
Addressing Knowledge Discovery Problems in a Multistrategy Framework 

Kenneth A. Kaufman 
 

Machine Learning and Inference Laboratory, 
George Mason University, 

Fairfax, Virginia, 22030, USA 
kaufman@aic.gmu.edu 

 
 

Abstract 
This paper discusses a methodology for multistrategy 
data analysis based on the application of diverse 
learning and discovery programs and tools and how it 
approaches some of the difficulties posed by the 
knowledge discovery task.  Research in the area of 
integrated learning systems has led to the development 
of INLEN, an intelligent assistant for discovering 
knowledge in large databases.  The architecture of 
INLEN is based on the interaction of a number of 
knowledge generation operators – manifestations of 
diverse learning tools within a uniform environment.  
Examples of the system’s application to databases 
consisting of world economic and demographic facts 
demonstrate its operation.  During its development, 
INLEN has encountered problems inherent in the 
application of symbolic learning programs to database 
analysis that do not appear in the laboratory 
environment; such problems are described, and the 
responses to these problems that have been built into 
INLEN are discussed. 

Introduction 

As the amount of electronically available information has 
grown, it has become both critically important and 
increasingly difficult to analyze the data to derive desired 
knowledge from them.  Traditionally, tools for data 
analysis have employed mostly statistical concepts and 
methods.  These methods can be particularly useful for 
such tasks as detecting statistical trends, correlations 
between attributes, data distributions, etc.  They are, 
however, limited in the types of knowledge and regularities 
they can derive from data. 
 For example, a statistical analysis can detect a 
correlation between given factors, but cannot produce a 
conceptual explanation why such a correlation exists, nor 
can it formulate any specific quantitative and/or qualitative 
law(s) responsible for this correlation.  A statistical 
technique can determine a central tendency and variability 
of some properties, or fit a curve to a set of datapoints, but 
it cannot explain them in terms of causal dependencies or 
qualitative relationships.  Attributes that define a similarity 
and the measures of similarity involved must be given in 
advance.   In short, these techniques require that an 
interpretation of the findings – a “conceptual”  analysis of 

data – be performed by a human analyst.  As the quantity of 
available data increases, the complexity of such an analysis 
can easily outstrip human capabilities. 
 Because of this, the machine learning community has 
taken an interest in the problem of knowledge extraction 
from databases.  Machine learning approaches can 
overcome some of the limitations inherent in traditional 
data analysis methods.  For instance, constructive induction 
and deduction methods can improve the data description 
space based on the nature of the data itself, the knowledge 
learned by the discovery system, and/or the background 
knowledge provided by the domain expert.  Symbolic 
learning methods have the advantage of representing their 
knowledge in such a way that it is very easy for users to 
understand and explain the meaning of the discovered 
knowledge. 
 Machine learning researchers have developed an 
assortment of domain-independent programs that can each 
perform a narrow set of symbolic learning tasks.  The 
weakness of these programs is the fact that they are so task-
specific.  No conceptual clustering program, for example, 
can generate equations governing quantitative data, create 
rules distinguishing between classes of objects, select 
representative examples from a larger database, or improve 
a ruleset based on new data. 
 In general, depending on the situation and the data itself, 
an analyst may be seeking: 

• The most important factors influencing the observed 
behavior of a system or a process and their relationship 
to this behavior. 

• The functional or logical dependencies that exist 
among concepts and attributes in the database. 

• A means of determining whether a certain condition is 
present. 

• The most illustrative examples of a given behavior. 

• A listing of the elements of a system that are not 
behaving according to the assumed model. 

• The best actions to be taken given the observed 
behavior. 

• An understanding of how a system is changing over 
time, and what types of future behavior can be 
anticipated. 

• A concise description of the data that will highlight the 
important trends or exceptions. 



• An organization of the data into a useful hierarchy of 
categories. 

• A meaningful consolidation of facts from different 
sources that can be of use in pattern discovery. 

• A collection of elements extracted from a large pool of 
data that the analyst is likely to find interesting or 
useful. 

 Recent research in multistrategy learning (e.g., Michalski 
& Tecuci 1991; 1993) has attacked the problem of 
integrating diverse learning tools into composite systems 
whose wholes may exceed the sums of their parts, in order 
that single systems may provide many of these answers on 
request. 
 One such approach to this problem, called INLEN, 
applies an integrated system to the specific problem of 
knowledge discovery in databases (Kaufman, Michalski & 
Kerschberg 1991).  It was designed to overcome some of 
the limitations of statistical data analysis by applying 
advanced methods of machine learning.  Its architecture 
integrates database, knowledge base and machine learning 
technologies into a single package for data analysis and 
knowledge discovery.   In doing so, it offers a data analyst 
a powerful tool for discovering patterns of non-statistical 
nature, determining logic-style data descriptions, and 
producing justifications or explanations of the discovered 
patterns (Michalski et al. 1992). 
 Symbolic learning programs, such as those that comprise 
many of INLEN’s available tools, can determine rules for 
distinguishing between many classes of items, find 
conceptually useful ways to group objects, apply 
knowledge in order to predict missing values in a data set, 
select representative subsets of a large data set best suited 
for a particular learning task, etc.  The various learning and 
discovery programs in INLEN are accessed in the form of 
knowledge generation operators (KGOs) that can be 
applied in sequence, with each KGO capable of taking 
advantage of its predecessor’s findings.  Because of the 
symbolic nature of these operators and their adaptability to 
different problems, this methodology is well-suited for 
many domains in which databases contain a large number 
of records and attributes, and in which the results of 
analysis must be understood by both experts and non-
experts. 
 The conceptual architecture – employing a large set of 
specialized operators as tools that may be called upon when 
needed – has been employed in domains other than 
knowledge discovery in databases.  For instance, 
CONDOR (Strat 1992) follows a similar philosophy in the 
domain of computer vision.  Here, different operators (e.g., 
edge detection) are invoked by a heuristic-based control 
engine in an attempt to recognize different viewed objects. 
 Among other efforts to apply multistrategy methods to 
data analysis are several systems incorporating symbolic 
learning.  For example, Alexander, Bonissone and Rau 
(1993) have developed a system for discovering knowledge 
that can be used to improve marketing strategies.  It 

combines the C4.5 decision tree learning program (Quinlan 
1990) with a statistical analysis system in order to extract 
information from a sales database.  RECON (Simoudis et 
al. 1994) combines inductive and deductive reasoning into 
a general-purpose knowledge discovery environment.  In 
comparison with these systems, INLEN focuses more on 
symbolic learning operators, and is designed for the 
incorporation of a large number of tools, rather than just 
one or two for inductive reasoning.  By necessity, this leads 
to an increase in the complexity of the system’s 
infrastructure and its knowledge base. 
 This paper describes the INLEN architecture, presents 
examples of INLEN’s discovery process through its 
application to the analysis of several databases consisting 
of world economic and demographic facts, and then 
presents some of the problems inherent in applying 
multistrategy symbolic learning to knowledge discovery 
and the way in which they have affected the development of 
INLEN.  We conclude by summarizing the development 
status of INLEN, the advantages and current limitations of 
this methodology, and outline the plans for future research. 

The INLEN Methodology 

The INLEN system integrates a database, knowledge base 
and machine learning technologies into a unified 
knowledge discovery environment (Figure 1).  The 
system’s components consist of a relational database, a 
knowledge base, and three sets of operators (Kaufman, 
Michalski & Kerschberg 1991).  The database is used for 
storing data, and can be modified by the user through data 
management operators.  The knowledge base stores and 
maintains rules, equations, decision procedures, 
representative examples, and concept hierarchies that are 
employed in the process of data analysis and knowledge 
discovery.  The knowledge base is made up of knowledge 
segments, which store declarative, procedural, and 
exemplary knowledge about the application.  This 
knowledge may include the domains of the attributes, 
background knowledge relevant to the problem, discovered 
knowledge, and any knowledge entered or modified by the 
user.  The contents of the knowledge base can be modified 
by an expert through knowledge management operators. 
 The central discovery engine of the system consists of a 
set of operators, called knowledge generation operators,  
that invoke learning, discovery and inference programs to 
perform data analysis tasks.  These operators take input 
from the database and/or knowledge base, and produce 
outputs that enhance the data and/or knowledge bases.  
These operators are adept at diverse tasks, such as learning 
symbolic rules to differentiate among several classes of 
data items, conceptually dividing a data set into two or 
more groups (conceptual clustering), modifying the 
representation space into one more suitable for a particular 
learning task through feature selection or constructive 



induction, testing a set of knowledge for consistency with 
respect to new data, and predicting values for missing data. 

DB

KB

        Data
 Management
    Operators

 Knowledge
 Generation
  Operators

   Knowledge
  Management
    Operators

 
Figure 1.  High-Level Architecture of INLEN 

 The application of these operators is controlled by the 
user, while the system extracts the necessary information 
from the data and knowledge bases to complete the input to 
the learning operator.  In the knowledge base more 
information is maintained than the operators might return in 
stand-alone mode; facts and links that might be useful to 
another operator in the future are stored in the output 
knowledge segments.  For instance, if a rule learning 
operator is used to find conditions distinguishing between 
two sets of data records, INLEN will retain not only the 
discovered rules, but also the learning mode and parameters 
used, an estimate of the informational value of the rules and 
their component conditions, and links to the records that 
satisfy the rule.  This information may be later accessed by 
a user or another operator, such as a prediction engine or a 
program for selecting representative examples from the 
dataset. 
 The idea of such a multi-operator approach to knowledge 
discovery was formulated by Michalski in the 1980s.  The 
first such effort, from which INLEN derived much of its 
conceptual architecture, was the QUIN system (Query and 
Inference), a combined database management and data 
analysis environment (Michalski, Baskin & Spackman 
1982; Michalski & Baskin 1983; Spackman 1983). 
 Among the knowledge generation operators employed by 
INLEN are ones for rule generation (from sets or sequences 
of examples), decision tree generation (from examples or 
rules), equation generation (from quantitative and 
qualitative data), conceptual cluster and taxonomy 
formation, knowledge transformation (e.g., through 
abstraction, generalization, or incremental learning), 
representation space modification (through feature 

selection, constructive induction, and attribute 
quantization), event set generation (through example 
selection, simulation or prediction), relational analysis 
(through statistical and non-statistical metrics), knowledge 
testing for consistency and completeness, and concept 
visualization.  The programs that form the foundations for 
these operators are cited and described individually in 
(Michalski et al. 1992). 
 These operators also represent various knowledge 
transmutations as are catalogued in Michalski’s Inferential 
Theory of Learning (Michalski 1993).  For instance, 
learning classification rules from examples involves an 
inductive generalization transmutation; conceptual 
clustering is an act of inductive agglomeration; 
representation space modification can consist of generation, 
selection or abstraction transmutations; and knowledge-
based prediction of missing values incorporates a 
similization transmutation.  
 An important feature of the knowledge generation 
operators is that many of them allow the user to define 
parameters and tailor their performance to a specific 
learning task.  In this way, the user (data analyst) can 
specify from among the many possible outputs consistent 
with the data and pinpoint which type of knowledge is 
likely to be most useful.  Two examples below illustrate the 
choices of parameters when using a knowledge generation 
operator. 
 One of the backbone abilities of INLEN is rule learning 
from examples, performed using the AQ15c learning 
engine (Wnek et al. 1995).  The user can accept the default 
parameters or instruct the program to bias its rule selection 
toward either highly specific characterizations, short rules 
for discrimination, a set of maximally simple rules, or rules 
that tend to incorporate or avoid specific attributes if at all 
possible.  The user can also create and specify a different 
set of preference criteria. 
 Another knowledge generation operator is based on an 
extension of the PROMISE program (Baim 1982).  It 
examines the set of attributes in the database and ranks 
them according to their applicability to a given 
classification problem.  The user can then learn from the 
subset of the data consisting of only the attributes likely to 
be more relevant to the learning task and, in doing so, 
improve the efficiency of the learning process and decrease 
the likelihood of spurious knowledge being discovered.  
This operator can be applied in two modes.  In the first, 
each attribute’s overall discrimination ability is calculated 
using an information gain metric similar to that used by the 
C4.5 (Quinlan 1990) family of algorithms.  As such, it is 
useful in the building of decision trees or other procedural 
structures.  The second mode focuses on the attributes most 
likely to produce concise rules; it selects attributes that 
contain some values that discriminate very well between 
classes, even if most of the other values provide little utility 
in classifying the examples. 



Exemplary Application:  Discovery in 
Economic and Demographic Domains 

INLEN and the programs that have been adapted for use as 
its operators have been applied to learning and discovery 
problems in such domains as engineering design, disease 
diagnosis, intelligence gathering and economic analysis 
(e.g., Arciszewski et al. 1992; Michalski et al. 1992).  The 
following example illustrates the role an intelligent agent 
can play in the discovery of knowledge from data: 

The United States government maintains records of 
the import and export of goods from various 
countries of the world.  The different products and 
raw materials are divided and subdivided into 
different categories.  In the early 1980s the data 
showed a sharp decline in the import of trucks from 
Japan, while there was a corresponding increase in 
imports from Japan in the auto parts category.  It 
took several years before analysts noticed that fact 
and concluded that Japan was shipping the chassis 
and truck beds separately to the US, where they 
would be subsequently assembled, thereby avoiding 
a high US tariff on imported trucks that was 
directed primarily at Europe and had been on the 
books since World War II.  When United States 
analysts inferred this, the US and Japan commenced 
trade negotiations pertaining to the import of trucks. 

 How much sooner would that trend have been noticed 
had a discovery program been applied to the data and 
pointed out to an analyst the opposite changes in two 
related categories?  How much revenue did the 
undiscovered truth cost the US before they could finally 
work out a new agreement with Japan?  Noticing economic 
trends and patterns is a difficult task, as humans can easily 
get overwhelmed by the amount of raw data. 
 Based on such motivations, the analysis of economic and 
demographic data has become one of the focus domains for 
INLEN development and testing.  These experiments have 
involved two similar data sets – one provided by the World 
Bank consisting of information on 95 attributes in 171 
countries for the period of 1965 to 1990, and one extracted 
from the 1993 World Factbook (CIA 1993) containing 
several databases of information on 190 countries.  Two 
examples of such experiments and results follow.  The first 
illustrates the passage of knowledge from operator to 
operator as a concise description of the goal concept is 
formulated.  The second illustrates how the background 
information in the knowledge base may expose anomalous 
data. 

Distinguishing Between Two Regions’  
Development Patterns 
An experiment that serves as an example of the linkage of 
different learning and discovery methods focused on 

distinguishing between development patterns in Eastern 
Europe and East Asia (Kaufman 1994).  A sequence of 
operators consisting of attribute selection, conceptual 
clustering, rule generation based on set characterization, 
and rule optimization combined to generate the output 
conclusions.  After the feature set was pared down to those 
economic indicators deemed more likely to differentiate the 
two regions, a conceptual clustering operator based on 
CLUSTER/2 (Michalski & Stepp 1983) determined that 
one way of distinguishing between the typical Eastern 
European country and the typical Far Eastern country was 
through examining the country’s change in the percentage 
of its population in the labor force between 1980 and 1990.  
Most of the European countries had a labor force change 
below a threshold determined for the region by the learning 
program, while most of the Asian countries had changes 
above their region’s threshold. 
 Based on this, the rule learning operator, based on the 
AQ15c inductive learning program (Wnek et al. 1995), was 
then called upon twice – first in characteristic mode to 
categorize the commonalities among the Asian-like 
countries (those above their regional thresholds) and among 
the European-like countries (those below their regional 
thresholds), and then in discriminant rule-optimizing mode 
to condense the lengthy characterizations from the previous 
set (4-8 conditions per rule) into the following simple 
decision rules: 

Country is Asian-Like if: 
A.1  Change in Labor Force Participation � slight_gain,  
                (9 countries) 
    or  
B.1  Working Age Population �  64%, 
    2  Life Expectancy is in 60s.      (2 countries) 
 
Country is European-Like if: 
A.1  Life Expectancy is not in 60s, 
    2  Change in Labor Force Participation is near 0 or 
decreasing,              (7 countries) 
    or  
B.1  Percentage of Labor Force in Industry � 40.      
                (2 countries) 

 The rules show that the features aside from change in 
labor force participation instrumental in distinguishing 
between the European-style and Asian-style development 
patterns include life expectancy, working age population 
and degree of industrialization.  In both the Asian- and 
European-Like cases, the first rule accounted for most of 
the countries fitting the class, while the second one 
described the remainder. 

Identification of an Unusual Example 
Because INLEN’s knowledge base maintains records of the 
training data that supports the discovered rules, this 
information can be used to group the records within a 
particular class.  For example, when the AQ15c rule 
generation operator was called upon to characterize the 13 



countries of South America, it came up with two distinct 
characterizations – one describing the majority of the 
countries, and the second describing the other four:  
Ecuador, French Guyana, Peru and Venezuela.  By 
suggesting that these two subgroups of countries may have 
significant commononalities among themselves, the 
program has proposed a classification scheme for further 
investigation. 
 Another experiment clearly indicates how INLEN can 
detect interesting facts within the subgroups it creates.  
While the subgroups in a demographic domain may 
indicate that member countries or regions have something 
in common, notable exceptions may be exposed when one 
of the members of these constructed subsets shows a 
marked dissimilarity to the rest of the group.  These 
exceptions in turn may prove be a springboard for 
additional discovery. 
 INLEN discovered several rules from the World 
Factbook PEOPLE database characterizing the countries 
with low (less than 1% per year) population growth 
(Kaufman & Michalski 1996a).  One of the rules had three 
conditions that together were sufficient to distinguish 19 
low growth countries from all of the countries with higher 
population growth rates.  The rule is shown here with three 
weights attached to each condition:  Pos represents the 
number of positive examples (countries with population 
growth rates below 1%) satisfying the condition, Neg 
represents the number of negative examples (countries with 
population growth rates above 1%) satisfying the condition, 
and Supp, defined as Pos / (Pos + Neg) in percent, 
represents an approximate measure of the degree of support 
that the condition alone provides for the conclusion that a 
country might have a population growth rate below 1%. 

Conditions character izing Countr ies with Population 
Growth Rates below 1%:       Pos Neg Supp 
 1 Birth Rate = 10 to 20 or over  50  46  20  69 
 2 Predominant Religion is not defined 40  68  37 
  as Muslim or Mixed or Buddhist or 
  Christian or Tibetan 
 3 Net Migration Rate �  +20     32 104  23 

 The first and strongest condition states that the country 
must have a low (under 20 per 1000 population) or very 
high (over 50) birth rate.  The presence of a very high birth 
rate is extremely counterintuitive; using the links in the 
knowledge base, one may examine the 19 countries 
involved.  Such an inspection points out that 18 have birth 
rates below 20, while only one, Malawi, has the high birth 
rate.  INLEN had thereby identified an exception to normal 
patterns.  When further learning was focused on Malawi, a 
massive outward net migration rate was discovered, by far 
the most extreme migration rate in the world.  Further 
application of the knowledge discovery operators can then 
explore the conditions unique to Malawi and hypothesize 
where else they might take place in the future. 

Database Analysis Based on Multistrategy 
Learning 

The previous sections discussed and provided examples of 
the architecture and major components of INLEN.  
Through the sequential application of KGOs, a user can 
link different learning and discovery programs into a 
stream of tasks.  Many of the operators are based on 
machine learning programs that were not designed for the 
analysis of large databases, but were instead written based 
on the assumption that they would be operating in a 
supervised learning environment.  As a result, they often 
have the following characteristics: 

(1)  Their inference methods are tailored to simple 
nominal or linear feature domains without rich 
domain knowledge. 
(2)  It is assumed that most of an example’s attribute 
values will be provided. 
(3)  All of the information relevant to a problem will 
be available in one location. 

 Unfortunately, these conditions do not always hold when 
exploring a real-world database.  The attributes in the data 
may be based on complex hierarchies, lattices and 
gradations of concepts.  Many of the fields in the data may 
be missing due to incomplete information.  And the goal 
knowledge may be only attainable through the extraction 
and combination of information from multiple sources. 
 These problems have been addressed by the knowledge 
generation operators in INLEN.  INLEN supports learning 
with complex structured data types.  Not only can a user 
define a data attribute to be hierarchically structured, one 
can also designate nodes within the hierarchy as anchor 
nodes – especially significant foci for learning, 
generalization and specialization (Kaufman & Michalski 
1996b).  The justification behind the selection of such 
nodes is that we tend to weight the significance of nodes in 
a classification hierarchy unevenly.  For instance, a red 
delicious is an apple, which is a kind of fruit, which is a 
type of food.  In everyday usage, we will not think of a 
given red delicious at each of those different levels of 
abstraction with equal frequency. 
 Cognitive scientists speak of basic  level nodes within a 
generalization hierarchy whose children share many 
sensorially recognizable commonalities (Rosch et al. 1976).  
Other factors that help to characterize a node’s utility 
compared to those at higher or lower levels of abstraction 
are concept typicality (how common are the features of this 
concept among its sibling concepts), and the context in 
which the concept is being used (Klimesch 1988; Kubat, 
Bratko & Michalski 1996).  Each of these factors affects 
the selection of a particular level of abstraction in making 
descriptions. 
 By encoding the relative utility of the nodes into the 
knowledge representation of a discovery system, the system 
can present discovered knowledge that focuses on the more 



useful levels of abstraction when possible.  We will 
typically prefer to see the classification rules “An object 
belongs to Class 1 if it is an apple”  or “An object belongs 
to Class 1 if it is a fruit”  instead of “An object belongs to 
Class 1 if it is a red delicious”  or “An object belongs to 
Class 1 if it is food.”  
 Another important feature in INLEN’s structured data 
representation is its ability to work with multiple views of 
the data (Kaufman & Michalski, 1996b).  Consider an 
application in which a marketing specialist is trying to 
target the customers who are most likely to be interested in 
a new product.  A customer database may have extensive 
information including the model of the automobile driven 
by the customer.  Automobiles may in turn be organized 
according to manufacturer, type (e.g., sedan, sports car, 
station wagon), price, year, etc.  One may not know prior to 
a learning task which classification view will provide the 
most concise and useful knowledge.  Also, more than one 
view may generate the best rules for determining whether a 
customer is likely to buy the product.  A decision rule, for 
example, may include the condition that likely buyer will 
often drive European station wagons, while the 
specification of the type of vehicle or manufacturer alone 
may not give an accurate representation of the customer’s 
propensities.  INLEN’s generalization engine automatically 
selects from the possible ways of expressing a set of 
attribute values (in this case the automobile models that are 
European station wagons) a concise representation of the 
knowledge. 
 INLEN’s knowledge generation operators have also been 
enhanced to cope with the problem of incomplete data sets.  
Experiments with sparse data exposed some of the 
limitations of these operators, leading to modifications in 
which the logical implications of unknowns are more 
rigorously encoded into the learning algorithm.  For 
example, in the AQ family of programs, attributes with 
unknown values are represented as having all of their 
values under consideration.  A stipulation in earlier 
versions of the program required that generalizations of 
examples with unknown values for some attributes maintain 
consistency by permitting those attributes to take any value.  
While this will guarantee rigorous consistency with the 
data, trouble arises when many examples have only a few 
known attribute values.  Generalizing just a few of them 
together creates a situation in which nothing can be 
assumed about any feature. 
 As an example of a domain in which this may be a real 
problem, intelligent agents are being developed to scan text 
and summarize it based on key words in several categories 
of interest to the user.  Articles often will only contain key 
words in a few of these categories, leading to a very empty 
database.  The relationships among entries in the various 
categories will often be tenuous ones given that for much of 
the data, one or more of these fields will be empty.  In such 
a domain a discovery program must be able to sift through 
the information that is present without getting lost in that 
which is missing.  At the expense of some additional 

computational complexity, the knowledge generation 
operators in INLEN have been modified in such a way that 
they can now generate knowledge consistent with what 
facts have been made available, without adhering to the 
assumption that unknowns must be generalized to take on 
all values.  With the relaxation of this condition, a learning 
engine can detect more substantial relationships. 
 Another aspect of this research approaches the problem 
of knowledge extraction from distributed sources.  The 
INSIGHT program (Ribeiro, Kaufman & Kerschberg. 
1995) is being developed as an operator to perform a 
knowledge-driven search through multiple databases.  The 
combinatorial cost of combining separate data sets is 
avoided through INSIGHT’s mechanism of finding 
relationships between a database and the knowledge 
generated from another database. 
 In order to facilitate the interface with INSIGHT and 
other operators, INLEN maintains information on the 
database records relevant to each rule in its knowledge 
base.  As was shown above in the population growth 
example, a use for these links is to enable the identification 
of significant clusters or exceptions.  Another use is to 
allow the measurement of the degree of match between a 
rule and a set of records in a second database matching a 
given set of conditions.  A high degree of match may 
suggest a linkage between the two concepts.  For example, 
a rule describing the climate of a country may be cross-
referenced with a database of natural disasters.  If a class of 
natural disaster occurred in a set of countries similar to the 
set of countries covered by the climate rule, it may suggest 
a relationship between the climate and that kind of disaster. 

Conclusion 

The INLEN methodology is based on the application of a 
wide variety of machine learning and inference programs 
for the purpose of discovering knowledge from databases 
and providing concise conceptual explanations of their 
findings.  These diverse machine learning and inference 
tools can work in conjunction with traditional statistical 
tools.  Among the major advantages of this methodology is 
its emphasis on providing conceptually understandable 
results of data analysis due to the logic-style descriptions it 
generates.  Another advantage is its modularity that makes 
it easy to add new knowledge generation operators. 
 The examples shown above involved just a few of the 
knowledge generation operators in INLEN.  The system is 
growing steadily as operators are enhanced and added to its 
environment; while still in prototype form, it already has 
many functional operators. 
 This report describes a work in progress in which new 
capabilities have been added over the course of its 
development.  Among the limitations of the current 
implementation are the facts that it still awaits integration 
with statistical data analysis methods and that there is still 
too much reliance on the data analyst for guidance in the 



selection of operators and the setting of parameters.  In 
particular, the methodology is strongly human-driven, and 
an area of ongoing research is seeking to develop a reliable 
means to automate the discovery process.  Another 
limitation is portability; while future versions of INLEN 
will run on other platforms, it is currently limited to PC-
based systems. 
 As described above, topics of current research include 
the development of methods for automated data abstraction 
and the analysis of distributed databases.  Future projects 
include the addition of tools for creating new attributes for 
improved performance (constructive induction) based on 
the AQ17-MCI methodology (Bloedorn et al. 1993).  This 
methodology combines data-driven construction of 
attributes based on the detection of relationships between 
attributes, hypothesis-driven construction of attributes 
based on patterns detected in preliminary rulesets, and 
statistically-based operators for quantization of continuous 
numerical attributes and summarization of notable groups 
of examples (e.g., a region’s average per capita income 
over a 10 year period). 
 Another enhancement will be the development and 
incorporation of a high-level language for knowledge 
discovery.  Such a tool will attack one of the limitations of 
the system mentioned above, namely that the knowledge 
discovery process must be closely supervised at present.  
With the addition of a knowledge discovery language, a 
user will be able to program in sequences of operators, 
along with instructions or heuristics detailing what 
conditions should cause them to be invoked.  The system 
will be able to follow such instructions as “ If a new 
month’s data shows less than a 95% consistency with the 
knowledge base, update the knowledge to incorporate the 
new data and then use characterization operators to seek 
out possible explanations why the behavior has changed in 
the new month”  or “ If a high-urgency network fault is 
detected, access the knowledge base to predict the location 
of the problem and the nature of a likely solution and report 
it immediately.”  
 In the presented examples, INLEN’s knowledge 
generation operators were applied to databases in various 
economic and demographic domains.  The system’s 
searches have unearthed some surprising facts.  The 
experiments described here illustrate some of the potential 
capabilities of the application of integrated learning 
strategies to large databases and indicate that such an 
application has the potential for determining important but 
heretofore unknown findings within the data. 
 Whether this or any other multistrategy architecture is 
used for data analysis, the task of database exploration 
presents certain problems not often faced by the learning 
components.  When learning tools are turned toward such 
knowledge discovery problems, they should be equipped to 
represent rich domain knowledge, handle very sparse data 
sets, and be prepared to integrate data from different 
sources.  This paper has described approaches to each of 
these problems. 

  The goal of all of these features is to facilitate INLEN’s 
compatibility with real-world databases.  The tools that 
serve as knowledge generation operators can then perform 
at a high level on real-world problems as well as on 
carefully supervised data sets, while their integration results 
in a multistrategy system not limited to a narrow class of 
discovery tasks. 
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