EMERALD 2:

An Integrated System of Machine Learning
and Discovery Programs
for Education and Research

Programmer’s Guide for the Sun
Workstation

Kenneth A. Kaufman
Ryszard S. Michalski
(updated edition)
MLI 97-9

EMERALD 2: An Integrated System of Machine Learning and Discovery
Programs for Education and Research

PROGRAMMER’S GUIDE FOR THE SUN WORKSTATION

Kenneth A. Kaufman and Ryszard S. Michalski

Machine Learning and Inference Laboratory
George Mason University
4400 University Drive
Fairfax, VA 22030

Abstract

EMERALD is a large-scalesystem integrating severaladvancedprogramsexhibiting different
forms of learningor discovery. The systemis intendedto supporteducationandresearchn the
area of machine learnindt enablesa userto experimentwith the individual programs,run them
on various problems,and test their performance. The problemsare defined by a user from
predefinedvisual objects,displayedthroughcolor graphicsfacilities. The currentversion of the
systemincorporatesthe following programs,each exhibiting the capacity for some form of
learning or discovery:

AQ - learns general rules from examples of correct or incorrect decisions
made by experts.

INDUCE - learns structural descriptions of groups of objects and determines
important distinctions between the groups.

CLUSTER - creates meaningful categories and classifications of given objects, and
formulates descriptions of created categories.

SPARC - predicts a possible continuation of a sequence of objects or events by
discovering rules characterizing the sequence observed so far.

ABACUS - conducts experiments, collects data, formulates mathematical
expressions characterizing the data, and discovers scientific laws.

Individual programs, presented as robots, communicatert#wiltsby naturallanguagesentences
displayed on thescreenandby voice. EMERALD is an extensionof ILLIAN, a smallersystem
developedfor the exhibition “Robots and Beyond: The Age of Intelligent Machines”. The
exhibition was organized by a consortium of major US Museums of Sci@mee versionsof the
systemhavebeenimplementedpnefor a DEC VaxStation,and anotherfor a Sun workstation.
This report discusseghe code and functions that comprisethe latter. A new version, under
development, will be a C-based portable version of the system.

Acknowledgments

The EMERALD system integrates several machine learning and discovery prdigaahes/e been
developedn the basisof researclconductedoy the researchgroup of R.S. Michalski over the
span of over twenty years, first at thaiversity of lllinois at Urbana-Champaigrandthenat the
Machine Learning and Inference Laboratory at George Mason University. The Laboratory’s
research activities are currently supported in part bjNdtenal ScienceFoundationunderGrants
No. DMI-9496192and IR1-9020266,in partby the Office of Naval Researchunder Grant No.
N00014-91-J-1351, in part ihe DefenseAdvancedResearchProjectsAgencyunderGrantNo.
NO00014-91-J-1854Administeredby the Office of Naval Researchandin part by the Defense
Advanced Research Projects Agency under Grants No. F49620-92-3+1bB99620-95-1-0462
administered by the Air Force Office of Scientific Research.

The supportfor the researchthat led to the developmentand continuing improvementof these
programshasbeenprovidedby a numberof grantsreceivedover the years, specifically, by the

National Science Foundationunder grants No. MCS-74-03514, MCS-76-22940, MCS-79-

06614., MCS-82-05166,MCS-83-06614,and NSF DCR 84-06801; by the Office of Naval

Researchunder grants No. N00014-81-K-0186, NO0014-82-K-0186, NO0014-88-K-0186,
N00014-88-K-0226 N00014-88-K-0397and NO0014-91-J-1351and by the DefenseAdvance
ResearchProjects Agency under grants administeredby the Office of Naval ResearchNo.

N00014-85-K0878N00014-87-K-0874and N00014-91-J-1854. We patrticularly acknowledge
the Naval ResearchL_aboratoryfor supportingthe effort of A. Schultzin the adaptationof the

system to the SUN workstation.

The supportfor the developmenof ILLIAN, the initial smallerversionof EMERALD that was
presentedat the exhibit “Robots and Beyond:the Age of Intelligent Machines,”was provided by
the Digital Equipment Corporatiothe BostonMuseumof Science andthe University of lllinois
at Urbana-ChampaignThe developmenteamof the initial versionwasled by R. S. Michalski,
with assistance from Professors R. E. Stepp anddalin, andincludedA. Buriks, T. Channic,
K. Chen, A. Gray, G. Greene, C. Kadie, K. Kaufman, H. Ko and P. Ong.

The EMERALD systemwas developedat the GeorgeMason University Machine Learning and
Inference Laboratory under the directionRaf S. Michalski, in collaborationwith K. DeJong K.

Kaufman, A. Schultz, P. StefanskndJ. Zhang. We particularly acknowledgehe contributions
of A. Schultz, who implementedthe port of EMERALD to the Sun workstation, and who
contributedto the first versionof this document. The authorsthank Seok Won Lee for his
assistancen the preparatiorof this document. The authorsalso expresggratitudeto Dr. Murray
Black, Dean of the School of Information Technology and Engineeringat George Mason
University, for the supportto continuedevelopmenbf EMERALD andits adaptationto multiple
platforms.

(c) Copyright 1997 Machine Learning and Inference Laboratory
George Mason University

1 INTRODUCTION TO THE EMERALD SYSTEM......ccoiiiiiiiii e 1

2 SHA R E . .. 2
2.1 Introduction to the SHARE Package.........ccooviiiiiiii e 2
2.2 Addition of Features to the SHARE Package................coiiiiiiiiiiiciienn, 2
2.2.10utline of ProCedure.........cviiiiii e 2
2.2.2 Examples of SHARE FUNCLIONSoooiiiiii e, 3
2.3 Use of the SHARE Package.......cooviiiiiiiii i 4
2.3.1 Introduction to SCREEN creation using SHARE 4
S AQ ROB O T . ittt ettt e e e e 28
200 I 0] A = T 1o o 28
3.1.1 High-Level LISP FUNCHONSc.viii e 28
3.1.2 AQ Interface ROULINES.cuviiiiiei e e, 30
B L. B T Xt FllES. et 30
1 0 A © 1 L 30
O LN 1O L (@ 2 1 P 31
4.1 Introduction 10 INDUGCKE ...t e ae e 31
4.2 A Guide to INDUCE 0N EMERALD........cciiiiiii e 31
4.2.1 BASIC SIUCHULE. ...ttt e e e e e aeaes 31
4.2.2 INDUCE AIgorithm Code.........ccoviiiiiiii e 32
5 CLUSTER ROBOTttt ettt et e e et e e e ae e e es 34
5.1 OVerall DESCHIPION. ...ttt e e e e 34
5.2 The Cluster-Main ROULINE. ..o e e e 34
5.3 CLUSTER Challenges the USEr.........cviiiiiiiiiii i 34
5.4 User Challenges CLUSTER ... e 35
5.5 HOW CLUSTER WOIKS. .. .ttt e e 35
5.6 System Variables Used by CLUSTER..........ccooiiiiiiiiii e, 35
5.7 Functions and Macros Used by CLUSTERccooiiiiiiiiiiie e, 36
B SPARC ROBO T ...ttt e et 43
G0 I 10T [T 1o 43
6.1.1 The Purpose Of SPARC/EX......c.ciuiiiiiii i ea e 43
6.1.2 The SPARC/G Methodology........c.oviriiii i, 43
6.1.3 The DOMAINS. ...ttt e e e eaans 44
6.1.4 The Modules of SPARC/EX........ciuiiiiiii i, 45
6.2 The TOp-LeVvel MOAUIE. ... e 45
6.3 The Tutorial MOAUIE ... e aaeaes 45
6.3.1 The Introduction Sub-Module.............cooiiiiii e, 45
6.3.2 The Technical Tutorial Sub-Module.............cccooiiiiii e, 45

6.4 The Quiz-User Module (QUM)..... ..ottt e 46

6.4.1 FIgures and Cards.........c.oviriiiiieiie e 46

6.4.2 Mined Channels..... ..o 46

6.5 The Interactive Prediction Module (IPM).........cooiiiiiii e a7
6.5.1 Playing Cards.ccouiiriiiii i e a7

6.5.2 Mined Channels...... ..o 48

6.5.3 SEOMENTALIONLottt 48

6.6 Decompositional Rule Translator............c.ooiiiiiii e 49
6.6.1 UsiNg the Translator...........ccoviuiiii e, 49

6.6.2 Inside the Translator....... ..o 49

6.7 Disjunctive Normal Form Translator.............coovviiiiiiiie e 49
6.7.1 UsiNg the Translator...........c.oviiiiii e, 49

6.7.2 Inside the Translator....... ..o 49

6.8 Periodic RuUle TranSIator.o 50
6.8.1 UsiNg the Translator...........ccoviiiiii e, 50

6.8.2 Inside the Translator....... ..o 50

(G I I @] o 111 o] o 51
7 ABACUS ROBO T ...ttt ettt et et e e 51
4 O L= = 0T = o] 1 o 51
7.2 OIS LWL et e 51
7.3 STOKE'S LAW ...ttt e e 52
7.4 ABACUS Challenges the USer.......ccoiiiiiiii e 52
7.5 User Challenges ABACUSo 53
7.6 List Of ABACUS TUNCHONS.uiniieiieee e 55
B AUTOEVALUATOR ..ot et 62
S0 A a1 (oo (3 o110 o 62
8.2 Files and Functions used by the Autoevaluator..................cccoovviiiiiiinnnn. 63

N 64

1 INTRODUCTION TO THE EMERALD SYSTEM

This report describesan integratedsystemof machine learning and discovery programs, called
EMERALD, intended to demonstrate machine learning capabilities, and to sert@shor education
and research in machine learning. To serve these needs, two systems have been developed:

ILLIAN - an initial, short versiorusedspecificallyfor demonstratingnachinelearning
capabilities. This versionwas developedor the exhibition “Robotsand Beyond: The
Age of Intelligent Machines”,organizedby a consortium of major U.S. Museumsof
Science(Boston, PhiladelphiaCharlotte,Fort Worth, Los Angeles,St Paul, Chicago
and Columbus), and was presented at those museums during the years 1987-1989.

EMERALD (ExperimentaM achineExample-base&easoningand L earningDisciple)
- an extended version for use as both an educational tool in machine learnialaizad
areas,andasa laboratoryfor experimentatiorandresearch. A Lisp-basedversion of
the systemis currently available,which runs on the Sun workstation. A C-based
portable version is under development as of this writing.

The systemis basedon many yearsof researchdone by Michalski’'s researchgroup in the areaof
machine learning. As this area hrasentlybecomevery active,and manyresearcherbavestartedto
work in machinelearning, we felt it would be of interestto the scientific community to integrate
different programsinto one system,and makeit availablefor usein educationand research.The
integrated system makes it easy for a user to intesigittand run individual programs testthem, and
acquire experience in understanding their functions and their capabilities.

A complete,seamlesgntegration of theseprogramsis a very difficult task, requiring significant
modification of the input and outputmodulesof theseprogramsand the developmeniof a complex
control mechanism. As tHest steptoward sucha goal the programswere integratedat a userlevel,
i.e., the systemallows a useran easyaccesso each programthrough a menu and facilitates an
application of each to problems defined by the user, employing various predefined objects.

The capabilitieof the EMERALD includethe ability to learngeneralconceptsor decisionrulesfrom

examples, create meaningful classifications of observations, predict sequences ofarigjelctsover
unknown mathematicallaws. A user may be surprisedby some capabilities of the programs.
Sometimesa usermay do betterthan the machine,but sometimest may be the machinethat does
better.

The examples used in tllemonstratiordeal with very simple objects-- picturesof imaginaryrobots
or trains, geometrical figures, cards, etc. -- so dimgpnecan easily understandhem. Theselearning
programs however,havealreadybeenappliedto, andhave a potentialto be useful in many areas,
such as medicine, agriculture, biology, chemistry, financial decision making, computer vision,
database analysis, and, of course, intelligent robotics.

The current system, EMERALRP, integrateghe following five programs presentedgsrobots,each
displaying a capability for some simple form of learning or discovery:

AQ learns general decision rules from examples of correct or incorcesatisions
made by experts.

INDUCE learns descriptions of groups of objects and determines importdistinctions
between the groups.

CLUSTER creates meaningful categories and classifications of given objects.

SPARC predicts possible future objects in a sequence by discovering rules

characterizing the sequence observed so far.

ABACUS formulates scientific laws and discovers mathematical patterns in data.

This report provides details of the functions used by EMERALD/S, in order to serve as a
programmer’s guide.

2 SHARE

2.1 Introduction to the SHARE Package

The goal of the SHARE packageis to offer functions which will help to generatea standard
environmentfor the demonstratiorof the different learning programs. Additionally, the SHARE
packagehidesas much of the OpenWindowsroutinesas possible,so that developersof additional
moduleswho are using the existing SHARE packagedo not needto know about programmingin
OpenWindows.The interfaceto OpenWindowsis providedthrough CLX, the CommonLisp - X
Windows Interface. Unlike the EMERALD/V version, EMERALD/S does not require programming
C to accesghe windowing primitives. Although someof the functionsare hardware-dependerthe
implementedgraphics functions should be mostly portable, since they are implementedvia X
Windows (or any system that incorporates X, such as OpenWindows.)

This chapterwill first describethe packagefor the userwho desiresto addinterfacesto the SHARE
package. Adiscussiorof how key functionsaretypically usedin the LISP codefor the EMERALD
exhibit and of the speed constraints which limit how they should be appliddial. Finally, a list
is provided of all the SHARE functions currently implemented adesariptionof the operationghey
perform. These last two sections will be most useful for a LISP programmer whameaalsify the
existing EMERALD code, but who does not need to create any new interfaces via SHARE.

2.2 Addition of Features to the SHARE Package

In order to create new interfaces to SHAREt requirecalls to OpenWindowsthe programmemust
be familiar with CLX. CLX essentially supplies the functionality of Xlib, the low le¢aindows C
routines,in LISP. A userfamiliar with Xlib and who hasthe minimal CLX interfacedescription
shouldhaveno troubleusingCLX. A programmemwho will be creatingnew interfacesshouldread
the Xlib description and the file CLX.LISP, both of which come with the X Windows distribution.

2.2.10utline of Procedure

The general process followed when adding a new interface routine can be described as follows:
1. Write the LISP function.
2. Enter the LISP environment and test the interface independently.
3. Load the SHARE package, reload the interface and test the interface.
4

. It is necessary to do some relocation of files to remain consistenpreitfiousconventions;
copy the LISP code to the directory .../share/newshare/filename.lisp.

5. Compile the LISP file in the EMERALD environment.
6. Add the name of the file (without extensions) to the load file, .../share/share.lisp.

7. RestartEMERALD. The new compiled interface should get loaded. Now retestthe
interface. If no errorsare encounteredthe new function has beenaddedto the SHARE
package successfully.

2.2.2 Examples of SHARE Functions

This section shows two exampleE SHARE functions. The functionsdemonstratehe useof CLX,
the LISP - X Windows interface.

2.2.2.1 Example 1 -- The FillPoly function

This example illustrates how one of the functions in the SHARE package is implenférgéahction
showndrawsa polygonandfills it with a specifiedcolor. This function usesthe CLX interfaceand
demonstrates the use of OpenWindows.

;; Function: (FillPoly <color> <vertex-list>)
;; example (FillPoly 2 ‘((10 10) (10 400) (30 400)))

(defun FillPoly (colornum pointlist)
(let (str (tmp pointlist) X y)

(setf pointlist NIL)

(dolist (node tmp nil)
(setf x (round (+ *x-org* (car node))))
(setf y (round (+ *y-org* (second node))))
(UpdateLimits x y)
(setf pointlist (append pointlist (list X y)))
)

(xlib::with-gcontext (*gc* :foreground colornum)
(xlib::draw-lines *window* *gc* pointlist :fill-p t))
(xlib::display-force-output *display*)

)
2.2.2.2 Example 2 -- The StringOut function

This exampleillustrateshow anotherfunction in the SHARE packageis implemented.The function
shown outputsa string to the screenin an arbitraryfont. This function alsousesthe CLX interface
and demonstrates the use of OpenWindows.

" Func'uon (StringOut x y string [fonthame [foreground [background]]])
; Outputs a string of text starting at (x,y).
Returns the width and height of the string (line) in a list.

(defun StringOut (x y string &optional fontname fg bg
&aux (X0 (+ x *x-org*))
(YO (+y *y-org®))

(if (not (stringp string))
(list 0 0) ;;nothing drawn
(progn
(if (null fontname) (setq fontname (EchoFont)))
(if (null fg) (setq fg (EchoForeground)))
(if (null bg) (setq bg (EchoBackground)))
(let*
((font (xlib::open-font *display* fontname))
(fontheight (xlib::font-property font :x_height)))
(setq yO (+ yO (xlib::font-ascent font)))
(xlib::with-gcontext (*gc* :foreground fg
:background bg
:font font)
(xlib::draw-glyphs *window* *gc* x0 y0 string
:start 0 :end (length string)))
(xlib::display-force-output *display*)
)

(list (- X0 (+ x *x-0rg*)) (- YO (+ y *y-org*)))
)

2.3 Use of the SHARE Package

Although the applicationof the routinesin the SHARE packagehas not beenlimited to what is
discussedelow, the novice EMERALD programmershouldfind the programmingtips given useful
when trying to understand existing code. The goal of the following introdustibwis not to provide
a complete description of all SHARE functions, but to give insights into homdstcommonlyused
functions should be applied. After one has developed some simple menus usihgdoetiongiven
in section2.1, it is suggestedhat the new user examineexisting code to observehow particular
features beyond the scope of selecting icons and displaihgn the screencan be implemented. A
descriptionof all existing SHARE functionscanbe found in section2.3.1.1, while alist of specific
guidelines regarding their use can be found in section 2.3.1.2.

2.3.1Introduction to SCREEN creation using SHARE

The mostcommonuseof the the functionsin SHARE is the productionof screenscontainingtext,
possibly a few simple figures, and a number of regions whiclbearlectedusinga mouseor track-
ball. Therefore,a discussiorof the functionsnecessaryo producesuchscreenseemsnaturalas a
meansof introducingthe package. Thesefunctionswill be introducedin the orderthey aretypically
used when creating such a menu.

The first operationwhich must be performedwhen creatinga menu screenis the creation of the
standard backgroundThis canbe doneusingthe ClearScreenfunction. This clearsthe screenso
that it is black with a lighter-colored work area in the middlde size and color of the regionsmatch
the specifications of Section 2.3.1.2. and are thus the standard means of producing this background.

The next operation which must typically be performed is the output ofvtegh will provide a visitor
to the exhibit information about sonfecetof machinelearning. Suchtext hasbeenbrokeninto four
conceptual classes which were originally distinguished graphically by cbheroriginal definition of
theseclassescan be found in Section2.3.1.2. The classeshave the names“General”, “Rule”,
“Command” and “Special’. For eachcategory,a function exists that producestext meeting the
specificationsgiven by the standardsof Section 2.3.1.2. These functions have the names
CommandText, GeneralText, RuleText, and SpecialText Each routine returns a list
containing the width and height of the rectangle of text produced so that such functibesabedin
succession, each producing text beginning at the bottom of the previous rectangle of text. iBiscause
frequentlynecessaryo know the size of rectangularegionof text in orderto place graphicimages
relative to its boundaries, a function existsrespondingo eachof the four text-generatingunctions
which returnsthe width and heightof the rectangleof text, but which producesno graphic output.
Each such function has the name ofting producingfunction it sizesfollowed by the suffix “Size”.
Thus we haveseneralTextSize CommandTextSize RuleTextSize and SpecialTextSize

In additionto the productionof text, it is usually necessaryto provide illustrationsto clarify points
discussed in the text. Although space can be left for these figures in through the use lofddamla
file, it is suggestedhat spacebe provided explicitly for the diagramsthrough the use of the
GeneralBlock function. This providesa blank regionof the appropriatesize and color which can
thenbe usedas a backgroundon which illustrationscan be placed. Again, this function returnsthe
width and heightof the regionproduced. In orderto obtainthe top or left basiscoordinatesof the
main GeneralBlock with which text blocks except “Special” are aligned, the functions
GeneralBlockLeft andGeneralBlockTop have been provided. For tli&eneralBlockfunction, a
“Size” function exists giving its width and height, appropriately caBeteralBlockSize

In order to avoid the necessity of continuously fordimguserto changethe colorsor constantsised

5

in amenuto meetnew specificationsof the GeneralBlock,RuleBlock, etc., a numberof functions
have been provided which give theeraccesdo thesevaluesdirectly. Eachreturnsthe value of the
specified constant. These functions are:

CommandBlockColor
CommandCopyColor
GeneralBlockColor
GeneralCopyColor
RuleBlockColor
RuleCopyColor
SpecialBlockColor
SpecialCopyColor
GeneralBlockTop
GeneralBlockLeft
SelectBlockColor
SelectCopyColor

In each, “Copy” has been used as a synonym for “Text”".

The next stage in the productiona$creenis the placemenbf mouse-selectablieonson the screen.
This can be viewed conceptually as the placement of a transparent ovaHaysoreen.The iconsare
all contained on this overlay. In order to create the oveolagfirst createsa graphicaldescriptionof

the icons using the functions in the SHARE package. Each icon is typically desiiie(®,0) wereits

upper left hand corner,and is drawn on a rectangularbackgroundcreatedusing the DrawRect or

FillRect function. The overlayis thencreatedusingthe function MenuDraw or MenuDrawPlain.

Thesefunctionsare passedhreelists. Theselists consistof a list of icon function names,a list of

locations to which icons are to be translated, and the list of tokens which are returnedpatieular
icon is selected using the mouse. These menu functuns as their outputa list known asa “Pick

List” which must be stored in a variable for later use.

The final stage in thereationof a menuis the creationof an interfacewith the mouse. The function
provided to effect this interface is the functislenuMouseSelect The typical interfaceconsistsof
a loop which first calls the function MenuMouseSelectwith the “Pick List” producedby a menu
function followed by a set of casesbasedupon the output of MenuMouseSelect. When the user
depressethe selectbutton, MenuMouseSeleateturnseither the coordinatesf the cursor or one of
the tokensspecifiedwhen defining overlay. The coordinatepair is returnedonly if the selectbutton
was depressed while the cursor was not within the boundsdrasicon. In all othercasesan action
is typically taken based upon the token returned.

2.3.1.1 List of SHARE Functions

Beep BlankDisplay CallUnix
ChoiceText ChoiceTextSize ClearScreen
CommandBlockColor CommandCopyColor CommandText
CommandTextSize DisplayHeight DisplayWidth
DrawCircle DrawCurPoly DrawLine

DrawPoly DrawRect EchoBackground

EchoFont
EchoGeneralBlockTop
EnterExhibit
ExitExhibit
FillCircle
FillRect
GeneralBlock
GeneralBlockTop
GeneralText
HelpScreen
MenuDrawPlain
MouseClickLoc
NiceStringOut
RuleBlockColor
RuleTextSize
SelectSquare
SetOrigin
SpecialBlock
StringOut
TitleOut
WaitTimeOut

2.3.1.2

“orange”).

(Beep)
Beeps.

EchoFontHeight
EchoLimits
ErrorClear

FileOut
FillCurPoly
Full-Path
GeneralBlockColor
GeneralBlockSize
GeneralTextSize
Menu
MenuMouseSelect
NiceCTextClear
OptionBox
RuleCopyColor
SelectBlockColor
SetBackground
SpecialBlockColor
SpecialText
StringSize
TitleClear
WaitUser

Description of SHARE Functions

NOTE: Color indexesmay changewith eachprogramrun, thus all programsspecifying color
should either executiie GetColorcommandio get eachcolor index or usestandardcolor names
suchas share::*orange* which automaticallymapto the GetColorvalue. The latter methodhas
the additional advantageof being able to take into accountchangesn the definitions of colors
betweenmachinesor versionsof OpenWindowseasily, and can thereby map,| for example,
share::*orange®o (GetColor*“coral”) in casesin which thatis a better orangethan (Getcolor

(BlankDisplay [color-index])

Clears screen with specified background color

EchoForeground
EchoOrigin
ErrorOut

FileSize

FillPoly

FullRect
GeneralBlockLeft
GeneralCopyColor
GetColor
MenuDraw
MenuPlain
NiceCTextOut
ResetLimits
RuleText
SelectCopyColor
SetForeground
SpecialCopyColor
SpecialTextSize
Talk

UpdateLimits

Returns color index of the color of the display after clearing.

Differs from ClearScreen in that it will clear the entire display, not just the working area.

(Callunix command-string)

Executes a unix command.
Eg: Lisp> (CallUnix “Is™)
filel.lisp file2.lisp file3.lisp

(ChoiceText y textlist [fontname])

Outputsthe specifiedtext as a menu choice with its top at y (relative to the origin set by
SetOrigin).

Returns a list giving the width and height of the Text. (width height)
Defaults:
fontname - given by (EchoFont) (i.e. “helv12b”)
Eg: Lisp> (ChoiceText O
‘(“1. See an example of” “how SPARC works”))

NOTES:
1. You will probably want to replace all your OptionBox calls with ChoiceText.
2. Itis suggested that menu choices be limited to ONE LINE.
3. Menu choices can be numbered: “1. See an ...”, “2. More advanced ...".
4. Leave an interval of y = *MenuChoiceBlockinterval* (a SHARE global)
between each menu choice.
5. The x coordinatesof the coordinate-list passedto the Menu function are ignored by

ChoiceText. However, y-coordinates are affected by the SetQuigation which is called by
Menu. ChoiceTextwill thereforeusually be calledwith y=0 andwith the y-coordinateof the
menu choice in the coordinate-list set and passed to Menu.

(ChoiceTextSize textlist [fontname])

Does everything ChoiceText does, except output the menu choice.

(ClearScreen [color-index])

Fills the screen with the specified color.
If the color-index is not specified, the default background color is used.

ClearScreen may eventually be modified to only clear the portion of the display not odmupied
the standard options of Menu and the error messages.

This will eliminate the need to redraw the standard options every time a new menu is drawn.

NOTE: ClearScreermoesnot changethe defaultbackgroundcolor. In orderto changethis,
use the SetBackground function.

(CommandBlockColor)

Returns thecolor which is presentlydefinedasthe backgroundor CommandBlocks (ie, the
background behind text output by CommandText.)

(CommandCopyColor)
Returns the color which is presently defined as the color of Command Copy
(ie, text output by the CommandText function)

(CommandText y textlist [fontname])
Outputs the specified text as a Rule block with its tgp at
Returns a list giving the width and height of the Command block produced.
Eg: Lisp> (CommandText 400
‘("Please stop” “kicking the terminal.”))

(CommandTextSize y textlist [fontname])

Returns a list givinghe width and heightof the Commandblock producedoy CommandText
when given the same inputs.

Eg: Lisp> (CommandTextSize 400
‘("Please stop” “kicking the terminal.”))

(DisplayHeight)
Returns the height of the display in pixels.

(DisplayWidth)
Returns the width of the display in pixels.

(DrawCircle color-index x y radius [thickness])

Drawsthe outline of a circle of specifiedradiuswith centerat (x,y), drawnin the specified
color, and being of the given thickness.

Default thickness = 1 pixel.
Eg: Lisp> (DrawCircle (GetColor “green”) 100 100 50 2)
Lisp> (DrawCircle (GetColor “pink”) 10 10 5)

(DrawCurPoly color vertex-list [thickness])
Same as DrawPoly except points are joined with slines (curves).

(DrawLine color-index x1 y1 x2 y2 [thickness])

Draws a line from (x1,y1) to (x2,y2) of specified color and the specified thickness.
Default thickness = 1 pixel.
Eg: Lisp> (DrawLine (GetColor “blue™) 0 50 0 100 3)

Lisp> (DrawLine (GetColor “black™) 0 0 100 100)

(DrawPoly color-index vertex-list [thickness])
Connects the points in a vertex list with straight line segments.
The vertex-list is specified as ((x1 y1) (X2 y2) (x3 y3) ... (xn yn))
where (xi yi) are the coordinates of the vertices of the polygon.
Default thickness = 1 pixel.
Eg: Lisp> (DrawPoly (GetColor “aguamarine”) ‘(0 0) (0 100) (100 100)))

(DrawRect color-index x1 yl x2 y2 [thickness])

Draws a rectanglewith diagonalfrom (x1,y1) to (x2,y2) with lines of the specified color.
Thickness defaults to 1.

Eg: Lisp> (DrawRect (GetColor “red”) 0 50 50 0 3)

(EchoBackground)
Returns the color index of the current background color.

(EchoFont)
Returns the default font name (in a string).

(EchoFontHeight)
Returns the default font height.

(EchoForeground)
Returns the color index of the foreground color.
Defaults to black.

(EchoGeneralBlockTop)
Returns the y coordinate of the top of the standard general block.
Eg: Lisp> (EchoGeneralBlockTop)

(EchoLimits)

Returns a list containing two pairs of numbers. fitst pair representshe coordinatesof the
upper left corner of the screen; the second pair represents the lower right.

10

SHARE functions will draw only if their x and y coordinates fall within these limits.
Eg: Lisp> (EchoLimits)
((5 5) (750 800))

(EchoOrigin)
Returns the coordinate of the origin (with respect to the display).
This is the origin for all Draw and Fill functions.
Eg: Lisp> (EchoOrigin)
(00)
If SetOrigin is not used, the default is (0 0).

(ErrorClear text [font])

Covers the message produdsdErrorOutwith the backgroundcolor. If no font is specified,
the default fonts chosen by,ErrorClear are used.

Eg: Lisp> (ErrorClear ‘(“Please correct” “your mistake”))

(ErrorOut text [font [foreground [background]]])

Printsthe messagdext at a standardlocation on the screen. Text is a list of stringsto be
printed. If no font is specified, the font is chosen so that messages fit on the display.

Defaults:
font - Given by (EchoFont)
foreground - Given by (GetColor “Red”)
background - Given by (EchoBackground)
NOTE: use as few lines as possible, generally one or two.
Eg: Lisp> (ErrorOut ‘(“Please correct” “your mistake.”))

(FileOut x y filename [fontname [foreground [background]]])

Same as TextOutput, but the contents of the specified file is useelstang. The entire path
of the file shouldbe specified,usingthe Full-Pathfunction (seebelow). Most text files are
stored in txt subdirectories within the subdirectories for the individual modules.

Fontnamesanbe any of thosein the /usr/lib/Xfont directory. However, it is suggestedhat
FileOut text be of one font, “helv12b”, for a consistent appearance of text output.

The present maximum string length is 100 characters. Returns the list:
(width height)
Defaults:

fontname - Given by (EchoFont)

foreground - Given by (EchoForeground)

background - Given by (EchoBackground)

11

Eg: Lisp> (FileOut 100 100 (Full-Path “ag/txt/intro.txt")
“helvl2b” (GetColor “white”) (GetColor “black™))

(FileSize filename [fontname])

Returnsa list containingthe width and heighta file will occupywhen output using the font
specified by fonthame.

For example, the output might be the list (50 60)

NOTE: No output to the screen is produced.

The default fontname is given by (EchoFont).

Eg: Lisp> (FileSize (Full-Path “share/README.share”))

(FillCircle color-index x y radius)
Draws a circle of a specified radius with center at (x,y), filled with the specified color.
Eg: Lisp> (FillCircle (GetColor “green”) 100 100 50)

(FillCurPoly color-index vertex-list)
Same as FillPoly except points are joined with curved lines.

(FillPoly color-index vertex-list)

Drawsa polygonandfills the interior with the given color. The vertex-list takesthe form:
((x1y1) (x2y2) (x3y3) ... (xnyn)), where(xi yi) arethe coordinatef the verticesof the

polygon.
Eg: Lisp> (FillPoly (GetColor “orange”) ‘((0 0) (0 100) (100 100)))

(FillRect color-index x1 yl x2 y2)
Draws a rectangle with diagonal from (x1,y1) to (x2,y2) and fills it with the specified color.

(Full-Path path-suffix)

Appendsthe path suffix to the string representinghe full pathof the basedirectoryin which
EMERALD s stored.

NOTE: The definition of the systemvariable*exhibit-path* in emerald.lispmustbe changed
when moving the system to a new directory.

Eg: Lisp> (Full-Path “share/lsp/full-path.lisp”)
“/mnt/michalski/demo/share/lsp/full-path.lisp”

(FullRect color-index x1 yl x2 y2)

Draws a rectanglewith diagonalfrom (x1,y1) to (x2,y2), filling it with the specifiedcolor.
This function differs from FillRect in that includesthe outline of the rectangle. Thus, it is a

12

call to FillRect with the upperleft corner shifted upwardsand to the left one pixel, and the
lower right shifted downwards and to the right one pixel.

NOTE: FullRect should therefore not be used with x or y coordinates on the ddlgsaken
as the rectangle will not be drawn.

(GeneralBlock height [ytop])
Produces a general block with top at y-coordigatge, and height given blgeight
Returns a list giving the width and height of the box.
Default:
ytop - Given by *menuGenBlockY0*.
Eg: Lisp> (GeneralBlock 49)

(GeneralBlockColor)

Returns the backgroundcolor on which GeneralTextis produced-- the color of the
GeneralBlock)

(GeneralBlockLeft)
Returns the coordinate of the leftmost pixel of the GeneralBlock.

(GeneralBlockTop)

Returns the y coordinate of tiep of the GeneralBlock. Usedfor positioningrelative
to the top of the general block.

(GeneralBlockSize height [ytop])
Returns the same list as GeneralBlock, but without producing any output to the screen.

(GeneralCopyColor)
Returns the default color of text in the GeneralBlock.

(GeneralText <filename | textlist> [ytop [MarginList [font
[textcolor [background]]]]])

Given a list of strings or a filename, this outputs the ¢exa rectangleas standardcopy. The
text is produced on a rectangle with a left edge at x = 100 and a right edge at x = 800.

The initial y coordinateof the rectangleis 25 below the top of the backgroundegion (ytop).
The height is determined by the number of lines of text.

MarginList is a list of margins which specifije amountof spaceto leavearoundtext. These
margins are typically used to leave spmrediagrams.They are specifiedin counterclockwise
order around the text, starting from the top.

The top and left margins are set up exactly as specified. The bottom msasginp to be one

13

pixel smallerthanthe smallestmultiple of 25 which providesat leastBOTTOM pixels below
the text.

No right margin is used by GeneralText.
The function returns a list containing the width and height of the box.
Defaults:

ytop - Given by *menuGenCopyYO0*

MarginList - Given by ‘(*menuGenCopyTopMargin*
menuGenCopyLeftMargin
menuGenCopyBottomMargin)

Font - Given by (EchoFont)
Textcolor - *menuMediumGoldenRod*
Background - *menuViolet*
Eg: Lisp> (GeneralText ‘(“This is a short” “example.”))
Lisp> (GeneralText (Full-Path “induce/menul.txt”))

(GeneralTextSize <filename | textlist> [BottomCopyMargin [ytop
[MarginList [font [textcolor [background]]]])

Returns the size of the General block which woulgtoelucedby the function GeneralTexif
given the same inputs.

NOTE: No screen output is produced.
Eg: Lisp> (GeneralTextSize ‘(“This is a short” “example.”))
Lisp> (GeneralTextSize (Full-Path “induce/menul.txt"))

(GetColor string)

Returns a number which is the color index corresponding to thedsdoribedn string. It is
importantthat GetColoris usedto generatehe color-indexbecausedifferent machinesmight
use different indices.

A list of legal strings are found in the OpenWindows library file: rgb.txt
Eg: Lisp> (GetColor “Blue”)
4

(HelpScreen package-name filename [font])
Clears display, outputs file and waits for user to finish reading before returning.
The parametgrackage-namean be one of:
“ABACUS”, “AQ”, “CLUSTER?”, “INDUCE”, “SPARC", “EMERALD"
Capitalization of the package-names is necessary.
The parametedilenamerepresents the pathname to the desired help file,

14

using Full-Path.

It is strongly suggestedhat help files are put in txt subdirectoriesaswere describedin the
section on FileOut, such as in (Full-Path “ag/txt/...”) for AQ.

The parametedontis an optional string specifying the font to be used (see StringOut).

(Menu display-list coord-list output-list package-name [titlel [title2]])

Menu acts like MenuPlain, except when given a list of chdeésplay, it will displayall the
choices plus the following options (referred to in the text as standard menu options):

a. Quit
b. Go to the Main-Menu
c. Go to the <package-name> menu
d. Help
e. Go to the previous screen
f. Go to the next screen
After the user selects an option, a return token is returned by Menu.

The inputs:
All the inputs except package-name, titlel and title2 are the same as those in
MenuPlain.

package-name: The name of the package in use, eg, “INDUCE”, “SPARC'Qate
again, this must be a string in UPPER-CASE.

tittlel: This is the optional first line dhe title of the menu. It is outputin the top part
of the screen, betweeny = 0 and y =149.

titte2: This is the optional secondine of thetitle of the menu. It is output between
y=0andy = 149.

titlel and title2 must be in the form of strings.
IMPORTANT: Options should always be kept out of this area of the screen.

The output:
The returned list will be one of the return tokens or one of the following:

“‘QUIT”, “MAINMENU”, “SUBMENU”, “HELP”, “PREVIOUS”, “NEXT” Notice that all
letters in these strings are upper-case.

Eg: Lisp> (menu ‘(OneBox TwoBox ThreeBox FourBox)
(list ‘(0 350) ‘(0 395) ‘(0 440) ‘(0 485))
‘(“choicel” “choice2” “choice3” “choice4”)

‘AQ)

(MenuDraw display-list coord-list output-list package-name [titlel [title2]])

15

Functions like Menu except it returns a pick-list without asking the user for a mouse Saaut.
MenuMouseSelect for an example of when this function might be desired.

(MenuDrawPlain display-list coord-list output-list)

Functionslike MenuPlainexceptit returnsa pick-list without asking the user for a mouse
input. See MenuMouseSelect for an example of when this function might be desired.

(MenuMouseSelect pick-list)

If the usermight haveto pick more than one selectionfrom a single menu (or screen),this
function canbe usedto registerone selectionwithout redrawingthe menu,using the pick-list
as its index of coordinates and values. To do this:

a. Call MenuDraw or MenuDrawPlain to draw the menu and return the pick-list.
b. Call MenuMouseSelect using the pick-list each time the user is to select an item.

This function will return eitheone of the returntokenscorrespondingo the selectedegions,
or it will return the coordinates selected if the user clicks in a region that is not in the pick-list.

Coordinates are same as those returned by MouseClickLoc.

(MenuPlain display-list coord-list output-list)

Draws a menu and allows the user to sedagttioice. The menusdrawnby MenuPlaindo not
include the standard default options.

The inputs:

display-list: A list of either strings or atoms. Strings are printed, and atoms areataken

function names.The function is usedto draw anicon or somesymbolthatthe
user can see and ‘click’ dhe display. It mustbe drawnwith respecto (0,0),
since MenuPlain executesSetOrigin to locate the icon before executing the
functionto draw theicon. Also, thesefunctions must usethe Draw, Fill, or
StringOutfunctions,sinceMenuPlaindependson thesefunctionsto tell it the
size andocationof theimagesdrawnon the display. All text outputwill have
default foregroundand backgroundcolors as specified by=(EchoForeground)
and (EchoBackground).

coord-list: Eachentry in the display-listshouldhavea correspondingoordinatepair.
Thesecoordinatepairs are relative to the origin. They specify the upper left-
hand corner of the icon or string being output.

output-list: Each entry in the display-list should also hagereespondingeturntoken
in output-list. Thesetokensmay be atoms, numbersor strings (strings are
recommended). One of these rettokenswill be returnedif its corresponding
icon/string is selected.

IMPORTANT: No return token can be a list.
Eg: Lisp> (MenuPlain ‘(“See an example of what SPARC can do”

“Try problems given by SPARC”
“Challenge SPARC with a problem”)

‘(100 0) (100 100) (100 200))
‘“EXAMPLE” “TRY” “CHALLENGE”))

16

;; This might return “EXAMPLE”, “TRY”, or “CHALLENGE".
;» The first line of text is output starting at (100,0),
;; the second at (100,100), etc.

The Output:

The CAR of the output will be onaf the specifiedreturntokens. The secondelement
of the returned list is a pick-list which can be used in a future function.

(MouseClickLoc)

Returnscoordinates(x y), of the locationof the cursoron the screenwhen the mousewas
clicked.

Eg: Lisp> (MouseClickLoc) ;;Click left mouse button now
(540 302)

(NiceCTextClear y text [fontname])
Covers output produced by NiceCTextOut with background color.
Default font is the same as in NiceTextOutC
Eg: Lisp> (NiceTextOutCClear 150 ‘(“Are you there” “today.”))

(NiceCTextOut y text [fontname [foreground [background]]])

Producescenteredext enclosedn a frame. The location of the top of the box is givenby y.
The text is double spaced.

Defaults:
font - given by (EchoFont)
foreground - given by (EchoForeground)
background - given by (EchoBackground)

Eg: Lisp> (NicetextOutC 150 ‘(“Are you there” “today.”))

(NiceStringOut x y string [fontname [foreground [background]]])
Same as StringOut, except it draws a rectangle around the string.

(OpenDisplay)
NOT PRESENTLY EXPORTED!

Connectdisp to the X server(i.e. the OpenWindowspackage). You shouldnot needto use
this; it should only be called once for the EMERALD system.

(OptionBox x y text-list [foreground [background]])

17

Draws a selection square with the top left-hand corner at (x, y).
Both coordinate parameters should be multiples of 100.
Eg: Lisp> (OptionBox 300 300 ‘(“TRY” “TUTORIAL™))

(ResetLimits)

Resetghe screenboundarieso that they can seekthe maximum valuesof *x-min* and *y-
min* and the minimum values of *x-max* and *y-max*.

(RuleBlockColor)

Returns the default color index for Rule Blocks, ie, the backgrouneharh Rule Copy (text)
is output.

(RuleCopyColor)
Returns the default color index for Rule text.

(RuleText y textlist [fontname])

Outputs the specified text as a Rule block with its top aReturnsa list giving the width and
height of the Text.

Default fontname is given by (EchoFont) (currently “helv12b”)
Eg: Lisp> (RuleText ‘(“Life is what happens while you're”
“busy making other plans.”))

(RuleTextSize y textlist [fontname])

Returns a list giving the width and heighttbé Rule block producedby RuleTextif giventhe
same text and fontname.

Default fontname is given by (EchoFont) (currently “helv12b”)
Eg: Lisp> (RuleTextSize ‘(“Life is what happens while you're”
“busy making other plans.”))

(SelectBlockColor)
Returns the background color index of Select squares.

(SelectCopyColor)
Returns the color index of the text in Select Squares.

(SelectSquare x y text-list)

This function correspondgo the Select Squaregiven in the menu layout specs.Its only
difference from OptionBox is that it does not have an optional parameter for colors.

18

Eg: Lisp> (SelectSquare 50 50 ‘(“Choose” “Me”))

(SetBackground color-index)
Sets the background color to the specified color. Does not affect the existing display.

(SetFont fontname)
Sets the default font type. Fontname must be a string.

(SetForeground color-index)
Sets the foreground color to the specified color. Does not affect the existing display.

(SetOrigin x vy)

Allows the user to set the origin of the Cartesian coordinates thiedliraw, Fill, FileOut,and
TextOut functions to a point on the screen.

NOTES: Itis good practice call SetOriginbefore usinga Draw or a Fill function because
other routines might have set it to some other value.

Remember to execute (SetOrigin 0 0) before exiting a routine that uses SetOrigin.
The default origin position is (0,0).

(SpecialBlockColor)

Returns the default color index 8pecialBlocks, ie, the backgroundon which SpecialTexts
printed.

(SpecialCopyColor)
Returns the default color index of the text output by the SpecialText function.

(SpecialText x y <filename | textlist> [MarginList [fontname [foreground
[background]]]])

Given the uppeleft handcornerof a rectanglethis function outputsthe text containedn the
file specifiedby filename,or the textin thelist of strings,textlist. Thetextis producedon a
filled rectangle enclosing the text. MarginList specifies a set of Margins counterclo¢tanse
thetop. Thetop andleft areare drawn preciselyas specified. The right and bottom values
specifya minimumwidth aroundthe text. The right andbottom sidesare alignedinside the
nearestmultiples of 25 which provide a margin of at least RIGHT and BOTTOM pixels
around the text.

SpecialText returns a list containing the width and height of the box output, such as (50 100).

Defaults:
marginlist - Given by (*menuSpecialCopyTopMargin*
menuSpecialCopyLeftMargin

19

menuSpecialCopyBottomMargin
menuSpecialRightMargin)
fontname - Given by (EchoFont)
foreground - *MenuMediumGoldenRod*
background - *MenuViolet*
Eg: Lisp> (SpecialText 200 500 ‘(“Hi,” “how’s the job?"))
Lisp> (SpecialText 200 200
(Full-Path “induce/menul.txt”) ‘(50 50 30 30))
NOTE: Itis suggested that x and y be multiples of 25.

(SpecialTextSize x y <filename | textlist> [fonthame [foreground
[background]]])

Returns a list containing the width and height of the datputby SpecialTextwhen given the
same parameters, such as (50 100).

NOTE: No output to screen is produced.
Defaults:
fontname - Given by (EchoFont)
foreground - Given by (EchoForeground)
background - *menuViolet*
Eg: Lisp> (SpecialTextSize 200 500 ‘(“Hi, how’s the job?"))
Lisp> (SpecialTextSize 200 200 (Full-Path “induce/menul.txt”))

(StringOut x y string [fontname [foreground [background]]])
Outputs the string of text starting at the location (X, y) away from the point set by SetOrigin.
Foreground is the color index of the color of the text to be printed.
Defaults:
fontname - Given by (EchoFont)
foreground - Given by (EchoForeground)
background - Given by (EchoBackground)

It is suggestedhat the defaultfont be used,so thattherewill be a consistenbutput format.
The present maximum string length is 100 characters.

(StringSize string [fontname])

Returns the width and height (x and y) of the string in the foralist. The defaultfontname
is given by (EchoFont).

Eg: Lisp> (StringSize “I")
(10 25)

20

(Talk string [package [device [voicel]]])

Outputs a text string tthe defaultdevicettya which is assumedo be connectedo a DECtalk

voice synthesisunit (producedby Digital EquipmentCorporation.) Packagespecifiesone of
the following:

“EMERALD”, “ABACUS”, “AQ”, “CLUSTER”, “INDUCE”", or “SPARC".
Device defines the output device.

If voice is specified, it must be a valid voice specification forRE€talk unit. Otherwise the
voice will defaultto the voice assignedhe selectecbackage. Seethe DECtalk manualsfor a
complete description of available voice specifications.

Eg: Lisp> (Talk “Hello” “EMERALD”)
Lisp> (Talk “Hello” NIL NIL “[:nb]")

(TitleOut text [fontname [foreground [background]]])
Outputs a title at a standard location on the screen.
Defaults:

fontname - Given by (EchoFont)
foreground - Given by (EchoForeground)
background - Given by (EchoBackground)
Eg: Lisp> (TitleOut ‘(“This is” “a title™))
Lisp> (TitleOut ‘(“This is a” “small title” “instead”) “troman10”
(Getcolor “Red”))

(TitleClear text [fontname])

Covers the title produced by TitleOut with the background color.
Default font is the default from TitleOut
Eg: Lisp> (TitleClear ‘(“This is” “a title™))

(UpdateLimits x y)

Updates thevaluesof *x-min*, *y-min*, *x-max*, and*y-max* if they are exceededy the
pair (x,y).

(WaitTimeOut seconds)
Sets the time in seconds between automatic system resets.

NOTE: This function may have to be rewritten for EMERALD to be run on different
machines, as different systems may have different time keeping methods.

(WaitUser [Pick-list])

21

Waits for the user to select the NEXT SCREEN box. If a Pick-ligtasided,it waits for the
user to select any of the included items. Used in conjunction with HelpScreen.

2.3.1.3 Exhibit Guidelines

The following is alist of specificationsvhich were maderelatively early in the developmenif the
EMERALD system. Functionshave beenwritten implementingeach of the descriptionsbelow.
Various changesvere madeduring the developmenibf EMERALD, particularly the replacemenbf
option boxesby text dubbed“ChoiceText”, which is simply text which hasbeenplacedon a yellow
rectangulabackground. In orderto find a function which createsthe specifiedobject, look for a
function of the samenamein the list of available SHARE functions (e.g. GeneralBlock
GeneralText).

(NOTE: functionswhich output“copy” (ie, producetext) have beengiven the suffix text to avoid
confusion with routines which duplicate data.)

The Guidelinesareratherloose. Thus, eachportion of the system,suchas AQ, ABACUS and so
forth, hastakenon an appearancevhich is somewhatunique in terms of its color scheme,but
continues to have the unifying propedi consistingof the Main and Mid backgroundsverlaidwith
additional rectangles. Inside these rectangles, text and diagrams can be found.

Before adding menus to any particular portion of the system, it is wise to exafeinehthe screens
already designed and to create new screens with a similar layout. System standards are as follows:

Main background Backdrop for everything.
Usage: (fillrect *MenuBlack* 0 0 1000 850)
Mid background: Most of what happens should actuaiypearhere. ClearScreen

will draw this. EchoBackground will give the color indfox the
region, currently defaulting to pink.

Usage: (fillrect *MenuPink* 100 150 900 850)

Menu squares Thesestay on the bottomof the screenat all times;if a square
isn’t used on a&creenthe words canbe left off the square but
the square itself should stajlenu and MenuDrawtake careof
the squares at the bottom of the screen.

Usage: (fillrect *MenuMaroon* 200 750 298 850)
(fillrect *MenuMaroon* 300 750 398 850)
(fillrect *MenuMaroon* 400 750 498 850)
(fillrect *MenuMaroon* 500 750 598 850)
(fillrect *MenuMaroon* 600 750 698 850)
(fillrect *MenuOrange* 700 750 798 850)

Program title Such as “ABACUS”, “SPARC”, etc. These remain on the
screenat all times but may eventuallybe digitized. Therefore
leave this space for them. Menu and MenuDraw will taa¢ of
displaying the title.

Usage: (fillrect *MenuPlum* 350 0 800 150)

Robot

Usage:

Title

General blocks

Usage:

General copy

Command blocks

Usage:

Command copy

22

Thereis no needto botherwith robots,unlessit is desiredthat
their designsbe changedopr if you are creatinga new module
that will have its own robot. The Menu and MenuDraw
functions will draw them when called.

(fillrect *MenuWhite* 800 0 900 150)

This describesyour page. Tites S H O U L D B E
LETTERSPAGED, IN ALL CAPS, LIKE
TH 1 S. Threespacedetweernwords. Menuand MenuDraw
take care of this if yogpecifythe titlel option. (Of courseyou
mustspecifythe spacedetweenletters.) Colors and locations
are specified as follows:

Foreground: *MenuCoral*
Background: *MenuBlack*
MenuTitleX0: 100
MenuTitleYO: 130

These are the rectanglesthat surround most of the written
informationon the screen. In fact they may be thoughtof as
frames for the information that is specific to each screen.

Every page will probablypeginwith one. It is good practiceto
give each general block a little rocmhthe end. For example,if
a block of text will end on y=449, end the rectangleysA75 or
500, ratherthanaty = 450. Theserectanglesshould begin at
x=50 and end at x=800.

(fillrect *MenuViolet* 50 175 800)

This describes the majority of the written text on the scrdéwe.
low y-coordinateboundaryshould be 25 units down from the
top of the “Copy block” andthe copy itself shouldfall between
x=100 and x=750. Parameters are set as follows:

Foreground: *MenuMediumGoldenrod*
Background: *MenuViolet*
Font: (EchoFont) = Helvl2b

Every time the useris instructedto do somethingspecific, it
should appearin a medium goldenrodblock, to highlight it.
Overlap your “general block” with this, beginning at y
coordinateequalto the next multiple of 25. Regardlesf the
length ofthe command the rectangleshouldrun from x=50 to
x=800.

(fillrect *MenuMediumGoldenrod* 50 y1 800 y2)

The words should always begin at x=100, and go no further
thanx=750. If your commandblock beginsat y=25, the copy

23

should begin at y=30. Colors and fonts are as follows:

Foreground: *MenuViolet*
Background: *MenuMediumGoldenrod*
Font: (EchoFont) = Helvl2b

Rule blocks Like commandblocks, theseappearto highlight information,in
this case, the rule or answer that a particular robot has
discovered.

Overlapthe “general block” with this, with the beginningy-
coordinate at the next multiple of 25.

Usage: (fillrect *MenuPaleGreen* 50 y1 800 y2)

Rule copy The words should always begin at x=100, and go no further
than x=750. The following colors and font are used:

Foreground: *MediumGoldenrod*
Background: *MenuBlack*
Font: (EchoFont) = Helvl2b

Special copy Whenever text i@utputat an arbitrarylocationon the screenit
shall be termed Specialcopy. Its upper left corner should be
alignedon a boundarywhich is a multiple of 25, and its lower
right cornershouldbe alignedone unit to the left and abovea
boundary which is a multiple of 25.

Select Squares These are the options for which a viewer has to use the mouse
track-ball. Ideally, they are 100 units squéoe 98 units square
if they are adjacent)and appearin the spacesabovethe menu
squares (x = 200 to 298) ... (x=700 to 798). Stamdardcolor
is *MenuBlueViolet*

Icon Blocks Wheretrains, shapes cards, etc. appear. Again, usethe grid
where possible. Don'’t feel that all the horizontal or vertical
spacemust be takenup. Line the blocks up from the left at
x=200 if possible.

We will now present examples of several SHARE function calls. These functions help gererase
as specified above.

NOTE: *“text” is usedin function namesas a synonymfor the word “copy” in the specs(in
README.menu).

Li sp> (GeneralText ‘(“This is a short” “example.”))
Li sp> (GeneralText (Full-Path “share/txt/pgl.txt"))
Li sp> (GeneralBlock height)

Li sp> (CommandText 50 ‘(“Please select an option”))

24

Li sp> (RuleText 50 ‘(“Blue birds have wings” “and Red birds don’t”))
Li sp> (SelectSquare x y ‘(“ABACUS"))

Li sp> (SelectSquare x y ‘(“CHALLENGE” “SPARC™))

Li sp> (SpecialText 200 500 ‘(“Hello,” “how is the weather?"))

Li sp> (SpecialText 200 500 (full-path “share/txt/pgl.txt”))

Look in section 2.2.1 for more detailed descriptions.
2.3.1.4 Index of Share Functions

The following index containsa list of all functionsdefinedin the SHARE packageFor thosewhich
areusedby the typical menuprogrammerseesection2.2.1 of this document.The functionsin the
index are sortedby function namewhich appearsn the secondcolumn of the index. To usethe
index:

1. Find the desired function name after the colon.

2. The lisp file in which it is containedis found to the left, and the argumentsin its
definition are to the right.

Thefiles are presentlystoredin the directory share/newsharegnd are loadedfrom share/share.lisp
with the exceptionof Full-Path,which is loadedfrom the file emerald.lispin the system’shome
directory.

aba_icon.lisp: AbacusClear (x y &optional scale)
aba_icon.lisp: Abacuslconl (x y &optional scale)
aba_icon.lisp: Abacuslcon2 (x y &optional scale)
aba_icon.lisp: Abacuslcon3 (x y &optional scale)
aba_icon.lisp: Abacuslcon4 (x y &optional scale)
aba_icon.lisp: Abacuslcon5 (x y &optional scale)
ag_icon.lisp: AqClear (x y &optional scale)
ag_icon.lisp: Aqglconl (x y &optional scale)
ag_icon.lisp: Aglcon2 (x y &optional scale)
ag_icon.lisp: Aqglcon3 (x y &optional scale)
ag_icon.lisp: Aqglcon4 (x y &optional scale)
ag_icon.lisp: Aqglcon5 (x y &optional scale)
beep.lisp: Beep ()

screen.lisp: BlankDisplay (&optional color-index)
callunix.lisp: CallUnix (command)

stdchoice.lisp: ChoiceText (y text &optional font)
stdchoice.lisp: ChoiceTextSize (text &optional font)
screen.lisp: ClearScreen (&optional color-index)
clu_icon.lisp: ClusterClear (x y &optional scale)
clu_icon.lisp: Clustericonl (x y &optional scale)

clu_icon.lisp: Clustericon2 (x y &optional scale)

clu_icon.lisp:
clu_icon.lisp:
clu_icon.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:

stdmenu.lisp:
x2lisp.lisp:
x2lisp.lisp:
drawpoly.lisp:
drawpoly.lisp:
drawpoly.lisp:
drawpoly.lisp:
drawpoly.lisp:
drawpoly.lisp:
screen.lisp:
screen.lisp:
screen.lisp:
screen.lisp:
stdmenu.lisp:
limits.lisp:
origin.lisp:

eme_icon.lisp:
eme_icon.lisp:
eme_icon.lisp:
eme_icon.lisp:
eme_icon.lisp:
eme_icon.lisp:

center.lisp:
center.lisp:
fileout.lisp:
fileout.lisp:
fillpoly.lisp:
fillpoly.lisp:
fillpoly.lisp:

25

Clustericon3 (x y &optional scale)
Clustericon4 (x y &optional scale)
Clusterlcon5 (x y &optional scale)
CommandBlockColor()
CommandCopyColor()

CommandText (y text &optional font (color
menuCommandBlockColor))

CommandTextSize (y text &optional font)
DisplayHeight ()

DisplayWidth ()

DrawCircle (clr-index x y radius &optional th)
DrawCurPoly (colornum pointlist &optional thickness)
DrawLine (c x1 y1 x2 y2 &optional th)

DrawPoly (colornum pointlist &optional thickness)
DrawPolyNoUpdate (colornum pointlist &optional thickness)
DrawRect (c x1 y1 x2 y2 &optional th)
EchoBackground ()

EchoFont ()

EchoFontHeight()

EchoForeground ()

EchoGeneralBlockTop()

EchoLimits ()

EchoOrigin ()

EmeraldClear (x y &optional scale)

Emeraldiconl (x y &optional scale)

Emeraldicon2 (x y &optional scale)

Emeraldicon3 (x y &optional scale)

Emeraldicon4 (x y &optional scale)

Emeraldicon5 (x y &optional scale)

ErrorClear (text &optional font)

ErrorOut (text &optional font fgnd bgnd)

FileOut (x y filename &optional fontname foreground background)
FileSize (filename &optional fontname)

FillCircle (clr-index x y radius)

FillCurPoly (colornum pointlist)

FillPoly (colornum pointlist)

fillpoly.lisp:
emerald.lisp:

stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:

screen.lisp:
help.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:

ind_icon.lisp:
ind_icon.lisp:
ind_icon.lisp:
ind_icon.lisp:
ind_icon.lisp:
ind_icon.lisp:

menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:
menu.lisp:

26

FillRect (c x1 y1 x2 y2)

Full-path (x)

FullRect (c x1 y1 x2 y2)

GeneralBlock (height &optional ytop)
GeneralBlockColor()

GeneralBlockLeft()

GeneralBlockTop()

GeneralBlockSize (height &optional ytop)
GeneralCopyColor()

GeneralText (text &optional y MargList font fgnd bgnd)
GeneralTextSize (text &optional y MargList font fgnd bgnd)
GetColor (string)

HelpScreen (pname filename &optional font title)
IconHelp ()

IconMainmenu ()

IconNext ()

IconPrevious ()

IconQuit ()

IconSubmenu ()

IconText (x y t1 &optional t2 t3)

InduceClear (x y &optional scale)

Inducelconl (x y &optional scale)

Inducelcon2 (x y &optional scale)

Inducelcon3 (x y &optional scale)

Inducelcon4 (x y &optional scale)

Inducelcon5 (x y &optional scale)

Menu (dlist clist olist pname &optional t1 t2)
MenuDraw (dlist clist olist pname &optional t1 t2)
MenuDrawPlain (dlist clist olist)
MenulconDraw(pname)

MenulconOut (function x y ret)
MenuMouseSelect (plist)

MenuPlain (dlist clist olist)

MenuProgramTitle (pname)

MenuStringOut (str x y &optional ret)

MenuTitle (t1 t2)

mouse.lisp:
center.lisp:
center.lisp:
menu.lisp:

BBB_opendisplay.lisp:

optionbox.lisp:
talk.lisp:
limits.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
talk.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
screen.lisp:
screen.lisp:
screen.lisp:
origin.lisp:
spa_icon.lisp:
spa_icon.lisp:
spa_icon.lisp:
spa_icon.lisp:
spa_icon.lisp:
spa_icon.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stdmenu.lisp:
stringout.lisp:
stringout.lisp:
center.lisp:
stringout.lisp:
talk.lisp:
center.lisp:

27

MouseClickLoc ()

NiceCTextClear (y text &XOPTIONAL font)
NiceCTextOut (y text KOPTIONAL font fgnd bgnd)
NiceStringOut (x y str &optional font fgnd bgnd)
OpenDisplay ()

OptionBox (x y txt &optional fg bg)

Punctuated? (string)

ResetLimits ()

RuleBlockColor()

RuleCopyColor()

RuleText (y in-text &optional font)

RuleTextSize (y text &optional font)

Say (string voice device)

SelectBlockColor()

SelectCopyColor()

SelectSquare (x y text)

SetBackground (color-index)

SetFont (fonthname)

SetForeground (color-index)

SetOrigin (X y)

SparcClear (x y &optional scale)

Sparclconl (x y &optional scale)

Sparclcon2 (x y &optional scale)

Sparclcon3 (x y &optional scale)

Sparclcon4 (x y &optional scale)

Sparclcon5 (x y &optional scale)
SpecialBlockColor()

SpecialCopyColor()

SpecialText (x y text &optional MargList font fgnd bgnd)
SpecialTextSize (x y text &optional MargList font fgnd bgnd)
String-length (string)

StringOut (x y string &optional fontname foreground background)
StringOutC (y str &OPTIONAL font fgnd bgnd)
StringSize (string &optional fontname)

Talk (string &optional package device voice)
TitleClear (text &optional font)

28

center.lisp: TitleOut (text &optional font fgnd bgnd)
limits.lisp: UpdateLimits (x y)

waittimeout.lisp: WaitTimeOut (seconds)

help.lisp: WaitUser (&optional plist)

BBB_opendisplay.lisp: YN-Question (quest)

3 AQ ROBOT

The codefor the AQ portion of the exhibit essentiallyconsistsof a LISP front end to the Pascal
implementation of the AQ15 algorithm. This portiohthe programmer’syuide consistsof two main
sections. Thefirst sectiondescribeghe LISP code. The secondsectionbriefly describegshe AQ15
Pascal code. This documentation assumes that the reader has run the AQ portion of tlame kit
a working knowledge of the languages involved. All files mentioned will appear in thédaectory
of the exhibit's home directory, unless explicitly stated otherwise.

3.1 Front End Code

A file of code for the front end will be one of two typelstSP codeor text files (which, althoughnot
strictly considered code, are important elements of the ¬f. Eachtype of codeis explainedin a
separate subsection below.

3.1.1High-Level LISP Functions

First andleastnoteworthyis the file aq.lisp. It comesfirst in running AQ becauset loadsall the
necessaryisp files for runningit. It is leastimportantbecauset containsonly a few lines of code,
which are interpreted only at the time EMERALDasded,and are not usually encounterecgain. It
is occasionally useful when the system is running, and ath¢st) of AQ needsto bereloaded. The
really important LISP code consists of the high-level functions and the AQ Interface routines.

In keeping with the convention for all “robots” in the exhibit, the top-level function for ALgisain
(foundin agmain.lisp). Ag-mainis responsiblgor soliciting responsegrom the main menu. The
responsesire processedyy the ResponselUseifunction which calls the appropriatefunction for
eachitem on the main menu. Thesefour functionscomprisethe secondlevel of code. Thus aside
from ag-mainand ResponselUseno otherfunctionin the AQ codeis calledwithout calling one of
the four “option™ functions determined byselectionfrom the main AQ menu. Table 3.1 showsthe
main menu options along with their corresponding high-level functions.

Each of these high-level functions usesagaeociatedesponserocessingunction muchlike ag-main
usesResponselUser.Eachresponseprocessingfunction consistsof a loop which performstwo
responsibilities at each iteration. The first responsibility is the handling oéspensewhich usually
involvesincrementingor decrementinghe currentpage(screen)numberfor the option. The second
responsibilityis the invocationof a pagevectorfunction, usually called without an argument,which
checksthe current page (screen)number for the option, and calls the function which draws the
appropriatescreen. Table 3.2 showsthe correspondencbetweenthe high-level functions and their
responseprocessorand page vector counterparts. (Note there is no associatedvector with the
HowAqWork function because the option has only one screen.)

At first this architecturemay seemsomewhatconfusing. Indeed,the requirementhat one function
must handle all appropriate responses for all screens within a high-level cgiigesa fair amountof
convoluted code. Nevertheless, if responses are more or less standard gntamagtion (andthey
generally are), the convention does provide for relatively straightforaddition of screenswithin an
option. A new high-level option can also be addedwithout much trouble simply by copying and
modifying a similar “option function”/responder/pager triumvirate.

29

OPTION FUNCTION
AQ challenges you with a simple problem SeeExamples
Challenge AQ with a simple problem TeachMeConcept
Challenge AQ with a more complex problem ChallengeMe
Find out how AQ works HowAqWork

Table 3.1. Important High-Level AQ Functions

Anotheradvantagef the architectures the existenceof one concisemain function for eachscreen.
Thesefunctions are easily identified, since they consistof a basename which is similar (if not

identical) to the page vector function, followed by the nunabehe screenin the screensequencdor

the option. For example the third screenfor the TeachMeConcepbptionis handledby the function
TDPage3 Programmodificationanddebuggingseldomrequirestracing functions more than two

deepfrom the screenfunction. The only exceptionsoccur when the AQ15 algorithm is invoked.
These interface functions are more complex and are dealt with in a separate section below.

OPTION RESPONSE
FUNCTION PROCESSOR PAGING
SeeExamples Response2User DisplayPages
TeachMeConcept Response3User TDPage
ChallengeMe Response4User EDPage
HowAgWork ResponsebUser

Table 3.2. Associated High-Level Functions.

High-Level Function Location. The functionsdescribedin Table AQ.2 can be found among
threefiles: agmain.lisp,which containsboth the tutorial (the SeeExamplesfunctions) and the
explanationscreen(the HowAqWork functions),aqteach.lispyhich containsthe simple challenge

30

(the TeachMeConcept functions), and aqchal.lisp which contains the complex challenge (the
ChallengeMe functions). Thesefiles shouldall be compiled beforeloading. Compilation can be
donein UNIX usinganoptionto the “lisp” command,or in LISP usingthe compile-file function
with the name of the file to be compiled as the only argument, in $tning The compiledfiles have
the samenameasthe LISP files, but havea “fas” or “Ibin” extension(dependingon the version of
LISP used) instead of “.lisp”.

3.1.2AQ Interface Routines

These functions construah input file for the AQ15 program,invoke AQ15, readthe outputfile and
translate the results into English text. The top-léwettionis calleddiscoverrules which takesas
its only argumenta list of groupsof robots. This function calls a long seriesof functionswhich
perform the stepsoutlined below. The call to the compiled Pascalimplementation(discussed
separatelyater) is achievedby the LISP callunix function. This functionis called with the UNIX
system function “system” as an argument. This simply executes a UNIX contimanahich in this
caseis the commandine for invoking AQ15. (This commandine string is the secondargumentto
callunix.) AQ15 takes one argument, the path to the executible AQ15 file.

AQ15 requires several files tperateproperly. It expectsto find properly formattedinput in the file
robots.inp. It leaves itsoutputin afile calledrobots.out. It alsomaintainsa history of previous
rulesin rulehist, andusesthis informationin avoiding redundancywhen finding alternativerules.
Similarly the LISP routines in the interface require the flead andexamplesto build the input file
for AQ15.

A special case worth noting when a characterizatiorfior only onegroupis generated.This is done
without invoking AQ15, usingessentiallythe refunion operationwith a simple trimming procedure.
This operation,along with the translationprocedure,involves a long sequenceof short, clearly
understandabldéunctions, which can easily be followed in the code, and therefore, will not be
discussed further in this documentation.

All of the LISP functionsnotedabovecanbe foundin the file agrule.lisp This file should also be
compiled, hence aagrule.fasfile should also exist.

3.1.3Text Files

Although technicallynot code,text files representa large percentageof the portions of EMERALD

mostlikely to be changed. To changemost of the text on any screen,one can usually escapethe

exhibit, get toUNIX commandevel eitherby Ctrl-Z or openinga new window, edit the appropriate
file, and restart EMERALD without reloading or compiling any files whatsoever,(although a
repositioning of a new size of textblock is often unavoidable).

Text files have names of the form text<n><i> where n is an integer and i is an optional addidexal
as in “text41” and “text8b”. To chandbke text on a given screenJook at the handlerroutine for that
screento find the nameof the text file(s) it uses. Thensimply edit the file(s), and restart(it is not
necessary to reload) the exhibit.

Help files are simply text files that are only read by the exhibit function helpscreen which was
describedin section 2.3.1.1. AQ has five help files: help.text and help.textl through
help.text4.

3.2 AQ15

Currently only the compiled version of AQ15, located in (Full-Path “ag/aq15”), can be foundthmder
EMERALD directories. It was expected that any modifications to the Pascal source codeulddie
used to enhance EMERALD could be implemented by simply replacing the AQ execlailee,the
AQ15 sourcewas not included. Nor was it considerednecessarythat the userwould needa deep

31

understandingf the operationof this code or needto setany flags, parametersetc. While later
versionsof EMERALD may allow the capability for parametersetting, seperatescreenswould be
designed to handle all the necessary interfacing A@h For thosewho areinteresteddetailson the
AQ15 code and recent updates to AQ may be found in the references on AQ.

4 INDUCE ROBOT

4.1 Introduction to INDUCE

INDUCE is asystemcapableof learningconceptsabout objectsor groupsof objectsby example.
Unlike many other learning-by-example systems, INDUCE is capable of finelagpnshipetween
the parts that make up a single examgter example,if INDUCE is trying to learnconceptselating
to trains, as it is in the EMERALD system, it can also utilize knowledge about indiiaksgind even
the relationships between different cars.

4.2 A Guide to INDUCE on EMERALD

4 .2.1Basic Structure

All of the INDUCE code, with the exception of the functions and routines sharatll sectionsof the
EMERALD system, are found in the induce subdirectonsudrdirectorieshereof. Unlessotherwise
noted, all files referred to will be found in the induce subdirectory.

Loading INDUCE is a trivial matter. Providedthat the useris in the LISP environmentand has
already loaded the SHARE functions, the only necessary step is to enter:

(load (full-path “induce/induce”))

The main controller for INDUCE is found the file indmenu.lisp. This file executesa largeloop,
displaying the proper screen on each iteration. The screereferedto in the form “m#”, wherem
stands for “menu”, and # is the number of the scrd@ue to the designchangesduring development
of the code, not all of the numbers are contiguous, and in some cases, relatechsedkstirsgyuished
by trailing letters,eg, m2 andm?2a. Indeed,differentversionsof EMERALD may employ different
screensand different screennumbers but the systemwas developedn sucha way that isomorphic
screens ought to have identical numbers.

In the current version, the following numbering convention holds:
m1is the main menu; here the user selects which portion of the INDUCE exhibit to view.

mZlathroughmb5c offer a tutorial on the way INDUCE solvesproblems,and show examplesof the
types of problems INDUCE can solve. At certain key stagdie tutorial, the useris askedto come
up with solutionsto someof theseproblems. mlais a submenuallowing the userto go directly to
m2, m4 or m5. m2 and m2a display the learning of an arch as an incrementalprocess,and m3
shows it as a non-incremental process3a summarizeghe problemof arch(concept)learning,and
touches upon the difference between incrementahanencrementalearning. m4 givesan example
of a multiple group problemin the domainof geometricfigures, and the user is askedto find a
completeand consistendescriptionof one of the groups. Them5 seriesintroducesthe userto the
domainthatwill be usedfor the challengeportion of the INDUCE exhibit -- that of distinguishing
between groups of trains.

m19 encompasses the challenge portion of the INDUCE demonstrafidike the restof INDUCE,
most of this code is not in the file indmenu.lisp, but rather in the subdireotognu. A subdirectory
of this, lisp, holdsthe sourcecode,all of which is cat-edinto one large file, inmenu.lisp, in the
directory above. Three main submodulesmake up the inmenufile. The main one is known as

32

trainmenu, and it serves to handle #fle intricaciesof the userinterfaceduring the challengephase,
plus performthe callsto the INDUCE programitself. The other two submodulesdrawcars and
iofuns, assist in the display of trains on the screen.

m27 displays a screenwhich briefly explains how INDUCE works, and lists several actual
applications.

4.2.2INDUCE Algorithm Code

This section describes the code tinggplementsthe INDUCE algorithm. This codeis written entirely
in LISP. The authorof the original versionof this codeis unknown, althoughBrad Whitehall was
responsibldor a largeamountof the modificationto the original code as part of a classproject for

Professor Robert E. Stepp, Department of Electrical and Computer Engineering, Unofdibitgis.

Theoreticaldescriptionsof the INDUCE algorithmcanbe found in “A Theory and Methodology of

Inductive Learning” by R.S. Michalski in Machine Learning (see generalreferencesMichalski,

Carbonelland Mitchell, 1983) and various University of Illinois Departmentof Computer Science
Reports by Professors Michalski and/or Stepp. See the INDUCE-oriented refdogrieelnicaland
applicationdetails of the system. As is often the case, the theoreticaldescriptionsare of limited

practical value as far asxderstandinghe codeis concerned. Nevertheless vagueunderstandingf

how INDUCE works is helpful asa startingpoint for comprehendinghe 3300+ lines of LISP that
perform the algorithm. A working knowledge of LISP is essential.

The codewill be describedin termsof its various modules(files). The role of the modulein the
algorithmwill be discussedalong with the importantfunctions of the module. Any modifications
madeespeciallyfor EMERALD will be noted. All files below should be compiled (have “.fas” or
“.Ibin” counterparts) unless stated otherwise.

defs2.lisp

A wise man once said that the best place to startiedeginning. Obviously he was not a software
engineer, who would know that the best place to start is witbatastructures. The file “defs2.lisp”
provides a well-commented description of each of the majorstiateturesusedby INDUCE, aswell
asthe definitionsfor manyassociatedunctions(print functions,dataconversionfunctions, etc.) A
brief look at this file will make starting from the beginning significantly easier.

inducel?2.lisp

This file is wherethe algorithm actually begins. It containsthe top-level function INDUCE-1.

Perhapamoreimportantly,it containsthe declarationgor the variousparametersvhich can produce
dramatic changeim the performanceandoutputof INDUCE. The parametenf greateswvalueto the
INDUCE programmeris undoubtedly the *INDUCE-TRACE* parameter, which allows the
programmer to see what INDUCE is doing. Tpasametecanbe setin LISP using SETQor SETF
when the exhibit is stopped/henthe exhibitedis restartedusing the (restart) function), the trace
will automaticallybe in effect. (The programmermust be in the INDUCE packageor specify
INDUCE::*INDUCE-TRACE* when settingthis and any other parameteiinteractively.) Increasing
values for the trace parameter wviitreasethe depthof the trace. The programmeircandeterminethe
precisenatureof the traceby searchingor statementgontainingthe trace variable (while within an

editor, for example),and is certainly free to add new trace statementswhen such is deemed
appropriate.

The other parameters in this module determine the numlsengflexesgeneratecand trimmed at key
stagesin the algorithm. The programmeris warned that the default values reflect hours of
experimentatiorand that changingthe valueswithout savingthe old valueswill most likely resultin
inferior performance. Not that these parameters cannot be adjusted more ogtmmatiyyor changes
have most likely been tried with less than desirable results. Also worth notingtsleracedor the
lexicographicalevaluationfunctions (LEF’s) are not always as they appear,and peculiaritiesin the
evaluationfunctions themselvesshould be thoroughly investigatedbefore changinga tolerancethat

33

seems not to make sense.

Now that the programmer has been presented withitfadls of parametersa brief descriptionof the
high-level INDUCE functionsis in order. INDUCE-1 (the high-level function) invokestwo major
operations. The first is the invocation of BASIC-INDUCE, the INDUCE covering algorithm.
Receivingseveralcomplexegconjunctions)oack from BASIC-INDUCE, INDUCE-1 calls CALL-
AQ (the version of AQ modified fathe INDUCE system)to generalizethe referencegvalues)of the
selectorqconjuncts)in the complex. INDUCE-1 performstheseoperationsiteratively until all the
positive events are covered.

INDUCE-1 was modified for the EMERALD system to construct alternative ril@sextra parameter
(old-seed-hypos)vas addedto INDUCE-1 which consistsof a list of complexesusedin previous
rules. At each iteration, INDUCE-1 removes any complex frofisitef candidatecomplexeswvhich

also appearson the list of previouscomplexes. This assuresthat no previousrule will ever be

duplicated.

induce22.lisp

This module contains most of the LEkctionsandall functionsnecessaryor calling the aq portion
of the algorithm. The ag functionsconvertthe inducegraph-structuredepresentatiomo one suitable
for input to aq, and vice versa for ag’s output.

aqg.lisp

This module contains the code which implementsa simplified aq algorithm. Declarationsfor
parameters to aq appear at the end of this file.

graph-match2.lisp

The routines found in this file perform the covering operations for the INDUCE algorithm.
build-graph2.lisp

This module buildgraphstructuresor input events. The main function in this moduleis BUILD-
EVENT, which internalizes data from input specifications. This function is only calledtfremput
file “alltrains.lisp”, which contains the definitions for all the trains used by INDUCE.

init2.lisp
This file loads all the INDUCE algorithm code into LISP. It serves no other purpose.
vitoeng.lisp

This file containsthe functionswhich convertthe complex(es)returnedby INDUCE into naturally-
sounding English. Most of theork is doneby the function subst-var, which searchegor various
patterns in the input texind replacescertainstringswith others. The resultingsentencesre passed
backto trainmenuin the form of a list of strings, which are then written on the screen,and piped
through the DecTalk unit.

Other Files

Severalother files can be found in the INDUCE directory. Thesefiles are enhancementso the
INDUCE algorithm which were namplementedn the EMERALD display primarily dueto time and
performancerestraints. “increment2.lisp”allows INDUCE to do incrementallearning. “bk2.lisp”
allows backgroundknowledgeto be usedby the system. “meta.lisp” handlesmeta-selectorsuchas
FOR-ALL, MOST, LEAST, etc. Thesefiles have beenmaintainedshould such enhancementbe
deemed worthwhile at a later date.

34

5 CLUSTER ROBOT

5.1 Overall Description

The CLUSTER demonstration has three main scre€isJSTER ChallengedJser, User Challenges
CLUSTER, and How CLUSTER Works. These screensathdiary screenghey call, andthe main
routine that controls them all, forthe coreof CLUSTER. This chapteris divided into four sections
corresponding to the main control routine and the three main screens that it calls.

5.2 The Cluster-Main Routine

The routine Cluster-Main performsmost of the work involved in moving from screento screen
based upon the user’s mouse input. This routimaptementedas a large casestatementvithin a do
loop. Eachscreenthat the useris able to visit is representeds one of the caseswithin the case
statement. Each case hasaane,which is an atom,suchas“screenl”;this label identifiesthe screen
which is controlled here. The body of each of the cases follows the template:

(screenX

(setf response (screenX))

(cond ((string-equal response “QUIT") (next-page ‘exit))
((string-equal response “PREVIOUS”) (backup-page))
((string-equal response “HELP”) (next-page ‘helpX))
((string-equal response “NEXT") (next-page ‘screenyY))

)
The function ScreeiX displaysthe text and graphicsfor screeiX, along with the standardmenu
options and any non-standard ones needed for this scraenWaits for the userto selectanicon,
andreturnsthe token associatedvith thaticon. The cond statemenshouldhaveone clausefor each

token that can be returned by scpéettach ““cond” clause specifies wham@ntrol shouldpassnext.
Control starts abcreenl the main menu screen for the CLUSTER demonstration.

The macrosiext-pageandbackup-pageare used within the comstatemenbdbf eachcaseto specify
which screen control should pass to next. Jtagement{next-pagefoo) savesthe currentpagelabel
on a page stack artden passesontrol to the caselabeled“foo”. The statementbackup-pagepops
the label of the previously visitgehgeoff of the pagestack,andthenpassesontrol to the casewith
that label.

Cluster-Main will return to the top-level exhibit menu whenever control passks page“exit”. This
may occur explicitly, by a call to next-pag®,implicitly, by poppingthe last pagelabel (which is set
to “exit”) off of the page stack. The return value of Cluster-Maiih be the token associatedvith the
last icon picked by the user. This token should always be one of the standard options.

The firstscreengiven control by Cluster-Mainis Screenl This screenservesasthe main menuto
the CLUSTER demonstration, and allows the user to proceed directly to one of several sections.

5.3 CLUSTER Challenges the User

The purposeof this sectionof CLUSTER is to demonstratethe basic ideas behind conceptual
clustering.The useris presentedvith a setof geometricfigures, andaskedto think abouthow they
might be separated into groups. The user is then shown asesspélpossiblegroupings,andasked
to choosewhich one seemsto be the best. A messages then displayed stating whether or not
CLUSTER would choose that grouping. If a grouping that CLUSTER woelldreatewas selected,

35

the user is then given the option of choosing again.

The function Screen3handlesthe first screenshownin this section. This screendisplaysa set of
geometricshapesandasksthe userto think aboutwhat groupsthis setcould be divided into. The
user is told to select NEXT SCREEN to continue. @beialgraphicsfor this screenare producedn
the routine Screen3-Graphics.This routine currently usesabsolutescreencoordinates,but in the
future it might be usefulto havethe figuresdefinedin termsof coordinategelative to the upper-left
corner of the graphic area. In that way, ¢in@phicareacould be easily movedaroundto accomodate
changes in the screen.

The next screen seen thye useris producedby the routine Screen4 Herethe useris shownthree
possible groupings for the figures shommrScreen3and askedwhich groupinglooks the best. The
actualdrawing of the figuresis done by the routinesex-Cl1-lcon, Ex-CI2-lIcon, and Ex-CI3-
Icon. Theseroutinesdraw both the entire areaof eachgroupingand the grouping’s accompanying
text into an icon, so that the user may selectanywherewithin the region to choosethat grouping.
Sincetheseroutinesare designedto createicons, the graphicsare definedrelative to the upper-left
corner of the region.

5.4 User Challenges CLUSTER

When the usedecidesto challengeCLUSTER, function Screen7is invoked. Screen@will manage
the user’s selection of trains, and initi¢tbe calling of CLUSTERIf that optionis selected. Function
Build-Train-Clustering coordinatesthe data enteredby the user, and storesit in a form

understandable by CLUSTER'’s inference engine.

If the userdecidesto view CLUSTER’sgroupingsanda legal group of trains (ie, at leasttwo) has
beenentered,the function Cluster-On-Few-Attr, which residesin file call-cluster.lispwill be
invoked. This function manageshe actual CLUSTER interface,and pumpsthe returnedgroupings
throughfunction Display-Cluster-Results Of particularimportanceis the call to Cluster2, the
main function for CLUSTER’s inference procedsote that Cluster2andits subfunctionsare located
in the cluster2 subdirectory of tmeain CLUSTER directory. Seethe CLUSTER-orientedeferenced
works for details on the clustering algorithm.

Other filescontainuseful supportfunctions. Thefile draw.lisp containsthe necessaryunctionsto
draw the trains on the screemstructionsfor the display of the discoveredyroupingsmay be found
in ruleout.lisp. And vltoeng.lisp handlesthe problemof convertingthe returnedgroupingsinto
descriptions much closer to natural-sounding English.

5.5 How CLUSTER Works

This portion of the CLUSTER demonstration is analogous to the séimionsin which the workings
of a system are described. It shows a single saispiay briefly describingthe inferencealgorithms
used by CLUSTER, and some of the practical applications that have been found for it.

5.6 System Variables Used by CLUSTER

attribute-conversions

This list specifies the attribute classasdthe class-instancealue pairsfor eachclass,for all
the attributes of the train set.

curr-attrs

Savesthe list of attributeswe are currently trying to clusteron so that they can be usedby
another routine to sort out he result returned by CLUSTER.

36

number-of-thinking-menus

The number of different “wait a minute while | think” messages to be cycled through.
next-thinking-menu

The index of the next “thinking” message.
thinking-talks

The text of the “thinking” messages in a form that can be used by the “talk” routine.
thinking-text-files

The names of the filenames that corresporehtth“thinking” message.They are expectedo
be found in “.../cluster/menu_txt".

TrainlconBackground

Default background color for the train icon. Currently white
TrainlconForeground

Default foreground (outline) color for the train icon. Currently black.
TrainlconLen

Length of the train icon in pixels. Currently set to 510.
TrainlconWidth

Width of the train icon in pixels. currently set to 50.

5.7 Functions and Macros Used by CLUSTER

In file call-cluster.lisp:
Build-Examples (choices all-examples)

This routine constructs and returns a list of thesamplesextractedfrom all-exampleswhich
is a list of all the pertinent data about the examples in the set that has been pretemteskto
The parameterhoicesis a list ofoffsetsinto all-examplesspecifyingthe examplesselectecby
the user. The examplesare returnedin the sameorder as the offsets given in the choices
parameter.

Build-ltem-Num-Classes (choices cluster-result)

Builds a list grouping the results returned by CLUSTER with the index nurabéne choices
that belongin eachgroup and the text descriptionof the attribute valuesthat were used to
produce the group.

Build-New-Ex (attrs item-ex)
Item-ex is a list of examples chosen by the user from the current class.

Attrs is a list of offsets into each example specifying the attribmtesevalueswe wish to be
considered by CLUSTER at this time.

This routine extracts the relevant data for each attribute from each example, and canlstucts
of these values. A list of such lists for each example is returned.

Build-New-Vars (attrs variables)

The variables parameter is a list of all the attributes that examples of the curremagifse,
along with the values that these attributes may have.

37

The attrs parameter is a list of offsets into variables specitiimgttributesthat we wish to be
considered by CLUSTER at this time.

This routine extracts the relevant attributes from variables and returns them as a list.
These attributes are returned in the same order as the offsets in attrs.
Cluster-On-Few-Attr (variables choices item-data icon-dim icon-func short-attrs)

Extractsthe datafor the exampleschosenin choicesfrom the list item-data,and from that
extracts the attributes specified in the elements of the short-attrs list (one gleneatitto this
routine). Then callCLUSTER properto try to determinea clusteringfor the examplesbased
on these attributes. The liggriables describes what each attribute is, avitht valuesit may
have.

Display-Cluster-Results (choices item-data icon-dim icon-func cluster-result)

Calls Build-Iltem-Num-Classedo bundle the user’'s examplesinto the groups created by
CLUSTER, and then passesthis information to Display-Resultswhich handlesthe actual
screenlayout. If CLUSTER could find no groupingfor these examples,Display-sorryis
called to inform the user of this fact.

Display-Results (item-data icon-dim icon-func item-classes)

Draws the actual screen displaying which examples CLUSTER has placed igndughand
what those groups arétem-datacontainsall the necessarynformationfor all he itemsin the
current class.Icon-dimis a list containing the length and width (in pixels) ofittensfor this
class. Icon-funcis the nameof the function thatis usedto displayiconsof theitemsin this
class. It takes the arguments:

(left-most-x-coord top-most-y-coord data-about-item).

Item-classess thelist returnedby Build-ltem-Num-Classes.This list is composedof pairs

which represeneachclassthat hasbeenbuilt. The first elementof eachpair is a list of the

offsets into Item-data of each item in that class, and the second element is a stdagdiila¢s
why these items are grouped together.

Display-Sorry ()

Displaysa messagestatingthat CLUSTER canfind no further groupingsof the examplesit
was given.

Display-Thinking (file-name)

This routine displays &hinking” messagen the screenwhile the clusteringprogramtries to
cluster trains. The routine draws a yellow rectangle in the center of the screen, and tiisplays
text from the given file in it. The parametefile-nameis one of “think[0-4]", which arefound

in the directory (FullPath “cluster/menu_txt”").

Fold (listl list2)

Given two lists of equal length, this function forms a list of pairs of one elemengegohtist.
For example: (a b c) and (x y z) would be folded together to produce ((a x) (b y) (c 2)).

In file cluster-main.lisp:
Backup-Page ()

This macro pops the top of the previouspagestack and placesthat value into the control
variablepage so that the last page visited will be the one to which control is transferred.

Cluster-Main ()

38

This is the main control loop for the clusterdemopackage. Control startsat Screenl1which
prints the main menufor the demonstratiorand acceptauserinput from the mouse. Control
then passes to that section of code that controls the screen the user chooses to view.

The routine is effectively a large case statement within a do loop. SEsedmnthat the usercan
visit is representeds one of the caseswithin the case”statement.Each casehas a name,
identified by an atom, such as ScreefThis identifieswhich screenis beingcontrolled. The
body of each of the cases follows the pattern:

(ScreenX

(setf response (ScreenX))

(cond ((string-equal response “QUIT") (next-page ‘exit))
((string-equal response “PREVIOUS”) (backup-page))
((string-equal response “HELP”) (next-page ‘helpX))
((string-equal response “NEXT") (next-page ‘screenY))

))
The function ScreenX displays the text and graphics for screenX, waits for the sislectan
icon, andreturnsthe token associatedvith that icon. The cond statementshould have one

clause foreachtokenthat canbe returnedby ScreenX(this includesthe standardoptionsthat
are always available). Each cond clause specifies where control should pass next.

Get-Menu-Choice (plist)

Allows the user to select one of the icons defineg@list. This routine executesa loop which
repeatedly reads mouse input. If the user selectsfotie iconsin plist, the tokenassociated
with thaticon will be returned. If the userselectsa point that is not within any icon, that
selection is ignored, and a mouse click is awaited again.

Next-Page (where)

This macro pushesthe current page identifier onto the previous page stack, and sets the
variable page to the value of where, which is the next page control will pass to.

In file draw.lisp:
CarLen (car_type len)

This routinereturnsthe length, in pixels, of atrain car of type car_type. The parametelen
specifies whether the length of a “long” or “short” car of that type is desired.

DrawCar (x y car_type len wheel_color load_shape load_color)

Draws a train cawith it's lower-left cornerat absoluteposition (x y). The car-typeparameter
specifies which type of car to draw: ellipse, box, flat, jagged-top, slanted, closed-boa].or
Lenspecifies whether a short or long car is to be draWeel-coloris eitherblack or white.
Load-shapas one of square rectangletriangle,circle, or ellipse. Load-coloris one of red,
blue, green, or brown.

This routine returns the car’s x-value and length.
DrawEngine (x y wheel_color color)

Draws an enginewith it's lower-left cornerat absoluteposition(x y). The engine’scolor is
determinedby the color parameterwhich may be one of red blue, green, or brown. The
wheelsmay be coloredeitherblack or white. This routine returnsthe x-value of the train’s
position, plus the length of the engine.

Draw-Train (x y train-data)

39

Draws the train whose specification is in train-data, with its lower-left corrtee pbint (X y).
The parts of the train are drawn by DrawEngine BralwCar. The returnvalue of this outine
is the x coordinate of the right end of the train.

Empty-Train-Icon (x y &optional fgnd bgnd)

Draws asquarethe samesizeasa train icon. The optional parameterdgndandfgnd canbe
used to set the color of the background and foreground (outline) of the icon.

EngineLen ()
This routine returns the length of a train engine drawing in pixels.
Lookup (attribute value-name)

Given parametersattribute which is a class name, and value-name which is an atom
specifying an instance of that class, looks up the numeric or stringtiaahikis class-instance
has.

Train-lcon (x y train-data &optional fgnd bgnd)

Defines a train-icon (train surroundedby pick box) whose upper-left corneris at screen
position(x y). The optional parametersgnd and fgnd can be usedto setthe color of the
backgroundandforeground(outline) of the icon. The return value of this routine is the x

coordinate of the right end of the train.

Train-Len (train-data)
Computes how long the train specified in train-data would be.

In file interfaces.lisp
Remove-Same-States (clusters domain)

Controls the removal of desired selectors from the clusters passed to the function.
Find-Domains-To-Delete (cluster)

Called by Remove-Same-States, this function pickshmlementdo be deleted,andreturns
them in the form of an array of Ts and NILs.

Strip-Lists (cluster del-array)

Performsthe actualdeletionin accordancewith the abovefunctions. Del-arrayis the array
returned by Find-Domains-To-Delete.

In file ruleout.lisp: (Copied from INDUCE)
RuleOut (y in-text &optional font)

Prints out the discovered clustering.
FullRect (c x1 yl x2 y2)

Generatesa solid rectangleof color ¢, one unit larger in each direction than the input
coordinates. By this method, text output given the same x aadaynetersvill lie completely
inside the rectangle.

Inicefileout (x y textfile &optional fontname background foreground)

Displays the contents téxtfile beginningat (x,y) inside a rectangulabox. Colorsandfonts
are the default unless specified.

40

In file text-list.lisp:
Left-Justify (text-list len)

Reads the texist andreturnsit in left-justified form, suchthat no line (elementof the output
list) exceeds$en characters. The function will only break a line at a space.

NOTE: This constraintwill necessarilyoe violatedif a “word” (string betweentwo spaces)
exceeds len characters.

Compress-Text-List (text-list)
Compresses a list of strings into a single long one.
Break-String (string len)

Cuts a string intdwo, suchthatthe cut is madeat a space andthe first portionis aslong as
possible without exceedirign characters. If the first word excedda charactersthe cut will
be made immediately after it.

Break-Word-From-String (string)

Returnsa list whosefirst elementis the first word of the input string, and whose second
element is the rest of the string.

Join-String (stringl string2)

Creates the sequence stringl, string2 in the formsofgle string, with the componentdeing
separated by at least one space.

String-Length (string)
Returns the length of the input string.
Kill-Spaces (string)
Returns the input string minus any leading or trailing spaces.

In file viltoeng.lisp
Init-Train-English ()

Readsin the text array of templatesfor possibleclusteringoutputs. Eachtemplatewill be
accessible by an index number known to the VL1 rule reader.

Cluster-VL1-Eng (items)
Controls the creation of naturally-sounding English based on the VL1 complexes read in.
VL1-String-2 (selector adomain)

Converts a selector (in bit string form) irdd/L1 descriptor,basedon the associatiordomain
parameter.

List-To-String (valuelist)

Creates a string frortie elementsof valuelist. In the outputstring, elementsof the input list
will be separated by commas.

In file allscreens.lisp
HiliteOption (y text)

41

Draws the option box for text with a brown background instead of a yellow one, to shatw that
has been selected.

MakeOption (y text)

Outputsmaterialcontainedin text in an option-boxwith its upper-leftcornerat (150, y). The
box’s length is always 225 pixels, and its width is the widtbraline of text, asreturnedby
ChoiceTextSize.

The return value is a list of (length width) for the box.
Pseudo-MakeOption (y text)

Draws only the outline of theption box for text. This allows the pick-list to be reconstructed
without disturbing the graphics on the screen.

Screenl ()

The main screenof the Cluster exhibit. Displaysthe main menuof useroptions, readsthe
user’s selection, and returns the icon token selected.

Screen3 ()
“CLUSTER CHALLENGES YOU".

Displays a set of simple geometricshapes,and asks the user to think up some possible
groupings for them. Returns the user’s selection of one of the standard menu options.

Screen3-Graphics ()
This routine does the actual graphics for Screen3.
Screend ()

Displays several possible groupings of the figiresn Screen3andasksthe userwhich one
is best. The token for the icon selected by the user is returned. This may be orsanfdhrd
options, or the token for one of the three figure groupings.

Screen4-1 ()

If the userpicksthe first figure clusteringfrom Screen4 control passedo this function. A
messageés displayedand spoken,sayingthat this is not the bestgrouping. The useris then
invited to select again.

The return valués the token of the icon selectedby the user. Onceagainthis may indicatea
grouping or be a standard option.

Screen4-2 ()
The same as Screen4-1, except that the second clustering option has been chosen.
Screen4-3 ()

The third clusterings the “best” one. If the userpicksit, control comeshereto acknowledge
that, and allows the user to continue.

Screen7 ()
“YOU CHALLENGE CLUSTER”.

This screen allows the user to select a set of example trains fyjimaresetandthenchallenge
CLUSTERUto find groupingsfor them. The propertiesof the exampletrains are definedin
datal.lisp.

This routine drawsa screenwith two areas.The top areacontainsthe trainsthat the usercan
choose from, while the bottom area is where the plseeschosentrains. The routineloops,

42

reading the user’'s mouse input. If the user selects a train,

that train becomesthe “current selection”. If the user selectsan empty area, the “current
selection”(if any) is movedthere.If the userpicks a menuoption, the loop ends, and that
option is processed.

When this routine returns, it's value will be one of the standard menu option tokens.
Build-Train-Clustering (choices)

Given the user'shosentrainsin choices,builds the call to Cluster-On-Few-Attrwhich does
the real work. This routine exists separatelyfrom Cluster-On-Few-Attrprimarily for the
purpose of generalization. The clustering of a differenbsekamplescould be accomplished
by a similar routine which would thesall Cluster-On-Few-Attr. This routine setsup a list of
which attributes of the given trains

CLUSTER should look at each time it is called. This is done, instead of allowing CLUBTER
determinewhich attributesare most important,to increaseprocessingspeed. All the data
about the trains are stored in the global variable, *train-ex*. All the data about the ditffeirent
attributes are stored in *train-variables*. This routiegirnsone of the standardmenuoption
tokens.

In-Data-Area (pos)

ReturnsTRUE if the y-coordinatein pos represents location in the dataarea(top) of the
screen.

In-Work-Area (pos)

Returns TRUE if the y-coordinate in poepresents locationin the working area(bottom) of
the screen.

Is-Empty-Loc (choice)

ReturnsTRUE if the tokenin choice representsan empty icon location. Theselocationsare
numbered 100 to “m”, but are always greater than 100.

Is-Train (choice)

Returns TRUE if the token in choice represents a train. Trains are numbered from Mta “n”,
are always less than 100.

No-Clustering ()

Tells the user, by text and voice, that at least two examplesmust be picked in order for
CLUSTER to group them.

Screenl0 ()
Displays a screen that gives a brief explanation of how CLUSTER creates groups.

In file help7-x.lisp:
Help7-1 ()

Prints a message explaining the options available after a clustering has been dispéaerel
help for the standard menu options is also given.

Help7-2 ()

Prints a messagehat gives instructionson how to selecttrains for the example set (to be
clustered). General help for the standard menu options is also given.

43

6 SPARC ROBOT

6.1 Introduction

6.1.1The Purpose of SPARC/EX

SPARC/Ex(SequentiaPatternRecognition/ Exhibit) hasbeenwritten specifically to be part of the
EMERALD system. While the program whsingdesignedjt was keptin mindthatthe userswould
possess a wide range of technical knowledge. SPARC/Ex has been desigribd aiitithat anyone
from a high school student to a professor in Artificial Intelligence wbaldbleto gain somethingout
of a short interaction with it.

6.1.2The SPARC/G Methodology

In this section, we will briefly describe the SPARC/G (SPARC/General) methodologaPARC/G

methodology(seethe SPARC-orientedeferenceskenablesone to inductively describeand predict

discrete processes. SPARC/G also refers to the prograch generatesulesthat predictsequences.
SPARC/Exmakesuseof the SPARC/Grule generationprogramwhen requiredto predict possible

continuations for sequences.

Therearethreedescriptionmodelsusedin SPARC/G:the lookbackdecomposition(decomp)maodel,
the periodic model, and the disjunctive normal form (DNF) model. Given a sequenceof objects
(events), SPARC/G wilgenerataules basedon user-definablgparameterseachrule will follow one
of the description models listed above.

6.1.2.1 The Lookback Decomposition (Decomp) Model

This model governsthe characteristicef the next objectof a sequencdasedon a previousobjects.
For example:

(1 (color (1) = red) -> (color (0) = black))
(2 (color (1) = black) -> (color (0) = red)))

is a completedecomprule which statesthat if the last objectwasred, thenthe next objectshould be
black, andif the last objectwas black, thenthe next objectshouldbe red. (Note thatthe “->* is not
required in the interpretation and is omitted in slgataxof the rule in SPARC/EXx. Also notethe use
of subscripts in the terminology; in general, characteristig{lD)refer to that characteristiof the next
object in the sequence, characteristid¢¢lihe previousobject, characteristic(2)o the one beforethat,
and so forth.)

A completedecomprule is thereforea list of if-then rules, the first part of eachconsistingof one
selector (eg, (color(1) = red)) and the remainertaininga complexof one or more selectorswhich
will specify the characteristicof the next object of the sequenceshould the sequencesatisfy the
antecedent.

6.1.2.2 The Periodic Model

The periodic rule model allows SPARC to describe sequencesas repeating subsequences-or
example:

((1 (color (0) = red) (parity (0) = odd))
(2 (color (0) = black) (parity (0) = even)))

is a periodic rule with two phases. The rule describes a sequence whiatiesp of a repetitionof a
red object with odd parity and a black object with even parity.

6.1.2.3 The Disjunctive Normal Form (DNF) Model
The DNF model uses the Aqg algorithmgeneratea disjunctionof complexeswhich will describethe

44

sequence and he objects withi&o long asthe characteristic®f eachobjectin the sequencdall into
one of the disjunctsof a DNF rule, the rule is a candidaterule for describingthe sequencelFor
example:

(((color (0) = red) (parity (0) = odd)) OR
((color (0) = black) (parity (0) = even)))

is a DNF rule which states that an objecthe sequences eitherred andhasodd parity or black and
has even parity..

6.1.3The Domains

Simple domains have to be chosen for SPARC/Ex as we would neither want to ovethd@herage
user with too complicateda domain, nor overwhelm SPARC with the combinatorial explosions
inherentin sequencerediction.Two domainswerefinally chosenfor the initial versionof SPARC,
geometric figures and playing cards. A third module, involving passages throngthseachannels,
was later added.

Geometric figures were chosen BmEPARCmodulebecausdahey were relatively simple; eachshape
has only two attributes - shape and color. Tamainwas usedin the user’sintroductionto SPARC
due to the ease in which a simple sequence of figures beuwldgedto introducethe userto the basics
of SPARC operation. Because a smooth transtbanmore difficult domainwas desired,an option

for the userto be challengedby more complex geometricsequencesvas also incorporatedinto

SPARC/Ex. Thesesequenceare generatedy randomselectinga rule templatefrom a collection of

commonrule patterns. Both Decompand Periodicrules may be generatedDNF rules were omitted
after experimentatiordeterminedhat their naturetoo often ran contraryto the patternsperceivedby

humans.

Playing cards were chosen as SPARC/Ex domain becausantedto show SPARC/Explaying the
Eleusis card game [Abbott], which tests players’ abilities to predict continuationgit@resequence.
This domain igmplementedn both the “SPARC challengesuser” andthe “user challengesSPARC”
modules.As with the geometricfigures, SPARCwill challengethe userby generatinga sequence
basedon arule selectedandomlyfrom a rule base. As with thefigures, it will then generatethree
incorrect continuation choices, and one cormewt, andthenaskthe userto pick the mostlikely next
cardfrom the four choices. For theseproblems,the Decompand Periodicrules are used, and the
importantcharacteristicen the cardsaretheir color and parity. When the user challengesSPARC,
these restrictions are lifted; tiseits of the cardsandwhetheror not they haveprime rank or pictures
may be significant, and DNF rules may be generated to describe thesasgrénce.The useris able
to challengeSPARC by composingcardsand placing them on a layout; the user can then ask the
systemto find rules that could describethe sequenceand to generatethe “best” next card in the
sequence.

Mined channels were chosen as a domairsfeARC/Exas an exampleof a “real-world” application.
It assumeghata ship is attemptingto passthrougha channelwhich hasbeenmined by the enemy.
The enemy’s beacons contain the key to a secret code which hiddsriiity of the safepath. Based
on known portions of the path, sequence prediction techniques can be detdrtonethe restof the

safepath. This domain,like the playing cards, allows the userto challengeor be challenged. To

challenge the user, SPARC will offer up to thpgeblemsgiven in orderof increasingdifficulty. As

with the figures and cards, these problems will demonstrate Deandferiodicrules. Unlike those
otherdomains,the problemsfor this domainremain constant,ratherthan being randomly selected.
When challenging SPARC, the user may adjust the beacons as d@$iedomainis more complex
thanthe othertwo in that the beaconshave three independentcharacteristic§shape,color, and left

shore/right shore), rather than two. (Note how all characteristicplaf/eg cardin SPARC’smodel
may be determined by its suit and rank.)

45

6.1.4The Modules of SPARC/Ex

SPARC/Exwas written with threemajor modules:the Tutorial Module (TM), the Quiz-UserModule
(QUM), andthe InteractivePredictionManager(IPM). Thesemodulesand their sub-modulesare
written in Common Lisp and make use of graphic and voice interfaceswhich were designed
specifically for EMERALD.

The TM provides the user with interactive sessionshich the userlearnsSPARC/Ex’scapabilities.
This module includesboth the introductory geometricfigure problemand a detaileddescription of
SPARC'’s learning modules and its applications.

The QUM interactivelyteststhe userwith problemssimilar to the onesSPARC/Excan solve. It is
hopedthat this module will provide the user with a better understandingof the difficulty of the
problems SPARC/Ex can solve.

The IPM allows the user to specify a sequence, and SPARCiEaniaskedto find rulesthatgovern
the sequence. This module is where the user can explore the inductive capabilities of SPARC/EX.

6.2 The Top-Level Module

The main entry point to SPARCsubsystems the function sparc-main. It callssparc-top, which
displays the main menu and asks the user to select one from the following options:

SPARC challenges you: Simple sequence -> TM

SPARC challenges you: More complex sequence> QUM

SPARC challenges you: Card game (advanced) --> QUM

SPARC challenges you: Mined Channel (advanced) QUM

You challenge SPARC: Card game (advanced) --> IPM

Find out how SPARC work -> TM
Then it calls the appropriate function.

6.3 The Tutorial Module

The tutorial moduleis brokendown into two sub-modulesthe Introduction sub-moduleand the
Tutorial sub-module.

6.3.1The Introduction Sub-Module

The introduction involves presenting a simple sequengeaietricobjectsto the userand giving up
to two chancedo pick the object that continuesthe sequence. The useris given the choicesof
returning to main menu or going to more advanced examples after the initial example.

The introduction begins with the functiamtro-ex. If the correctobjectis chosen,intro-ex-yes s
called;if not, intro-ex-no is called. Intro-ex-noallows the userto make anotherchoice. If the
correct choice is made, intro-ex-yisshen called, but otherwiseintro-ex-nono is called. Intro-ex-
yes and intro-ex-nono are the exit points for this example.

6.3.2The Technical Tutorial Sub-Module

The technical tutorial illustrates the rule models use8BARCandtheir complexities. It consistsof
main functionsparc-tutor and sub-functionpagel page2 page3 page4 andpage5. These
functions display subsequent screens with different tutorial information.

46

6.4 The Quiz-User Module (QUM)

Quiz-user operates in three domaigsometricshapesmined channelsand playing cards. Quiz-user
is enteredby calling the function quiz-user and specifyinga symbol: either ‘geo, ‘boats or ‘cards.
Quiz-user contains a number of variables that spgeafgmetersor the userquiz suchasthe number
of guesses and the length of the initial sequence.

Due to the fact that the geometric figure and plagagl domainfunctionswere developedogetherat
the beginning of the development of tBMIERALD systemandthe mined channelsvere addedlater,
the format of the first two anelentical,andthey sharea large amountof commoncode. Meanwhile,
the mined channelroutines behavedifferently, and are even stored in a separatefile, (Full-Path
“sparc/boats.lisp”). For these reasons, this domain will be discussed separately from the other two.

6.4.1Figures and Cards

Oneof the threerule modelsis selectedo be the modelused. Underthe presentimplementation,it
will not be the DNF model, for reasondiscussedibove. A different function handlesthe random
selection ofthe actualrule for eachof the rule models;thesefunctionsare calledchoose-periodic-
rule, choose-dnf-ruleandchoose-lookback-rule

One of threefunctionsis then called to handlethe presentatiorof the problemto the user, again
dependingon the rule model. The three functions are called periodic-quiz, dnf-quiz, and
lookback-quiz, and all three perform similar tasks and have the same parameters.

These functions first generate an initial sequence of specified lefgthscreenis thensetup for the
quiz, andthe initial sequences displayed. Four objects(or elements)are generateds userchoices,
oneof which is a correctcontinuationof the sequence.A loop allows the userto chooseone of the
four choices.

Whetheror not the elementis a correctcontinuationof the sequencethe elementis addedto the
sequencelf the correctelementwas chosenthe numberof correctanswerss incrementedandthe
chosenobjecttakesits positionand extendsthe known sequence.If anincorrectelementis chosen,
the program displays the object selected in an area indicating thatahuwa®rrectchoiceat the time,
and addsthe correctobject (from the given choices)to the sequenceand displaysit in the proper
location.

The threequiz functionsare somewhadifferent from one anotherbecauseof the variety in the rule

models, and also becauskthe variety in the information that the functionsneedto retainduring the

sequence@eneratiorprocess. For examplethe function handling problemsusing the decomposition
model,lookback-quiz, stores the last object addexthe sequencén a variablecalledlast-card to

aid in the generation of the next object.

6.4.2Mined Channels

The Mined channgbroblemsare regulatedby the function Challenge-You This function displays
the introductoryscreento the problemsin this domain,andif the userelectsto continue,control is
passedo CU2. This function presentghe first of the threemined channelproblemsand processes
the user’s responses. Similarly, CU3 and CU4 control the secondand third problem screens
respectively.

CU2, CU3 and CU4 use a number of common functions to set up their screens. Canal-
Background paintsthe portion of the screenon which the straitsare displayeda marineblue. The
“‘map” is then drawn by three functions: Upper-Shoreline, Lower-Shoreline and Rocks.
Draw-Beaconsdraws asetof beacon®n the screen by makingrepeatectallsto Draw-Beacon
This function is passed a position, a shape and a color, and performs the appropriate dasing.
Path fills in the path the ship has been known to trad@aw-Boat is passed a positicemda color,
and draws the ship in the approprifteation. Draw-Arrows is alsopassed positionanda color;

47

this shows the possiblepathsfor the ship to continuefrom that position, of which the user will
presumablyselectone. Finally, Explosion showsa burning and sinking ship, in casethe user
selected a mined path.

Note that of the abovefunctions, all but Draw-Arrows and Explosion are also used by the You
ChallengeSPARC portion of the mined channeldomain. Two primitives are used by the above
functions,Boat-Icon andArrow-lcon, contain the details on drawing each of those objects.

6.5 The Interactive Prediction Module (IPM)

The Interactive Prediction Module (IPMJ)lows the userto composea sequencef cardsor beacons,
and ask SPARC/Exto find a rule and generatea possiblecontinuationof that sequencelt is run by

calling the Lisp function Test-SPARC. The IPM usesSPARC/Gfor the inductive generationof

rules, andwas designedo be as generalas possible(with respectto the use of different domains).
However, it is necessary to design soohés routinesto be domain-specificThe graphicsinterface,
for example, has to display cardsbmaconsandis domain-specificas arethe routinesthat generate
possible next cards or ship paths. Similarly, the learning parameters, kndveSPARCsystemas
advice, must be tailored to guide the search through the domain being learned from.

6.5.1Playing Cards

6.5.1.1 The Interface

There are two screens in the card challenge. The first is the tutorial screen, which introduceddhe user
the problem.The second the Layout screen s wheremost of the interactionbetweenthe userand
SPARC/Exoccurs. In the Layout screen,the user can composecardsand createa sequenceask
SPARC/EXx to generate rules and next cards, and view the rules and next cards generated.

6.5.1.2 Find Rules & Guess Next Card

Thettitle of this sectionis alsothe nameof the option the user choosesn the Layout screento ask
SPARCI/EXxto find arule to fit the user'ssequencend, usingthatrule, generatea next card for the
sequence.

When the user chooses the option, SPARC/Ex does the following:

Q) Instantiatethe rulesin a rule base(the cannedrules) againstthe sequenceand
generate a list of rules which can describe the layout.

(2) If no ruleswere found in step1, SPARC/Excalls SPARC/Gto inductively
generate a rule.

3) If there are still no rules from step 1 and 2 (whigkery unlikely), SPARC/Ex
will tell the user that it could not find the rule.

4) If rules were found, a heuristweighingfunctionis usedto determinethe best
rule and this rule is used to generate the next card andhaatlie andthe next
card are presented to the user.

6.5.1.3 Canned Rules

Because it is difficult to adjust SPARC/G’s parameters in such a way that most rules a ustrimkight
of can be found inductively, it was suggested that we creatdd hase(a list of plausiblerules;thus
the term “cannedules”), which we did. Thus, for everysequencgivento SPARC/Exby the user,
SPARC/EX first checks its rule baseseeif any of the cannedrules matcheghe given sequence.If
one or more are found, SPARC/Exwill not call SPARC/Gto inductively generaterules for the
sequencgunlessall the cannedrules have beenpresentedo the user, but the user requestsmore
alternative rules).

48

6.5.1.4 Interface to Pascal

The presentSPARC/Gis a Pascalprogramwhich requiresa “cfile” for input, and outputs its
inductively generatedulesin “ofile”. The cfile is a file which containsa descriptionof the domain,
parametersor SPARC/Gto do induction (advice parametersto use SPARC terminology), and the
description of the sequence from which rules afgetmduced.The Pascallnterfacefunctionin the
IPM handlestheseinteractionswith SPARC/G(i.e. given the sequenceit generateghe cfile, calls
SPARC/G, and loads the ofile).

6.5.1.5 Next Card Generation

Becausdhereareonly fifty-two cardspossible,the next cardgeneratiorroutine, MakeOneGuess
simply enumerategachof the fifty two cards,andacceptsthe first which will satisfy the rule as a
continuationof the sequence.If the cardinality of the domainwere higher (say 200 or more), a
different methodof next object generation,using set intersections,might have to be used. The
enumeratiorbeginswith the Aces,thenthe Twos, andso on, in the order Clubs, Diamonds,Hearts
and Spades.

6.5.1.6 Alternative Rules

Thereis alist of correctlyinstantiatedulesfor the sequencéeingdisplayed,*GoodRules*. Each
time the userasksfor an alternativerule, a rule is takenout of *GoodRules*, and presentedo the
user. If *GoodRules*is empty and the rules were previously cannedrules, SPARC/Ex will call
Pascallnterfacéo generatenorerules. However,if the previousruleswere generatecoy SPARC/G
(via Pascallnterface), SPARC/Ex will tell the user that it has no more alternative rules.

6.5.2Mined Channels

In many respects, this domain behaves similarly to that of the playing ddrdslifferencesarelisted
below:

As with the QUM, the mined channel IPM code is stored separately fitethmats.lisp(or fas, in the
case ofthe compiledversion.) It's main controlling functionis calledYou-Challenge It usesthe
samescreen-drawingub-functionsas the mined channelQUM, plus a few otherfunctions allowing
for its needs. Change-Beacon allows the userto changethe color and/or shapeof a selected
beacon,in order to redefine the problem to the user’s specifications. This function uses the
subfunctionsGet-Beacon Beacon-Shapes Beacon-Colors Beacon-Color and Reset-
Beacon

Otherwise, behavior will be similar to that of the playing cards domain. There wifilbeo& “canned
rules”, an interfaceto the PascalSPARCcodeusinga cfile andan ofile, anda demonstratiorof the
discovered rule by SPARC'’s attempting to move the ship through the channel.

6.5.3 Segmentation

The ability to instantiaterules which involves segmentgsee[Michalski, Ko & Chen, 1986] for an
explanationof segmentsyvas addedto SPARC/EXxin its third version. Initially, it wasfelt that this
ability was notcrucial. As we beganto experimentwith different layouts,we realizedthatit is quite
importantto havesegmentedulesin somecases.(Segmentedules allow us to describesequences
such as a sequence of one black card followed by two redfoiladged by threeblack cards,andso
on.)

However, becausef time limitations and also becausewne thoughtthat the periodic model was the
only modelwhich could benefit from being able to handlesegmentedules, we did not extendthe
TryCannedRulegunction to handleDNF and decompsegmentedules. This just implies that we
cannothavecannedDNF or decomprules that require segmentationHowever, the MakeOneGuess
routine was developed to handle these rules if they should be generated by SPARC/G.

49

6.6 Decompositional Rule Translator

This program translatesdecompositionakules discoveredby SPARC into English sentencesof
reasonable quality.

6.6.1Using the Translator

This portion of the programis keptin thefile (Full-Path“sparc/peng/fas/98_ dnf-decomp.lisp”)To
translatea rule using the decompositiormodel, the function decomp-engis calledin the following
way:

(decomp-eng <rule>)

where <rule> is aefstructthat containsa decompositionatule. The rule body of <rule>is a list of
complexes, where each complex describes one if-then rule. cBagilexis a list of selectorswhere
each selector is of the form:

(<attribute-name> (<index>) <relation> <values>)
For example, the following selector:
(color (0) = red)
indicates that the color of the “current card” (index is (0)) is red. And the following selector:
(color (0 1) = true)
indicates that the difference of the color between the current card and previous card is true.
The outputof the translatoris a list of English sentencegstrings)which canbe either printed to the
screen, sent to the speech synthesizer, or both.

6.6.2Inside the Translator

The translator separates the selector on the left hand side of the rule from the compleigbnitaed
side for eachcomplex. Eachselectoris senteitherto selector-engwhen the selectoris of type
“(color (0) = red)” (an absolute descriptor) andiselector-engwhenthe selectoris of type “(color
(0 1) =true)” (a differencélescriptor). This proceduregparseshe selectorinto attribute-nameindex,
relation and values, and translates them individually. For attribute name, this praiethlyaisesits
symbol-string.Only the “Face” attribute requires special handling in the playing cards domain.
Decomp-engthen concatenategachstring returnedby the selectortranslatoras appropriate.The
procedure may be used in different domains with little or no change to selector-eng and dselector-eng

6.7 Disjunctive Normal Form Translator

This portion of the programtranslatesDNF rules discoveredby SPARC into English sentence®f
reasonable quality.

6.7.1Using the Translator

This routine is kept in the file (Full-Path “sparc/peng/fas/98_dnf-decomp.lispQrderto translatea
DNF rule, call the functiodnf-engis called in the following way:

(dnf-eng <rule>)
where <rule> is a defstruct that contains a disjunctive normal form rule.
6.7.2Inside the Translator

The rule body consistsof a list of complexesvhereeachcomplexis disjunctivelyrelated.Dnf-eng

50

putsthe rules into disjunctive normal form by concatenatingeachstring returnedfrom the selector
translator using “and”, while concatenating each complex passed through the translator with “or”.

6.8 Periodic Rule Translator

The purposeof this portion of the programis to translateperiodic rules discoveredby SPARC into
English sentences of reasonable quality.

6.8.1Using the Translator

The periodicrule translatoris keptin thefile (Full-Path“sparc/peng/fas/99_periodic.lisp”)In order
too translate a periodic rule, the functiddrenglish-periodicis called in the following way:

(vlI-english-periodic <rule-body> <segmentation-condition>)

where <rule-body>containsa list of complexesthat describea periodic rule, with each complex
describinga single phaseof the discoveredule. The parameteksegmentation-conditiongdescribes
the segmentatiortonditionthat was usedto discovertherule. A <segmentation-conditionis either

NIL or a simple selector. Theelectorindicateshow the layout was segmentedh the first place.For

example, the segmentation rule:

(color (01)=0)

indicatesthe periodic rule was discoveredby grouping (segmentingXhe layout into cardsof same
color.

In order to better explain this, some examples are shown here:

(vlI-english-periodic ‘(((length (0) = 1)) ((length (0) = 2))) ‘(color
(01)=0)

(vlI-english-periodic ‘(((length (0) = 2) (length (0 1) = 0))) ‘(color
(01)=0)

(vlI-english-periodic ‘(((length (0 1) = -1))) ‘(color (0 1) = 0))
(vl-english-periodic ‘(((length (0 1) = 1))) ‘(color (0 1) = 0))

(vlI-english-periodic ‘(((color (0) = red)) ((face (0) = faced)))
nil)

(vlI-english-periodic ‘(((prime (0) = prime-y)) (rank (0) = jack)))
nil)

(vlI-english-periodic ‘(((length (0) <= 2) (dlength (0 1) =-1 between

1)) ‘(rank (0 1) = 1))

The outputof the translatoris a list of English sentencegstrings)which canbe printedto the screen
and/or sent to the speech synthesizer.

6.8.2Inside the Translator

The translatorsimply mapsthe symbolsin a rule-bodyinto their correspondingoredefinedEnglish
translations, and fitthheminto a templateto convertit to standardEnglish. Stringscorrespondingo
an attribute name or relation are defined as a property of the symbol, such as:

(setf (get ‘prime ‘print-string) “rank”),
(setf (get ‘<> ‘print-string) “is not”)
while the corresponding translations of other symbols are defined as the “value” of the symbol:

51

(defconstant prime-y “a prime number”)
thus it is possible to translate a selector of the form:
(prime (0) <> prime-y)
into “rank is not a prime number”, instead of an awkward expression such as “prime is not true”.

In orderto adaptthis translatorto otherdomains,one must only define a new set of symbolswith
values or properties corresponding to the attributes present.

6.9 Conclusion

Futurework on SPARC/Ex(and also SPARC/G)should include the completionand testing of the
routines which handle segmentation.

Rule generation for sequences within segments should also be considered. For exarsgigighce
cannot be represented within the present SPARC/EXx:

A repeating sequena® two red cardsof evenparity, followed by two black cardsof
odd parity.

However, generation of rules of tHevel of specificity requiresan exponentiaincreaseof the search
space. This might be considered too high a price to pay.

7 ABACUS ROBOT

7.1 Overall Description

ABACUS has four main screens: two are tutorials designed to familiarize theitiséne purposeof
ABACUS and the other two are “challenge” screens where either the user or ABACUS is chatlenged
shoota ball into a box using a predefined“environment.” The first tutorial is a simple example
demonstratinghe discoveryof Ohm’s Law given a set of eventsdescribinga circuit. The second
tutorial is a more complex example using Stoke’s Law of Faliadieswhich showshow ABACUS
can find multiple equationsand preconditionsif necessary. The third main screenconsistsof a
cannon pointing towards wall anda box behindthe cannon. The useris askedto selectone of the
angle ranges shown such that if the cannon aenedin thatrangeandfired, the ball would bounce
off thewall andlandin the box. Thelastscreenis identicalto the third one exceptthat the useris
allowed to change the environment (descrilager) and challengeABACUS to shootthe ball into the
box using the new environment.

This chapteris divided into four main sectionscorrespondingo the main screens: Ohm’s Law,
Stoke’s Law, ABACUS ChallengesUser, and User ChallengesABACUS. The final part of the
chapter catalogues the functions used in the ABAGWHule. For detailson the ABACUS program
itself and on recent enhancements, see the ABACUS-related references.

7.2 Ohm's Law

This screen is defined in the functiBoreen-2 After ABACUS drawsa tableof events,the useris

asked to choose an equation that fits the events in the table. Screen-2 gives thealsardedn get

the correct equation. After each wrong guess, an explanation of why thenxgisgssorrectis given.

The main objective of this screen is to show how ABACUS candiquhtiondrom a setof examples
by challenging the user to do the same task.

After this interaction,a brief descriptionof what ABACUS doeswith the eventsfollows. At this
point, if the user chooses the NEXT SCREEN optadescriptionof ABACUS'’s generalabilities is

52

shown. This is the only entry point to this screen and future work should change this tihaliser
to “backtrack” to this screen using the PREVIOUS SCREEN option.

The main function of Screen-2 is drawing the screen. It first defines some stringeaselocations
for the choice boxes and then draws the screen usirfgribeonsfrom the SHARE package. It then
loops a maximum ofwo times and prints the appropriatenessages.The explanationof ABACUS'’s
functions is located in the filecreen-23.txt

7.3 Stoke's Law

This screen is defined in the functiGoreen-6 It demonstrateeow ABACUS candivide recorded
events into subsets and find an equation for each subsatddition,it showshow the AQ algorithm
is usedto define preconditiondor eachequation. Screen-Gdrawsthe screenand prints out the text
files screen-61.txt screen-62.tx{ andscreen-63.txt It thencallsthe function Balls, which
simulates 3 balls falling down three containers of different media (glycerol, caster oil, and a vaicuum)
different rates to demonstrate Stokk@v. The optional parameterso the function Balls are usedto
position the balls and cylinders. The coordinates given determine the upperteitof the left-most
cylinder. The balls are drawn in the cylinders and the simulation is accomplished by reprat2dty
themandthenredrawingthemat a new, slightly lower location. The leftmost ball (the ball in the
vacuum) is moved down every cycle, the middle ball (the ball falling thrglyglerol) is movedevery
other cycle, and the rightmost one (the ball in castor oil) is moved evergyiiegl therebysimulating
how eachmediaaffectsthe motions. After the simulation,Screen-6waits for the userto choosean
option and then control is transferred appropriately.

7.4 ABACUS Challenges the User

This portionof the demonstrations much more complexthanthe precedingparts. Here, the useris
presented with a simple problem of the type ABACUS can solve, and is challengetthéoaok that
ABACUS would do. The screen consists of a cannorfiaed distancefrom a wall and a targetbox
placed ina “random” distancebehindthe cannon. The useris challengedo chooseone of the angle
regions shown which will allow the cannon to shoot the ball off the wall and intwothe The useris
challenged twice oncefor a steelwall anda high explosivepowerandoncefor a woodenwall and
low explosivepower. The wall type and explosive power are part of the “environment” which is
formally describedin the next section. The possibleball pathsfor eachangle region have been
computedin advanceandsavedin global variablesto speedup the simulation. The functionswhich
were used to calculate these paths will be described in the next section.

Screen-7is the main function for this screen. It calls several subroutindstthe screensandthe
mostimportantof thosewill be describedbriefly here. DrawDiagram drawsthe diagramarea(for
both this screenandthe other“challenge”screen) which consistsof a light coloredarea,a wall, a
floor, a cannon, and optionally, a tardpetx (the next sectiondescribeghe situationwherethe box is
not displayed). Several global variables are used in conjunction with the various diagram functions:

DIAGRAMXO -- Xx-coordinate of the left edge of the diagram

DIAGRAMYO -- y-coordinate of the top edge of the diagram
DIAGRAMWIDTH -- width of the diagram in pixels

DIAGRAMHEIGHT -- height of the diagram in pixels

BALL-RADIUS -- radius of the cannonball in pixels

WALL-RIGHT -- position of the right edge of the wall in pixels
FLOOR-THICKNESS -- thickness of the floor in pixels

CANNON-TIP -- (xy) position of the center of the tip of the cannon in pixels.

53

Draw-Wall drawsthe wall in the appropriatecolor (basedon the wall type), and draws the floor.
FunctionsDraw-Cannon, Draw-Box, Draw-Ball, andDraw-Ball-Path draw the cannon,box,
ball, and ball path respectively. Thesefunctions use a variable called ENV which is a structure
defining the currentenvironment(describedbelow). Draw-Diagram-With-Choices is calledto
draw the choiceareas. Theseare usedto definethe angle regionswhich are usedin the interactive
session with the user. Each region consists of a triangular-shaped area located between taadcannon
wall. This function calls Draw-Choice-Areasto draw the choiceareas. Otherfunctions used by
Draw-Diagram-With-Choice#nclude Draw-Triangle and Draw-Chosen-Area Draw-Chosen-
Area draws the area chosenthg user. Draw-Triangledrawsa trianglewhosearealies betweenthe
angles ANGLE1 and ANGLEZ2, where the horizontal is defined as zero degrees. The stiangle
DIST pixels to the right of the origin (usually defined as the right edge of the wall) and ends at x=0.

Theflow of control beginswhen Screen-7calls Choose-And-Fire to draw the screen(by calling

Draw-Diagram-With-Choices) and to read the user’s choiangleregions. This functionthencalls

Fire-Cannon (assuming thathe userchosean angleregion), which simulatesthe cannonfiring the

ball by drawing the ball path (defined in the global variables) for the selected angle regiatesifbée
pathis copiedsince Draw-Ball-Pathdestructivelymodifiesthe pathit is given. After the simulation,
Get-Land-Posis called to return the location (in pixels) where the laaitled. This locationis used
to determinewhetheror not the ball landedin the box. If not, Ball-Missed is called to print out

appropriatemessageandto allow the userto try again. The useris allowed to chooseas often as
desired, until the correcegionis chosen. Whenthe correctregionis chosenLocal-Change-Env
is calledto changethe wall type and explosive power (to a predeterminedvalue) and repeatthe

simulation. After this secondtime in the loop, the useris shown the equationswhich describethe

flight of the ball using the corresponding environments.

7.5 User Challenges ABACUS

This portion of the demonstration allows tigerto challengeABACUS by settingcertainparameters
of the environment and challenging ABACUW&find an equationthatit canuseto shootthe ball into
the target box. Since different environmemasedifferent effectson the flight of the ball, ABACUS
must generate a negguationfor eachnew environment. Screen-8is the main control function for
this portion of ABACUS. It startsby settingup the variables*DIAGRAMXO*, *DIAGRAMYO*,
DIAGRAMWIDTH, AND *DIAGRAMHEIGHT* for the draw-diagramroutines, then calling
several routines tohangethe environmentand performthe simulationsto collect datafor ABACUS.
After this, ABACUS is calledwith this datato derive an equationwhich it thenusesto determinethe
appropriateangle at which to shootthe ball. Before describingthese functions, the environment
structure should be discussed.

The environments defined formally as a structure(DEFSTRUCT)which describesvarious values
related to the “environment” in the two challenge screens. It is ugkd dnawingroutinesandin the
equationsusedfor the “real-world” simulation. The following is a list of the environmentvariables
and their meaning:

WALL-MEDIUM - medium of the wall

VOL1 - initial velocity. Translated from the EXPLOSIVE-POWER.
ANGLEL1 - initial angle of the cannon.

BOX-LOC - location of the target box.

LAND - location where the ball landed.

CANNON-WALL - distance from cannon to wall.

VO2 - new velocity after the ball hits the wall.

VX1, VY1 - x and y components of the initial velocity.

54

VX2, VY2 - x and y components of VO2.
ANGLE2? - new angle after ball hits the wall.
TWALL - time for ball to hit the wall from the cannon.

DATA - holds the current events generated by shooting the ball.
This is used by the ABACUS learning system.

DATASET - holds the input for ABACUS.
The dimensions of the variables are all in terms of meters and seconds.

After drawing the screen,Screen-8calls Setup-Env to record the user’s changesto the current
environment. Setup-Enwvcalls ChangeEnv, which usesDraw-Env-Options to draw the options
for theuser. If the responsas a standardnenuoption, SETUP-ENV exits with this choice as the

returnedvalue. Otheroptionsat this point are moving the targetbox, changingthe wall material or

changingthe initial velocity. ChangeEnvhandlesall of theseoptions. Once Draw-Env-Options
finishes drawing the screen as chosen, the user input ianddépdate-Box and Update-Env are
called to perform error checking and update the box location and the environment.

Draw-Env-Options draws a screen which has one rectangle area fanxtlexationandtwo areasfor

the wall materialand the initial velocity. The optional parametetfSHOW-BOX?is usedto indicate
whether the routine should draw the rectangle choice area for the box lodatieturnstwo lists; the
first one is a list of information on each icon that makes up the table entries and the steoiuicis

list” that was generated when all icons wdrgplayed. Eachlist consistsof the icon token,the name
of the function to draw the icon, the (X Y) position of the icon (upper-left cornerYhamémeof the
access function that is used to change the corresponding slot in the Env structure.

As described earlier, Update-Env is called to update the environment with the new Vialsgmssed
the new valueChoice), the environmenstructure(Env), andtheicon data(lcon-Data). This last
parameter has the access function needed to reset the value in Env.

Whenthe userhassetup the environmentChallenge-Abacusis called. This routine redrawsthe
diagram, forces garbagecollectionto minimize delaysduring the simulation,and then simulatesthe
firing of the cannon ball using different preset cannon angles. This will allow foplleetion of data
pertainingto the flight characteristicef the ball in the currentenvironment. The equationsthat are
used for this simulation are used as follows:

The equations described in this paragraph attieashysicallaws of natureto simulatewherethe ball
would goif it wasin the “real-world.” They are not known by the learning portion of ABACUS.
Theseequationsare given the currentenvironmentandthe time (relativeto whenthe ball was shot),
and return the corresponding (X,Jgair. The coordinatesare calculatedusing the standardequations
from physics,with a few exceptions. The flight of the ball is divided into two intervals- from the
cannonto thewall ([Tq.. Tyalll) andfrom the wall to wherethe ball lands([Twall-- Tground). The

functions correspondingo the first interval include X1, Y1, and TWall. X1 calculatesthe X
position, Y1calculateghe Y position,and TWall calculateshe time for the ball to hit the wall when
shot from the cannonX2 andY2 respectively calculate the same valasx1 and Y1 exceptfor the
fact that they operate on the second interV&@2 finds the new velocity after the ball hits the waaid
Angle2 returnsthe new angle. The coordinatesare eventuallyconvertedto pixels by the Meters-
Pixels function.

As mentioned in thaboveparagraphthe equationsdo not corresponcexactlyto real-world physics.
The reasonis the complexity involved when trying to simulatethe different effects of varying wall
types. The purposeof including adjustablewall typesis to show that the lesselasticthe wall is, the
more energyit absorbsandthus, the shorterthe distancethe ball will travel. To accountfor this,
coefficientconstantavere defined which effectively determinethat a steelwall absorbsless energy
than a brick wall, which in turn absorbsless energy than a woodenwall, and so forth. These
constantdefine the percentag®f energywhich is not absorbedfter the ball collideswith the wall.

55

This is not an exactsimulationof what would actuallyoccur, but it sufficesfor the purposesof the
demonstration.

After Challenge-Abacuperformsthe simulationsto collect datafor ABACUS, it calls ABACUS via
severalinterfacefunctionsto generatethe equation. Find-Eqn takesthe datageneratedirom the
simulation(which is storedin the Env-Dataslot of the environmentstructure),and calls ABACUS
with this datavia the function Run-Abacus. The resultsare storedin Env-Dataset Once
ABACUS returns the discovered equati®etrieve-Angleis calledto getthe anglefor the cannon.
It doesthis by retrievingthe equation(Retrieve-Formula), andthenpassingthis equationand the
environment taCalculate-Angle. Calculate-Angle is an ad-hdgnction which simply initializes the
angleto 20.0 degreeqthe minimum value) andthenincrementsit until the resulting value from the
equationwith thatanglevalueis approximatelyequalto the constantgeneratecdoy ABACUS. This
approach is necessary since a full-sized problem solver would be required otherwise due tthtte fact
no assumptions were made regarding the type of equations generated.

With this new angle value, Challenge-Abacus dalsv-Box-Posin order to makesurethat the box
location chosenby the user is within the areathat may be reachedby the cannon. For certain
environmentvalues,the angle requiredto hit the box may be below the minimum or above the
maximum. If this is the case,then New-Box-Posasksthe userto choosea new location within a
rectangularbox that it draws. The dimensionsof this box are a parameterwhose x-constraints
represent the minimum and maximum distances the cannon can fire in the current environment.

The next stepis the simulationof the new cannonangle, showing that the equationgeneratedby
ABACUS is accurate enough to hit the box. This simulation is done twicthisAdoint, the usercan
eitherchallengeABACUS again, seethe equationgeneratedpr choose one of the standardmenu
options. If the userwishesto seethe equation,Show-New-Eqnis calledto draw the new screen
using function Draw-Eqn-Screen and then calls Show-Eqn to retrieve the constantassociated
with the equation. This portion of the presentation is a bit artificial, since these functions kiready
the generalform of the equation,implying that the only thing that changedrom one equationto the
other is the value of a constant.

7.6 List of ABACUS functions

The following is a list of the functions used by the graphicsroutinesin ABACUS, and a brief
description of the function each performs:

Abacus-Main ()

Main routinefor Abacusdemonstration.Calls Screen-1to display the main menuand get a
responsdrom the user. It thendispatchesontrol to the properscreenroutine, basedon that
response.

Ball-Hit (hit-count env StdPlist SelectAreaY0 SelectAreaHeight)

Tells the user that the ball landed in theget-box. If this is the first environmentchangethe
environmentwith ‘local-change-env’andallow the userto continue.Otherwise,display the
eguationsthat abacuswould have derived for the two demonstrationshat the user has
experienced. This routine returns the user’s next menu choice.

Ball-Missed (StdPlist file X0 YO Width Height)

Tells the user that the ball misste target-box.lcons are thendisplayedallowing the userto
try again, or continue on to Screen-8. The user’s menu choice is returned.

Balls ([(xO 0) (y0O 0)])

This routine simulates the falling balls in different mefdiathe demonstratiorof Stoke’slaw.
The optional parametersare usedto position the ball and cylinder arrangementdor the
demonstration. The coordinates given determine the upper-left corner of the leftmost cylinder.

56

The balls are drawn in these cylinders, and the dropgpiagcomplishedy erasingthem,and
redrawingthemat a new location. Eachball is re-drawnbefore the next one is erasedeach
cycle.

The leftmost ball (“vacuum?”) is moved down every cycle, the middle ball (“glyceroiiaged
every second cycle, and the rightmost ball (“castor oil”) is moved everycygteto show the
effects of the different media densities.

BoxWord (xO yO0 text [bgnd[fgnd[outline[x-span[y-span]]]]])

Outputs ‘text’ to the screerenteredn a box whoseupper-leftcorneris at position (x0, y0).
The box defaults to a size of 130 pixels long, and tall enéagh singleline of text. The box
is yellow with black text and an outline of coral. Any of these

defaultsmay be changedoby supplyingone of the optionalargumentgo the function. These

optional arguments are background-color, foreground-color, outline-color, x-span and y-span

BoxWordSize (text [x-span])

Returns the size of a word-bawntaining'text’ in the form (x y). The x-spanandy-spanof
the box may be specified, as per BoxWord.

Build-Path (file-name)

Appends'file-name’ to the partial path defined in the global variable *PATH* to give an
absolute path to the file. Thus (Build-Path “foo”) is equivalent to (Full-Path “abacus/foo”)

Challenge-Abacus (env StdPlist X0 YO Width Height)

Whenthe user has configureda satisfactoryenvironment,control is passedo this routine.
This routine re-drawsthe diagramso that only actual piecesof the diagram are displayed,
forces agarbage-collectioto ensuresmooth“animation”, and then simulatesthe firing of the

cannon at several pre-set angles. The results of these simulations are recorded andtpassed to

ABACUS program which derives a rule that will compute the landing location of the
cannonballgiven the angleof the cannonfor this environmentOncethis law is known, it is
used to determine what angle at whiclaim the cannonat in orderto fire the cannonbalinto

the target box. In the event that the target box is outside of the possible range of thetbannon,

user is asked tohoosea new locationfor the box in the reachablearea. Changingany other
parameteiin the environmentwould invalidate the rule found by the Abacusprogram, and
necessitate a re-running of the simulation.

Oncetherule is found and demonstratedthe useris presentedvith the optionsof seeingthe
eguation derived by the Abacus program, or continuing to challenge Abacus.

The routine returnsthe menu-tokerfor the option selectedby the user. The user may select
standard menu options at any time input is requested.

ChangeEnv (env StdPlist YO)

This routine controlsthe changingof the environmentparameterdy the user. It calls Draw-
Env-Options to output the rectangle for possible target box placement aablés®f possible
wall media and cannon explosive poweéfserinput is thenread. If the userselecteda point
thatis not within anicon, Update-Boxis calledto seeif avalid new targetbox location has
been selected. If an icon token was returned, it is checkedagainstthe data for the
environmental icons and Update-Env is calledhatchis found. In all othercasesthe user
picked a standard menu option,“@hallengeAbacus”, so the icon tokenwill be passedack
to Setup-Env.

Choose-And-Fire (StdPlist env angle-list path-list SelectAreaX0 SelectAreaY0
SelectAreaWidth SelectAreaHeight intro-file intro-msg?)

This routine causeghe diagram-aredo be drawn, andthenreadsthe user’'sresponse. If the

57

response is a standard menu option, the routine returns with this choice as it's value.

If the user selected one of the ic@mecifyingan angleregionfor the cannon,Fire-Cannoris
called tofire the cannon,andthe routinereturnsHIT or MISSED to indicatewhetherthe ball
landed in the box or not.

ClearMidScreen (&optional color-index)

Clears the area in the center of the scgéen the regionfrom below the title line to abovethe
standard options). Th&andardnenubackgroundectangleis redrawnon a backgroundhat
is black by default, but which can be reset by calling the routine with a color index .

ClearSelectArea (X0 YO Width Height)

Clears the area between the bottohthe diagramareaandthe standardoptions. This areais
defined to have its upper-left hand corner at (X0 Y0) and exédth pixelsin the x-direction
andHeightpixels in the y-direction.

Constnd (list element)
Adds an element to the end of a list, and returns the new list. This function is non-destructive.
Distance (ptl pt2)
Computes the distance between the points ptl and pt2, which are both (x,y) pairs.
Draw-Ball (pos)
Draws the ball at the given position pos, which is given in terms of pixels.
Draw-Ball-Path (env [ball-path [leave-ball]])

Displaysthe pathof the ball fired from the cannon. This pathmay be definedin one of two
ways: If the optional parameteall-pathis given, it specifies the path of the ballpasrs of (x
y) coordinates; otherwise the ball’s path is derived from

the data irenv by Get-Xy-Pairs. The optional parametefeave-ball?may be usedto keepthe
ball from being erased after it is drawn, thus displaying the entire path.

Draw-Box (env [box-color])

Draws the target box at the location specifiedin env (in terms of meters). An optional
parameter can be used to override the default box color.

Draw-Cannon (env [barrel-color [wheel-color]])

Given the cannonto wall distance(given in meters)and cannonangle from env, draws the
cannonat the correctpositionin the diagram. Optional parameterganbe usedto choosethe
color of the cannon and the whedlhe global variable*cannon-tip* is setfor routineswhich
need to know the current cannon tip location in pixels.

Draw-Choice-Areas (env angle-list)

Controlsthe drawing of the triangularangle regionsthat the user may choosefrom. These
regions start at the tip of the cannon and end at the wall. rEgicinis identified by a number
placed within the wall directly to the lefif the region. The function Draw-Triangleis usedto

actually draw the regions.

Draw-Chosen-Area (env angle-list choice)
Calls Draw-Triangle to draw just the angle region chosen by the user.
DrawDiagram (env [no-box])

Draws the diagram area for screens 7 and 8, consisting of a light-colored area, a wallaa floor,
cannon, anaptionally a targetbox. Severalglobal variablesare usedin conjunctionwith the

58

various diagram functions. They are:

DiagramX0 -- Xx-coord. of left edge of diagram

DiagramYO0 -- y-coord. of top edge of diagram

DiagramWidth -- width of diagram in pixels

DiagramHeight -- height of diagram in pixels

pball-radius -- radius of cannon ball in pixels

wall-right -- position of the right edge of the wall in pixels
floor-thickness -- thickness of the floor in pixels

cannon-tip -- (x y) positionof the centerof thetip of the cannonin pixels.

This is set by Draw-Cannon.
Draw-Diagram-Area (env)

Draws the light colored rectangleof the area, with upper left corner at (*DiagramXO0*,
DiagramYO0%). A dark border is also drawn around the diagram area.

Draw-Diagram-With-Choices (env angle-list file YO intro-msg?)

Draws the diagram-area with the four triangular angle areas thedrthenmay be aimedinto.
If this is the first time this part of the demonstratiorhasbeenentered(sincethe invocationof
Screen-7)atitle andsomelabelssuchas“targetbox” areaddedto the diagram. A message
explaining what to do is then printed, and icons for each dbilveregion choicesare created.
The return value of this routine is a pick list of these four icons.

Draw-Env-Options (env YO [show-box?])

This routine draws tables of possible valoéshe wall mediumand cannonexplosivepower,
and highlights the current values from the env parameter.If show-box?is non-nil, a
rectangularareawhere the targetbox may be placedis also displayed. Draw-Env-Options
returns a two element list. The first elemera Ist of informationon eachicon that makesup
the table entries. Each icon information list consists of thetwloen, the nameof the function
to draw the icon, the (x ypositionof the icon (upper-leftcorner),andthe nameof the access
function that is used to change the correspondingrskbie env structure.The secondelement
of the return value is the pick-list that was generated when all these icons were displayed.

Draw-Eqn-Screen (eqgn &optional is-file?)
(Defined in screen-7, but not used there)
This routinewill build a pageof information explaining the equationwhich was derived by
Abacus. The equation can be delivered to this routine as a string in the eqn paramwwgieh(in

case,the parameteris-file?’ should be absentor nil), or as a one line file whosenameis
passed as eqgn (with is-file? non-nil).

Draw-Triangle (anglel angle2 x-dist [marker])
Draws a triangle whose area lies between the angles anglebgle@(wherethe horizontalis
zero degrees). The triangle starts x-dist pixethéaight of the origin (usually definedasthe
right edge of the wall) and ends at x = 0. An optional parameter may beoussfthe a single
character string marker for this triangle which willglaceda small distance(16 pixels) to the

left of the left endof the triangle. This distanceplacesthe markercenteredwithin the wall, if
the wall is there.

Draw-Wall (env)
Draws the wall in the appropriate color for the current wall-medistefinedin environment.

59

This routine also draws the floor in the same color as the diagram-area border.
Erase-Ball (pos)

Erases the ball at the given positmrs(which is in pixels) by re-drawinig in the background
color.

Erase-Cannon (env)

Redrawsthe cannonat the currentlocation in the backgroundcolor so that the cannonis
effectively erased.

Fix-Path (env path)

Alters the ball’s pattso thatit doesnot startbeforethetip of the cannon,andthatit doesnot
continue through the target box.

Fire-Cannon (env choice angle-list path-list X0 YO Width Height)

Redraws the diagram-area, with only the selected angle rdgiplayedthenfires the cannon
by drawing the ball-path for theelectedangleregion. The desiredpathis copiedwith Copy-
Tree becauseDraw-Ball-Pathdestructivelymodifies the ball-pathit is given, and altering it

would change the results the next time this constant path was used.

FullRect (color x1 yl x2 y2)

Fills a rectangle that is one pixel larger than the area given with the color given.
GeneralBlockRight ()

Returns the size of a general block minus the x-position of the left edge of the block.
Get-Box-Width ()

Returns the half-width of the target box in pixe[3he box extendsbox-width units on either
side of the origin.) This routine was written so that only corestanineededo be changedo
change the box width for the entire ABACUS demonstration. bidxewidth constantis given
in meters.

Get-Box-Locs (path-list)

Calculates where the ball will come to rest (in pixels)dachpathin path-listandbuilds a list
of all these landing points as possible target box locations.

Get-Land-Loc (path)
Given a ball-path, determines the (x,y) coordinates (in meters) where the ball will come to rest.
Get-Land-Pos (path)

Given a ball-path, determines the (x,y) coordinates (in pixels) whetgll will cometo rest.
The function Get-Land-Loc is used to get the coordinates in meters.

Get-Menu-Choice (plist &aux choice)

Readsthe user'smouseselection,and disregardsany selectionsthat do not referenceicons
(i.e. any selection that returns a screen position rather than an icon reference).

Hit-Box? (env &optional land-loc)

If the cannon ball has hit the target box in the current environment (or the landing dasttion
pos would do so), this routine returns the atom HIT, otherwise it returns the atom MISSED.

In-area (x y x0 y0O x1 yl)
Determines if theoint (x, y) is within the rectangledefinedby the lower-left corner(xg, yo)

60

and the upper-right cornerqxy1).

Local-Change-Env (env StdPlist SelectAreaY0 SelectAreaHeight)

After the user successfully shoots the canbalhinto the box, this routineis calledto change
some of the parameters of the environment in order to give the user another poodufempt.
The routine Draw-Env-Options is callédl display tablesof the currentenvironmentandthen
Update-Env is called to change the env structure, as well as the displayed tables.

A new icon is generatedhat asksif the user wants to try this environment. The user’s
response is then read, and returned by this routine.

Meters-Pixels (pos)
Converts pos from meters to pixels. Both pos and the return value are (x,y) pairs.
New-Box-Pos (env area-dim StdPlist file X0 YO Width Height)

If the box location chosen by the usenot within the areathat canbe reachedoy the cannon
with the currentenvironment,this routine is called to allow the userto choosea new box

location. The parameterarea-dimcontainsa list of least-x and greatest-xocationsthat the

cannoncanreach. The routine displaysa box aroundthis areaand asksthe userto selecta

locationwithin it. The box is thenredrawnat the new location. The box can be movedas

many times as the user desires. Once the box is moved into the area reachaldariyoina

menuicon is displayedthat gives the userthe option of continuingwith the demonstration
using thecurrenttargetbox location. Any selectionof the standardmenuoptionscauseshis

routine to return that menu token to Challenge-Abacus.

Past-Tip (pos)

Computes whether a given (x y) position (in pixels) is past the tip of the cannon.
Pixels-Meters (pos)

Converts pos from meters to pixels. Both pos and the return value are (x,y) pairs.

Restore-Ball (env)

Restore-Challenge (env title SelectAreaY0 SelectAreaHeight)
Restore-Hit (env title SelectAreaY0 SelectAreaHeight)
Restore-Missed (env title SelectAreaY0 SelectAreaHeight)
Restore-Set-Up (env title SelectAreaY0 SelectAreaHeight)
Restore-See-Eqn (env title SelectAreaY0O SelectAreaHeight)
Restore-Std-Options (title)

Restore-Try-Again (env title SelectAreaY0 SelectAreaHeight)

The Restore-*functions are usedto return the screento the stateit was in beforethe user
selected HELP to the best degree possible. If the pages of aa@ebangediheseroutines
must be updated to reflect this change so that the before-HELP disalelyeshe after-HELP
display.

Rotate-Pt (pt sine cosine)

Rotates ar{x,y) point throughan anglearoundthe origin, wheresine and cosinearethe sine
and cosine of the desired angle of rotation.

Say-Hit-Or-Missed (env)
Tells the user (by voice) whether the ball hit the target box or missed it.
Screen-1 ()
Displays the main ABACUS menu, gets a choice from the user, and returns that choice.

61

Screen-2 ()
Demonstrates to the user the use of a simplified example of ABACUS to discover Ohm’s law.
Screen-4 ()

Displays a page briefly describingAbacus’s abilities. Currently only reachablefrom the
“Ohm’s law” example (Screen-2).

Screen-6 ()

Demonstrates an experiment tieatld be usedby ABACUS to derive Stoke’slaw for falling
bodies.This demonstratiorshowsthat ABACUS may find severalrules relating to a single
experiment.

Screen-7 ()

This screenpresentghe userwith a simple problemof the type ABACUS could be usedto
solve, and challenges the user to do the viloeakABACUS would do. The useris presented
with a cannon placed a fixed distance frawall and a targetbox placeda “random” distance
past the cannon. The user is challenged to pick the proper antfle f@annonto be aimedat,
so that the ball will bounce off the wall atahd in the targetbox. The possibleball pathsfor
eachangleregionhavebeencomputedin advanceand savedin global variablesin order to
enable thisscreento respondas quickly aspossible. This screensetsup the global variables
DiagramX0, *DiagramYO0*, *DiagramWidth*, and *DiagramHeight* for the diagram
drawing routines in order to place the diagram area where desired.

There are several actual “pages” to this screen, including a HELP pagetWlserchooses
help, the routine displays the help message that is most apprépriateerethe useris in the

demonstrationWhenthe userexits help, the routine attemptsto restorethe displayto a state
that resembles there-helpdisplay as closely as possible.This is accomplishedy calling the

various Restore-* routines after the HelpScreen function returns.

Screen-8 ()

This screenpresentsessentiallythe sameenvironmentas screen-7(cannon,wall, targetbox,
etc.), exceptthat this time the usermay manipulatecertain elementsof the environment,and
then challenge ABACUS to shoot the cannonball into the target box.

Once the environment hagensetup, the actual ABACUS programis calledwith the results
of several test shots of the cannon.

The ABACUS programcomputesan equationfor where the ball will land given the current
environment,as a function of the cannonangle. This equationis then usedto shoot the
cannonball directly into the target box. The user meggatthis challengeas manytimesasis
desired.

This screensetsup the global variables*DiagramX0*, *DiagramY 0*, *DiagramWidth*, and
*DiagramHeight*for the diagramdrawing routinesin orderto placethe diagramareawhere
desired.

There are several actual “pages” to this screen, including a HELP pagetWlserchooses
help, the routine displays the help message that is most apprépriateerethe useris in the

demonstration. Whethe userexits help, the routine attemptsto restorethe displayto a state
that resembles the pre-help display as cloaslyossible. This is accomplishedy calling the

various Restore-* routines after the HelpScreen function returns.

Setup-Env (env StdPlist SelectAreaY0 SelectAreaHeight intro-msg?)

This routine causes the diagram-area to be drawnthemdalls ChangeEnvo readthe user’s
mouse selection. If the response is a standard menu option, the routine retuthis wiitbice
asits value. Otheroptionsinclude moving the targetbox or changingthe wall mediumand

62

explosive power of the cannon.ChangeEnvhandlesall theseoptions. The first time this
routine is called (per invocation of Screen-8)an introductory messageexplaining what is
happening is displayed.

Show-New-Eqn (env StdPlist X0 YO Width Height)

This routine builds the equation that ABACUS found for shooting the cannonball irterglé
box in the currentenvironment. The useris then given the option of challengingABACUS
with another environment, or selecting one of the stanairblioptions. The function Draw-
Eqgn-Screen is called to create most of this page.

Trans-Pixels (pos)

Translates an (X,y) location in pixels to be offset that distance from
(*DiagramX0*,*DiagramY0%*) instead of from (0,0).

Update-Box (pos env)

The screen-locatioim posis checkedto seeif it falls within the targetbox locationarea.lf it
does, it defines the new center of the target box. Thbmtds erasedthe locationof the box
is changed in env, and the new box is drawn at the new location.

Update-Env (choice env icon-data)

Given the choice parameter(an icon token returnedwhen the user selectedan icon), this
function changes the value of the env-slot chosdaethe value desired. The value of choice
is the new value the env-slot is to have. @h&associateavith the icon which would return
choiceis lookedup in icon-data. This givesthe accesdunction neededo resetthe value in
env. If the current value of the env-slotifferent from choice,it is de-highlighted.The icon
associatedvith choiceis then highlighted, and the slot in env changedto reflect the user’s
selection.

8 AUTOEVALUATOR

8.1 Introduction

The autoevaluator is a mechanism for providing a feedback for the developetkdnasarsaboutthe
EMERALD system. The autoevaluatoonsistsof two componensystemsthe passive systemand
theactive system, as well as a set of functions which run the autoevaluator.

Passivevariables,or counters simply log when certainportions of the programare reached. With

these,we hopeto geta countnot only of how many peopleare using EMERALD, but also which

modules they have a tendency to view. Currently, six passive variables are in uties détcriptive
names: EXHIBITSEEN, AQSEEN, INDUCESEEN, CLUSTERSEEN, SPARCSEEN, and
ABACUSSEEN.

Active, or input variables, are multi-valued, and require input (or the absence of it)usettie order
to register. Eachis being implementedas a property list with three properties: YES, NO and
ABSTAIN. YES indicateshow many times the usersdisplayeda liking for that which was asked
about; NO counts the dislikings, aABSTAIN countsthe numberof timesthe usersdid not answer
the question, either by letting the exhibit time outhprchoosingone of the standardnenuselections
instead.

Only two active variables are currently implemented, EXHIBITLIKED 8DUCELIKED. Whena
user selects QUIT THE EXHIBIT at some pointEKHIBITLIKED is activated the systemwill ask
whether the user enjoyed the exhibit. When INDUCE finds and displays, if INDUCELIKED is
activated, the system will be asked whether the user fileedile. Futuredevelopmentwill allow for
the implementation of AQLIKED, CLUSTERLIKED, SPARCLIKERBNdABACUSLIKED. These,

63

like INDUCELIKED, will test user reactionsto the rules and descriptionsgeneratedduring the
challenge stages. The reason only one of the rule liking variables has been implementedrsaitar is
is a non-trivial programmingproblemto incorporateit into the existing code,so that the EMERALD
administrator may turn the inquiry mechanism on or off at will. Ultimately, all will be installed.

8.2 Files and Functions used by the Autoevaluator

All source and data filearefound in the directory, (Full-Path “share/autoeval”). The autoevaluator
systemusestwo files to storeits data,evaldata.lispand evaldata.init. The former holds the current
valuesof all countersaswell askeepingtrack of which subsetof the countersis currently activated
(seebelow). The function WriteEvalData takesthe updatedvaluesfor theseout of memory,and
rewrites this file in LISP-readable form. In turn, functiomadEvalData initiatesthe loading of this
file’s contents into memory. Currently, WriteEvalData operates tzaetan EMERALD run is exited
or the closingscreenis shown. Thereis no way to accountcompletelyfor an abnormalEMERALD
exit, but it is hoped thahis frequencyof updateminimizesthe potentialamountof lost data,without
subjectingthe user to too many delays. LoadEvalDataonly needsto be run at the start of an
EMERALD session.

The file evaldata.init is similar to evaldata.lisp, but all counters are set taapekthe defaultactivated
set is indicated. Copying this file into evaldata.lisp therefore reinitializes the autoevaluator.

WriteEvalData,LoadEvalDataandall other autoevaluatorfunctions are storedin the file (Full-Path
“share/autoeval/autoeval.lisp”). The other main autoevaluator functions are as follows:

AskUser is thefunction which handlesthei/o for the activevariables. ViewEvalData producesa

hiddenscreenwhich displaysall valuesof all autoevaluatovariableswhich are currently activated.
This functionis invoked by going to the EMERALD screenmoving the X to Emerald’smouth, and
hitting the SELECT button. The screenthen displayedalso shows the 10 digits, the sequential
selectionof which allows the userto entera five-digit code number. If incorrectly entered,control

goes back to the EMERALD screen, while if correctly entered, fun&patialPagds called, which

generateg/et anotherhidden screen. This one allows the user to toggle both active and passive
variableson or off, therebyalteringthe setof activatedvariables. If a variableis not activated,its

counters will not operate until it is reactivated.

64

REFERENCES *

General:

Dietterich, T.G. and Michalski, R.S., “A Comparative Review of Selected Mefloodsarningfrom
Examples,” Chapter3 in Michalski, R.S., Carbonell,J.G. and Mitchell, T.M. (Eds.), Machine
Learning: An Artificial IntelligenceApproach Tioga PublishingCompany,Palo Alto, CA, 1983, pp.
41-82.

Kodratoff, Y. and Michalski, R.S. (EdsMachine Learning: An AtrtificialntelligenceApproach,Vol
lIl, Morgan Kaufmann Publishers, San Mateo, CA, 1990.

Lenat, D., “AM An Atrtificial Intelligence Approach to Discoveiry Mathematicsas Heuristic Search,”
Computer Science Department, Rept. STAN-CS-76-750, Stanford University, Stanford, CA, 1976.

Michalski, R.S., “Pattern Recognitionas Rule-Guidedinductive Inference,”|IEEE Transactionson
Pattern Analysis and Machine Intelligen&&gl. PAMI-2, No. 4, pp. 349-361, July 1980.

Michalski, R.S. (Ed.), Proceeding®f the International Machine Learning Workshop University of
lllinois Allerton House, Urbana, IL, June 22-24, 1983.

Michalski, R.S., “ConceptLearning,” Encyclopediaof Artificial Intelligence S. Shapiroed. John
Wiley and Sons Publishers, New York, NY 1987, pp. 185-194.

Michalski, R.S. and Chilausky,R.L. , “Learning by Being Told andLearningfrom Examples: An
Experimental Comparisonof the Two Methods of Knowledge Acquisition in the Context of
Developing an Expert System for SoybeanDiseaseDiagnosis,” International Journal of Policy
Analysis and Information Systemol. 4, No. 2, pp. 125-161, 1980.

Michalski, R.S., Carbonell,J. andMitchell, T. (Eds.), Machine Learning: An Atrtificial Intelligence
Approach TIOGA Publishing Company, Palo Alto, CA, 1983.

Michalski, R.S., Carbonell,J. andMitchell, T. (Eds.), Machine Learning: An Atrtificial Intelligence
Approach, Vol I Morgan Kaufmann Publishers, Los Altos, CA, 1986.

Michalski, R.S. and Kaufman,K.A., “Data Mining and KnowledgeDiscovery:A Reviewof Issues
and a Multistrategy Approach,” Chapter2 in Michalski, R.S., Bratko, I. and Kubat, M. (Eds.),
Machine Learning and Data Mining: Methods and Applicatjalzhn Wiley & Sons, London, 1997.

Michalski, R.S. and Tecuci, G. (Ed€V)achine Learning: A Multistrategy Approach, Vol IMorgan
Kaufmann Publishers, Los Altos, CA, 1994.

Mitchell, T., Carbonell,J. and Michalski, R.S. (Eds.), Machine Learning: A Guide to Current
ResearchKluwer Publishing Co., 1986.

Mitchell, T.M., Keller, R.M. and Kedar-Cabelli,S.T., “Explanation-basedGeneralization: A
Unifying View,” Machine LearningVol. 1, No. 1, pp. 47- 80, 1986.

Rose,D. and Langley, P., “STAHLp: Belief Revisionin Scientific Discovery,” AAAI-86, Fifth
National Conference on Atrtificial Intelligenc®ol. I, pp. 528-532, Philadelphia, PA, August 1986.

Winston, P.H., “Learning StructuralDescriptionsFrom Examples,”Tech.ReportAl TR-213, MIT,
Al Lab, Cambridge, MA, 1977.

Winston, P.H., “Learning by AugmentingRules and AccumulatingSensors,”Chapterin Machine
Learning: An Artificial Intelligence Approach, Vol, Morgan Kaufmann Publishers, Inc. 1986.

" TheseReferencesnclude papersdescribingalgorithmsimplementedn EMERALD, as well as their extensionsand

recent developments.

65

For AQ:

Bloedorn,E., andMichalski, R.S., “The AQ17-DCI Systemfor Data-DrivenConstructivelnduction
and Its Application to the Analysis of World Economics,” Proceedingsof the 9th International
Symposium on Methodologies for Intelligent Syst&takopane, Poland. 1996.

Bloedorn, E., Wnek, J. andichalski, R.S., “Multistrategy Constructivelnduction,” Proceedingof
the Second International Workshop on Multistrategy Learning (MSLF&8pers Ferry, WV, 1993.

Michalski, R.S.andImam, |.F., “On LearningDecisionStructures,”’FundamentaVatematicagVol.
31, No. 1, Polish Academy of Sciences, pp. 49-64, 1997.

Michalski, R.S. and Larson, J.B., “INCREMENTAL GENERATION E1 HYPOTHESES: The
Underlying Methodologyandthe Descriptionof ProgramAQ11,” Reportsof the Intelligent Systems
Group, ISG 83-5, UIUCDCS-F-83-905,Departmentof ComputerScience,University of lllinois,
Urbana, IL, 1983.

Michalski, R.S., Mozetic, I., Hong, &ndLavrac,N., “The AQ15 Inductive LearningSystem: An
Overviewand Experiments,’ReportNo. UIUCDCS-R-86-1260,Departmentof ComputerScience,
University of lllinois, Urbana IL, July 1986.

Whnek, J., Kaufman, K., Bloedorn, E. aMichalski, R.S., “Inductive LearningSystemAql15c: The
Methodand User’s Guide,” Reportsof the MachinelLearning and InferenceLaboratory, MLI 95-4,
George Mason University, Fairfax, VA, 1995.

Whnek, J. and Michalski, R.S, “ExperimentalComparisorof Symbolicand SubsymbolicLearning,”
HEURISTICS, The Journal of Knowledge EngineerBgecialissueon KnowledgeAcquisition and
Machine Learning, 5:4, pp. 1-21, 1992.

Whnek, J. and Michalski, R.S, “Hypothesis-drivenConstructivelnductionin AQ17-HCI: A Method
and Experiments,Machine Learningl14, pp. 139-168, 1994.

Exemplary applications:

Michalski, R.S., Kaufman,K. andWnek, J.,”"The AQ Family of Learning Programs:A Review of
Recent Developments and an Exemplary ApplicatiBegortsof the MachinelLearningand Inference
Laboratory, MLI 91-11, George Mason University, Fairfax, VA, 1991.

Michalski, R.S., Mozetic, I., Hong, J. and Lavrac, N.,”"The Multi-Purpose IncrementalLearning
System AQ15 and Its Testing Application to Three Medical Domalr®teedingf AAAI-86, Fifth
National Conferenceon Atrtificial Intelligence Vol. 2, pp. 1041-1045,Philadelphia,PA, August
1986.

Mozetic, I., “Compressionof the ECG Knowledge-baseUsing the AQ Induction Learning
Algorithm”, Reports of the Intelligent Syste@soup, ISG 85-13, UIUCDCS-F-85-943 Department
of Computer Science, University of lllinois, Urbana, IL, March 1985.

For INDUCE:

Bentrup,J., Mehler, G. and Riedesel,J., “INDUCE.4: A Programfor Incrementally Learning
Structural Descriptionsfrom Examples”, Technical Report UIUCDCS-F-87-958, Department of
Computer Science, University of Illinois, Urbana, IL, 1987.

Hoff, W. A., Michalski, R.S. and Stepp,R.E., “INDUCE 2: A ProgramFor Learning Structural
DescriptionsFrom Examples,” Technical Report UIUCDCS-F-83-904, Departmentof Computer
Science, University of lllinois, Urbana, IL, September, 1983.

Exemplary applications:

Bloedorn, E., Imam, |., Kaufmark., Maloof, M., Michalski, R.S. andWnek, J., “HOW DID AQ
FACE THEEAST-WESTCHALLENGE? An Analysisof the AQ Family’s Performancen the 2nd
InternationalCompetitionof Machine Learning Programs,” Reportsof the Machine Learning and

66

Inference LaboratoryMLI 95-3, George Mason University, Fairfax, VA, 1995.

Lewis, C.M., “ldentification of Rule-basedModels,” Report No. 86-5, Center for Man-Machine
Systems Research, Georgia Institute of Technology, May 1986.

For CLUSTER:

Fischthal,S., “A Descriptionand User’s Guide for CLUSTER/2C++:A Programfor Conjunctive
ConceptualClustering,” Reportsof the Machine Learning and Inference Laboratory, MLI 97-10,
George Mason University, Fairfax, VA, 1997.

Michalski, R.S. and Stepp, R.E., “Automated Constructib€lassifications: ConceptualClustering
VersusNumerical Taxonomy,” IEEE Transactionson Pattern Analysis and Machine Intelligence
1983.

Michalski, R.S., and Stepp, R.E., “Clusteringyicyclopedia of Artificial Intelligenges. Shapirced.
John Wiley and Sons Publishers, New York, NY 1987, pp. 103-111.

Michalski, R.S., Stepp, R.E. and Diday, E., “A Recent Advance in Data Anal@sisteringObjects
into Classes Characterized by Conjunctive Concept$rogressin PatternRecognition Vol. 1, L.
N. Kanall and A. Rosenfeld (Eds.), New York: North-Holland, pp. 33-56, 1981.

Stepp, R.E., “Conjunctive ConceptualClustering: A Methodology and Experimentation,”Ph.D.
Thesis, Department of Computer Science, University of lllinois, Urbana IL, June 1984.

For SPARC:

Abbott, R., “The new Eleusis”, availableom Abbott at Box 1175, GeneralPostOffice, New York,
NY 10001 ($1.00).

Dietterich, T. andMichalski, R.S., “Learningto Predict Sequences,Chapterin Machine Learning:
An Atrtificial IntelligenceApproachVol. I, R. S. Michalski, J. Carbonelland T. Mitchell (Eds.),
Morgan Kaufmann Publishers, Los Altos, CA, pp. 63-106, 1986.

Michalski, R.S., Ko, H. and Chen, K., “SPARC/E(V.2), An Eleusis Rule Generatorand Game
Player,”Reportsof the Intelligent SystemsGroup, ISG 85-11, UIUCDCS-F-85-941 Departmenbf
Computer Science, University of Illinois, Urbana, IL, February 1985.

Michalski, R.S., Ko, H. and Chen, K., “Qualitative ProcessPrediction: A Method and Program
SPARCI/G,” in C. Guetler, (Ed.Expert System#cademic Press Inc., London, 1986.

For ABACUS:

Falkenhainer,B., “ABACUS: Adding Domain Constraintsto Quantitative Scientific Discovery,”
Reports of the IntelligerBystemsGroup, ISG 84-7, UIUCDCS-F-84-927 Departmenbf Computer
Science, University of lllinois, Urbana, November 1984.

Falkenhainer,B. and Michalski, R.S., “Integrating Quantitativeand Qualitative Discovery: The
ABACUS System,” ilMachine Learning: ArArtificial IntelligenceApproach,Volumelll, Kodratoff
and Michalski, Eds., Morgan Kaufmann Publishers, San Mateo CA, 1990.

Greene, G.H., “The ABACUS.2 System for Quantitative Discovesing Dependencieto Discover
Non-LinearTerms,” Reportsof the MachineLearningand InferencelLaboratory, MLI 88-4, George
Mason University, Fairfax, VA, 1988.

Michael, J., “Validation, Verification and Experimentatiorwith Abacus2,” Reports of the Machine
Learning and Inference LaboratqriylLI 91-8 George Mason University, Fairfax, VA, 1991.

For EMERALD:

Kaufman,K. andMivhalski, R.S., “EMERALD 2: An IntegratedSystemof MachineLearningand
Discovery Programsto support Educationand ExperimentalResearch,”’Reports of the Machine

67

Learning and Inference LaboratqriylLl 93-10, MachinelLearningand InferenceLaboratory,George
Mason University, Fairfax VA, 1993.

Kaufman,K. andMichalski, R.S., “EMERALD 2: An IntegratedSystemof Machine Learningand
DiscoveryProgramdor Educationand ResearchtUser’'s Guide”, Reportsof the Machine Learning
and InferenceLaboratory, MLI 97-8, Machine Learning and InferencelLaboratory, George Mason
University, Fairfax VA, 1997.

Michalski, R. S., “Machine3 hat Learnand Discover”, MachineLearningand InferenceLaboratory,
George Mason University, Fairfax VA, January 1988.

