be predictively 

accurate. However, often even experts disagree, or don't know what factors are relevant to a 

classification task. For example, in segmenting an image into classes of objects, or retrieving 

relevant documents from a large text collection,  attribute relevance can be a serious problem. 

 

c) Independence of attributes. Selective induction learning algorithms assume that all the 

attributes are independent. Such algorithms cannot express even very simple correlations 

between attributes such as 'height = width'. The independence assumptions is often violated for 

real-world domains because every attribute which is thought to have an effect on the outcome is 

included regardless of their likely non-independence. 

 

Learning in a representation space that satisfies these criteria is easy. Unfortunately, designing a 
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RS for a given problem which satisfies these criteria is often extremely difficult, especially for 

real-world problems. In fact in many real-world applications, knowing the relevant attributes, and 

whether they are independent or not is part of the problem.  

 

In order to expand the applicability of machine learning to these real-world problems, an 

automated, or partially automated method for finding an improved representation space must be 

found. The MCI approach has been designed to perform this automated search for an improved 

representation space and to correct the problems that arise when each of the previous criteria are 

not satisfied.  

 

The following experiments are designed to evaluate the ability of the representation space 

modification operators in MCI to find an improved representation space. In the first set of 

artificial problems the necessary transformations are known. This allows the experimental results 

to be compared with predicted outcomes. In the latter examples, the exact form of the goal 

concept is not known. For these problems the results of MCI operations are evaluated based on 

the change in predictive accuracy,  and the knowledge generated (e.g. the meaning of the 

attributes generated) 

 

Evaluating the MCI method, when it is uses learned meta-rules to guide the search for an 

improved representation space, is complicated by the fact that the performance is determined by 

the quality of the knowledge available to it in the form of meta-rules. This knowledge cannot be 

obtained without some input from a user either in the construction of the meta-rules directly or 

indirectly from the selection of meta-examples. In either case, it can be argued that the true 

performance of the overall system cannot be accurately determined because of the bias provided 

by outside knowledge. Although it is impossible to obtain an “average” measure of performance 
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because of this user bias, it is possible to obtain an upper performance bound. This can be 

achieved by evaluating all the available representation space modification (RSM) operators for a 

given problem. The best individual  performance is then selected as the performance of MCI. If 

the meta-rules are perfectly accurate in predicting the correct class than MCI will perform at this 

upper level. The quality of the meta-attributes in extracting relevant cues for operator selection, 

and in the meta-rules for predicting operator class is separately evaluated in section 5.5. 
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5.3 Synthetic Problems 

 

This set of artificial problems was generated to carefully evaluate the effectiveness of MCI to 

overcome a learning problem made difficult by: a) overprecise measurement of attribute values, 

b) the presence of irrelevant attributes, and 3) the presence of non-independent attributes. If the 

necessary transformation are made, the simple DNF rule which is the design goal concept, should 

easily be found by the underlying induction algorithm AQ15c. 

 

5.3.1 Description 

 

This problem set consists of four 2 term DNF functions (e.g. the goal concept consists of 2 

disjuncts) first described in (Bloedorn, Michalski and Wnek, 1994) The goal concept for each of 

the six problems is the same. However, in all but the first case the goal concept has been 

obscured by a different type of problem. The three different problems, corresponding to the three 

criteria of section 5.2  are: 1) Overly large attribute domain sizes in which like-labelled examples 

are distant in the representation space (criteria a) 2) Irrelevant attributes (criteria b) and 3) 

Dependent attributes (criteria c). A more detailed description of each of the 4 problems (the 

original and each of the three described) is given below. The attributes used in this problem set 

have between two and 60 different values. The values are linearly ordered. The domains of 

attributes x1, x2, and x3 have domains of [0..5] in the base case while x4 and x5 have a domain 

of [0..1]. The goal of this set of experiments is to determine the effectiveness of the available set 

of RSM operators to overcome the different difficulties introduced to the simple base problem.  
 
 
 
1) Problem t0 original DNF 
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Positive class: [x1=3,4] [x2=1..3][x3=1,2] v [x3=3,4][x4=1][x5=1] 

 

2) Problem t1 (Overprecision: the domains of attributes x4 and x5 have been expanded 10-fold) 

Positive class: [x1=3,4] [x2=1..3][x3=1,2] v [x3=3,4][x4=10..19][x5=10..19] 

 

3) problem t2 (inappropriate attributes: the decimal value of x3 has been mapped using a 4 place 

parity coding, e.g. 3 = 0 1 1 1. The selection of a particular equivalent coding is random) 

Positive class: [x1= 3,4] [x2=1..3][[#attributes(x6..x9)=1]=1,2] v 

  [[#attributes(x10..x13)=1]=3,4][x4=1][x5=1] 

 

4) Problem t3 (the first 30 attributes are irrelevant) 

Positive class: [x31=3,4] [x32=1..3][x33=1,2] v [x33=3,4][x34=1][x35=1] 

 

5.3.2 Method 

 

All five of the RSM operators, DCI-Gen, DCI-Quant, DCI-Sel, HCI-Gen and HCI-Sel were 

applied to problems t0, t1, t2 and t3. Each problem was evaluated using 10-fold cross validation 

(Weiss and Kulikowski, 1991)  Significance is calculated using a two-tailed student t-test. 

 

5.3.3 Results 

 

Table 5.1 shows the predictive accuracy of AQ alone (no representation space modification) and 

AQ17-MCI for the four DNF problems. By combining the performance of multiple RSM 

operators, AQ17-MCI performs better than AQ alone on all the corrupted learning problems. 



Chapter 4 - The AQ17-MCI System  74 
_____________________________________________________________________________ 
 

 

Additionally, Table 5.2 shows that no single RSM operator can correct all three learning 

problems, showing that some combination of strategies is required to achieve high performance 

over the range of problems. 

 

Table 5.1 - Results of AQ and AQ17-MCI on 3 artificial problems 

 

              Problem 

Method 

Baseline DNF expanded 

domain 

distributed 

coding 

irrelevant 

attributes 

AQ 

Avg. Accuracy 

Avg. #Rules 

Avg. #Selectors 

Avg. L. Time (sec) 

 

100.0 

8.1 

17.3 

0.5 

 

96.8 

15.6 

45.6 

13.9 

 

93.9 

33.5 

146.0 

3.82 

 

87.9 

18.6 

172.3 

440.2 

AQ17-MCI 

Avg. Accuracy 

Avg. #Rules 

Avg. #Selectors 

Avg. L. Time (msec) 

Avg. CI Time (sec) 

AQ only 

100.0 

8.1 

17.3 

0.5 

0 

Quant 

100.01  

8.91 

20.41 

3.311 

0.2 

Generate 

98.63  

14.21 

51.31 

8.51 

6.0 

Select 

99.62 

20.5 

135.4 

121.11 

0.9 
(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1) 

 

Problem T0 (Original DNF) 

 

The base learning problem (t0) is clearly easy to learn. The rules learned without modification to 

the representation space average 8.10 rules with 17.3 selectors, take 0.45 milliseconds to learn 

and have 100% predictive accuracy. The learned rules for the positive class exactly match the 
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goal target concept given above. 

 

Problem T1 (Expanded Domains) 

 

In problem t1 the simple DNF problem of t0 has been complicated by artificially expanding the 

size of the attribute domains of x4 and x5 10-fold. In the original representation of the problem 

these attributes were binary, but now they each take 10 values. As these attributes are only used 

in one of the disjuncts in the goal concept it would be expected that learned rules would be more 

complex, but have about the same predictive accuracy as in t0. This is exactly what occurs: AQ 

generates an average of 15.6 rules (92% increase over t0), 45.6 selectors (163% increase) in 

13.91 milliseconds with a predictive accuracy of 96.8%. However, the DCI-QUANT system was 

able, to a high degree, correctly identify which intervals were meaningful and make the necessary 

repair to the representation. The rules 'fixed' by this transformation were 100% accurate (± 0.0), 

had 8.9 rules, with an average of 20.4 selectors. These rules are only slightly more complex than 

the rules learned in the original space and required a learning time of 3.31 milliseconds. 

 

Problem T2 (Attribute Interaction) 

 

In problem t2, t0 has been complicated by introducing non-independent attributes. The simple 

description of the goal concept has been 'blurred' (Rendell and Ragavan, 1993) by spreading the 

values of x2 and x3 across 8 additional attributes (x6..x9 now represent the value of x2; and 

x10..x13 now hold the value of x3). This blurring has reduced the predictive accuracy to 93.9%, 

increased the number of rules from 8.10 to 33.5 (313% increase), increased the number of 

selectors from 17.3 to 146 (743% increase) and increased the learning time from 0.45 

milliseconds to 3.82 msec (748% increase). However, this problem has been corrected by the 
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DCI-GENERATE method using the SUM operator. SUM uses information about attribute units 

to guide construction of new attributes. With new attributes, DCI-Generate was able to learn 

rules which were 98.6% accurate (±1.82 α = 0.1), had 14.2 rules and 51.3 selectors.  
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Problem T3 (Irrelevant Attributes) 

 

In this problem t0 has been complicated by 30 additional, randomly generated attributes. The 

learning algorithm must select the important attributes from the irrelevant. AQ15c performs 

attribute selection well, but with large amounts of irrelevant attributes, even AQ15c's 

performance can degrade. This is what was found with problem t3: AQ learned rules that were 

only 87.9% predictively accurate (± 6.16 α=0.1), had 18.6 rules, 172.3 selectors and took 440.15 

milliseconds to learn. DCI-Select was able to perform the correct transformation to the 

representation space resulting in rules that were significantly more accurate (99.6% ± 0.87 

α=0.01), had shorter rules, 135.4 selectors and took significantly shorter time to learn 121.06 

milliseconds (± 18.71). 

 

In addition to these results, the effect of other MCI operators on these four datasets was 

measured. These results (Table 5.2) show that although some transformations are beneficial, 

some are not. For example, attribute generation can be incorrectly encouraged, by expanded 

domains and irrelevant attributes, into generating attributes that appear to be relevant, but really 

are not. Attribute abstraction can also be harmful to learning if applied to problems which are 

already well suited as shown in the results for DCI-Quant in the Baseline DNF case. This would 

not occur in AQ17-MCI, because it checks to see if modification to the representation space is 

needed by learning hypotheses in the initial space. This kind of extra processing and damamging 

effects are avoided by this simple initial check. The results for DCI-Select also point out the 

difficulty of detecting attribute relevance in the presence of attribute interaction. In this case the 

rules learned in the DCI-Select transformed space were significantly worse than the rules learned 

in the initial space (predictive accuracy: 93.9 vs 69.0) 
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Table 5.2 - Performance of individual RSM operators on 3 DNF problems 
 
              Problem 
Method 

Baseline DNF expanded 
domain 

distributed 
coding 

irrelevant 
attributes 

DCI-Generate 
 

Avg. Accuracy 
Avg. #Rules 
Avg. #Selectors 
Avg. L. Time (sec) 
Avg. CI Time (sec) 

 
 
100.0 
7.8 
18.4 
1.0 
.02 

 
 
92.0 
16.7 
65.22 
61.91 
1.6 

 
 
98.6  
14.2 
51.3 
8.5 
6.0 

 
 
85.2 
17.7 
191.3 
836.71 
4.9 

DCI-Quant 
 

Avg  Accuracy 
Avg. #Rules 
Avg. #Selectors 
Avg. L. Time (sec) 
Avg. CI Time (sec) 

 
 
85.91 
8 
17.93 
0.31 
6.7 

 
 
100.0  
8.9 
20.4 
3.31 
0.2 

 
 
94.7 
33.5 
149.1 
5.51 
0.2 

 
 
87.0 
29.31 
223.63 
233.81 
3.3 

DCI-Select 
 

Avg. Accuracy 
Avg. #Rules 
Avg. #Selectors 
Avg. L. Time (msec) 
Avg. CI Time (sec) 

 
 
91.31 
10.4 
29.02 
0.41 
 

 
 
89.22 
19.71 
57.22 
14.2 
0.1 

 
 
69.01 
2.01 
4.01 
0.21 
0.2 

 
 
99.6 
20.5 
135.4 
121.1 
0.9 

HCI-Select 
 

Avg. Accuracy 
Avg. #Rules 
Avg. #Selectors 
Avg. L. Time (msec) 
Avg. CI Time (sec) 

 
 
100.0 
8.1 
17.3 
0.5 
3.7 

 
 
96.8 
15.6 
45.6 
13.9 
3.7 

 
 
93.9 
33.5 
146.0 
3.82 
4.9 

 
 
89.7 
20.1 
191.4 
631.81 
5.2 

HCI-Generate 
 

Avg. Accuracy 
Avg. #Rules 
Avg. #Selectors 
Avg. L. Time (msec) 
Avg. CI Time (sec) 

 
 
100.0 
7.5 
15.8 
0.6 
3.7 

 
 
95.8 
7.51 
19.61 
6.31 
4.3 

 
 
94.4 
131 
46.91 
3.111 
5.2 

 
 
93.1 
7.21 
29.81 
116.241 
9.1 

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1) 

 

5.4 Real Problems 
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This section provides examples of the performance of AQ17-MCI on two real-world domains. 

These domains are segmentation of visual scenes, and GNP change prediction from economic 

and demographic data. These domains show how AQ17-MCI produces the best results when 

multiple RSM operators are used together. This supports somewhat the claim that the problems 

identified (overprecision, irrelevant attributes and attribute-interdependencies) are present in real 

problems. 

 

5.4.2 World Economics 

 

5.4.2.1 Description 

 

The ability to detect economic trends is an important and difficult problem. Like many real 

problems finding the right representation is very difficult. In the experiments described here the 

goal is to find patterns in demographic and economic data which can be used to predict GNP 

(Gross National Product).  

 

Table 5.3 - Initial representation Space of GNP Problem 

 

 Population (age 10-14) as % of total 

 Population *age 15-64) as % of total 

 Urban Population growth rate 

 Urban/rural growth difference 

 Crude birth date (per thousand population) 

 Crude death rate (per thousand population) 

 Agricultural land as % of totall land area 

 Net deforestation rate (annual %) 
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 Food producation per capita (1979-1981 = 100) 

 Energy consumption per capita (kg of oil equivalent) 

 

Attributes characterizing a country in a given year. Training examples provide a characterization 

of a country for 5 years for a total of (11*5 = 55 attributes) 

 

As a first step toward predicting GNP for a given country and year, the following problem was 

formulated in which the goal was to characterize levels of GNP change based on economic and 

demographic attributes. The data were obtained from a World Bank database (Bloedorn and 

Kaufman, 1996). Although the entire database contains economic and demographic records for 

the countries of the world from 1965 to 1990, (Kaufman, 1994) these experiments focus on a 

smaller set of countries during the period from 1986 to 1990.  

 

5.4.2.2 Method 

 

In the experiment we considered 41 countries based on their geographic distribution (x from the 

Americas, x from Europe, etc.) and the completeness of their records in the database. Changes of 

GNP were quantized into four equal-intervals: low (0 to 0.5625), medium (0.5626 to 1.125), high 

(1.126 to 1.6875) and very high (over 1.6875). The countries were described by 11 attributes, 

each sampled over a period of 5 years. Thus  each country was described by 55 attributes. The 

initial representation space for this problem is shown in Figure 5.3. The quality of the generated 

rules was evaluated using a 10-fold cross-validation method (Weiss and Kulikowski, 1991). 

 

Selective Induction  

 

The standard approach to solving this problem is to apply a selective induction learning 
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algorithm to the raw data directly. The results obtained for this approach are shown below. This 

is the baseline performance. 

 

Table 5.4 - GNP results after learning in the original representation space 

 
 Avg. Accuracy (%) Avg. # Rules Avg. # Selectors Avg. Learning Time 

(sec) 

AQ alone 46.2 6.72 19.5 171.9 
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Single Strategy Constructive Induction 

 

All available RSM operators were applied to the problem with the results shown in Table 5.5. 

The HCI methods have a built in check for improvements in predictive accuracy over the 

baseline case. For this problem the transformations introduced by both HCI-Gen and HCI-Sel 

were no better than the baseline. For the data-driven methods, the transformations did make a 

difference. DCI-Gen, on average, added 14 new attributes for each problem. Examples of the 

attributes generated are shown in table 5.6. DCI-Quant reduced the domain size from an average 

of 15.4 to and average of 5.2. This not only caused a reduction in learning time from 171.9 

seconds to 11.2 seconds, but an increase in average predictive accuracy from 46.2% to 58.0%. 

DCI-Sel removed an average of 7 attributes from each problem, but this resulted in little overall 

improvement in learned hypotheses. DCI-Quant also effectively removed 21 attributes from the 

space by reducing their domains size to a single value. This likely contributed to the significant 

reduction in learning time. 

 

Table 5.5 - GNP results after applying individual RSM operators to the original problem 

 
 Avg.  

Accuracy (%) 

Avg.  

# Rules 

Avg.  

# Selectors 

Avg.  

Learning Time 

(s) 

Avg.  

CI Time (s) 

DCI-Gen 64.3 5.9 18.3 205.5 0.3 

DCI-Quant 58.0 7.2 20.1 11.2 1.3 

DCI-Sel 46.2 6.7 19.5 122.7 0.2 

HCI-Sel 46.2 6.7 19.5 171.9 2.0 
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HCI-Gen 46.2 6.7 19.5 171.9 1.6 

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1) 

 

Multistrategy Constructive Induction 

 

Table 5.5 shows examples of applying multiple RSM operators to the same problem. The best 

results occurred with the quantization of attributes followed by the generation of new attributes. 

These results are interesting for two reasons. The first reason is that the search for an improved 

representation space is shown to not be best searched by a simple greedy method; although the 

DCI-Gen space seemed best at first (Table 5.4), the DCI-Quant space followed by DCI-Gen (with 

DCI-Gen adding an average of 15.6 attributes) actually resulted in higher predictive accuracy and 

much shorter learning time. Good meta-rules may be able to overcome this problem by forcing 

the system to perform DCI-Quant first based on the characteristics of the problem. The other 

point is that these results also show that the order of RSM operators is important. This further 

supports the need for control methods which are not fixed in order. Additional experiments 

involving combinations of three RSM operators, but these did not result in an improvement. 

 

Table 5.6 - GNP Results after applying multiple RSM operators  

 
 

 

Method 

Avg.  

Accuracy (%) 

Avg.  

# Rules 

Avg.  

# Selectors 

Avg.  

L. Time (s) 

Avg.  

CI Time 

(s) 

DCI-Gen-> DCI-Sel 64.3 5.9 18.3 188.8 0.3 

DCI-Gen->DCI-Quant 43.7 7.0 19.6 77.9 2.1 
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DCI-Sel-> DCI-Gen 66.1 5.9 18.4 187.5 0.5 

DCI-Sel->  DCI-Quant 53.4 7.5 21.2 38.6 1.5 

DCI-Quant-> DCI-Gen 76.3 7.0 17.9 28.22 0.7 

DCI-Quant-> HCI-Gen 58.03 7.2 20.1 9.76 3.2 

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1) 

5.4.2.3 Results 

 

The results for DCI-Quant followed by DCI-Gen (Table 5.6) shown an approximately 80% 

increase in predictive accuracy, slightly less complex rules, and significantly lower learning time 

over rules learned in the original space (Table 5.3). The multiple transformations were not only 

very useful for prediction, but were also easy to understand. Examples of generated attributes are 

shown in table 5.8. These new attributes are natural combinations of the originals based on 

operators like Average and Minus. An example of a learned rule in the abstracted space 

 

Table 5.7 - Summary of results for GNP problem 

 

 

 

Method 

Avg.  

Accuracy (%) 

Avg.  

# Rules 

Avg.  

# Selectors 

Avg.  

L. Time (s) 

Avg.  

CI Time 

(s) 

AQ only 46.2 6.7 19.5 171.9 0 

DCI-Gen  

(Best Single RSM) 

64.3 5.9 18.3 205.5 0.3 

DCI-Quant-> DCI-Gen 

(Best Multiple RSM) 

76.3 7.0 17.9 28.22 0.7 

 

with new attributes is shown below. This result shows that the operators in AQ17-MCI can be 

used together in order to produce a final result that no single method could.  
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Countries with very high increase in GNP: 
[Death Rate is low] & 

[AVG(%PopulationAgeBracketB) vii is very high] & 

[AVG(Population Growth Rate) is low] OR 

[AVG(Urban Population Growth ) is very low] & 

[AVG(Urban vs. RuralGrowth Difference) is very low] 

 

Interpretation: Countries with a very high increase in GNP are characterized by low death rate, 

the average perecentage of the population age 15 to 64 years is very high and the overal 

popoulation growth rate is low, or the average urban population growth is very low, and the 

average difference between urban and rural population growth rate is very low. 

 

Table 5.8 - Examples of new relevant attributes constructed by DCI-Generate 

 

Name Operator 

used 

Description 

Avg (Population growth rate) Average The average population growth rate 1986 to 1990 

ChgeEnergyCons86-88 Minus Change in energy consumption of a country 

between 1988 and 1986 

Avg(%Population Age 

Bracket B) 

Average The average percentage of the population age 15 

to 64 years old 

AveEnergyCons86-90 Average Average Energy Consumption of a country 

between 1986 and 1990 

 

5.4.3 Computer Vision 

 

                                                 
viiGenerated attributes are shown in italics 
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5.4.3.1 Description 

 

This section details an application of multistrategy constructive induction to the interpretation of 

natural scenes. In this problem the goal is develop a method which can accurately distinguish 

objects in outdoor scenes under varying perceptual conditions. The approach used here is to learn 

characterizations of classes of natural objects (sky, trees, road) from images that have been 

labelled. These characterizations, based on features extracted for pixel windows, can then be 

applied to new scenes in order to predict the presence of natural objects. 

 

5.4.3.2 Method 

 

In the experiment the input to the learner was a training image which includes selected examples 

of the visual concepts to be learned: sky, trees and road. A windowing operator, of size 5x5 

scanned over the training area, was used to extract a number of attributes including: color 

intensity (red, green and blue), horizontal and vertical line, high frequency spot, horizontal and 

vertical v-shape, and Laplacian operators.  The quality of the generated rules was evaluated using 

a 10-fold cross-validation method. This data set has 450 examples equally distributed between 

the three classes. 

 

Selective Induction  

 

The standard approach to solving this problem is to apply a selective induction learning 

algorithm to the raw data directly. The results obtained for this approach are shown in Table 5.9. 

This is the baseline performance. 
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Table 5.9 - Computer vision results after learning in the original representation space 

 
 Avg. Accuracy (%) Avg. # Rules Avg. # Selectors Avg. Learning Time 

(sec) 

AQ alone 72.5 27.7 94.8 231.7 

 

 

Single Strategy Constructive Induction 

 

An exhaustive algorithm was used to find the best transformations to the representation space. In 

phase 1, all the available RSM operators were applied to the raw data (Table 5.10). This table 

shows a dramatic improvement resulting from quantization of the data. The DCI-Quant operator 

reduced average attribute domain size from 256 to 14. The rules learned after the attribute values 

had been quantized were significantly more predictively accurate, and the learning time was 

significantly shorter than for rules learned in the original space. However, rule complexity 

increased from an average of 27.7 rules to 34.6 rules and there was a significant increase in 

number of selectors used in the rules.  

 

The rules learned from the space expanded by DCI-Generate were also significantly more 

accurate than the rules learned in the original space. DCI-Generate added on average 10 new 

attributes, the strongest of which described absolute and relative differences in the amount of red, 

green and blue color intensities. Given the green trees, the dark road and the blue sky present in 

the training images this is not surprising. The tree class included new attributes that stated: [green 

> red] and [green > blue]. The introduction of these new attributes to the representation space 

resulted in a significant improvement to all aspects of the resulting rules. In the new 
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representation space significantly more predictively accurate rules, fewer in number, and of less 

complexity were learned in shorter time than in the original representation space. 

 
Table 5.10 - Computer vision results after applying individual RSM operators 

 

 Avg.  

Accuracy (%) 

Avg.  

# Rules 

Avg.  

# Selectors 

Avg.  

L. Time (s) 

Avg.  

CI Time (s) 

DCI-Sel 75.3 34.7 74.61 215.1 3.1 

DCI-Quant 85.91 34.6 114.7 10.81 5.7 

DCI-Gen 87.11 18.51 63.51 171.11 8.1 

HCI-Gen 71.4 24.9 89.1 359.0 5.9 

HCI-Sel 72.5 27.7 94.8 280.6 5.4 

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1) 

 

The transformations the representation space made by the other operators were not as useful as 

those made by DCI-Quant and DCI-Gen. DCI-Sel was the next most useful transformation. DCI-

Sel consistently removed attributes x4..x8, which are attributes like: horizontal and vertical line, 

high frequency spot, horizontal and vertical v-shape that describe the patterns within the 5x5 

extraction window. This resulted in a slight increase in predictive accuracy, a significant 

reduction in the number of selectors present in the rules and in learning time, but an increase in 

the number of rules generated. HCI-Sel made only small changes in the representation space of 

the problem removing only two attributes over the course of the ten runs. HCI-Gen was also 

conservative in its modifications constructed new attributes on only three of the ten runs. Two of 

these three resulted in decreases in predictive accuracy while the third resulted in no change. 
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These single-strategy results are encouraging and lead to the investigation of combinations of 

operators, especially attribute generation through DCI-Gen combined with abstraction of the 

space through DCI-Quant. The next section describes these experiments. 

 

Multistrategy Constructive Induction 

 

Table 5.11 shows the results from combinations of the three RSM operators: DCI-Gen, DCI-

Quant, and DCI-Sel that made significant improvements to the representation space. The 

previous section showed how initial abstraction of the space was useful, but may have been 

suboptimal given the increase in rule complexity. This finding was reinforced when  DCI-Gen 

was run on the abstracted space. Although the new attributes resulted in fewer rules, they were 

less accurate than those learned in the DCI-Quant only space, and were more complex. The 

contraction of the space may be removing some important information. If the operators are 

reversed and DCI-Quant is applied to the space already expanded by DCI-Gen, the space is 

significantly improved in almost all respects: Both learning time and predictive accuracy are now 

significantly better than in both the original space and the DCI-Gen only space, while rule 

complexity and number slightly increased from the DCI-Gen only space, but is still significantly 

smaller than in the original representation.  

 

DCI-Sel used after DCI-Gen also results some improvements. DCI-Sel after DCI-Gen results in a 

small increase in predictive accuracy over DCI-Gen alone, a significant decrease in learning time 

and the number of selectors used, but an increase in the number of rules. In this space as in the 

original representation, DCI-Sel removed attributes x4..x8. DCI-Gen followed by DCI-Quant and 

then DCI-Sel was tried, but resulted in no improvement in predictive accuracy of the learned 
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rules.  

 

Table 5.11 - Computer vision results after applying multiple RSM operators   

 
 Avg.  

Accuracy 

(%) 

Avg.  

# Rules 

Avg.  

# Selectors 

Avg.  

L. Time (s) 

Avg.  

CI Time (s) 

DCI-Quant ->DCI-Gen 85.41 25.6 147.8 283.0 5.7+1.4 = 7.1 

DCI-Gen ->DCI-Quant 93.41(3) 20.51 63.71 104.51(1) 8.1+19.3=27.4 

DCI-Gen->DCI-Sel 90.31 25.7 53.61(3) 142.21(2) 5.7+1.0 = 6.7 

(1: signifigance α = 0.01 2: signifigance α = 0.05 3: signifigance α = 0.1) 

 

5.4.3.3 Results 

 

The multiple transformations generated by AQ17-MCI, attribute generation followed by attribute 

quantization, resulted in rules which are significantly more accurate, can be learned much faster, 

and are much less complex than rules learned in the original representation. 

 

The DCI-Gen combined with DCI-Quant result suggests that there is both an interaction between 

attributes and an excess of detail in the original representation. By performing DCI-Gen first, this 

interaction appears to be at least partially captured, and the abstraction operator of DCI-Quant 

can now safely perform its operation without looking at the context provided by the other 

attributes. Because DCI-Quant (using the Chi-merge algorithm) views each attribute 

independently it may remove information that is important to classification. Doing DCI-Gen first, 
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this danger is reduced. Before any general conclusions can be drawn about the best ordering of 

RSM operators it must be remembered that the previous GNP problem was best solved using a 

DCI-Quant, DCI-Gen ordering. The conclusion that can be drawn from this is simply that some 

patterns are best described in the original formulation of the problem, and some only become 

apparent after abstraction. If abstraction is sensitive to interactions betweem attributes it may be 

possible to eliminate such ordering effects, but such a method would have to search an enormous 

space of both combinations and abstraction levels. An approach which more tightly couples the 

search for combinations and abstraction level is an interesting and important area for future 

research. In the meantime it reinforces the need to flexibly combine RSM operators and not hard-

code certain orderings. The learned meta-rule approach of AQ17-MCI has such a flexible 

capability. 

 

The attributes constructed by DCI-Gen were not only useful for classification, but also have an 

easily interpretable mearning as differences in color intensities. The difference in color intensity 

between red and green, and between green and blue, were consistently in the top three most 

informative attributes as measured by information gain Table 5.12. The difference between red 

and blue was also generated, but was not found to be of high discriminatory power. 

 

Table 5.12 - Examples of new relevant attributes constructed by DCI-Generate 

 
Name Operator used Description 

red - green subtraction intensity difference between red and green 

green - blue subtraction intensity difference between green and blue 

 

Multistrategy constructive induction helped not only to increase the prediction accuracy, but also 

generated a number of meaningful new attributes. These transformations explicitly found one 
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combination of color intensities based on difference that was useful. This ability to clearly see 

and understand the transformations made by the operators allows researchers to better understand 

the results. It may also inspire the use of other representations. In this case a hue, intensity and 

saturation representation may be used as well for example. The results from applying AQ17-MCI 

to this computer vision problem shows that the operators in AQ17-MCI can be used together in 

order to produce a final result that no single method could. 

 

5.5 Learning Meta Control Rules 

 

This section describes the measures taken to acquire and evaluate meta-rules used to control the 

selection of representation space modification operators. These meta-rules describe the 

conditions under which each of the operators produces the greatest improvement to the 

representation space. These conditons are built up from meta-attributes extracted for both the 

data and initial hypotheses learned from the given problem. 

 

The quality of the meta-rules is measured by their ability to predict the correct operator ‘class’  for 

a given vector description of a learning problem. This ability is primarily determined the quality 

of the meta-representation space although different learning algorithms may perform differently 

on the same data. A complete search of the learning bias space and the meta-attribute space is 

outside the scope of this thesis. In this thesis, the meta-learning algorithm will be fixed to 

AQ15c, and the bias will be set to the default criteria. 
 

5.5.1 Description 

 

The meta-attributes used to describe the given learning problem at hand are given in Table 4.1. 

The values for the meta-attributes are extracted for 11 artificial and 3 real datasets (Table 5.13). 
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These problems were selected because they represented examples of both a) when each of the 

five available representation space modification operators perforned best and b) when no 

modification 

 
Table 5.13 - Descriptions of meta-examples used in evaluating meta-attributes 

 

Key Name Description Best RSM operator Source 

M1 Monk Problem #1 DCI-GENERATE Thrun et al., 1991 

M2 Monk Problem #2 DCI-GENERATE Thrun et al., 1991 

NIM2 Noisy and Irrelevant Monk 

Problem #2 

DCI-SELECT Bloedorn et al, 

1993 

t1.10 Irrelevant DNF t1 with 10% 

training 

none - AQ Bloedorn, 1996 

t1.20 Irrelevant DNF t1 with 20% 

training 

DCI-SELECT Bloedorn, 1996 

t1.60 Irrelevant DNF t1 with 60% 

training 

DCI-SELECT Bloedorn, 1996 

t3.60 Overprecise DNF t3 with 60% 

training 

DCI-QUANT Bloedorn, 1996 

t3.40 Overprecise DNF with 40% 

training 

DCI-QUANT Bloedorn, 1996 

Security Unix user profiles DCI-QUANT Maloof and 

Michalski, 1995 

Hepatitis Hepatitis prediction DCI-GENERATE UC-Irvine 

t1.40 Irrelevant DNF t1 with 20% 

training 

HCI-SELECT Bloedorn, 1996 

M1DCI Monk Problem #1 with DCI 

generated (x1=x2) attribute 

none-AQ Bloedorn, 1993 
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M2DCI Monk Problem #2 with DCI 

generated #VarEQ(1) attribute 

none-AQ Bloedorn et al, 

1993 

Scale_hepatitis Hepatitis problem after 

QUANT abstraction 

HCI-GENERATE Bloedorn, 1996 

 

was best. The predictive accuracy of the learned meta-rules was evaluated using leave-one-out. 

 

5.5.2 Meta-Rule Evaluation: Holdout 

 

This section describes how the meta-rules learned from the meta-example dataset of Table 5.13 

were evaluated. Two tests were performed. In both tests the training data consisted of the entire 

set of examples less one. This single held-out example was used for testing. Evaluation of the 

correct class was based on the degree of match between the test example and the learned meta-

rules. If the correct class had the highest degree of match the accuracy was 100%, otherwise the 

accuracy was 0.  In this first test, all 6 distinct classes of representation space modification were 

used. The six classes are: —  
 
 

 1. None - No change needed, AQ alone performed well 

 2. DCI-GENERATE- Data-driven attribute construction 

 3. DCI-QUANT- Data-driven attribute value abstraction 

 4. DCI-SELECT- Data-driven attribute selection 

 5. HCI-GENERATE- Hypothesis-driven attribute construction 

 6. HCI-SELECT- Hypothesis-driven attribute selection 

 

Because there are many continuously valued meta-attributes it became necessary to abstract these 
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many values into more meaningful ranges. This process was done using DCI-Quant. The 

intervals found to be important, for the numeric-valued meta-attributes, are shown in Table 5.14. 

 

Rules were learned over 14 problem sets using a leave-one-out method. The meta-rules learned 

for one of these sets, using the discretized domains is shown below (the only example of the 

HCI-Select class was held out, so there is no learned rule for that class). 
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Table 5.14 - Intervals found for meta-attributes using DCI-Quant 

 

Attribute Name Intervals Attribute Name Intervals 

Average_number_of_internal_ 

disjunctions 

[1.0..1.2] 

[1.4..3.8] 

Number_of_attributes [5..28] 

[55] 

Relative_rule_weight1 0.13..0.49] 

[0.62..0.99] 

Selector_rule_ratio [1.0..1.3] 

[1.92..4.31] 

Relative_rule_weight2 [0.03..0.16] 

[0.18..0.34] 

Average_number_of_ 

uniquely_covered_exam

ples per_rule 

[3.64..5.5] 

[8.2..14.5] 

[15.67..56.33] 

Performance_estimation [73..87] 

[90..95] 

[100..100] 

Example_rule_ratio [4.69..16.29] 

[18.45..56.3] 

Last_simplicity [3..15] 

[19..46] 

[48..155] 

Training_examples_ 

percent_of_total 

[0] 

[5.5..39] 

 

DCI-Gen if: 
 
[Relative_rule_weight1 = 0.62..0.99] & [Training_examples_percent_of_total = 5.5..39] OR 

[Performance_estimation = 73..87] & [Example_rule_ratio = 4.69..16.29] 

 

Interpretation: 
 
Perform DCI Generation of attributes if the second disjunct in every rule covers almost as many 

examples as the heaviest rule, and the training set represents a high percentage of the total 

possible space; or if the predictive accuracy of the last run was relatively low and, individually, 

the rules cover a relativly small number of examples. 
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These rules are stating that DCI-Gen is useful if the concepts are blurred across attributes. This 

occurs when the coverage of learned rules is low across most rules.  

 

DCI-Select if: 

 

[Last_simplicity = 48..155] & [Avg. #_of_uniquely_covered_examples = 8.2..14.5] & 

[Example_rule_ratio = 4.69..16.29] 

 

Interpretation: 

 

Perform DCI Selection of attributes if the last set of rules learned had a high number of selectors, 

and the learned rules had a moderate degree of overlap, and and, individually, the rules cover a 

relativly small number of examples. 

 

This rule is saying that DCI-Select is useful when the simplicity of the learned rules is high and 

there are no strong heavy rules learned. 

 

AQ if: 

 

[Last_simplicity = 3..15] 

 

Interpretation: 
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Perform no change to the representation space if the learned rules are simple. 

 

DCI-Quant if: 

 

[Last_simplicity = 19..46] & [Training_examples_percent_of_total = 0] 

 

Interpretation: 

 

Perform DCI-Quant abstraction of the space if the last learned rules were moderately complex 

and the training examples provided is only a small percentage of the total possible space. This 

latter condition is clearly common when the size of the attribute domains are large. 

 

HCI-Gen if: 

 

[Number_of_attributes = 5..28] & [Selector_rule_ratio = 5..9.64] 

 

Interpretation: 

 

Perform HCI generation of attributes if the number of attributes is relatively low and the rules 

contain a large number of conditions. 
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The predictive accuracy of the learned rules for the 6 classes was 7/14 or 50%. This is 

significantly better than random guessing (1/6 or 16%). When we evaluate what types of 

mistakes were made, it can be seen that the rules were working even better. A detailed 

description of the seven mistakes are given below. This shows that although the RSM operator 

selected was not the best possible, an RSM operator which could improve the RS was selected  

10 of the 14 (71%) of the time. 

 

In the second experiment the available RSM operators have been placed into only three classes 

for meta-rule purposes:  
 
 
 

 1. No modification (AQ only) 

 2. Representation Space Expansion (DCI-, HCI-GENERATE)) 

 3. Representation Space Contraction (DCI, HCI-SELECT, and DCI-QUANT) 

 

With learning from these fewer, hierarchically ordered classes, the learned meta-rules predictied 

the best RSM operator for 12 of the 14 examples (86%). Mistakes were made on the Monk #1 

problem when RS contraction was selected instead of expansion and for T1.10 when contraction 

was suggested instead of the correct choice of no change (Figure 5.15). Interestingly, the T1.10 

problem clearly needs some kind of attribute selection because of its many low quality attributes, 

but because there are so few training examples, both DCI and HCI with their default settings 

result in learned rules which perform worse than the rules learned in the original space. 
 

Table 5.15 - Descriptions of RSM operator selection errors 
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Problem Best RSM Best 

Accurac

y 

Meta-rule 

selected RSM 

Accuracy Original 

Accuracy 

Security DCI-SCALE 96% DCI-ADD 87% 89% 

T1.40 HCI-SEL 93% DCI-SELECT 90..95% 91% 

Scaled_hepatiti

s 

HCI-

GENERATE 

97% DCI-

GENERATE 

95% 95% 

Hepatitis DCI-

GENERATE 

97% HCI-

GENERATE 

86% 73% 

Monk4 DCI-SELECT 93% DCI-

GENERATE 

91% 93% 

T1.20 DCI-SELECT 89% DCI-

GENERATE 

88% 90% 

T1.60 DCI-SELECT 97% HCI-SELECT 92% 92% 

 

In summary, learned meta-rules can select an RSM operator that improves the representation 

space with a high degree of accuracy. 

5.5.3 Meta-Rule Evaluation: Incremental 

 

This section describes an experiment designed to evaluate how the incremental addition of new 

examples affected the performance of learned meta-rules. More specifically the goal of this 

experiment is to determine how many times the meta-rule controller must quess before making 

the correct choice. The dataset used for this experiment was the same as in Section 5.5.2. The 
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first step was to randomly assign an example for every meta-class: a rule cannot be learned, and a 

class cannot be predicted if at least one example is not given. With these six examples removed 

for training, the testing began. Each of the remaining eight examples were tested against the 

current rules, giving a degree of match between that example and all six classes. If the correct 

class matched the training example then the assigned rank was 0. If the correct class was the 

second strongest matching class, then the assigned rank was 1. The possible ranks ranged from 0 

to 5. Perfect meta-rules always predict the correct class right away and would average a rank of 0 

for every class. An exhaustive approach would average a rank of 5 because every operator 

(represented by the six classes) would be tried. If learned meta-rules are indeed improving over 

time, then the rank for a class will decrease as new examples are made available for training. 

Examples are indexed from 1 to 14.  

 

In the first experiment examples 10 (Hepatitis), 6 (t1.60), 9 (Security), 14 (Scale-Hepatitis), 11 

(t1.40) and 13 (M2DCI) were assigned to the classes DCI-Gen, DCI-Scale, DCI-Quant, HCI-

Gen, HCI-Sel and AQ respectively. Characteristic meta-rules were learned from these examples. 

The remaining eight examples were then tested against the learned rules, assigned a rank and 

then added to the appropriate class. The results of these tests are shown in Table 5.16. Class rank 

is shown by "/". Those classes with the same degree of match have equal rank. 

 

Table 5.16 shows that even with very few examples the meta-rules perform quite well. The best 

class was selected first (rank=0) for 3 of the last five test cases. With so little data it is hard to 

draw strong conclusions, but these results are promising. It is also interesting to see the change 

broken down by class. DCI-Quant had rank 2 after 1 meta-example, but predicted the class of 

t3.60 correctly right away when it had two meta-examples. Similarly AQ went from rank 4 to 

rank 0, and DCI-Sel went from rank 4 to rank 0. The ranks of DCI-Gen and HCI-Gen did not 
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improve probably because the initial example was so different than the second example 

(Hepatitis to Monk1) and (Scale-Hepatitis to Monk2). 
 

Table 5.16 - Predicted Ranks for learned meta-rules: experiment 1 
 
Index Name Correct 

Class 

Rank Class order by degree of match 

8 t340 DCI-Quant 3 DCI-Sel/HCI-SEl/DCI-Quant 

1 Monk1 DCI-Gen 5 AQ/DCI-Quant/DCI-Sel/HCI-Sel/HCI-Gen/DCI-Gen 

4 t1.10 AQ 4 HCI-Sel/DCI-Sel/DCI-Quant/DCI-Gen/AQ 

12 M1-DCI AQ 0 AQ/DCI-Gen/DCI-Quant/DCI-Sel-HCI-Sel/HCI-Gen 

7 t3.60 DCI-Quant 0 DCI-Quant/DCI-Sel-AQ-HCI-Sel/DCI-Gen/HCI-Gen 

5 t1.20 DCI-Select 4 AQ-HCI-Sel/DCI-Gen-DCI-Quant/DCI-Sel/HCI-Gen 

2 Monk2 HCI-Gen 5 DCI-Sel/DCI-Gen/AQ/DCI-Quant/HCI-Sel/HCI-Gen 

3 Monk4 DCI-Sel 0 DCI-Sel/DCI-Quant/AQ-HCI-Sel/DCI-Gen-HCI-Gen 

 

In the second experiment examples 1 (Monk1), 5 (t1.20), 9 (Security), 2 (Monk2), 11 (t1.40) and 

4 (t1.10) were assigned to the classes DCI-Gen, DCI-Scale, DCI-Quant, HCI-Gen, HCI-Sel and 

AQ respectively. Characteristic meta-rules were learned from these examples. The remaining 

eight examples were then tested against the learned rules, assigned a rank and then added to the 

appropriate class. The results of these tests are shown in Table 5.17.  

 

Although the average for this experiment is slightly worse than for the previous experiment, 

some individual classes still show improvement. DCI-Sel improved from rank 1 to rank 0, and 

even more dramatically AQ improved from rank 5 to rank 0. DCI-Quant increased in rank from 0 
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(for t3.60), to 3 for test problem t3.40. The smaller amount of training data in the second 

example apparently mislead it the meta-rules to select DCI-Sel and HCI-Sel before DCI-Quant. 

HCI-Gen and DCI-Gen had the same problems as in the previous test case- the examples used in 

the previous iteration were very different than those used in the next iteration. This time the 

training cases were Monk1 and Monk2 and the test cases were Hepatitis and Scale-Hepatitis 

respectively. 
 

Table 5.17 - Predicted Ranks for learned meta-rules: experiment 2 
 
Index Name Correct 

Class 

Rank Class order by degree of match 

7 t3.60 DCI-Quant 0 DCI-Quant/AQ-DCI-Sel-HCI-Sel/DCI-Gen-HCI-Gen 

6 t1.60 DCI-Sel 1 HCI-Sel/DCI-Sel-AQ/DCI-Quant/DCI-Gen-HCI-Gen 

14 Scale-

Hep 

HCI-Gen 5 DCI-Sel/AQ-HCI-Sel/DCI-Quant/DCI-Gen-HCI-Gen 

3 Monk4 DCI-Sel 0 DCI-Sel/DCI-Quant/AQ-HCI-Sel/HCI-Gen/DCI-Gen 

8 t3.40 DCI-Quant 3 DCI-Sel/AQ-HCI-Sel/DCI-Quant/HCI-Gen/DCI-Gen 

10 Hepatitis DCI-Gen 5 DCI-Sel/HCI-Gen/HCI-Sel/AQ/DCI-Quant/DCI-Gen 

12 M1DCI AQ 5 DCI-Sel/DCI-Gen/DCI-Quant-HCI-Gen/HCI-Sel-AQ 

13 M2DCI AQ 0 AQ/DCI-Sel/DCI-Gen/DCI-Quant-HCI-Add/HCI-Sel 

 

The section described four different experiments designed to evaluate the effectiveness of 

learning meta-rules for selecting the best representation space modification operator. The first 

two experiments used a traditional leave-one-out methodology and showed with very few meta-
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examples the best operator was selected 50% of the time and an operator that improved the space 

was selected 71% of the time. Furthermore, when the RSM operator classes are organized 

hierarchically the best class was selected 86% of the time. The second set of experiments showed 

that the ability to predict the best class does improve as more examples are provided and that this 

improvement can be seen after only two examples of a class have been seen. 
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CHAPTER 6 CONCLUSIONS 

6.1 Summary 

 

This thesis presents an approach to multistrategy constructive induction (MCI) in which 

multiple representation space modification operators are used to transform difficult problems 

into easy problems. This work showed that MCI can significantly improve the quality of learned 

hypotheses for a wide variety of problems, MCI can be composed of RSM operators using 

different computational strategies (statistics, evolutionary compuation, heuristics), and that the 

control rules (meta-rules) which select RSM operators can be learned from past experience with 

a high degree of accuracy. 

 

Additionallyviii, this dissertation introduces a novel methodology for multistrategy constructive 

induction.  The approach 1) incorporates multiple computational methods for constructive 

induction including representation space expansion and contraction, 2) incorporates multiple 

inferential techniques in its use of deduction to arrive at a meta-decision concerning which 

representation space modifier to select, and induction when inducing a new (or modifying a 

previous) meta-rule from a set of meta-examples, and 3) it is a learning system capable of 

improving its own performance over time through meta-learning. The proposed method is built 

on established individual empirical induction and constructive induction techniques and is 

capable of incorporating knowledge from many sources including a) directly from the user, b) 

                                                 
viiiSome of this section is a reiteration of section 1.6. 
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from analysis of the data, and c) from analysis of learned hypotheses.  

 

The proposed multistrategy approach helps to overcome the brittleness of current learning 

methods by automating the search for representation spaces which are better suited to learning 

predictively accurate rules. This approach helps overcome the problems such methods have with 

complex real-world data. Continuous-valued data problems are overcome by including a method 

for attribute-value discretization. Misclassification noise can be corrected by attribute selection. 

Poorly represented attributes can be improved with attribute generation with DCI-Gen or HCI-

Gen. The meta-learning capabilities eliminate the need for human expertise to guide the 

selection of these tools. The relationship between characteristics of a dataset and appropriate 

representation space transformations are not generally known. A learning approach to this meta-

learning task eliminates the need to explicitly determine this relationship before using the 

available tools. Such meta-rules also are helping to discover general principles of inductive 

learning currently unknown or poorly understood. However, as each learning example is a 

dataset, this learning requires data which is not available in great quantities. Additional 

experiments with significantly more data are required to find meta-learning trends for which 

there is high confidence. 

 

6.2 Future Work 

 

Although quite powerful already, there are a number of additions and improvements that can be 

made to AQ17-MCI. These additions focus on the control strategy and the available 

representation space modification operators.  

 

The control strategy currently performs a 1-fold knowledge-driven greedy search. If a 



Chapter 4 - The AQ17-MCI System  107 
_____________________________________________________________________________ 
 

 

modification results in an improvement the space is changed and search continues. However, it 

may occur that the best set of transformations necessary to correct a problem do not result in 

improvements at every step. A greedy approach with no look-ahead will not find combinations of 

operators that do not improve the space at every step. One way to overcome this limitation is to 

see which combinations of operators often occur together and bundle them as one operator. For 

example abstraction followed by attribute-generation can result in a large gain in performance. If 

performed in one step, the greedy control method cannot separate the two steps even if one alone 

results in a decrease in performance. The control strategy is also restricted to controlling only the 

data-driven and hypothesis-driven operatrors. Those transformations suggested by the user are 

automatically made before any other modification. In order to encourage learning across 

problems, the knowledge acquired from past problems should be stored and used for future 

problems. AQ17-MCI may make use of a goal-dependency network (GDN) (Michalski and 

Stepp, 1986) to record knowledge about domains and past successes in order make better use of 

user-given knowledge. 

 

The available operators in the toolbox of AQ17-MCI can also be expanded and improved. As 

described in chapter 3, there are a number of other attribute construction methods, that make use 

of other inferential transmutations, which could be included: a) attribute construction using a 

genetic algorithm, or b) analogy based meta-learning for acquiring better meta-rules. The current 

operators can also be improved. The current abstraction operator uses chi-merge. This method 

does not produce hierarchies of ordered attributes, nor does it take into account the abstraction of 

other attributes. This is a problem for any algorithm that only looks at the data one attribute at a 

time. Linear hierarchies could result in even better descriptions of the available data because it 

would give to AQ the detail (precision) of the lowest level when it needed it, while also 

providing the abstractions of large intervals to use when describing areas within a class.  
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